
UNIVERSITY OF CALIFORNIA
RIVERSIDE

Enhanced Register Data-Flow Techniques for High-Performance, Energy-Efficient
GPUs

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Hodjat Asghari Esfeden

June 2021

Dissertation Committee:

Prof. Nael Abu-Ghazaleh, Chairperson
Prof. Laxmi Bhuyan
Prof. Rajiv Gupta
Prof. Daniel Wong

Copyright by
Hodjat Asghari Esfeden

2021

The Dissertation of Hodjat Asghari Esfeden is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

This thesis is the result of many years of hard work that simply would not have

been possible without the continuous support of many people. Undoubtedly, I could not have

done this without the unwavering support and mentorship from my advisor Professor Nael

Abu-Ghazaleh. Nael gave me the freedom to pursue any research direction I was passionate

about. His motivation, immense knowledge, and great insight into research inspired me to

overcome all difficulties in the past six years. I will forever be thankful to him for his endless

support. I really appreciate the effort and time you invested in helping me to achieve my

full potential in life, Nael. It is my great pleasure and honor to have known you and worked

with you. I would also like to thank all of my collaborators and mentors, especially Farzad

Khorasani from Tesla as well as Amin Farmahini-Farahani from Google. Finally, I would

like to acknowledge my committee members, Professors Laxmi Bhuyan, Rajiv Gupta, and

Daniel Wong for their help and support throughout my PhD.

The past six years at Riverside have been some of the most wonderful time in my

life, working with the talented and friendly colleagues in our research lab and spending time

with my supportive friends. I would like to thank my labmates: Khaled Khasawneh, Fatemah

Alharbi, Sankha Dutta, Shafiur Rahman, Hoda Naghibijouybari, Esmaeil Mohammadian

Koruyeh, Ahmed Abdo, Sakib Md Bin Malek, Jason Zellmer, Abdulrahman Bin Rabiah,

and Shirin Haji Amin Shirazi. I would like to thank my dearest friends, Fatemeh Ganjisaffar,

Mohammad Bakhshalipour (Soltan), Majid Tanha (Yakka), Nahid Kazemi, Ehsan Faghih,

Fazel Arasteh (Alex), Hanieh Jafarzadeh, Amirhossein Mirhosseini, Alireza Ramezani, Arezoo

Etesamirad, Amirmahdi Mohammadzadeh, Saba & Saghi Baraghani, Hadi Mardani, Kimia

iv

Zamiri, Reza Mokhtari, Niloufar Ghavi. Thank you for being there whenever I have needed

you. Without you, I would not experience this fascinating PhD life.

Finally, and also most importantly, the completion of my dissertation would not

have been possible without the support and nurturing of my parents, Heidar Asghari Esfeden

and Fatemeh Ramezani. I feel so honored and blessed to have you as my parents. Thank

you for instilling me with a strong passion for learning and for doing everything possible to

put me on the path to greatness. I am also extremely grateful to my brothers, Javad and

Sadjad, my sister, Nadjmeh, and my sister in law, Masoumeh for their significant support

and encouragement, throughout my life. No matter how far you are and how long I was not

able to visit you all, I feel you next to me every single day. Although this period was no

easier for you than it was for me, you remained more than supportive all the time and gave

me hope and encouragement every time I was about to give up.

v

To my beloved parents, for their endless love, support, and encouragement.

vi

ABSTRACT OF THE DISSERTATION

Enhanced Register Data-Flow Techniques for High-Performance, Energy-Efficient GPUs

by

Hodjat Asghari Esfeden

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June 2021

Prof. Nael Abu-Ghazaleh, Chairperson

To avoid immoderate power consumption, the chip industry has shifted away from high

performance single threaded designs to high throughput multi-threaded designs. Graphic

Processing Unit (GPU) is a great example of such high throughput multi-threaded designs.

GPUs have emerged as an important computational platform for data-intensive applications

in a plethora of application domains. They are commonly integrated in computing platforms

at all scales, from mobile devices and embedded systems, to high performance enterprise-level

cloud servers.

GPUs use a massively multi-threaded architecture that exploits fine-grained switch-

ing between executing groups of threads to hide the latency of data accesses. In order to

support this fast context switching at scale, GPUs invest in large Register Files (RF) to

allow each thread to maintain its context in hardware. RF is a critical structure in GPUs

responsible for a large portion of the area and power; the frequent accesses to the register

file during kernel execution incur a sizable overhead in GPU power consumption, and intro-

duce delays as accesses are serialized when port conflicts occur. This dissertation presents

vii

novel synergistic compiler/microarchitecture techniques for enabling high-performance and

energy-efficient GPUs.

Our first technique, CORF, is a compiler-assisted Coalescing Operand Register

File which performs register coalescing by combining reads to multiple registers required

by a single instruction, into a single physical read. To enable register coalescing, CORF

utilizes register packing to co-locate narrow-width operands in the same physical register.

Our proposed design uses compiler hints to identify which register pairs are commonly

accessed together. This novel technique simultaneously reduces the leakage and dynamic

access power, while improving the overall performance of the GPU.

The second technique, Breathing Operand Windows to exploit bypassing in GPUs

(BOW), is motivated by the observation that there is a high degree of temporal locality

in accesses to the registers: within short instruction windows, the same registers are often

accessed repeatedly. To exploit this opportunity, we propose an enhanced GPU pipeline

and operand collector organization that supports bypassing register file accesses and instead

passes values directly between instructions within the same window. To further arise

bypassing opportunities, we introduce compiler optimizations to help guide the write-back

destination of operands depending on whether they will be reused to further reduce the write

traffic. Our results show that BOW can shield the register file from unnecessary register file

accesses, which improves performance and reduces the energy consumption.

In our third study, inspired by the fact that registers are the fastest and simultane-

ously the most expensive kind of memory available to GPU threads, we propose Register

Mutual Exclusion (RegMutex). RegMutex a software-hardware co-mechanism to enable

viii

sharing a subset of physical registers between warps during the GPU kernel execution. With

RegMutex, the compiler divides the architected register set into a base register set and an

extended register set. While physical registers corresponding to the base register set are

statically and exclusively assigned to the warp, the hardware time-shares the remaining

physical registers across warps to provision their extended register set. Therefore, the GPU

programs can sustain approximately the same performance with the lower number of registers

hence yielding higher performance per dollar.

