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by orders of magnitude using circle sequencing
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and Sara L. Sawyera,2

aDepartment of Molecular Biosciences, bInstitute for Computational Engineering and Sciences, and dDepartment of Integrative Biology, University of Texas at
Austin, Austin, TX 78712; and cDepartment of Microbiology and Immunology, University of California, San Francisco, CA 94122
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A major limitation of high-throughput DNA sequencing is the high
rate of erroneous base calls produced. For instance, Illumina
sequencing machines produce errors at a rate of ∼0.1–1 × 10−2

per base sequenced. These technologies typically produce billions
of base calls per experiment, translating to millions of errors. We
have developed a unique library preparation strategy, “circle se-
quencing,” which allows for robust downstream computational
correction of these errors. In this strategy, DNA templates are
circularized, copied multiple times in tandem with a rolling circle
polymerase, and then sequenced on any high-throughput se-
quencing machine. Each read produced is computationally pro-
cessed to obtain a consensus sequence of all linked copies of the
original molecule. Physically linking the copies ensures that each
copy is independently derived from the original molecule and
allows for efficient formation of consensus sequences. The circle-
sequencing protocol precedes standard library preparations and
is therefore suitable for a broad range of sequencing applica-
tions. We tested our method using the Illumina MiSeq platform
and obtained errors in our processed sequencing reads at a rate
as low as 7.6 × 10−6 per base sequenced, dramatically improving
the error rate of Illumina sequencing and putting error on par
with low-throughput, but highly accurate, Sanger sequencing.
Circle sequencing also had substantially higher efficiency and
lower cost than existing barcode-based schemes for correcting
sequencing errors.

next-generation sequencing | barcoding | rare variants

High-throughput DNA sequencing has emerged as a revolu-
tionary force in the study of biological systems. However,

a fundamental limitation of these technologies is the high rate
of incorrectly identified DNA bases in the data produced (1, 2).
For instance, reports in the literature suggest that Illumina se-
quencing machines produce errors at a rate of ∼0.1–1 × 10−2 per
base sequenced, depending on the data-filtering scheme used (2,
3). These technologies typically produce billions of base calls per
experiment, translating to millions of errors. When sequencing
a genetically homogenous sample, the effects of erroneous base
calls can be largely mitigated by establishing a consensus se-
quence from high-coverage sequencing reads. However, even
high coverage does not eliminate all errors, and attempted ver-
ification of detected variants has often revealed the vast majority
to be sequencing errors (for example, see refs. 4 and 5). Fur-
thermore, the depth of coverage required for consensus building
remains cost-prohibitive for large genomes such as the human
genome. As a result, most human studies involving high-throughput
sequencing have been limited to only a small fraction of the genetic
information, such as the transcriptome, mitochondrial DNA, or
a single chromosome. In contexts where rare genetic variants are
sought, this error-rate problem presents an even more profound
barrier. Examples of rare variant problems include the analysis of
mutations in genetically heterogeneous tumors, identification of
drug-resistance mutations in microbial populations, and charac-
terizations in immunogenetics (such as B- and T-cell profiling). The
mutations of interest in these types of samples may be present at

low frequencies, potentially even lower than the sequencing error
rate itself. Here, the problem cannot be overcome with high-
sequence coverage because a consensus sequence of the het-
erogeneous sample will mask all variants.
To address this error rate problem, several closely related li-

brary preparation protocols have recently been described (6–10).
A general schematic for these “barcoding” strategies is shown in
Fig. 1A. Each individual DNA molecule in the input material is
marked by the ligation of a uniquely identifiable sequence, or
barcode (step 1A). Barcoded products are then amplified by
PCR (step 2A), and the amplified pool is sequenced (step 3A).
Barcode identity is then used to computationally organize se-
quencing reads into “read families,” where each read family
consists of all downstream derivatives of a single starting mole-
cule (step 4A). A consensus sequence is then derived from the
reads in each family, with a typical criterion being that the read
family must contain at least three members before a consensus
sequence is derived (6, 8).
Although barcoding strategies successfully lower the se-

