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Abstract

Plunkett & Marchman (1993) showed that a neural network
trained on an incrementally expanded training set was able
to master the past tense and show the U-shaped learning
pattern characteristic of children. In Jackson, Constandse &
Cottrell (1996) we argued that Plunkett & Marchman's
restriction of the training set was unrealistic and proposed a
model of selective attention that enabled our network to
master the past tense without external restrictions on ils
training set. Analysis in the present paper shows that the
network in Jackson, Constandse & Cottrell (1996) does not
exhibit appropriate U-shaped learning, however. We propose
a modified model of selective attention that results in the
mastery of the past tense as well as the kind of U-shaped
learning observed in children.

Introduction

In the process of learning the past tense, children typically
show what has been called a “U-shaped” pattern of
development. The first past tense forms produced are
generally correct, regardless of whether or not those forms
are regular. After this period of correct performance,
children go through a period of overregularization in which
irregular forms are inflected with the regular suffix (e.g.
goed). Finally, children seem to identify some forms as
exceptions to the general regular pattern, and the
overgeneralization errors decrease. This pattern of
acquisition has been called “U-shaped,” for obvious
reasons—the performance starts off high, then goes down
and finally comes back up again. Actually, this is
something of a misnomer because it implies that children
enter a period of development in which the regular rule is
consistently applied to all verbs. In fact, children produce
correct past tense irregulars at the same time as they
overregularize others, and sometimes alternate within a
short time between the correct and incorrect past tense form
of the same irregular verb (Kuczaj, 1977, 1978; Bybee &
Slobin, 1982; Plunkett & Marchman, 1991). At all points
in development, overregularizations are a relatively small
proportion of children’s total past tense production
(Marchman, 1988; Marcus, Pinker, Ullman, Hollander,
Rosen & Xu, 1992). Marcus et al. (1992) investigated the
rate of overregularization shown by the children in the

CHILDES database (MacWhinney, 1990). They defined the
overregularization rate as the proportion of tokens of
irregular past tense forms that are overregularizations:

# overregularization tokens
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# overregularization tokens + correct irregular past
tokens

They graphed 1 overregularization rate for 4 children
(Adam, Eve, Sarah and Abe). For all of the children but
Abe, there was an initial period of no overregularization
and the rate of overregularization was small throughout
development (typically <10%). Figure 1 shows the
overregularization rate for Adam. Note that the graph
shows 1 - overregularization rate, so when the graph is at
100%, the overregularization rate is zero. Thus, the series
of points at 100% in the initial part of the graph indicate
the initial period of no overregularization. When the
denominator in the overregularization rate is zero, the point
is not plotted in the graph.
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Figure 1: (1-overregularization rate) for Adam (reproduced
from Marcus et al. (1992)).

Plunkett & Marchman (1991, 1993) (P&M hereafter)
have shown that overregularization behavior can be
modeled using a single mechanism in the form of a
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connectionist network. In response to criticism of the
discontinuous training set used in Rumelhart &
McClelland's (1986) model of the acquisition of the past
tense (Pinker & Prince, 1988; Lachter & Bever, 1988;
Marcus er al., 1992), P&M (1991) showed that a neural
network will make overregularization errors without such
discontinuities in its training set. Unfortunately, their
network did not have the initial period of no
overregularization that is characteristic of children.
Furthermore, the final performance reported (after 50
epochs) was 100% correct for the arbitrary and identity
mappings, but only 80% for vowel change verbs and 85%
for regulars. Since adult humans are capable of correctly

inflecting nearly 100% of regulars, the network
performance left something to be desired.
P&M (1993) showed that networks can achieve

acceptable levels of performance and show the initial stage
of no overregularization that characterizes U-shaped
learning if their training set is expanded incrementally.
Trained on an incrementally expanded set of verbs, the
network described by P&M (1993) was able to master the
vocabulary (correctly inflecting 100% of the irregular verbs
and 97-98% of the regulars). The network was also able to
model U-shaped learning. In particular, it showed the kind
of overregularization behavior that Marcus et al. (1992)
found for children: an initial period where no
overregularization occurred, followed by a protracted
period where low rates of overregularization were observed,
followed by the correct production of both irregular and
regular past tense forms.