One of the most critical performance and design hurdles in today’s computing

challenges is operating on a large volume of data. Large data not only impedes performance

by imposing long-latency memory accesses, but also makes the processor design more costly

by having the design to overprovision the on-chip memory size to afford the data. In our last

study, we proposed another novel register sharing mechanism and also a warp scheduling

scheme for GPUs to resolve these issues.Instead of modifying workloads to apply advanced

algorithms or changing the GPU architecture significantly, our proposed locality-aware

register file (LARF) and locality-aware scheduler (LAS) effectively reduce off-chip memory

accesses and enable data sharing across warps in timely manner. We exploited the unique

data sharing patterns of big data workloads such as deep learning and matrix multiply

algorithms and have the warps opportunistically share data in register file. In our studies,

we have observed a lot of cases where the amount of parallelism was limited largely by

register shortage. With our proposed LARF, the register usage is also effectively reduced by

having warps to share one physical copy of the register.

ix

Contents

List of Figures xii

List of Tables xv

1 Introduction 1

2 CORF: Coalescing Operand Register File for GPUs 7
2.1 Introduction . 7
2.2 Background . 10
2.3 The Virtues of Register Coalescing . 14
2.4 CORF: Coalescing Operands in Register File 17

2.4.1 CORF Overview . 18
2.4.2 Generating Compiler-assisted Hints 19
2.4.3 CORF Run-time Operation . 20

2.5 CORF++: Re-architected RF . 23
2.5.1 Compiler-assisted Register Allocation 23
2.5.2 Coalescing-aware RF Organization 25
2.5.3 CORF++ Run-time Operation . 29

2.6 Additional Implementation Details . 31
2.7 Performance/Power Evaluation . 34
2.8 Hardware/Software Overheads . 40
2.9 Related Work . 42

3 BOW: Breathing Operand Windows to Exploit Bypassing in GPUs 45
3.1 Introduction . 45
3.2 Background . 52
3.3 Motivation . 55
3.4 Breathing Operand Windows . 59

3.4.1 BOW Architecture Overview . 59
3.4.2 BOW-WR: Compiler-guided writeback 63
3.4.3 Reducing the Bypassing Storage Space 70

3.5 Evaluation . 73

x

3.5.1 Performance/Energy Evaluation . 74
3.6 Related Work . 82

4 RegMutex: Inter-Warp GPU Register Time-Sharing 85
4.1 Introduction . 85
4.2 Motivation . 88
4.3 RegMutex: Inter-Warp Register Time-Sharing 92

4.3.1 Compiler Support . 95
4.3.2 Architecture Support . 101
4.3.3 Paired-Warps Specialization . 106

4.4 Experimental Evaluation . 107
4.4.1 Kernel Occupancy Boost Analysis 109
4.4.2 Register File Size Reduction Analysis 111
4.4.3 Performance Comparison with Related Work 112
4.4.4 Extended Set Size Sensitivity Analysis 115
4.4.5 Paired-Warps Specialization Performance Analysis 116

4.5 Related Work . 119

5 LARF: Locality-Aware Register File for GPUs 122
5.1 Introduction . 122
5.2 Background and Related Work . 126

5.2.1 On-chip Inter-thread Data Sharing 126
5.3 Locality-Aware Register File . 127

5.3.1 Perfect Sharing . 128
5.3.2 Partial Sharing . 130

5.4 Locality-Aware Warp Scheduler . 131
5.5 Architectural Modification . 135

5.5.1 Dynamic Register Mapping . 135
5.5.2 Address Mapping Table and Mapping Controller 136
5.5.3 LAS Support . 143

5.6 Evaluation . 144
5.6.1 Performance . 146
5.6.2 Register File Utilization . 151
5.6.3 Synergy With Existing Optimizations 152
5.6.4 Area . 153

6 Conclusions 155

Bibliography 158

xi

List of Figures

1.1 On-chip memory components size in NVIDIA GPUs (from 2010–2018). . . . 3

2.1 Baseline GPU register file design with proposed enhancements (in dark purple)
for register packing [43,139]. CU0-CU3 are operand collector units. 12

2.2 Width distribution of registers accessed from RF 14
2.3 Unused RF bandwidth (also proportional to wasted dynamic energy). . . . 15
2.4 Instructions with coalesceable register reads; first fit is clearly weak in pro-

moting coalescing. 16
2.5 CORF overview. Compiler-generated register pairs guide register allocation

to create coalescing opportunities . 18
2.6 Percentage of successful combinations of compiler identified register pairs for

CORF . 21
2.7 CORF++ overview. At compile time, we identify which registers should

be left-aligning, or right-aligning through graph coloring algorithm, so that
we can maximize coalescing opportunities. This information will then guide
register allocation in our coalescing-aware register file. 24

2.8 CORF++ register assignment heuristic example 24
2.9 Modified register to bank mapping where all registers belonging to a warp

maps to the same bank. 26
2.10 Baseline register sub-bank organization shown in A . Sub-bank organization

when packing R1 w/ R3, and R2 w/ R4 B . Coalescing-aware sub-bank
organization C enables coalescing across different physical registers with
non-overlapping sub-banks. 27

2.11 Dual address register file. 29
2.12 Illustrative Example of CORF++ register allocation (B – D) and read coa-

lescing (E , F). 30
2.13 Coalesced instructions: CORF and CORF++ significantly increases the

amount of coalescing opportunities. 33
2.14 Reduction in number of accesses to register file. 35
2.15 IPC Improvement. 36
2.16 Reduction in allocated physical registers. 37
2.17 Normalized RF dynamic energy . 38

xii

2.18 Normalized RF leakage energy . 39
2.19 Static code size increase. 42

3.1 On-chip memory components size in NVIDIA GPUs (from 2010–2018). . . . 46
3.2 Conventional GPU register file architecture (OCU0-OCU31 are Operand

Collector Units). 53
3.3 Eliminated read (top) and write (bottom) requests through operand bypassing. 54
3.4 Average time taken by operand collection stage for memory vs. non-memory

instructions. 58
3.5 (a) An overview of BOW. BOCX is Bypassing Operand Collector assigned to

Warp X; (b) Baseline operand collector unit (left) compared to the proposed
wider Bypassing Operand Collector (BOC) unit with forwarding logic support
(right). 60

3.6 Code snippet from BTREE application illustrating bypassing operation in
BOW. 63

3.7 Distribution of write destinations in BOW-WR 67
3.8 Operand collector units’ occupancy. 72
3.9 BOC occupancy with a window 3: half of the entries are unused. 73
3.10 IPC improvement. 76
3.11 IPC increase with 6-entry BOC (half-size). 77
3.12 Cycles spent in OC stage for different window sizes (normalized to the baseline). 78
3.13 Normalized RF dynamic energy . 79

4.1 The utilization of a sample thread’s allocated register set during kernel
execution. X axis shows the number of instructions executed by the thread
and Y axis shows the percentage of live registers with respect to allocated
registers. Results are extracted using our extension to GPGPU-Sim [17].
Applications are from Rodinia [31] and Parboil [124]. 90

4.2 Example of two warps A and B executing identical code with and without
RegMutex. Base register set size is 16 registers (per thread) as well as the
Shared Register Pool (SRP) size. The architecture is assumed to have 48
hardware registers per thread. 94

4.3 A GPU code sample from DWT2D application and its static register liveness. 97
4.4 The baseline design from GPGPU-sim [17] (top) and RegMutex’s added

storage structures (bottom). Specified sizes are in bits. 103
4.5 Acquire/release procedure implementation in RegMutex. 104
4.6 Architected to physical register mapping design in the Operand Collector Unit.