quencing error rate, these methods have both theoretical and
practical limitations that affect the accuracy and cost with which
consensus sequences can be produced. First, the members of
a read family are not independent copies of the original mole-
cule. Errors that arise during the early stages of PCR, known as
jackpot mutations, are amplified exponentially and can appear
multiple times in a read family. Second, some templates may be
amplified more or less efficiently due to differences in either the
barcodes or the target sequences themselves (6). This bias, along
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with unavoidable variance in the sampling process, results in
many read families being much larger or smaller than necessary,
reducing efficiency. Third, if identical barcode sequences are li-
gated to multiple input molecules similar in sequence, incorrect
assembly of read families can occur. This issue is especially prob-
lematic when sequencing highly similar molecules such as in
amplicon libraries. Finally, sequencing errors introduced into
barcodes themselves contribute to inefficient formation of
read families.
In theory, all of these problems could be avoided if each read

family were packaged and delivered as a single molecule, bypassing
the need for barcodes to construct read families. Continued
advances in the read lengths of major sequencing platforms have
made such an approach possible. We have developed a unique
library preparation method that (i) eliminates the use of barc-
odes, (ii) eliminates the effects of jackpot mutations by ampli-
fying DNA templates in a way that does not propagate errors
within read families, and (iii) physically links the repeated in-
formation comprising each read family so that it comes out of the
sequencing process in the optimal proportions needed for effi-
cient error correction. We show that our method produces high-
throughput sequencing data with errors at only 8–10 × 10−6 of
base positions sequenced and has an efficiency that is vastly
improved over existing barcoding schemes. Our library prepara-
tion method, called “circle sequencing,” fits into existing high-
throughput sequencing workflows, making it immediately avail-
able for a broad range of applications.

Results
Circle Sequencing: Library Preparation. Our library-preparation
method, circle sequencing, is illustrated in Fig. 1B (a full pro-
tocol is given in SI Materials and Methods and Fig. S1). The input
material for this protocol can be chromosomal DNA, cDNA,
amplicons, or any other DNA. The material is size-selected (through
amplicon design, shearing followed by gel purification, etc.) such
that the size of each fragment averages around 1/3 the anticipated

read length from the high-throughput sequencing machine be-
ing used. Double-stranded DNA fragments are denatured and
the resulting single-stranded DNA is circularized (step 1B).
Noncircularized products are eliminated by exonuclease digestion.
Random primers are then annealed to the single-stranded cir-
cular DNA, and amplification is performed using the Phi29
polymerase. This polymerase possesses single-strand displace-
ment activity that allows it to replicate continuously around the
ligated circle, referred to as rolling circle amplification (step 2B).
The random primers also anneal to the newly synthesized single-
stranded product and allow it to be converted into double-stranded
DNA. The resulting double-stranded DNA products (step 2B,
lower) are concatamers consisting of multiple tandem copies
(brackets) of the information in the original fragment. These
products are sequenced (step 3B), and the information in the
tandem copies is used to form a read family and a consensus
sequence (step 4B). Any genetic variant that existed in the
input material (red circle) will be present in all tandem copies
whereas errors introduced by the Phi29 polymerase (blue
circles in step 2B) or by the sequencing process (blue circles in
step 3B) will occur independently and randomly throughout
the template.
The rolling circle products generated in circle sequencing can

theoretically be sequenced on any high-throughput sequencing
platform that offers read lengths long enough to observe multi-
ple repeats within the same product. Illumina technologies cur-
rently offer the highest throughput and cost-efficiency, with read
lengths of up to 500 bases possible on the MiSeq platform using
2 × 250 paired-end reads. Our bioinformatic pipeline processes
circle-sequencing data generated by paired-end reads (full pro-
tocol is given in SI Materials and Methods and Figs. S2–S5). This
pipeline identifies the repeating units of the original information
in each read pair. It then uses these repeats, combined with base
call quality scores, to derive a consensus sequence along with
a consensus quality score for each consensus base. The pipeline
also maps these consensus sequences to a reference genome.

