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Resting- or baseline-state low-frequency (0.01-0.2 Hz) brain activ-
ity is observed in fMRI, EEG, and local field potential recordings.
These fluctuations were found to be correlated across brain re-
gions and are thought to reflect neuronal activity fluctuations be-
tween functionally connected areas of the brain. However, the
origin of these infra-slow resting-state fluctuations remains un-
known. Here, using a detailed computational model of the brain
network, we show that spontaneous infra-slow (<0.05 Hz) activity
could originate due to the ion concentration dynamics. The com-
putational model implemented dynamics for intra- and extracellu-
lar K* and Na* and intracellular CI~ ions, Na*/K* exchange pump,
and KCC2 cotransporter. In the network model simulating resting
awake-like brain state, we observed infra-slow fluctuations in the
extracellular K* concentration, Na*/K* pump activation, firing rate
of neurons, and local field potentials. Holding K* concentration
constant prevented generation of the infra-slow fluctuations. The
amplitude and peak frequency of this activity were modulated
by the Na*/K* pump, AMPA/GABA synaptic currents, and glial
properties. Further, in a large-scale network with long-range con-
nections based on CoCoMac connectivity data, the infra-slow fluc-
tuations became synchronized among remote clusters similar to the
resting-state activity observed in vivo. Overall, our study proposes
that ion concentration dynamics mediated by neuronal and glial
activity may contribute to the generation of very slow spontane-
ous fluctuations of brain activity that are reported as the resting-
state fluctuations in fMRI and EEG recordings.

resting-state fluctuations | ion concentration dynamics | network models

esting-state or spontaneous background fluctuations, in the
frequency range of 0.01-0.2 Hz (1-16), are reported by a wide
range of neuroimaging methods, including electrophysiological,
optical, EEG, and fMRI (2, 4, 5, 8, 14, 17). The spontaneous
resting-state activity in fMRI signal is a robust phenomenon that
has been widely used to evaluate brain network properties, from
determining functional connectivity during cognitive tasks to
identifying altered functional connectivity in various conscious and
disease states (2, 4, 5, 15, 18, 19). The resting-state activity across
wide brain regions forms functional networks, such as the default-
mode network, that vary with brain state and type of cognitive
activity (2, 5, 15, 18). Several neurological and psychiatric disor-
ders, such as epilepsy and schizophrenia, have been shown to
correlate with altered resting-state fluctuations and functional
connectivity (4, 18-22). Although there is growing interest in un-
derstanding the resting-state fluctuations, the underlying neural
mechanisms by which these oscillations arise remain unknown.
Previous experimental work showed that infra-slow fluctua-
tions in the local field potential gamma power, neuronal firing
rate, and slow cortical potentials exhibit a correlational relation-
ship with the resting-state fMRI blood-oxygen-level-dependent
(BOLD) fluctuations (7, 8, 10, 13-15). Further, the underlying
structural connectivity of a brain network was shown to shape the
functional connectivity estimated from resting-state activity (6, 9,
23, 24). Computational studies suggested the role of intrinsic
noise, coupling strengths, conduction velocities, and underlying
structural connectivity in the generation of resting-state fluctuations
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(3, 9, 23). However, these earlier modeling studies used the
phenomenological mean field type models and so the underlying
biophysical properties giving rise to the infra-slow time scale
based on the properties of individual neurons and their networks
remain to be understood.

Changes in the ion concentrations have been suggested to
modulate network activity (25-34) and extracellular potassium
concentrations ([K*],) have been shown to fluctuate during
resting-state or background activity over a long time period (35).
Recordings from anesthetized cat cortex have shown that [K*],
may exhibit small-amplitude (~0.5 mM) infra-slow fluctuations
around a mean concentration (35). Additionally, [K*], recordings
in animal models of epilepsy have shown substantial fluctuations
before and during bouts of seizure-like activity (30, 31, 36). A
number of computational models suggested a prominent role of
potassium concentration dynamics in modulating neuronal excit-
ability and synchrony (25-29, 32, 37). Previous studies have shown
that slow spontaneous rhythmic activity in chick spinal cord may
arise through accumulation and removal of intracellular chloride
(33, 34). Changes in the ionic gradients have been reported to
underlie slow bursting dynamics in epilepsy (38, 39). We now know
that slow neuronal dynamics can emerge without the presence of
the slow time constants in the ion channel dynamics. The central
hypothesis of this study is that ion gradient build up and discharge,
as well as ion pumping, may result in the infra-slow time scale of
the resting-state fluctuations.