X is the architected register index and Y is the resulted physical register index.106
4.7 The performance improvement enabled by RegMutex over the baseline. . . 110
4.8 The performance of applications with and without RegMutex on an architec-

ture with half the baseline’s register file size. 111
4.9 RegMutex performance comparison with Register File Virtualization (RFV) [62]

and the work of Jatala et al. [59], which we refer to it as OWF. 113
4.10 The sensitivity of kernel performance to variations in the extended set size

with RegMutex. Columns with diagonal stripes are our heuristic’s pick. . . 114

xiii

4.11 The variations in the theoretical kernel occupancy and the ratio of successful
acquires with respect to changes in the extended set size. Columns with
diagonal stripes are our heuristic’s pick. 116

4.12 The effect of RegMutex’s paired-warps specialization on the execution cycle
and the occupancy of kernels. 117

4.13 Acquire instruction success rate in RegMutex with and without paired-warps
specialization. The results for the 8 leftmost applications are reported on
the baseline architecture, and the rest, on the architecture with half of the
baseline register file size. 119

5.1 Input data sharing among three neurons that are vertically and horizontally
neighboring in a conv layer . 123

5.2 Proposed Data Sharing (an example of CNN) 128
5.3 Instruction Sequences of Global Memory Accesses in GPUs 133
5.4 Architectural Modification . 136
5.5 Example Scenarios with LARF . 139
5.6 Scheduler Impact on CifarNet Execution: Cv: convolution layer, Pl: pooling

layer, FC: fully-connected layer . 147
5.7 Per-Layer Speedup and Global Memory Accesses of MobileNet: Numbers in

parenthesis are the address mapping table entry counts. DWC: depth-wise
convolution layer, Cv: 3D convolution layer, PWC: point-wise convolution layer148

5.8 Per-Layer Speedup and Global Memory Accesses of CifarNet 149
5.9 End-to-End Speedup and Global Memory Accesses of Remaining Workloads 150
5.10 Utilization of Compiler Allocated Registers 151
5.11 Speedup and Register Usage of 128×128 MatrixMul 153

xiv

List of Tables

2.1 Summary of CORF, CORF++, and register packing (and register virtualiza-
tion). All values normalized to the baseline GPU register file. 40

2.2 Renaming table overheads in 40nm technology 41

3.1 Number of write operations to the register file for code snippet shown in
Figure 3.6. 66

3.2 Nvidia TITAN X (Pascal Arch.) Configuration 74
3.3 List of used benchmarks . 75
3.4 BOC overheads in 28nm technology . 81

4.1 Workloads used in experiments. The number of registers per thread and
RegMutex’s base register set size are shown for each kernel. 109

xv

Chapter 1

Introduction

Graphics Processing Units (GPUs) have emerged as an important computational

platform for data-intensive applications in a plethora of application domains. They are

commonly integrated in computing platforms at all scales, from mobile devices and embedded

systems, to high-performance enterprise-level cloud servers. GPUs use a massively multi-

threaded architecture that exploits fine-grained switching between executing groups of

threads to hide the latency of data accesses. In order to support this fast context switching

at scale, GPUs invest in large Register Files (RF) to allow each thread to maintain its

context in hardware. The amount of parallelism available on a GPU (e.g., number of

streaming multiprocessors, or SMs) has been steadily increasing as GPUs continue to grow

in performance and size, which in turn increases the number of concurrent thread contexts

needed to keep these units utilized [15,61,72,73,100,103,133].

The large register file accounts for an increasingly larger fraction of on-chip storage,

as shown in Figure 1.1. For example, in NVIDIA Pascal GPU, register file size is 14 MB,

1

which accounts for around 63% of the on-chip storage area. Due to frequent accesses to the

RF, it is a crucial microarchitectural component whose architecture substantially impacts

the performance and energy-efficiency of GPUs. For example, port conflicts (in register file

banks as well as operand collector units that collect the register operands) cause delays

in issuing instructions as register values are read in preparation for execution. Number of

available physical registers is also a potential factor that could affect overall performance.

In addition, the RF has a large energy consumption footprint, since it is the largest SRAM

structure that serves a large number of data accesses from the working threads. Earlier

studies estimate that the register file is responsible for 18% of the total power consumption on

a GPU chip [81], a percentage that has most likely increased as the size of RFs has continued

to grow. In this thesis, we first show the existing inefficiencies in register allocation policies

in current design. We classified the existing inefficiencies in two classes: spatial inefficiency

and temporal inefficiency. Then, we propose novel synergistic compiler-microarchitecture

techniques to resolve those inefficiencies and enable high-performance, energy efficient GPUs.

Spatial inefficiency: In GPUs, registers are allocated in a very conservative way.

the allocation of physical registers to architected registers in the kernel binary is static, i.e.,

the maximum number of live registers at any given point determines the kernel’s physical

register demand, and is exclusive, i.e., a warp’s physical registers are solely its own for the

lifetime of the thread-block containing the warp. This allocation scheme carves a portion

of the physical registers for the warp regardless of the fluctuations in the register usage by

the warp. Also, it is always assumed that all values stored in individual registers during a

kernel’s lifetime need a fixed number of bits to be represented (32 bits in today’s GPUs).

2

0

5

10

15

20

25

30

35

FERMI (2010) KEPLER (2012) MAXWELL (2014) PASCAL (2016) VOLTA (2018)

O
n

-c
h

ip
 M

em
o

ry
 S

iz
e

(M
B

)

L1D Cache + Shared Memory L2 Cache Register File

Figure 1.1: On-chip memory components size in NVIDIA GPUs (from

2010–2018).

However, in this thesis, we will show that such conservative choices are not required. CORF,

RegMutex, and LARF seek to resolve the spatial inefficiency.

Temporal inefficiency: In our reference architecture, regardless of temporal

register reuse opportunities, all operands stage through the register file component, meaning

that per each register source operand, one read request is sent to the corresponding register

file bank to fetch the data. In BOW, we show that there is a high degree of temporal locality

in accesses to the registers across a window of few instructions belong to the same warp.

In chapter 2, we present CORF, a compiler-assisted Coalescing Operand Register

File which performs register coalescing by combining reads to multiple registers required by

a single instruction, into a single physical read. To enable register coalescing, CORF utilizes

register packing to co-locate narrow-width operands in the same physical register. CORF

uses compiler hints to identify which register pairs are commonly accessed together. CORF

saves dynamic energy by reducing the number of physical register file accesses, and improves

3

performance by combining read operations, as well as by reducing pressure on the register

file. To increase the coalescing opportunities, we re-architect the physical register file to

allow coalescing reads across different physical registers that reside in mutually exclusive

sub-banks; we call this design CORF++. The compiler analysis for register allocation for

CORF++ becomes a form of graph coloring called the bipartite edge frustration problem.

CORF++ reduces the dynamic energy of the RF by 17%, and improves IPC by 9%.