Fig. 1. Overview of traditional barcoding methods and circle sequencing. (A) In traditional barcoding methods, adapters containing randomized nucleotide
regions (barcodes) are ligated to each molecule in the DNA sample (step 1A). The library is then amplified by PCR (step 2A). Products are sequenced on the
high-throughput sequencing platform of choice (step 3A). Individual reads containing the same barcode are grouped into read families (gray boxes), and
consensus sequences are derived (step 4A). Errors generated during PCR amplification (step 2A, blue circles) and during the sequencing process (step 3A, blue
circles) are removed bioinformatically. (B) In circle sequencing, DNA is denatured and single-stranded DNA is circularized (step 1B). Random primers are
annealed to circles, and Phi29 polymerase is used to perform rolling circle replication (step 2B). This polymerase has strand-displacement activity so products
contain tandemly linked copies of the information in the circle. Random primers and Phi29 polymerase turn long single-stranded copies into double-stranded
DNA (step 2B, lower). The tandem copies of information are sequenced using any high-throughput sequencing technology (step 3B). Here, a single long read
is shown for simplicity although paired-end reads were used in this study. Each read (or paired-end read pair) is then computationally split into the individual
copies of the original circle, grouped into a read family (gray box), and used to generate a consensus sequence (step 4B).
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One advantage of circle sequencing is that it is largely resistant
to the effects of jackpot mutations that can occur in PCR. Errors
will also be made during rolling circle amplification, but will not
propagate within a read family because each linked copy is in-
dependently derived from the original molecule (illustrated in
Fig. S6). An upstream PCR amplification step may be required
for some applications of circle sequencing (e.g., for cDNA or
amplicon libraries). Circle sequencing will not be able to mitigate
the effects of jackpot mutations accumulated before templates
are circularized. In such cases, care should be taken to minimize
amplification cycles upstream of the circle-sequencing pipeline.
Alternately, circle sequencing can also be applied directly to
RNA templates (11).

Error Rate of Circle Sequencing. To measure the error rate of this
method, we sequenced the ∼12-megabase Saccharomyces cer-
evisiae genome. First, we used standard Illumina MiSeq se-
quencing to obtain 51× coverage of a haploid S288C strain. We
identified 514 positions at which there is strong evidence that
the genome sequence of this strain differs from the published
reference S288C sequence. Bases mapping to these question-
able sites, or to repetitive sequences, were subsequently ignored
throughout this study. Next, we sequenced the strain with circle
sequencing and mapped the resulting consensus sequences to the
reference genome. Error rates were calculated as the fraction of
consensus bases that differed from the reference sequence. As
a proof of concept that the circle-sequencing process is capable
of eliminating sequencing errors, we calculated the error rates of
consensus sequences formed by incrementally incorporating
each repeat contained in each read pair. High-quality bases in
the first repeat of each sequencing read had an error rate of 5.8 ×
10−4 (Fig. 2A). As expected, this error rate fell as the tandem
repeats were used to correct the error in the first repeat. How-
ever, the effect was surprisingly small. The inclusion of sub-
sequent tandem copies in our reads reduced this error rate only
to 2.9 × 10−4 with two repeats and 2.7 × 10−4 with three repeats
(Fig. 2A). Because the circularized fragments used in the circle-
sequencing pipeline are size-selected, but still vary in size
according to a distribution, we recover four and sometimes more
repeat units in some of the read pairs. The addition of sub-
sequent repeats beyond three did not lower the error rate fur-
ther, and the asymptotic value of the error rate achieved (2.8 ×
10−4) was not as small as would be implied by the informational
redundancy obtained.
One barrier to achieving lower error rates using circle se-