Our study predicts that resting-state activity can arise from
infra-slow fluctuations of the Na* and K* ion concentrations. It
suggests that the low-amplitude ion concentration dynamics may
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allow for local and long-range synchronization among the distant
networks. This mechanism can explain correlated and anticorrelated
activities between clusters of neurons through long-range synaptic
projections, which reflect underlying network structural connectivity
in agreement with the experimental observations of the resting-
state activity.

Results

The biophysical network model developed in this study in-
corporated synaptically coupled excitatory pyramidal neurons
(PYs) and inhibitory interneurons (INs), both receiving random
Poisson drive, and implemented realistic dynamics of the major
ion concentrations to provide in vivo-like conditions (26-29, 37).
A “single-cluster” network model possessed only local connectivity
(five-neuron radius). Below we will first explore dynamics of a
single-cluster network and then expand it to the case of several
clusters connected with long-range synaptic connections.

In a network consisting of a single cluster of 50 neurons (Fig. 1
Al), PY and IN population activity appeared random over a pe-
riod of 800-s simulation time (Fig. 1 42). However, analysis of the
mean firing rate of PYs revealed a very slow semiperiodic fluc-
tuation (Fig. 1B). Similar fluctuations were observed in the band-
pass-filtered mean PY membrane voltage (Fig. 1C), mean extra-
cellular K* ([K*],) and intracellular Na* ([Na*];) concentrations
(Fig. 1D green and red respectively), and mean Na*/K* pump current
(Fig. 1E). The [K*], fluctuation was 0.1-0.2 mM in amplitude, while
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Fig. 1. Minimal cortical network model exhibits resting-state fluctuations.
(A7) Cartoon of the basic network architecture. (A2) Spontaneous activity in
the network of PYs and INs. T1 and T2 indicate times expanded below in
single PY cell traces. (B-E) Mean PY firing rate, mean filtered (0.001-0.1 Hz)
membrane voltage, [K*], and [Na*], and Na*/K* pump current dynamics, re-
spectively. (F) Power spectrums of the mean PY firing rate, membrane
voltage, [K*], and [Na*];, and Na*™/K* pump current.
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the [Na*]; fluctuation was about 0.05 mM in amplitude. Power
spectrum of the mean [K*],, [Na*];, Na*/K* pump current,
membrane voltage, and network firing rate revealed a peak at
around 0.02 Hz (Fig. 1F).

Both mean [K*], and [Na']; revealed very slow fluctuations,
and therefore we first tested the role of these ions in the gener-
ation of the resting-state activity in our network model. Holding
the K* concentration constant resulted in a loss of the infra-slow
oscillatory activity in the mean membrane voltage of the PYs,
regardless of the specific values of the concentration (Fig. 24, Top,
red). Power spectrum analysis revealed disappearance of a low-
frequency peak and almost flat spectrum (Fig. 2B, Inset). In con-
trast, preventing the Na* fluctuation did not result in a loss of the
infra-slow membrane voltage fluctuations (Fig. 2 A and B, Right).
This suggests that fluctuations of K* play a major role in the
generation of the resting-state activity, while Na* fluctuation may
play a modulatory role.