In chapter 3, we observe that there is a high degree of temporal locality in accesses

to the registers: within short instruction windows, the same registers are often accessed

repeatedly. We characterize the opportunities to reduce register accesses as a function of

the size of the instruction window considered, and establish that there are many recurring

reads and updates of the same register operands in most GPU computations. To exploit this

opportunity, we propose Breathing Operand Windows (BOW), an enhanced GPU pipeline

and operand collector organization that supports bypassing register file accesses and instead

passes values directly between instructions within the same window. Our baseline design

can only bypass register reads; we introduce an improved design capable of also bypassing

unnecessary write operations to the RF. We introduce compiler optimizations to help guide

the write-back destination of operands depending on whether they will be reused to further

reduce the write traffic. To reduce the storage overhead, we analyze the occupancy of

the bypass buffers and discover that we can significantly down size them without losing

performance. BOW along with optimizations reduces dynamic energy consumption of the

register file by 55% and increases the performance by 11%, with a modest overhead of 12KB

increase in the size of the operand collectors (4% of the register file size).

4

In chapter 4, we propose a software-hardware co-mechanism named RegMutex

(Register Mutual Exclusion) to share a subset of physical registers between warps during the

GPU kernel execution. With RegMutex, the compiler divides the architected register set

into a base register set and an extended register set. While physical registers corresponding

to the base register set are statically and exclusively assigned to the warp, the hardware

time-shares the remaining physical registers across warps to provision their extended register

set. Therefore, the GPU programs can sustain approximately the same performance with

the lower number of registers hence yielding higher performance per dollar. For programs

that require a large number of registers for execution, RegMutex will enable a higher number

of concurrent warps to be resident in the hardware via sharing their register allocations with

each other, leading to a higher device occupancy. Since some aspects of register sharing

orchestration are being offloaded to the compiler, RegMutex introduces lower hardware

complexity compared to existing approaches. Our experiments show that RegMutex improves

the register utilization and reduces the number of execution cycles by up to 23% for kernels

demanding a high number of registers.

In chapter 5, we propose a new register sharing mechanism and a warp scheduling

scheme for GPUs to share physical registers across different warps to reduce the memory

traffic. Instead of modifying workloads to apply advanced algorithms or changing the GPU

architecture significantly, our proposed locality-aware register file (LARF) and locality-aware

scheduler (LAS) effectively reduce off-chip memory accesses and enable data sharing across

warps in timely manner. We exploited the unique data sharing patterns of big data workloads

such as deep learning and matrix multiply algorithms and have the warps opportunistically

5

share data in register file. Though register file is the largest on-chip memory, due to the

excessive usage by state-of-the-art optimizations such as register file blocking, we observed

that the parallelism was limited largely by register shortage. With our proposed LARF,

the register usage is also effectively reduced by having warps to share one physical copy of

register. To the best of our knowledge, this is the first approach that tackles both memory

accesses and on-chip memory shortage. Our experimental results on various deep learning

and matrix multiply workloads show that the combination of LARF and LAS improves

individual layer performance up to 3.5× and end-to-end deep learning performance up to

10%, and reduces the number of global memory loads by up to 80%.

6

Chapter 2

CORF: Coalescing Operand

Register File for GPUs

2.1 Introduction

Over the past decade, GPUs have continued to grow in terms of performance and

size. The number of execution units has been steadily increasing, which in turn increases

the number of concurrent thread contexts needed to keep these units utilized [72,73, 78, 97,

100, 103, 115]. In order to support fast context switching between large groups of active

threads, GPUs invest in large register files to allow each thread to maintain its context.

This design enables fine-grained switching between executing groups of threads, which is

necessary to hide the latency of data accesses. For example, the Nvidia Volta GPU has

80 streaming multiprocessors each with a 256KB register file (64K registers, each 32-bit

wide) for a total of 20MB of register file space. Due to its continuous access, the register

7

file is a critical structure for sustaining performance. The register file is the largest SRAM

structure on the die and one of the most power-hungry components on the GPU. In 2013, it

was estimated that the register file is responsible for 18% of the total power consumption

on a GPU chip [81], a percentage that is likely to have increased as the size of the RF has

continued to grow.

In this chapter, we seek to improve the performance and energy efficiency of

GPU register files by introducing register coalescing1. Similar to memory coalescing where

contiguous memory accesses are combined into a single memory request, register coalescing

combines multiple register reads from the same instruction into a single physical register

read, provided these registers are stored in the same physical register entry. Specifically,

register coalescing opportunities are possible when we use register packing [43,139], where

multiple narrow-width registers are stored into the same physical register. In contrast to

register packing, which requires one separate read access for each architectural register read,

register coalescing allows combining of read operations to multiple architectural registers

that are stored together in the same physical register entry. Register coalescing reduces

dynamic access energy, improves register file bandwidth, reduces contention for register file

and operand collector ports, and therefore improves overall performance.

We propose a Coalescing Operand Register File (CORF) to take advantage of

register coalescing opportunities through a combination of compiler-guided register allocation

and coalescing-aware register file organization. The key to increasing register coalescing

opportunities is to ensure that related registers—registers that show up as source operands

1“Register coalescing” is analogous to memory coalescing where requests are coalesced [18], and distinct
from register coalescing in compiler register allocation which is used to eliminate copy instructions [29,47,107].

8

in the same instruction—are stored together in the same physical register entry. CORF first

identifies exclusive common pairs of registers that are most frequently accessed together

within the same instruction. If both common pair registers are narrow-width and are packed

together into the same physical register entry, then accesses to these registers (in the same

instruction) can be coalesced. CORF reduce physical register accesses, resulting in ˜8.5%

reduction in register file dynamic energy, and ˜4% increase in IPC.

A limitation of CORF is that each register may only be coalesced exclusively with

one other register, which limits the opportunities for coalescing registers that are frequently

read with several other registers. To further increase register coalescing opportunities, we

present CORF++ which presents a re-architected coalescing-aware register file organization

that enables coalescing reads from non-overlapping sub-banks across different physical

register entries. Thus, reads to any two registers that reside in non-overlapping sub-banks,

even if they reside in different physical register entries, can be coalesced. To maximize the

opportunities for coalescing, we introduce a compiler-guided run-time register allocation

policy which takes advantage of this re-organization. In particular, we show that the compiler

must solve a graph coloring variant called the bipartite edge frustration problem to optimize

allocation. Since the problem is NP-hard, we use a heuristic to determine how to allocate

the registers effectively. CORF++ is able to substantially improve register coalescing

opportunities, leading to a reduction in dynamic register file energy by 17% and an IPC

improvement of ˜9% over the baseline.

As a secondary contribution, we show that CORF can be combined seamlessly

with register file virtualization [62] to further reduce the overall effective register file size,

9

resulting in an overall reduction of over 50%. In particular, both register file packing and

register virtualization are orthogonal and combine in benefit, where both utilize indirection

using a renaming table, amortizing this common overhead. This reduction in register file

size can be leveraged for other optimizations, such as power gating unused registers to save

static power [7], or enabling more kernel blocks/threads to be supported using the same

register file to improve performance [139].

This chapter makes the following contributions:

• We introduce the idea of register read coalescing, enabling the combination of multiple

register reads into a single physical read. CORF implements coalescing with the aid

of compiler-guided hints to identify commonly occurring register pairs.

• We propose CORF++, consisting of a re-organized register file to enable coalescing

across different physical registers, and a compiler-guided allocation policy that optimizes

allocation against this new register file. This new policy relies on compile-time graph

coloring analysis, solving the bipartite edge frustration problem.