quencing could be DNA damage incurred by sequencing tem-
plates during the library preparation protocol. This damage
would be especially problematic because, unlike random muta-
tions introduced by the polymerase, a damaged base within the
original circular template might be paired with the same in-
correct base each time the polymerase replicates around the
circle. This process would lead to the propagation of an error in
all tandem copies of the circular information. These errors would
then be seen as high-confidence base calls and effectively in-
crease the overall error rate. In fact, DNA damage has been
identified as a major source of error in standard barcoding-based
approaches (8). To examine this possibility further, we analyzed
the different types of erroneous base calls produced in circle-
sequencing consensus sequences (Fig. 2B). Interestingly, we
discovered that a large proportion of mismatches between the
consensus sequences and the reference genome were G-to-A and
C-to-T mutations. These types of mutations occur when a cyto-
sine base undergoes spontaneous deamination to form uracil.
Adenine is incorporated opposite of the uracil during synthesis
of the complementary strand, propagating G-to-A and C-to-T
transitions. We did not detect a substantial number of G-to-T
and C-to-A mismatches indicative of oxidized guanine bases

(8-oxo-guanine), the other common type of damage found to
affect barcoded samples (8).
Deaminated cytosine and 8-oxo-guanine bases can be excised

using the commercially available enzymes uracil-DNA glycosylase
(UDG) and formamidopyrimidine-DNA glycosylase (Fpg). To test
whether these specific types of damaged bases negatively affect
the error rate of our method, these enzymes were included
during the rolling circle amplification step. As shown in Fig. 2B,
their addition almost completely eliminated damage-induced errors
(green bars). We speculate that circular templates that undergo the
removal of these damaged bases are precluded from serving as
substrates for Phi29 polymerase. We found that treatment of
genomic DNA with UDG and Fpg before proceeding with
conventional MiSeq library preparation resulted in no change in
the mutation profile, suggesting that this damage to DNA is
actually incurred during the circle-sequencing library prepara-
tion. After modifying our protocol to include these repair
enzymes, we reexamined the impact of analyzing one, two, three,

Fig. 2. Circle sequencing decreases the error rate of high-throughput se-
quencing. (A) Shown is the error rate of circle sequencing upon in-
corporation of additional copies of the tandemly duplicated information.
When just the first repeat is considered, only bases with quality scores
greater than or equal to 30 are used. (B) The profile of the types of errors in
circle sequencing consensus sequences (blue bars) reveals a striking signa-
ture dominated by G-to-A and C-to-T errors, consistent with base damage
due to cytosine deamination. The addition of uracil-DNA glycosylase and
formamidopyrimidine-DNA glycosylase during rolling circle amplification
(green bars) dramatically eliminates the majority of errors (in red) caused by
DNA damage of the types targeted by these enzymes. The lower range is
shown in more detail in the Inset. (C) As in A, the graph shows the error rate
of circle sequencing upon incorporation of additional copies of the tandemly
duplicated information, after the protocol was modified to include DNA
repair enzymes.
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and four repeats in consensus building (Fig. 2C). The inclusion
of up to four repeats substantially improved the overall error rate
from 2.8 × 10−4 (without enzymes) to 7.6 × 10−6 (with enzymes).
Thus, the error-correcting power of circle sequencing is clear,
but care must be taken to address damaged bases that arise
during the preparation of these special libraries. It is interesting
to note that the extent of DNA damage present in DNA mixtures,
and the resultant calling of erroneous bases during downstream
sequencing, is only now becoming evident due to the extremely
low error rates being achieved by our and other sequencing
methods (8). We anticipate that accurate, high-throughput se-
quencing will provide increased resolution into many types of
biological phenomena.