We next explored the role the Na*/K* pump current, glia K*
buffering, AMPA/GABA synaptic connections, and ion diffusion
in the properties of the resting-state fluctuations. Increasing the
strength of the Na*/K* pump resulted in decreased fluctuation
amplitude of the pump current as revealed by the reduced peak in
the power spectrum (Fig. 2C, black) and increase in the peak
frequency (Fig. 2C, red). For higher strength of the Na*/K* pump,
the relative changes of the extracellular K* were reduced, leading
to the smaller resting-state fluctuations. Similarly, decreasing the
half activation concentration of [K*], in glia cells, that increased
effectiveness of glia buffering, reduced the resting-state fluctuation
amplitude (Fig. 2D). Thus, the slow dynamic processes controlling
accumulation of the ions and their removal determined the ampli-
tude and the peak frequency of the slow fluctuations. Further, in-
creasing the strength of the AMPA connections between PYs
increased the amplitude of the resting-state fluctuations while
shifting peak frequency to the lower values (Fig. 2E). GABA,
however, had minimal impact on the amplitude of the resting-state
fluctuations but shifted the peak frequency to the higher values (Fig.
2E). Increase in the fluctuation amplitude due to increase in the
AMPA connection strength suggests that recurrent synaptic excita-
tion promoted faster and higher-level buildup of the extracellular K*
concentration, thus leading to stronger and faster resting-state
fluctuations. Diffusion of ions in the extracellular space was not
required for the infra-slow activity (Fig. S5) and the infra-slow
fluctuations in this model did not depend on the random number
generation protocol that was used for Poisson stimulation (Fig. S4).

To explore the mechanisms behind the infra-slow activity, we
analyzed the ion concentration dynamics near the positive and
negative peaks of the mean firing rate (Fig. S1). We found that the
ion concentrations and firing rate were reduced (elevated) for up
to 20 s before the positive (negative) firing rate peaks (Fig. S1 E
and F). It suggests that the observed infra-slow activity may raise
from the combination of the positive and negative feedback in-
teractions between [K*],/[Na']; and neuronal excitability, which
depend on the absolute level of the ion concentrations (28). This
proposed mechanism was further confirmed by the existence of
slow oscillations in a simplified network model with dc input in-
stead of stochastic Poisson drive (Fig. S3). To estimate the time
scale of the ion concentration dynamics in the model, we examined
the amplitude and duration of the transient events following
small changes in external input (Fig. S2) and we found large
transients of the firing rate and the ion concentrations lasting
~20 s (Fig. S2 A-C).

Does the network size affect generation of the resting-state
activity? To answer this question, we increased the number of
neurons in the network to 500. The network included only local
connections (i.e., five-neuron radius). We found that the am-
plitude of the infra-slow fluctuations obtained from the averaged
activity of the entire 500-neuron network was smaller than in our
control 100-neuron network. To understand this phenomenon,
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Fig. 2. lon concentrations, Na*/K* pump, glial K* buffering, and AMPA/GABA

strength influence properties of the resting-state fluctuations. (A) Mean
membrane voltages (black) and mean filtered membrane voltages (red) for the
networks with either fixed K* (Left) or fixed Na* (Right). (B, Left) Power
spectrum peak power as a function of fixed K* concentration. Percentage is
based on the mean [K*], in control network. Dotted black line shows peak
power in control network. (Inset) Individual power spectrums for different
fixed K* conditions. Black line shows a control condition. Green box indicates
the region used to compute peak power. (B, Right) Corresponding power
spectrum of the mean membrane voltage in fixed Na* condition in A. (C) Peak
power (black) and peak frequency (red) as a function of Na*/K* pump current
strength. (D) Power spectrum peak power as a function of glia model half
activation K* concentration. (E) Power spectrum peak power as a function of
AMPA and GABA connection strengths (Left). Power spectrum peak frequency
as a function of AMPA and GABA connection strengths (Right).

we examined independently activity in the smaller subsets of
neurons (100-neuron subsets from the 500-neuron network) (Fig.
3 A and B). We observed in each such subnetwork fluctuations of
the same amplitude as in the control 100-neuron network. When
random long-range connectivity was introduced within the 500-
neuron network, we observed an increase of spontaneous fluc-
tuations. This suggests that local synaptic connections and ion
diffusion were sufficient to synchronize the smaller network but
not the larger one. In the latter case, the network activity broke
into semiindependent clusters, where each cluster could oscillate
out of phase with the other clusters. Long-range connections
synchronized distinct clusters. This was also further confirmed by
a large-scale simulation using CoCoMac connectivity.
Structures comprising functional networks, such as the ven-
tromedial prefrontal cortex and posterior cingulate cortex of the
default mode network, have been shown to display coherent
resting-state fluctuations (5). Although fluctuations of the local
ion concentrations, as proposed by our study, may underlie in-
trinsic fluctuations in these regions, the spatial separation of