• We combine CORF++ and register file virtualization, observing that their benefits

add up (CORF++ optimizes in space, while virtualization optimizes in time), but

their overheads do not (both share a renaming table), resulting in the smallest known

effective register file size among register compression proposals.

2.2 Background

In this section, we first overview the organization of modern GPU register files

as well as its impact on performance and power. Next, we discuss the concept of register

10

packing [43, 139], a well-known microarchitectural technique, from which register coalescing

opportunities arise.

GPU Register File: Modern GPUs consist of a number of Streaming Multiprocessors

(SMs), each of which has its own register file, and a number of integer, floating point, and

specialized computational cores. A GPU kernel, i.e. program, is decomposed into one or

more Cooperative Thread Arrays (CTAs, also known as thread blocks) that are scheduled

to the SMs. The threads within a block are grouped together into warps, or wavefronts,

typically of size 32. The threads within a warp execute together in lockstep, following a

Single Instruction Multiple Thread (SIMT) programming model. Each warp is assigned

to a warp scheduler that issues instructions from its pool of ready warps to the operand

collection unit (OC) and then to the GPU computational cores.

Each warp has its own set of dedicated architectural registers indexed by the

warp index. There is a one-to-one mapping between architectural registers and physical

registers [82]. To provide large bandwidth without the complexity of providing a large

number of ports, the register file is constructed with multiple single-ported register banks

that operate in parallel. A banked design allows multiple concurrent operations, provided

that they target different banks. When multiple operations target registers in the same

bank, a bank conflict occurs and the operations are serialized.

Figure 2.1 shows our baseline register file organization for the Fermi generation of

Nvidia GPUs. It has a register file size of 128 KB per SM split across four banks. A bank is

made up of 8 sub-banks that are 128 bits wide each. All 32 registers belonging to the 32

threads in the same warp are statically allocated to consecutive sub-banks (in a single bank)

11

Bank0

Bank1

Bank3

In
te

rc
on

ne
ct

1024 * 4-bits Free Register Map

.....

Rename Table

Bank2

B
an

k
A

rb
itr

at
or

A
rr

ay
 o

f P
ac

ke
rs

Issue

SI
M

D
 E

xe
cu

tio
n

U
ni

ts
W

id
th

-D
et

ec
tio

n
Lo

gi
c

Si
gn

 E
xt

en
si

on
 U

ni
ts

abcd abcdabcd abcd

CU2
Byte-
level
Shifter

CU3
Byte-
level
Shifter

CU1
Byte-
level
Shifter

CU0
Byte-
level
Shifter

W
ar

p
ID

Valid

Valid

Valid

Reg ID

Reg ID

Reg ID

Ready

Ready

Ready

Operand

Operand

Operand

Sub-bank 0 Sub-bank 1 ... Sub-bank 7

128 bit Write In 128 bit Read
256 Entry

each 128 bit

Figure 2.1: Baseline GPU register file design with proposed enhancements (in

dark purple) for register packing [43, 139]. CU0-CU3 are operand collector

units.

with the same entry index. Thus, a full register for all the threads within a warp can be

striped using one entry of one bank, allowing it to be operated on in a single cycle. Each

bank can store up to 256 warp-registers.

Impact of Register File on Performance and Power: When a warp instruction is

scheduled by the warp scheduler, an operand collector (OC) unit is assigned to collect

its operands for execution. An OC fetches the register operands from the register banks

they reside in, bound by the two following constraints: (1) OC port serialization: Each

12

OC has only one port and therefore it has to serialize reads when an instruction has

multiple operands (instructions may need up to 3 source operands); and (2) Register bank

conflicts : While operands from different banks may be concurrently read from different OCs,

operands that access the same bank cause bank conflicts and cannot be issued together. The

port constraints causing these conflicts are difficult to bypass by increasing the number of

ports [19]: the cost of a port is extremely high when considering the width of a warp register.

Register coalescing can help with both of these constraints: by coalescing operands, it allows

multiple operands to be read by an OC in a single cycle, overcoming port serialization.

Moreover, by reducing the overall number of register reads, the pressure on the register file

is reduced, potentially reducing register bank conflicts. By reducing the overall number of

reads to the RF, energy efficiency is improved. Moreover, improving performance leads to

shorter run times, also improving energy efficiency.

Register Packing: Register coalescing opportunities arise when two registers needed by

the same instruction are stored in the same physical register entry. This opportunity only

exists when we allow multiple registers to be packed in the same physical register entry,

a known architectural technique called register packing [43, 139]. In particular, register

packing maps narrow-width values (values which do not need all 32 bits to be represented)

of multiple architectural registers to a single physical register.

Since each architectural register read in prior register packing implementations

requires a separate uncoalesced physical register read, a greedy first-fit allocation policy has

been utilized to pack registers. This simple policy is sufficient to achieve the main goal of

register packing, which is reducing the effective register file size; enabling unused registers

13

to be power gated, or enabling the register file to be provisioned with a smaller number of

physical registers. However, as we will show in the next section, this policy leads to very

few register coalescing opportunities. Thus, a key to register coalescing is to pack related

registers that are frequently read together, which is the goal of our compiler analysis.

2.3 The Virtues of Register Coalescing

In this section, we motivate register coalescing, and the need to design coalescing-

aware register files to maximize the benefits of register coalescing. All experiments are

collected with the GPGPU-Sim simulator [17], modeling a Fermi GPU2. We utilize bench-

marks from Rodinia [31], Parboil [125], NVIDIA CUDA SDK [101], and Tango DNN

Benchmark Suite [68]. More details of experimental setup are discussed in Section 2.7.

0%

20%

40%

60%

80%

100%

120%

Pe
rc
en
ta
ge

1-byte 2-bytes 3-bytes 4-bytes

INT-intensive FP-intensive

Figure 2.2: Width distribution of registers accessed from RF

Register operand characteristics: Figure 2.2 showcases the prominence of narrow-width

values in GPU applications. We classify narrow-width values into four size classes: 1 byte, 2

2Register coalescing opportunities are agnostic to hardware architecture.

14

bytes, 3 bytes, and 4 bytes (full-width). On average, 65% of all register operations contain

narrow-width values, with over 33% of operations consuming no more than a single byte.

This demonstrates that there exists a significant amount of register operands amenable

to register coalescing. For floating point (FP)-intensive benchmarks (such as sgemm and

blackscholes), the percentage of narrow-width values is less than that for integer-intensive

benchmarks (such as bfs and btree). This is due to the IEEE 754 encoding of floating point

values, which makes use of all 32 bits.

0%
10%
20%
30%
40%
50%
60%
70%

BF
S
BT
RE
E

GU
AS
SIA
N
MU

M NW SR
AD SA

D

VE
CT
OR
AD
D

RE
DU
CT
IO
N

BA
CK
PR
OB

HE
AR
TW
AL
L
ST
O

Ale
xN
et[
CN
N]

Sq
ue
ez
eN
et[
CN
N]

Cif
arN

et[
CN
N]

GR
U[
RN
N] AV

G LIB

SG
EM
M

BL
AC
HS
CH
OL
ES WP AV

G
AV
G

Pe
rc
en
ta
ge

FP-intensiveINT-intensive

Figure 2.3: Unused RF bandwidth (also proportional to wasted dynamic en-

ergy).