Efficiency of Circle Sequencing and Barcoding. An important metric
to consider when selecting an error-correction scheme (i.e.,
barcoding versus circle sequencing) is cost. Cost is directly re-
lated to the efficiency of these methods in turning low-quality
data into high-quality data. A major determinant of the overall
amount of high-quality data produced by a method is how effi-
ciently the method distributes raw sequencing data across all of
the read families produced. The existence of read families that
do not contain enough members to produce a consensus, or read
families that contain substantially more members than necessary,
represents wasted sequencing resources. To analyze this aspect,
we define efficiency as the ratio of consensus bases produced to
the total number of bases used to produce them. As described
above, read families must have at least three members to build
consensus sequences. If all read families consist of exactly three
members, a perfect efficiency of 33% would be achieved. For
circle sequencing, the size of read families is dictated by the
lengths of the circularized molecules. To achieve perfect effi-
ciency of 33%, input molecules must be exactly 1/3 the read
length. However, any practical size-selection scheme will pro-
duce molecules with a distribution of sizes around this desired
length. This distribution, and the use of paired end reads (dis-
cussed later in this section), results in the actual achieved effi-
ciency being slightly lower than the ideal. In agreement with this
reasoning, we achieved an efficiency of 20.2% for circle sequencing

(Fig. 3A). One consensus base is produced for every five bases
used to build read families.
For comparison, we calculated the efficiency of consensus-

sequence formation with barcoding using a dataset from a pre-
viously published study by Schmitt et al. (8). This barcoded
dataset, derived from the M13mp2 phage genome, produced
consensus sequences with an efficiency of 3.0% (Fig. 3A). One
consensus base is produced for every 33 bases analyzed. This
efficiency is similar to previously reported barcoding efficiencies,
which range from 1–8% (6–8). In this particular dataset, the
authors used a sophisticated barcoding scheme called duplex
barcoding. Here, the forward and reverse strands of each double-
stranded input molecule are asymmetrically labeled with barc-
odes, allowing for the acquisition of either standard barcoding
read families or, alternately, more elaborate read families con-
sisting of at least three reads from each strand (i.e., at least six
reads total). As would be expected because of the heightened
read family criteria, duplex-barcoding consensus sequences were
formed with an efficiency of only 0.8% with this dataset, sub-
stantially less than the efficiencies of either circle sequencing or
standard barcoding.
For barcoding-based approaches, efficiency is dictated by the

ratio of barcoded input molecules to total reads produced. If
there are too many uniquely barcoded molecules relative to the
number of reads produced, read families will tend to be too small
for the formation of consensus sequences. Alternately, if there
are too few uniquely barcoded molecules relative to the reads
produced, read families will be much larger than they need to be,
wasting reads. To explore this dependence further, we applied
duplex barcodes to sheared yeast genomic DNA and used five
different concentrations of input molecules for amplification.
Each sample was amplified under identical conditions and se-
quenced, with the same number of total sequencing reads
requested for each. We measured the efficiency with which
standard barcoding and duplex barcoding consensus sequences
were formed across the five datasets (Fig. 3B). For both standard
and duplex barcoding, the efficiency rose, peaked, and declined
within the range of library sizes used. The efficiency peaked at
a very small library size of 4 attomol for both standard barcoding