6860 | www.pnas.org/cgi/doi/10.1073/pnas.1715841115

these regions makes sharing of the extracellular space between
them unlikely. Therefore, these distinct regions should have in-
dependent dynamics of the local ion concentrations. However,
many brain regions are known to be connected through long-
range synaptic projections. Thus, we next tested whether our
model could also generate coherent fluctuations between distinct
clusters of neurons connected through long-range synaptic con-
nections where each cluster had local synaptic connectivity and
local extracellular ion concentration dynamics (Fig. 4). We kept
the same connectivity scheme (Fig. 1 A7) within each neuron
cluster but prevented ions from diffusing between the two clusters.
Additionally, we added long-range sparse synaptic projections
between the two clusters through excitatory PY-PY connections.
While spiking activity in either cluster appeared to be random
(Fig. 4 A2), the mean Na*/K* pump current within each cluster
revealed synchronized resting-state fluctuations (Fig. 4B) that
peak around 0.02 Hz (Fig. 4C, Left). Importantly, fluctuations of
the mean membrane potential and mean Na*/K* current in both
clusters revealed positive cross-correlation (Fig. 4C, Middle and
Right, respectively).

We next varied the AMPA connection strength of the long-
range connections between the two clusters and we computed

A Network Size: 500 only local connections
Neurons 1-100

Neurons 101-200
'WWWMMMMM‘MWW'WWNM‘WV WMWN o W“"\W’KWWNMWW
Neurons 201-300

Neurons 301-400

WA ™ g gt (NN P
Neurons 401-500

0.05 mA

Power Spectrum

Mean Na /K" Current
£ 0.00057, 7~ - - T e =
01 02 0.3
Frequency (Hz)

fé ‘ Network Size: 500 with long-range connections
v
S

S
< 0.0025 Power Spectrum
0.0015 Mean Na™ /K™ Current
A 0,1 0.2 0.3
Frequency (Hz)
Fig. 3. Effects of network size on the resting-state fluctuation amplitude.

(A) Mean Na*/K* pump currents from clusters of 100 neurons comprising the
network of 500 neurons with only local connections. Note the lack of syn-
chronization between individual clusters. (B) Power spectrums calculated
from the mean Na*/K* pump currents in the individual clusters (colored lines
match colors in A), and power spectrum of the averaged Na*/K* pump
current from the entire 500-neuron network (dashed line). (C) Mean Na*/K*
pump current from the network of 500 neurons implementing both local
and long-range connections. (D) Power spectrum of Na*/K* pump current
from the network in C. Dashed lines represent SEM.
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pump currents in E2 (Left), cross-correlation of the mean filtered membrane
potentials from clusters with feedforward inhibition (Middle), and cross-cor-
relation of the mean Na*/K* pump currents from E2 (Right).

the phase-locking index (PLI) between the mean Na™/K* pump
currents of the two clusters for different AMPA strengths. In-
creasing the strength of the long-range connections (Fig. 4D,
Left) or connection probability (Fig. 4D, Right) resulted in higher
phase locking between the signals. Importantly, even for rela-
tively low connection strength and probability, the PLI remained
significantly higher than that for two disconnected clusters,
which oscillated fully independently (Fig. S6).

To test if the model can explain anticorrelated resting-state
fluctuations observed in vivo (40-42), we increased the strength
of the AMPA connection between excitatory PYs of one cluster
and inhibitory INs of another cluster and observed negatively
correlated resting-state fluctuations (Fig. 4 EI, E2, and F). Al-
together, these findings suggest that the mechanisms proposed in
our model can account for resting-state fluctuations in local re-
gions as well as for positively and negatively correlated fluctua-
tions between distinct brain regions.