Opportunity– Register file bandwidth: Figure 2.3 shows the unused register

file bandwidth due to carrying the unneeded bits of narrow-width values. In addition to

wasting bandwidth, these unneeded bits also cause wasted dynamic energy, as they are

unnecessarily carried through to the operand collector. We observe more wasted bandwidth

in integer applications, since narrow-width values are more common in them than in floating

point applications.

15

While register packing is able to reduce the effective size of the register file, each

register read still requires a separate physical register read. Therefore, this wasted bandwidth

is not recovered with simple register packing. To this end, our proposed register coalescing

aims to read multiple related registers used by the same instruction through a single register

read operation in order to utilize the register file bandwidth more efficiently.

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge

First-fit Upper bound

Figure 2.4: Instructions with coalesceable register reads; first fit is clearly weak

in promoting coalescing.

Register coalescing opportunity: Figure 2.4 shows the prevalence of operand coalescing

opportunities. We profile the register operand values at run-time and measure the fraction

of all dynamic instructions which contains two register source operands that are both narrow

and can fit together in a single register entry. We consider instructions that have two or more

register source operands because they could benefit from coalescing. We find that around

40% of the instructions have two or more register source operands, but more importantly,

because they read multiple registers, they are responsible for over 70% of the register file

reads. On average, 69% of all dynamic instructions with two or more operands have the

16

potential for operand coalescing, because their register operands can be packed, with up

to 91% in some benchmarks like Sad and Gaussian. Clearly, we have more coalescing

opportunities in integer intensive applications compared to floating point.

If we extend register packing to enable coalescing but keep the greedy first-fit register

allocation policy, we can only leverage register coalescing opportunities in around 4% of

instructions with two or more operands. This is a tiny fraction of the 69% of such instructions

where a coalescing opportunity is potentially available! To improve coalescing opportunities,

CORF incorporates a compiler-guided register allocation policy to identify pairs of registers

commonly read from the same instruction and map them into the same physical register entry.

In addition, we propose a coalescing-aware register file sub-bank organization and associated

compiler-guided allocation policy (CORF++) which can coalesce register operands that

are not stored in the same physical register entry, but in non-overlapping byte slices in the

sub-bank.

2.4 CORF: Coalescing Operands in Register File

In this section, we present the design of CORF, which coalesces register reads to

improve the RF performance. For two reads to be coalesceable, they have to be destined to

registers that are packed in the same physical register entry. To improve the opportunity for

coalescing, CORF utilizes compiler-assisted hints to pack related registers together. CORF is

the first register file optimization technique that simultaneously improves performance and

reduces power (both leakage and dynamic power). Coalescing enables higher performance

by combining read operations, reducing port serialization of operand collector units and

17

register file port conflicts. Coalescing reduces dynamic power, by decreasing the number

of read operations to the register file, and lowers the overall GPU energy consumption

because it leads to overall performance improvement that enable programs to finish faster.

In Section 2.5, we will present CORF++, which further re-architects the register file

organization to create more coalescing opportunities.

(r1, r3)

r1, r2

(r2, r4)

r1, r4

Kernel
Binary

Compile time Execution time

Profile Register Pairings Common Pairs Identification CORF RF

108 7

2

r2

r1 r4

r3

r4

r3
r2

---- r1

Figure 2.5: CORF overview. Compiler-generated register pairs guide register

allocation to create coalescing opportunities

2.4.1 CORF Overview

CORF identifies register pairs—registers that are used as source operands in the

same instruction—at compile time through static analysis or, alternatively, profiling. For

example, in Figure 2.5, we have four registers (r1, r2, r3, r4), where register r1 is read 8

times with r2, 10 times with r3, and 2 times with r4. In this example, we select (r1, r3)

and (r2, r4) as target exclusive common pairs for coalescing. During run-time, if any of

these common pairs happen to be compatible narrow-width values, they will be dynamically

packed together. If any instruction requires both r2 and r4 as source operands, we can

coalesce the operand access using a single read of the register file. However, in this example,

18

during run-time (r1, r3) could not be packed since their combined size exceeds the size of

a physical register entry. Since each register can only be coalesced with at most one other

register, we lose opportunities to coalesce operands from instructions with different register

pairings, such as (r1, r2), a limitation which we will target in Section 2.5.

2.4.2 Generating Compiler-assisted Hints

Identifying exclusive common pairs: The first step in identifying common pairs is to

profile the frequency of register pairings in order to build a Register Affinity Graph, as shown

in Figure 2.5. In order to determine the edge weights, we task the compiler to estimate the

dynamic frequency of occurrence for each instruction in each kernel. This is, in general, a

difficult problem at compile time, which we approximate as follows. For each instruction

outside of a loop with two or more operands, we consider every pair of operands to occur

once. Inside of loops, if the loop iteration count is statically resolvable, we use that count to

increment the edge weight for register pairs that occur in the loop. If the iteration count is

not a resolvable constant, we give a fixed weight to each register pair in instructions inside

the loop. We use the same approach for nested loops. While these weights are not exact,

they serve as a heuristic to assign relative importance to register pairs.

In order to identify exclusive common pairs, we must remove edges of the registers

that have more than one edge. Considering only registers with more than one edge, we

repeatedly remove the edge with the least weight until we end up with only exclusive pairs

of registers. If there are any pair of registers that have all of their edges removed, we check

if an edge can be restored between them.

Passing compiler-assisted hints to hardware: The set of exclusive register pairs that

19

are identified by the compiler are annotated in the executable’s preamble of a kernel and

delivered to the hardware through a metadata instruction. The register pair information is

maintained in a small associative structure. Specifically, we use a 64-bit metadata instruction

(to be aligned with existing SASS binaries) in the beginning of each kernel in order to carry

the compiler hints to the hardware. Consistent with the SASS instruction set that uses 10

bits as opcode for each instruction, we reserved 10 bits as opcode and the remaining bits

for storing the common pairs of the registers. Since in Fermi architecture, each thread may

have up to 63 registers, we need 6 bits as the register number. Each metadata instruction

can carry up to four common pairs. Multiple instructions are used if more than 4 pairs need

to be communicated. This design can also be adapted to support newer GPUs with more

registers.

2.4.3 CORF Run-time Operation

We complete the description of CORF by explaining how registers are allocated

to control the allocation of compiler identified pairs. We will also describe how coalescing

opportunities are identified.

CORF register allocation policy: The register allocation policy for CORF attempts to

pack the identified register pairs into the same physical register entry to increase coalescing

opportunities. A register is allocated for the first time it appears as the destination of an

instruction. Additionally, it could be reallocated when its size changes. When an allocation

event occurs, we check the register pair information to see if the register belongs to a common

pair. If it is, the allocator uses the common pair allocation logic. If the register does not

belong to a common pair, it is allocated using the default allocation policy (assumed to

20

be first-fit). We illustrate the common pair allocation using an example. Assume that r1

and r2 are identified as a common pair. When the first operand (say r1) arrives and is to

be allocated, it is identified as a common pair register and mapped to any free full-width

physical register. The rationale is to reserve any remaining slices of the physical register for

a future allocation of the other register in the pair. When the buddy register (the register

complementing the pair, which is r2 in this example) is allocated, we check to see if it fits

the physical availability in the register allocated to r1. If it fits, it is allocated to the same

physical register. Otherwise, it is mapped using the default policy.