Fig. 3. Circle sequencing forms read families more efficiently than barcoding methods. (A) The table shows key metrics of efficiency for the three approaches
discussed: circle sequencing, standard barcoding, and duplex barcoding. “Bases in” refers to the total number of bases used to build read families. For the
barcoding-based approaches, these are bases in well-formed, uniquely mapping reads. For circle sequencing, these are bases in reads showing clear peri-
odicity. “Bases out” refers to consensus bases. Consensus bases are produced from read families with at least three members (at least three members derived
from each strand for duplex barcoding). Efficiency is calculated as the number of consensus bases produced divided by the total number of bases used to
produce them (“bases out” divided by “bases in”). Standard and duplex barcoding values (S superscript) are derived from a dataset from ref. 8, which was
reanalyzed here. (B) Standard barcoding and duplex barcoding were used to sequence yeast genomic DNA. Tenfold serial dilutions of the input material were
made before the library amplification step (Fig. 1A, step 2A), and an 18-cycle PCR was performed. The number of eligible reads refers to the number of reads
used to build read families. Also shown are the number of read families consisting of at least three members (standard barcoding) or at least three members
from each strand (duplex barcoding), and the efficiency of consensus sequence formation (ratio of read families produced to total eligible reads). (C) The
distribution of sizes of read families (number of reads per read family) produced by standard barcoding with 40-attomol input (blue) and 4-attomol input
(green). (D) Theoretical efficiency of consensus sequence formation from 1,000,000 sequencing reads using standard barcoding (purple), duplex barcoding
(green), and circle sequencing (orange) as a function of the number of unique molecules in the input library.
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and duplex barcoding (7.8% and 1.3%, respectively). Although
concentration of input DNA is easy to control in setting up these
reactions, the optimal library size depends on both barcoding
efficiency and the number of reads actually produced in the final
dataset. Therefore, the initial input library size must be empiri-
cally determined for each experiment.
Next, we looked at the distribution of sizes of read families for

the two dilutions producing the highest efficiency (40 and 4
attomol) (Fig. 3B). These datasets produced 18,020 and 29,036
read families with 3 or more members (Fig. 3B). In the 40-
attomol library, most read families contained only one or two
members (Fig. 3C). In the 4-attomol library, most read families
have many more than 3 members, with the average read family
size being ∼12 (Fig. 3C). These results clearly demonstrate a di-
rect correlation between input concentration and efficient use of
sequencing reads to produce consensus sequences.
To determine the precise expected relationship between input

library size and efficiency beyond the five experimental points
sampled, we analyzed an idealized theoretical model of the
barcoding process. In this model, every barcoded input molecule
is massively and uniformly amplified so that each sequencing
read produced has an equal and independent chance to sample
each of the original input molecules. For simplicity, we assume
that exactly 1 million usable sequencing reads are always pro-
duced. The expected efficiencies of recovering input molecules at
least three times for standard barcoding (Fig. 3D, purple) and
recovering both strands of input molecules at least three times
each for duplex barcoding (Fig. 3D, green) are plotted as a
function of the number of uniquely barcoded input molecules.
As discussed above, the idealized perfect efficiency for these
approaches would be 33% (or half of this for duplex barcoding).
However, unavoidable variance in the distribution of read-family
sizes due to the random sampling process caps the efficiency of
standard barcoding at 19% and duplex barcoding at 8%. Perhaps
more notable is the rapid decline in efficiency observed when the
number of barcoded input molecules falls outside a narrow range
around these peaks. In practice, precise control over the ratio of
barcoded molecules to usable sequencing reads can be difficult
to achieve. For instance, inferred estimates of the fraction of
input molecules that had barcodes successfully ligated to them
varied by a factor of 1.7 across the experiments that we analyzed
(Table S1). There is also substantial run-to-run variability in
sequencing machine output and in the number of reads wasted
on undesired products such as adapter dimers or ill-formed
barcodes. In summary, barcoding-based efficiencies are difficult
to control and capped at an absolute upper bound of 19%.
We next examined the theoretical efficiency of circle sequenc-

ing. The expected efficiency for 150-base circular templates se-
quenced using 2 × 250 base reads is 27% (Fig. 3D) (see SI
Materials and Methods and Fig. S3 for further details of the
model). This number is less than the predicted efficiency of 33%
because paired end reads are used. Because rolling circle am-
plification products are sheared randomly and read from either
end, each read from a read pair will begin at a different base
position within the repeated sequence. This offset introduces
some variability in the number of repeats in a read family, with
not all repeats being full length (illustrated in Fig. 1, step 4B).
Importantly, however, because the repeats within a read family
are physically linked and do not need to be recovered from
a bulk mixture by sampling, efficiency will not vary with the
number of molecules in the input library. Efficiency is therefore
a flat line across all input library sizes. This plot demonstrates
two key features of circle sequencing: the theoretical peak effi-
ciency is higher than for barcoding-based approaches, and this
efficiency is insensitive to experimental conditions, sidestepping
a major liability of barcoding-based approaches.
Although the efficiency of consensus sequence formation is