Finally, to test whether our model could explain in vivo data
that revealed correlations between structural and functional con-
nectivity in the macaque brain (6, 9, 23, 24), we modeled

Krishnan et al.

58 different brain regions of the macaque brain using connec-
tivity information gathered from the CoCoMac structural con-
nectivity database (cocomac.g-node.org/main/index.php?). Each
of the 58 regions was modeled as a cluster of 50 excitatory PYs
and 10 inhibitory INs with connectivity within a cluster identical
to that shown in Fig. 1 A1. Long-range excitatory PY-PY con-
nections were formed between clusters based on the CoCoMac
structural connectivity data set (cocomac.g-node.org/main/index.
php?). We computed the correlation coefficient between Na*/K*
pump currents in different clusters for every possible pair of
clusters. This analysis revealed the groups of clusters that showed
a high degree of correlation (Fig. 54, Middle). To quantify the
relationship between structural and functional connectivity, we
next computed the correlation coefficient between clusters (brain
regions) showing significant correlation of the mean Na*/K*
pump currents (Fig. 54, Middle) and the clusters with strong
structural connectivity (Fig. 54, Left). We found a significant
correlation between the functional and structural connectivity (r =
0.20508) (Fig. 54, Right). Thus, we concluded that a network with
local (cluster specific) ion concentration dynamics and long-range
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Fig. 5. Macaque simulations. (A, Left) Structural connectivity matrix for
macaque network from the CoCoMac structural connectivity database
(cocomac.g-node.org/main/index.php?). (A, Middle) Functional connectivity
calculated from the network model including 58 individual network clusters.
Only significant correlations are shown (Bonferroni corrected for multiple
comparisons). (A, Right) Correlation of functional and structural connectiv-
ity. (B) Heat maps show functional connectivity computed for consecutive
60-s time windows demonstrating the dynamic nature of the functional
connectivity in the network model. Color indicates the correlation between
infra-slow fluctuations in the simulated brain regions. Bottom plots show
correlations between functional connectivity computed in the correspond-
ing heat map and structural connectivity in A. Correlation coefficient and P
values are reported for comparison between the functional connectivity
computed during each time bin and the structural connectivity in A.
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synaptic connectivity between clusters can account for the ex-
perimentally observed relationship between structural and
functional connectivity.

Recent data revealed the dynamic nature of functional con-
nectivity (43—-46). It has been shown that the strength of the
functional connectivity computed from the resting-state fluctu-
ations between regions comprising the default mode network can
vary in time (1). To check for a similar characteristic in our
model, we computed the correlation coefficients for 10 sub-
sequent 60-s bins (Fig. 5B). Similar to experimental findings, our
model revealed dynamic changes of the functional connectivity
(Fig. 5B). The network exhibited both instances of strong and
weak functional connectivity between specific clusters for dif-
ferent time epochs. Interestingly, the regions that showed mostly
weak functional connectivity could develop strong connectivity
transiently in time before returning to a low-connectivity state.

Discussion

In this study we tested the hypothesis that dynamics of the ion
concentrations, regulated through the neuronal and glial activity,
may form the basis of the resting-state fluctuations in the brain.
Comprising only about 2% of the total body weight of an average
adult human, the brain is responsible for up to 20% of the total
energy consumption (16). Task-evoked responses generally in-
crease brain energy consumption by less than 5% (47). Although
so much energy is consumed to maintain a baseline level of ac-
tivity, little is known about its use, including spontaneous resting-
state fluctuations in the brain. It was first observed by Biswal
et al. (17) that the spontaneous background fluctuations recor-
ded during fMRI scans were coherent between functionally re-
lated brain regions. Since then, other studies have shown similar
coherent resting-state activity between regions comprising func-
tional networks such as the default mode network and executive
control network (2, 4-6, 11, 16, 47). Interestingly, infra-slow
(<0.2 Hz) resting-state fluctuations have been observed in various
cognitive states (2, 5, 11, 15) and can exhibit modified temporal
coherence patterns in various neurological and psychiatric condi-
tions (4, 18, 19). In our study we proposed and tested the hy-
pothesis that resting-state fluctuations may depend on the ion
concentration dynamics, specifically [K*], fluctuations, and that
the phase coherence of the infra-slow activities between distinct
brain regions depends on the long-range synaptic connectivity. Our
model based on the CoCoMac structural connectivity database
explained the relationship between structural and functional con-
nectivity that was revealed in studies of resting-state activity in the
macaque brain.