In Jackson, Constandse & Cottrell (1996) we criticized
P&M (1993), claiming that their training regime was
unrealistic. At the outset of training, the network was given
20 verbs, on which it was trained to 100% accuracy before
expansion began. After that, a new verb was introduced
every 5 epochs until the size of the training set was 100.
Then one new verb was introduced per epoch until the size
of the training set was 500. Children are exposed to the
entire adult language from the beginning of development,
so this restriction of the network’s training set is
unjustified. We developed a model of selective attention in
which the network trained on items which are most salient.
The most salient items were defined as sampled items for
which network error was highest. Networks with this
mechanism of selective attention learned to inflect 100% of
the verbs correctly without any external manipulation of
their training set. Analysis in this paper, however, shows
that these networks do not show appropriate U-shaped
learning. They begin overregularizing at the beginning of
training and their overregularization rate is much higher
than is typical of children.

In the present work we argue that the use of error alone
to define salience is unrealistic and leads to the model's
inability to show appropriate U-shaped learning. We
implement a new selective attention model that
incorporates frequency information into the criterion for
salience. This model learns the entire training set and
shows U-shaped learning similar to what is seen in
children, without any restrictions on its training set.
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Selective Attention Model

The selective attention model is based on the method of
active selection (Plutowski & White, 1993). This method
was originally used for incrementally growing a training set
by using a partially trained network to guide the selection
of new examples. Instead of using active selection for
incrementally growing the training set, we use it to select
the training examples for each epoch.

In the selective attention model, the verb on which the
network will train is chosen from a set of W items
randomly sampled from the target language based on
frequency. This set of W items is called the “sample
window.” To select a new example for training, the items
from the sample window are compared with the verbs
currently being trained on. The N most “salient” of these
are selected for training. For each epoch, a new set of W
items are selected for the sample window, and the training
queue is updated. In this paper we use N=1 and W = 8. The
nature of “salience” in this model will be addressed below.

Short Selective

Term Fu“hffr
Filter Processing

Store

Figure 2: Broadbent (1958) model of selective attention.

This model of selective attention is similar to the general
model proposed by Broadbent (1958). Broadbent's model
(somewhat simplified) is illustrated in Figure 2. Items are
sampled from the environment and held in a limited
capacity short term memory. The items from this short term
memory are filtered for further processing. The short term
memory may hold information before filtering as well as
retain information after it has passed through the selective
filter and been processed further. The sample window in
our selective attention model corresponds to the “'short term
store,” and the verb selected for training corresponds to the
item that has been selected for “further processing.”

Salience

The notion of salience is central to the model described
above. Plutowski et al. (1993) introduced the idea of using
maximum error on an example as the criterion for selection
(cf. Baluja & Pomerleau (1994), whose network ignores
sections of the input with high prediction error). In
Jackson, Constandse & Cottrell (1996), this criterion was
used for selecting examples for weight adjustment. We
implemented the selective attention model described above,
with error used in place of “salience.” Network error on a



particular verb may be thought of as a measure of the
“novelty” of that verb to the network,

The noveltly of a stimulus is well established as a factor
influencing attentional response. Sokolov (1960, 1963,
1969) argued that the incongruity between an incoming
stimulus and existing neuronal templates is the basis for the
orienting response. Dunham (1990) showed that infants
listening to temporal patterns show an increase in attention
to unpredictable patterns and a decrease in attention to
rhythmic, predictable patterns.

Given the interpretation of error as a measure of novelty,
it seems reasonable to use error for salience, as we did in
Jackson, Constandse & Cottrell (1996). Using error as
salience, the networks mastered the training set without any
external manipulation of their training sets. They did not,
however, show the type of U-shaped learning discussed
above. As we show below, these networks begin
overregularizing early in development, contrary (o
children’s pattern of development. By using error as its
criteria for what is salient, the network is reducing the
importance of frequency in the training set. At the
beginning, the network is more likely to train on irregular
verbs, because their frequency in the training set is higher.
As soon as the error on these examples starts to improve,
however, the network will begin training on regulars, for
which its error is worse. Thus, all verb types are kept on
approximately equal footing with respect to error, and the
frequency of the items in the training set is, in a sense,
“ignored.” Children, on the other hand, do not ignore
frequency. Presumably, the failure of children to
overregularize early in development arises because they
initially memorize forms that are highly frequent (the
irregulars), and only later learn and overapply the majority,
regular mapping. To the extent that our model eliminates
the effects of frequency in the training set, its early
overregularization is to be expected.