critically important, a wide range of other practical issues also

affects the total amount of usable data produced. We define
yield as the total number of high-quality consensus bases pro-
duced divided by the raw number of sequenced bases before any
filtering or data processing is performed. This metric considers
the overall loss of data in a sequencing project from start to
finish, including not only loss due to consensus formation, but
also losses due to data filtering and trimming schemes and reads
that can’t be mapped uniquely to the genome being sequenced.
Based on this final point, the parameter of yield will therefore be
somewhat genome-specific, as repetitive information and missing
regions in genome assemblies can vary from genome to genome.
To quantify the cumulative impact of all of these effects on the
yield of error correcting methods, we used circle sequencing to
sequence a set of yeast genomic libraries that varied in input
concentration and/or total reads produced, and compared the
data with the set of yeast genomic libraries sequenced with bar-
coding. The input molecules used and the total sequencing reads
obtained for each sample are summarized in Table S2.
Fig. 4 shows four standard barcoding samples and five circle-

sequencing samples on a plot of yield versus error rate. All five of
the circle-sequencing samples, regardless of molecules in the
original library or reads produced, had a yield and an error rate
that clustered within a tight range (orange points). The barcod-
ing libraries were more disperse on this plot, with the samples
varying significantly in both yield and error rate (green points).
Even the most efficient barcoding samples (4-attomol and
40-attomol libraries) had a yield that was only 1/3 that of the
circle-sequencing samples, equating to a cost that would be
three times as high for the same amount of high-quality, error-
corrected data.
Although yields obtained in experiments targeting genomes of

different complexities are not directly comparable for the rea-
sons discussed above, we also include values for the barcoded
M13mp2 phage genome dataset, which was produced with the

Fig. 4. Comparison of overall yield and error rate for all error-correction
methods. The yeast genome was sequenced with standard barcoding (green
points) or circle sequencing (orange points) while varying input DNA con-
centration and/or reads produced. Error rate (x axis) is defined as the frac-
tion of consensus bases that differ from the reference sequence. Yield
(y axis) is the total number of consensus bases produced divided by the raw
number of bases sequenced. Circle sequencing produces consistent error
rates and yields across a range of experimental conditions (orange shading).
Standard barcoding produces highly variable error rates and yields. Another
library discussed in the text, from the M13mp2 phage genome generated in
ref. 8, was also analyzed (gray points).
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Illumina HiSeq machine (8). We find that the metrics of yield
and error rate are similar despite differences in the genomes
sequenced and sequencing platform used (Fig. 4, gray points).
The method that currently produces the lowest error rate is the
duplex barcoding method of Schmitt et al. (8). However, the
yield of this method is very low, with ∼1 out of 1,000 bases se-
quenced being recovered as a consensus base. For all sequencing
projects, high yield and low error rate are desirable, and so the
best methods will fall in the upper right hand corner of the plot
in Fig. 4 (purple arrows). Circle sequencing produces high yield
and low error rate and is highly robust to experimental design in
ways that barcoding approaches are not.
Finally, we considered whether sequence-specific biases affect

our library preparation, such as bias in template circularization.
This bias could result in nonuniform coverage of the genome being
sequenced. As might be expected, we did observe that some degree
of template bias is introduced by both barcoding and circle se-
quencing when each is compared with standard Illumina sequenc-
ing. This effect was slightly larger for circle sequencing although the
skews in coverage were not extreme in either case (Fig. S7). We also
considered that some circular templates might have sequence fea-
tures that lead to biased amplification during library preparation.
This bias could result in many reads deriving from the same circular
template. However, we found that greater than 98.8% of the con-
sensus sequences produced in each dataset were derived from
unique circular templates, and no single circular template produced
more than five consensus sequences.