0%
20%
40%
60%
80%
100%

BF
S
BT
RE
E

GU
AS
SIA
N
MU

M NW SR
AD SA

D

VE
CT
OR
AD
D

RE
DU
CT
IO
N

BA
CK
PR
OB

HE
AR
TW
AL
L
ST
O

Ale
xN
et[
CN
N]

Sq
ue
ez
eN
et[
CN
N]

Cif
arN

et[
CN
N]

GR
U[
RN
N]

AV
G LIB

SG
EM
M

BL
AC
HS
CH
OL
ES WP AV

G
AV
G

Pe
rc
en
ta
ge

Figure 2.6: Percentage of successful combinations of compiler identified register

pairs for CORF

In Figure 2.6, we show that identified common pairs fit together, and are successfully

packed in the same register in most of the cases (an average of just under 80%). This is

a high percentage despite the fact that we currently carry out no size estimation in the

compiler analysis.

Identifying coalescing opportunities: Recall that packing registers in the same physical

21

register is enabled by a renaming table (RT) that maps the architectural register to the

physical register slice where it is stored. The RT is indexed by a tuple of the warp ID and

an architectural register number. Each physical register is split into four 1-byte slices. Thus,

each RT entry stores the physical register where this value is stored, and a 4-bit vector called

the allocation mask, which specifies the bytes in the physical register that the potentially

narrow architectural register resides in. We use a free register map to keep track of free

allocations of physical register slices when making allocation decisions. The free register

map is a bit-vector where each bit represents a byte of a physical register (i.e., 4 bits per

physical register).

To identify coalescing opportunities as a new instruction is sent to an operand

collector unit, we first look it up in the renaming table to determine the physical registers

where the operand registers are stored. If the physical registers for two operands match,

the reads to these operands are coalesced into a single read to the register file. When the

physical register contents are received, the unpacker demultiplexes the two registers and

sign-extends them to recover two full-length registers.

Incorporating register virtualization [62]: CORF’s implementation seamlessly sup-

ports register file virtualization to further reduce the size of the register file. Specifically, we

observed that register file virtualization, which releases registers when they are no longer

live, can also further reduce the register file size. At the same time, register file virtualization

can be directly supported within CORF since it also relies on a renaming table to allocate

registers, requiring almost no additional overhead.

22

2.5 CORF++: Re-architected RF

CORF coalescing opportunities are limited to registers stored within the same

physical register entry. If a register is commonly accessed with two or more other registers,

coalescing is possible with only one of them. To relax this limitation, CORF++ re-organizes

the register file to enable more operand coalescing opportunities.

Specifically, CORF++ (Figure 2.7) re-architects the register file to enable coalescing

of registers within the same physical register bank, provided they reside in non-overlapping

sub-banks. Recall that each bank consists of eight sub-banks of 16 bytes wide. Since we are

no longer restricted to coalescing exclusive pairs of registers packed into the same physical

register entry, the compiler’s task of guiding register allocation to promote coalescing becomes

substantially different. In this section, we overview CORF++. We first present the compiler

support to optimize coalescing opportunities in CORF++, then describe the implementation

of the coalescing aware register file, and finally discuss its operation during run-time.

2.5.1 Compiler-assisted Register Allocation

CORF++ allows coalescing registers in non-overlapping sub-banks, even if the

values reside in two different physical register entries. The main challenge of efficient register

allocation in CORF++ is in assigning commonly read register pairs in different sub-banks.

We simplify the allocation to a selection of left-aligning and right-aligning assignments;

provided that two registers are in separate alignments, they have a chance of being coalesced

(subject to their combined size being smaller or equal to 4 bytes).

23

Kernel
Binary

Compile time Execution time

Graph Coloring Alignment Identification Coalescing-Aware RF

108 7

2

r2

r1 r4

r3

Left
r1
r4

Right
r2
r3

r2

r3

r4
----r1

Figure 2.7: CORF++ overview. At compile time, we identify which registers

should be left-aligning, or right-aligning through graph coloring algorithm, so

that we can maximize coalescing opportunities. This information will then guide

register allocation in our coalescing-aware register file.

r1

r2

r3

r5

r4

r6

4

7

1

2

3

5

6

r1

r2

r3

r5

r4

r6

4/2

7/2

1/2

2/2

3/2

5/2

6/2

3
r1

r2

r3

r5

r4

r6

4/1

7/1

2/1

3/1

5/1

6/1

3/2 3/2

r2

r3

r5

r4

r6

4

7

2

3

5

6

r1

Figure 2.8: CORF++ register assignment heuristic example

Similar to the compiler analysis for CORF, we start by constructing the Register

Affinity Graph where edges between registers indicate the expected frequency of reading

the two registers together in the same instruction. An optimal assignment maximizes the

weight of the edges between registers assigned to alternate alignments. This problem maps

to a graph coloring problem variation (where each alignment is a color). We are attempting

to remove the minimum edge weight (thus, forsaking the least coalescing opportunities) to

enable the graph to be colorable by two colors (left or right). This variation of graph coloring

is called the bipartite edge frustration problem, and is NP-hard even with two colors [145].

24

To derive an efficient heuristic for register mapping, we first observe that any graph

with no odd cycles (cycles made up of an odd number of edges) is 2-colorable. Thus, to

solve the problem, we should remove the minimum set of edges, considering weight, that

will break all odd cycles (to identify odd cycles, we used a modified version of the algorithm

in [28]). Since the optimal solution is NP-hard, we develop the following heuristic, as

illustrated in Figure 2.8. In the initial graph state (left-most graph), we have four odd

cycles: (r1,r2,r3), (r3,r4,r6), (r2,r3,r4,r6,r5), and (r1,r3,r6,r5,r2). We

assign each edge a weight corresponding to its original weight, divided by the number of odd

cycles that removing it would break. We then remove the edge with the minimum weight

(among the edges that are part of odd cycles), and update the weights. We repeat this

process until all odd cycles are eliminated, enabling us to trivially 2-color the graph.

Similar to CORF, the register allocation information is passed through metadata

instructions. We use a metadata instruction to encode the register assignments to either

left-aligning, right-aligning, or don’t-care. This encoded data is expanded to store 2 bits

per register to indicate alignment. This data is stored using a single bit-vector for each

kernel, resulting in a storage overhead of 128 bits per kernel. Other designs that reduce or

completely remove this overhead are possible, for example, having the compiler preset the

register alignments (e.g. all even registers right aligned).