There is a large body of research showing that children
pay preferential attention to things that are more frequent
or more familiar. Jusczyk, Cutler & Redanz (1993) showed
that American 9-month-olds (but not 6-month-olds) listen
significantly longer to words that follow the predominant
stress pattern of English words. Jusczyk, Friederici,
Wessels, Svenkerud & Jusczyk (1993) showed that at 9
months (but not at 6 months) American infants listen
longer to lists of English words than lists of Dutch words.
Jusczyk, Luce & Charles-Luce (1994) showed that, among
words allowed by the constraints of English, 9 month olds
listen significantly longer to items with phonetic patterns
that occur frequently than items with infrequent (but still
allowable) phonetic patterns.

This may seem like a paradox: on the one hand, children
pay attention to what is novel, and on the other they pay
attention 10 what is familiar or frequent. These conflicting
findings may reflect different levels of processing. Novel
stimuli tend to provoke an orienting response, as Sokolov
showed. All other things being equal, more attention will
be paid to the stimulus that provoked the response. This
makes sense, because in the process of learning about one’s
environment it is important to correct false expectations as
well as learn about stimuli that are occurring for the first

time. Conversely, stimuli that are frequent in the
environmenl are also focused on. This also makes sense,
because mastering the appropriate responses (0 the most
frequent stimuli maximizes the likelihood of dealing
appropriately with the average stimulus.

In an effort to take both of these factors into account, we
developed a variant of the selective attention model in
which the criteria for salience includes information about
both novelty (error) and familiarity (frequency). In this
model, the salience of a particular example is defined as the
product of the network’s error on that example and the log
frequency’ of the example. This salience measure can be
thought of as “moderate novelty” and/or “moderate
familiarity.” Supplying the network with frequency
information is justified by the fact that children have
knowledge about the frequency of items in their language
before they start to learn the past tense. Sensitivity to the
frequency of phonetic patterns is already present in infants
of 9-months (Jusczyk, Luce & Charles-Luce, 1994), while
children do not typically start producing the past tense until
around 20 months of age (Cazden, 1968).

In the experiments described below, we will test the
behavior of three types of networks: (a) networks without
selective attention (replicating P&M (1991)), (b) networks
with selective attention that use error for salience and (c)
networks with selective attention that use the product of
error and log frequency to determine what is salient.

Methods

Our input-output pairs were taken from the database of
artificial verbs used by P&M. The interested reader should
refer to P&M (1991, 1993) for details about the
representations. The network is given a verb stem as input
and must produce the inflected verb as its output. The
transformations from the stems to the past tense forms are
classified into four possible classes: arbitrary, identity,
vowel change, and regular, Each of these corresponds to a
possible English past tense transformation.

For the arbitraries, there is no relation between the stem
and the past tense form, e.g. ‘go—wenlt.” For the identities,
the past tense form is identical to the verb stem. This
mapping requires that the verb stem end in a dental
consonant (/t/ or /d/), e.g. ‘hit—hit.” For the vowel
changes, a vowel in the stem may be replaced by a different
vowel in the inflected form of the verb, depending on the
original vowel and the consonant that follows. We had 7
different types of vowel changes in our vocabulary,
analogous to ‘ring—rang,’ ‘blow—blew,’ etc. Finally, for
the regulars, a suffix is appended to the verb stem. The
form of the suffix depends upon the final vowel/consonant
in the stem. If the stem ends in a dental (/t/ or /d/), then the

! Specifically, what was used was log2((token frequency) + 1),
The addition of one was made because the token frequency of
regulars is 1, and the log of 1 is 0. We do not want to multiply by
zero, so a factor of one was added to all of the token frequencies.
The log of frequency is used because, as Marcus et al (1992) note,
“a frequency difference of 1 versus 10 would have a greater effect
than a frequency difference of 1,001 versus 1,010 (p. 118)."
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suffix is /-id/, e.g. ‘pat—pat-id." If the stem ends in a
voiced consonant or vowel, then the suffix is voiced /d/, e.g.
‘dam—dam-d." If the stem ending is unvoiced, the suffix is
unvoiced /t/, e.g. "pak—pak-t.’