The characteristic time scale of the resting-state fluctuations is
of the order of 50-100 s. Very few neural processes are known to
act at such a slow time scale. Here we report that the ion con-
centrations may spontaneously vary with a very slow time scale
and could act as the modulator of the neural activity leading to
emergence of resting-state fluctuations. Increase of the [K*],
results in higher excitability of neurons which may then trigger
further elevation of the extracellular K*, leading to the positive
feedback loop (26-28, 37). Importantly, increase of [K*], can be
arbitrarily slow, being determined by the balance of the inward
and outward K* flux. Increase in the [Na™]; terminates the
positive feedback loop (28) initiating a phase of progressive
decrease of the ion concentrations and firing rate. Transitions
between these phases depend on the Na*/K* pump that becomes
significantly more activated as the K* and Na* reach critical
values; this leads to the changes of the outward pump current
that affects intrinsic excitability. Indeed, experimental data sug-
gest that the ion concentrations may have slow dynamics similar
to the time course of the resting-state fluctuations (25-27, 30-36,
48). Our previous studies revealed that the ion concentration
dynamics may lead to the slow (<0.2 Hz) quasi-periodic transi-
tions between distinct network states (bursting and tonic firing)
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(25-28, 30-32, 35, 36, 48, 49). Other studies have suggested the
role of slow processes involving ion dynamics and Na*/K* pump
activity in information processing (50, 51).

The gradual accumulation of [K*], has been shown to con-
tribute to development of seizure-like discharges (26-28, 32, 37).
Studies in patients with epilepsy revealed abnormal resting-state
fluctuations (18, 20, 21). Indeed, it has been demonstrated that
the amplitude of resting-state fluctuations in epileptic patients
is increased compared with the healthy individuals (20). In-
terestingly, our previous work demonstrated that homeostatic
up-regulation of excitatory connections, following trauma, may
lead to rewiring long-range cortical connectivity and promote
spontaneous seizures, along with relatively high amplitude very
slow baseline fluctuations (37). Taken together, these results may
explain differences in the resting-state fluctuation properties in
epileptic patients and healthy individuals.

Studies in animals revealed a correlation between anatomical
structural and functional connectivity (6, 9, 23, 24). It was pro-
posed with computer models that the time scale of infra-slow
fluctuations could be a result of transient bouts of synchrony
between clusters of nodes, and that the functional connectivity
arising in the network strongly reflected the underlying structural
architecture (9, 23). Phase locking between distant network sites
through long-range connections was reported in the mean-field-
type models (3, 6, 9). However, phase locking of the infra-slow
activity in the network models implementing biophysical mech-
anisms of oscillation and sparse long-range connections, as de-
scribed in our study, has not been previously reported. In
agreement with previous data (9, 23), functional connectivity in
our model, computed over a long time window, reliably reflected
the underlying structural connectivity.

Lack of monosynaptic connections between brain regions does
not accurately predict the absence of the functional connectivity
between those regions (5). However, coupling strength between
neuronal clusters has been suggested to influence the strength of
correlated and anticorrelated activity between nodes (23). We
found that the balance of long-range feedforward projections to
excitatory PYs vs. inhibitory INs of remote cluster determines the
phase-locking mode—correlated or anticorrelated fluctuations—
and we observed dynamic changes of the functional connectivity
over time, in agreement with the experimental studies (43-46).