Discussion
Circle sequencing is a library-preparation method for high-
throughput sequencing that achieves low error rate and high
efficiency. Its biggest strength is that it is efficient over a range of
experimental designs (input library types and reads produced).
The choice of library-preparation method will ultimately be de-
pendent on the task at hand. Standard high-throughput se-
quencing, combined with sufficient read depth, may still be the
best choice for genome-sequencing projects. One barcoding ap-
proach, duplex barcoding, has an error rate lower than any other
method because the inclusion of information from both strands
of each DNA duplex helps to eliminate the effects of both
jackpot mutations and damaged bases (8). Although this method
is highly inefficient, duplex barcoding may be the method of
choice in cases where single mutations, such as individual dam-
aged bases in a population of DNA, must be detected (i.e., proj-
ects involving the rarest of rare variants). However, for many rare
variant problems, circle sequencing would be a better choice than
barcoding-based methods. Circle sequencing should be especially
powerful in applications related to cancer profiling, immuno-
genetics, microbial diversity, and environmental sampling.
Superficially, our method appears to resemble the SMRTbell

approach of Pacific Biosciences (12). This single-molecule tech-
nology also circularizes DNA and uses redundant information
produced as a polymerase repeatedly traverses a circular tem-
plate to reduce error. A key conceptual difference is that our

method produces intermediate physical products containing mul-
tiple copies of the information in the templates. These products
can then be sequenced on platforms that offer dramatically higher
throughput and per-base-call accuracy than the single-molecule
platform of Pacific Biosciences. We have successfully imple-
mented our method using 2 × 150 base and 2 × 250 base reads on
the Illumina MiSeq machine; in principle, appropriately sized
circles could be used with 2 × 100 base reads currently available
on the higher-throughput HiSeq machine. One technical point
to consider in the application of our method is that circle se-
quencing products, because of the repetitive nature of the infor-
mation contained, might be especially prone to problems in the
clonal amplification that takes place on some high-throughput
sequencing machines. Although we did detect this phenomenon,
we estimate that the effect is small (further discussed in SI
Materials and Methods and Figs. S4 and S5). Finally, as sequencing
read lengths increase, it may be possible to construct circularized
templates that link together both strands of double-stranded input
molecules. By incorporating the key insight of Schmitt et al.’s
duplex barcoding method (8), this modification could protect
against errors caused by damaged bases in starting templates
while retaining the efficiency advantages of circle sequencing.

Materials and Methods
Circle Sequencing. Genomic DNA was extracted from S. cerevesiae strain
S288C, sheared, run on a 1.5% low-melting-point agarose gel, and a narrow
slice corresponding to 150 bp was extracted. DNA was phosphorylated and
denatured. Three hundred nanograms of DNA (∼3 pmol) was circularized
per 20-μL reaction using CircLigase II ssDNA ligase (EpiCentre), and uncir-
cularized DNA was removed with exonuclease. Exonuclease-resistant ran-
dom primers and varying amounts of DNA circles were annealed and added
to the rolling circle reaction consisting of reaction buffer, dNTPs, BSA, in-
organic pyrophosphatase, uracil-DNA glycosylase, formamidopyrimidine-
DNA glycosylase, and Phi29 DNA polymerase. See SI Materials and Methods
for a detailed protocol. Barcoded samples were prepared as in ref. 8.

Bioinformatic Processing. Our computational pipeline processes circle-
sequencing data generated by paired-end reads. The structure of the tandem
copies within each read pair is determined by detecting periodicity in each
sequence and by aligning the pair of sequences to each other. A consensus
sequence is then derived from the copies produced in combination with the
base quality scores assigned to each. The junction of circularization in each
consensus sequence is identified by performing a rotation-insensitive map-
ping of the consensus sequence to a reference genome. See SI Materials and
Methods for a detailed description.
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