The type and token frequencies of each of these classes in
our vocabulary are shown in Table 1. We calculated the
average frequencies reported in Kucera and Francis (1967)
for each of the past tense types, and created a data set that
mirrored the ratios of type frequencies we found there. As
Marcus er al. (1992) note, however, this database “should
predict children’s behavior less well than parental
frequency counts, of course, because it is from written
English addressed to adults (p. 118).” They reported that
only slightly more than one-quarter of parental verb tokens
in the CHILDES database were regular (p. 80). In order to
make our training set resemble the input children receive
more closely, we increased the token frequencies of the
irregulars, keeping their relative proportions the same, so
that just over one-quarter of the total tokens available 1o the
network were regular.

Table 1 - Frequency distribution of the training set.
Arb Reg ID VC

Type Frequency 2 458 8 32

Token Frequency 216 1 9 8

We also trained all three types of network on two other
vocabularies—one which had the type and token
frequencies used in P&M’s (1991) “Phone 34" simulation,
and one with frequencies based directly on Kucera &
Francis (1967). In all of these simulations, only the
networks with selective attention, using both error and
frequency for salience, showed appropriate U-shaped
learning. Furthermore, as the training sets were made more
similar to the input children receive, the networks’
overregularization behavior became more similar to what is
observed for children. Because of limitations on space, we
will only report the results from the training set that
provides the closest approximation to the input to children.

Our networks were trained with the back propagation
algorithm. Each network was initialized with the same set
of random initial weights. Other simulations were run with
different sets of initial weights, and the results were
virtually identical to those reported here. The network
architecture consisted of 18 input units (each verb stem was
formed from 3 phonemes each requiring 6 units (o
represent), 30 hidden units and 20 output units (2 suffix
units were needed in addition to the transformed stem). The
choice of 30 hidden units was made to parallel the
architecture used by P&M (1993). The learning rate and
momentum were also set according to the values used by
P&M (1993), namely a learning rate of 0.1 and a
momentum of 0.0. To evaluate network performance, the
output for each phoneme in the stem was mapped to the
closest legal phoneme (using Euclidean distance). Then the
output was compared with the target.
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Results

The networks with selective attention were able to master
the past tense mappings completely. The network without
selective attention never reached 100% correct on the
regular mapping (final performance was 97% for regular
verbs, 100% for irregulars). The overregularization
behavior of the network without selective attention is
shown in Figure 3. Like the simulation reported in P&M
(1991), this network began overrcgularizing early in
training and does not show the kind of U-shaped learning
seen in children (cf. Figure 1). The overregularization
behavior of the selective attention network that used error
alone for salience is shown in Figure 4. This network
overregularizes too early and too much. Thus, using error
alone to define salience leads to learning behavior that is
unlike what has been observed in children, as noted above.
The selective attention network that used both error and
frequency information in its criterion for salience showed
overregularization behavior similar to what Marcus et al.
(1992) reported for children (shown in Figure 5). It had an
initial period with no overregularization errors, followed by
a prolonged period of low overregularization rates
(typically <10%), after which overregularization errors
ceased.

100

Percent of Verbs

20 30 40
Welght Updates (thousands)

10

Figure 3: (1 - overregularization rate) for the network
without selective attention.