Resting-state infra-slow fluctuations were originally observed
during baseline recordings of the BOLD signals in fMRI stud-
ies (7, 16, 22, 47). Changes in oxygen consumption, a result of
reestablishing ion gradients through active pumping following
increases in activity, give rise to fluctuations in BOLD signals (4,
5, 7, 42). Through oxidative phosphorylation, oxygen allows for
the production of ATP, thereby providing the cells with energy
necessary to, among other processes, reestablish ionic gradients
through ion pumping (52). As such, the production of ATP is lim-
ited by the time scale of oxygen consumption and the replenishing
of oxygen/glucose reservoirs (52, 53). The flux in glucose/oxygen
consumption and neurovascular coupling have been suggested to
occur on a slow time scale, leading to the slow network dynamics
(32, 52-54). Our model does not explore the neurovascular coupling
but instead focuses on the mechanisms arising from the interaction
between neuronal and ion concentration dynamics. It suggests
that taking into account effects of the ion concentrations and
Na*/K* pump dynamics may be necessary to capture the bio-
physical mechanisms leading to generation of infra-slow fluctua-
tions in fMRI recordings. Future work exploring the interaction
between neuronal and vascular dynamics is needed to advance our
understanding of the complex mosaic of the biophysical mech-
anisms underlying the BOLD signal and may provide insights
into how altered brain and disease states influence resting-state
oscillations.
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Materials and Methods

Computational Model. The network model implemented dynamics of the ion
concentrations as described in detail elsewhere (25, 26, 28, 37). The network
consisted of excitatory PYs and inhibitory INs with a 5:1 ratio. Both neuron
types were modeled as two-compartmental conductance-base neurons with
axosomatic and dendritic compartments. lon concentration dynamics were
implemented for intracellular and extracellular K* and Na* and intracellular
Cl~ and Ca®*. Na*/K* pump Na* and K* regulation and KCC2 cotransporter
ClI~ extrusion were included in both neuron types. Glial regulation of ex-
tracellular K* was modeled as a free buffer as described in our previous work
(28, 29, 37). All neurons received random Poisson drive.

Excitatory synaptic connections were mediated through AMPA and NMDA
conductances and inhibitory synaptic connections were mediated through
GABAA. Local connectivity (within a single cluster) was restricted to a radius
of five neurons for PY-PY connections. Long-range connections between
clusters (i.e., feedforward excitation or inhibition) were mediated by AMPA
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and NMDA conductances between PYs from one cluster to PYs (feedforward
excitation) or INs (feedforward inhibition) of a second cluster with a 25%
connection probability. For macaque simulations, 58 brain regions were
modeled as independent clusters of neurons with long-range connections
between clusters based on structural connectivity data from the CoCoMac
database (cocomac.g-node.org/main/index.php?). Functional connectivity
was computed as the correlation coefficients between mean Na*/K* pump
currents from the individual clusters. More detailed description of the model
is provided in S/ Materials and Methods.

Data Availability. Code for our network model, analysis scripts, and simulation
data are available at https://www.bazhlab.ucsd.edu/.

ACKNOWLEDGMENTS. This study was supported by Office of Naval Research
Multidisciplinary University Research Initiative Grant N000141612829 and
NSF Graduate Research Fellowship Grant DGE-1326120 (to O.C.G.).

29. Krishnan GP, Filatov G, Shilnikov A, Bazhenov M (2015) Electrogenic properties of the
Na*/K* ATPase control transitions between normal and pathological brain states.
J Neurophysiol 113:3356-3374.

30. Pedley TA, Fisher RS, Moody WJ, Futamachi KJ, Prince DA (1974) Extracellular po-
tassium activity during epileptogenesis: A comparison between neocortex and hip-
pocampus. Trans Am Neurol Assoc 99:41-45.

. Somjen GG (2002) lon regulation in the brain: Implications for pathophysiology.
Neuroscientist 8:254-267.

32. Wei Y, Ullah G, Schiff SJ (2014) Unification of neuronal spikes, seizures, and spreading

depression. J Neurosci 34:11733-11743.

33. Chub N, Mentis GZ, O'donovan MJ (2006) Chloride-sensitive MEQ fluorescence in
chick embryo motoneurons following manipulations of chloride and during sponta-
neous network activity. J Neurophysiol 95:323-330.