This network was also tested on its ability to generalize.
There were three types of novel stems: stems ending in a
dental (novel dental), stems from each of the vowel change
types (novel vowel change) and stems that did not fall into
either of the first two categories (novel indeterminates). By
the end of training, the majority of the novel indeterminate
verbs (ranging from 84-88%) were inflected as regulars,
showing that the network has learned that the regular
mapping is the default. The other responses at the end of
training were 2-4% identity (the same stem as in the input
with no suffix), 4-6% wrong suffix, 2% regular suffix
(appropriate for the final phoneme) accompanied by a bad
vowel change (one that did not correspond to any of the
seven legal vowel change types) and 4% unclassified
(mostly changes to the consonants in the stem). Combining



the regular responses with those given the wrong suffix
gives us 90-92% suffixation for novel indeterminates,
which is what P&M (1993) report for their simulations.
None of these novel indeterminate verbs were mapped with
a legal vowel change or the combination of a legal vowel
change and a regular suffix (blends). By the end of
training, the network’s responses (o novel dental verbs were
20% identity, 20% regular, 10% vowel change (these stems
fell into vowel change class 2, which ends in a dental), 20%
wrong suffix, 20% regular suffix accompanied by a bad
vowel change and 10% unclassified. Obviously the network
has not learned the dental mapping as well as the regular
mapping. The fact that these novel verbs ended in a dental
did change the network’s response to them, however,
increasing the likelihood that they would be inflected as
regulars or according to vowel change class 2, and also
increasing the likelihood of errors—inflections that do not
correspond to one of the canonical past tense mappings. At
the end of training the responses to novel vowel change
verbs were 21% vowel change, 29% regular, 9% identity,
10% blend, 4% bad VC, 10% bad VC with regular suffix
and 17% unclassified. When confronted with novel vowel
change stems, the network is more likely to inflect them as
vowel change verbs or blends than when it sees either novel
indeterminates or novel dentals. In fact, none of the novel
indeterminates or novel dentals were treated as blends. The
network’s likelihood of making a response that does not
look like any of the normal inflections of English also
increases.

Percent of Verbs

30

20
Weight Updates (thousands)

10 40
Figure 4: (1 - overregularization rate) for the network with
selective attention, using error alone for salience.

These results resemble the behavior of humans when
faced with a “wug test” (Berko, 1958) where they are asked
to give the past tense form of nonsense words. Most words
are inflected as regulars, but words that are similar to
irregular English words may be inflected as irregulars.
Furthermore, words that are similar to irregulars take
longer to process. The fact that the network is more likely
to give responses that do not correspond to any of the
normal inflection types when confronted with words that
look like the irregulars it has learned may be seen as
analogous to this difficulty experienced by humans. The
unclassified responses may potentially be eliminated by
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using a phonological attractor at the output (Plaut,
McClelland, Seidenberg & Patterson, 1996). This is a
direction for future research.

Conclusion

Selective attention was shown to be a powerful aid to
learning in neural networks. Both types of selective
attention networks mastered the training set completely,
while the network without selective attention did not. The
mechanism of selective attention allows the network to
guide itself through a form of “incremental learning”
(Elman, 1993) so that difficult mappings can be learned
without the experimenter controlling the presentation of
training examples.
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Figure 5: (1 - overregularization rate) for the network with
selective attention, using both error and frequency for
salience.

We also showed that using error alone as the criterion for
salience leads to learning behavior unlike what is found in
children. The networks that used error alone failed to go
through a process of U-shaped learning. Rather, they
produced overregularizations too soon and too often. When
frequency information was added to the criterion for
salience, however, the network’s learning behavior
provided a good model of what is seen in children. Both
novelty (which corresponds to error in the network) and
familiarity (or frequency) have been shown to play a role in
determining what children pay attention to, so the use of
both of these sources of information in the model of
selective attention is justified. Of course, other things may
play a role in determining what is salient as well. Although
only frequency and novelty were utilized here, we do not
mean to imply that they are the only possible determinants
of attention.

These simulations also vindicate the claim, originally
made by Rumelhart & McClelland (1986), and then
defended by P&M (1991, 1993), that a connectionist
network can provide an explanation for U-shaped learning
within a single-mechanism learning system. The network
with selective attention, using both error and frequency
information, masters the all of the past tense mappings,



learns 1o generalize 10 novel verbs, and shows U-shaped
learning behavior qualitatively similar (o children. It is
important to reiterate that this is accomplished without
external manipulation of the training set. The mechanism
of selective attention, rather than external manipulation, is
responsible for the network's ability to learn the entire
training set and show U-shaped learning.
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