34. Chub N, O’'Donovan MJ (2001) Post-episode depression of GABAergic transmission in
spinal neurons of the chick embryo. J Neurophysiol 85:2166-2176.

35. McCreery DB, Agnew WF (1983) Changes in extracellular potassium and calcium
concentration and neural activity during prolonged electrical stimulation of the cat
cerebral cortex at defined charge densities. Exp Neurol 79:371-396.

36. Traynelis SF, Dingledine R (1988) Potassium-induced spontaneous electrographic sei-
zures in the rat hippocampal slice. J Neurophysiol 59:259-276.

37. Gonzalez OC, et al. (2015) Modeling of age-dependent epileptogenesis by differential
homeostatic synaptic scaling. J Neurosci 35:13448-13462.

38. Ziburkus J, Cressman JR, Schiff SJ (2013) Seizures as imbalanced up states: Excitatory
and inhibitory conductances during seizure-like events. J Neurophysiol 109:
1296-1306.

39. Huberfeld G, Blauwblomme T, Miles R (2015) Hippocampus and epilepsy: Findings
from human tissues. Rev Neurol (Paris) 171:236-251.

40. Keller JB, et al. (2015) Resting-state anticorrelations between medial and lateral
prefrontal cortex: Association with working memory, aging, and individual differ-
ences. Cortex 64:271-280.

. Tian L, et al. (2007) The relationship within and between the extrinsic and intrinsic
systems indicated by resting state correlational patterns of sensory cortices. Neuroimage
36:684-690.

42. Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the
resting brain: A network analysis of the default mode hypothesis. Proc Nat/ Acad Sci
USA 100:253-258.

43. Hutchison RM, et al. (2013) Dynamic functional connectivity: Promise, issues, and in-
terpretations. Neuroimage 80:360-378.

44. Hutchison RM, Womelsdorf T, Gati JS, Everling S, Menon RS (2013) Resting-state
networks show dynamic functional connectivity in awake humans and anesthetized
macaques. Hum Brain Mapp 34:2154-2177.

45. Shen K, Hutchison RM, Bezgin G, Everling S, McIntosh AR (2015) Network structure
shapes spontaneous functional connectivity dynamics. J Neurosci 35:5579-5588.

46. Allen EA, et al. (2014) Tracking whole-brain connectivity dynamics in the resting state.
Cereb Cortex 24:663-676.

47. Raichle ME, Mintun MA (2006) Brain work and brain imaging. Annu Rev Neurosci 29:
449-476.

48. Moody WJ, Futamachi KJ, Prince DA (1974) Extracellular potassium activity during
epileptogenesis. Exp Neurol 42:248-263.

49. Frohlich F, Bazhenov M, Timofeev |, Steriade M, Sejnowski TJ (2006) Slow state
transitions of sustained neural oscillations by activity-dependent modulation of in-
trinsic excitability. J Neurosci 26:6153-6162.

50. Forrest MD (2014) The sodium-potassium pump is an information processing element

in brain computation. Front Physiol 5:472.

. Arganda S, Guantes R, de Polavieja GG (2007) Sodium pumps adapt spike bursting to
stimulus statistics. Nat Neurosci 10:1467-1473.

52. Wei Y, Ullah G, Ingram J, Schiff SJ (2014) Oxygen and seizure dynamics: Il. Compu-

tational modeling. J Neurophysiol 112:213-223.

53. Ingram J, et al. (2014) Oxygen and seizure dynamics: |. Experiments. J Neurophysiol
112:205-212.

54. Longden TA, et al. (2017) Capillary K*-sensing initiates retrograde hyperpolarization
to increase local cerebral blood flow. Nat Neurosci 20:717-726.

3

4

5

PNAS | June 26,2018 | vol. 115 | no.26 | 6863

NEUROSCIENCE


http://cocomac.g-node.org/main/index.php?
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715841115/-/DCSupplemental
https://www.bazhlab.ucsd.edu/