2.5.2 Coalescing-aware RF Organization

Mapping registers to banks: In the baseline register file, registers belonging to the same

warp are interleaved across the register banks with the goal of minimizing bank conflicts

across warps (Figure 2.9, left side). Since coalescing occurs only within a single instruction

25

of a warp, CORF++ maps all registers belonging to the same warp to a single register bank

in order to maximize coalescing opportunities (Figure 2.9, right side). This new mapping

ensures that all accesses to registers within the same warp are in the same bank and therefore

potentially coalesceable.

Counter-intuitively, our goal is to create more bank conflicts within warps, which

gives us more opportunities to convert bank conflicts into beneficial coalescing opportunities.

Note that since the operand collector unit can read no more than one register in each cycle,

there is no lost opportunity in terms of reading registers from different banks for the same

instruction. With respect to conflicts across warps, on average, the new mapping does not

increase conflicts, since the probability of two registers from two different warps being in the

same bank remains 1
n , where n is the number of banks. However, with the new mapping,

two warps either always conflict (because they are mapped to the same bank) or they never

do (mapped to different banks) and there is a possibility for pathologies arising, for example,

from two active warps being mapped to the same bank. However, we did not observe any

such behavior in our experiments.

w0:r0
w1:r3
w2:r2
w3:r1

w0:r1
w1:r0
w2:r3
w3:r2

w0:r2
w1:r1
w2:r0
w3:r3

w0:r3
w1:r2
w2:r1
w3:r0

w0:r0
w0:r1
w0:r2
w0:r3

w1:r0
w1:r1
w1:r2
w1:r3

w2:r0
w2:r1
w2:r2
w2:r3

w3:r0
w3:r1
w3:r2
w3:r3

Bank 0 Bank 1 Bank 2 Bank 3 Bank 0 Bank 1 Bank 2 Bank 3

Figure 2.9: Modified register to bank mapping where all registers belonging to

a warp maps to the same bank.

Sub-bank organization: CORF++ allows multiple read operations to registers that reside

26

in non-overlapping sub-banks to be coalesced. To support this functionality, we change the

mapping of the registers to sub-banks. For clarity, we denote the bytes of a 32-bit register

values as B3B2B1B0.

In Figure 2.10 A we show how registers are organized across the 8 sub-banks in

current GPUs. A register is stored across all 8 sub-banks, where each sub-bank is 128 bits

wide. Each sub-bank stores a 32-bit register value for 4 threads. For example, sub-bank 0

stores the register values for threads 0 - 3 in sequential order, where the first 4 contiguous

bytes are from thread 0, the next 4 bytes are from thread 1, and so on.

Sub-bank0 Sub-bank1 … Sub-bank7 Sub-bank0 Sub-bank1 Sub-bank7…

128B: Warp0_R1 128B: Warp0_R2

Sub-bank0 Sub-bank1 Sub-bank7

Single 32bit register

Sub-bank0 Sub-bank1 Sub-bank7

Sub-banks2,3,4,5,6

Sub-banks2,3,4,5,6

A

B

C

128B: Warp0_R3 128B: Warp0_R4

P0

P2

P1

P3

P0

P1

P0
P1

Figure 2.10: Baseline register sub-bank organization shown in A . Sub-bank

organization when packing R1 w/ R3, and R2 w/ R4 B . Coalescing-aware

sub-bank organization C enables coalescing across different physical registers

with non-overlapping sub-banks.

27

Now let us assume that r1 and r4 are 1-byte narrow values, and r2 and r3 are

3-byte narrow values. Figure 2.10 B shows how these four architectural registers are stored

after they are packed into two physical registers. For example, in physical register P0, r1

and r3 are packed together. In this example, since r3 is 3-bytes, r3 will only utilize the 3

least significant bytes (B2−0). This mapping leaves the most significant byte (B3) available,

which is packed with r1. r2 and r4 are also packed similarly. In this scenario, we can only

coalesce reads if they require r1 and r3, or r2 and r4, as these pairs reside in the same

physical register entry. Here we lose coalescing opportunities for other compatible pairs, such

as r1 and r2, or r3 and r4 since parts of every register are spread across all sub-banks.

To address this limitation, we present a re-organized sub-bank mapping, as shown

in Figure 2.10 C . Instead of storing registers in sequential ordering of the entire 32-bit

register value, we will instead interleave the storage of register values across the sub-banks.

In this scenario, we first store the most significant bytes (B3) of threads 0 - 31 consecutively,

then store the next significant bytes (B2) of threads 0 - 31, etc. In this organization, B3 is

stored in sub-banks 0 and 1, B2 is stored in sub-banks 2 and 3, and so on.

When storing packed values in CORF++, we store the narrow registers as either

left-aligning, or right-aligning. In the case of r1 and r3, r1 is stored into P0 as left-aligning,

and r3 is stored as right-aligning. In this new sub-bank organization, we are able to coalesce

r1 and r3, and r2 and r4. Note that if each sub-bank can address different physical register

addresses, then it would also be possible to coalesce registers in non-overlapping sub-banks.

For example, r1 and r2, as well as r3 and r4 would be coalesceable.

Dual-addressable banks: To support coalescing across different physical register entries,

28

we introduce dual-addressable banks (Figure 2.11). We add additional MUXes to pick between

Address1 and Address2, which represent a left-aligning and a right-aligning register being

coalesced. If we wish to coalesce r1 and r2, then P1 would be sent to Address1, and P0

to Address2. By default, the MUXes select Address1, and utilize the 4-bit allocation mask

from Address2’s entry in the renaming table as the selector. In this scenario, we use r1’s

allocation mask, which would be 1000.

#1M
UX

M
UX

M
UX

M
UX

Address 1

Address 2

#0

#3
#2

#5
#4

#7
#6

Figure 2.11: Dual address register file.

2.5.3 CORF++ Run-time Operation

Next, we explain the run-time operation of CORF++ through an illustrative

example to demonstrate register allocation and coalescing.

CORF++ register allocation: When an allocation event occurs (e.g., writing into r2 in

Figure 2.12 B), we check the register alignment to see if it is a right-aligned or left-aligned

register. For don’t-care registers, we default to the first-fit allocation.

Identifying coalescing opportunities: Similar to CORF, to identify coalescing oppor-

tunities as a new instruction is sent to an operand collector unit, we look up the allocation

29

GLD r1, [0x80];
ISUB r2, r1, 0x7;
SHR r4, r1, 0x8;
LLD r3, [r4];
IADD r5, r2, r3;
IMUL r1, r4, r5;
ISUB r2, r3, r4;

SASS Code:

A B
<L: r3, r5 | R: r2, r4>

GLD r1, [0x80];
► ISUB r2, r1, 0x7;

Physical
Register

File

P0

P1

P2

► SHR r4, r1, 0x8;

C
<L: r3, r5 | R: r2, r4>

D
<L: r3, r5 | R: r2, r4>

E
<L: r3, r5 | R: r2, r4>

► LLD r3, [r4]; ► IADD r5, r2, r3;

F
<L: r3, r5 | R: r2, r4>

► IMUL r1, r4, r5;
ISUB r2, r3, r4

r1
r2

r4

r1
r2

r4

r1r3
r2

r4

r1r3
r2

r5 r4

r1r3
r2

r5

Physical
Register

File

P0

P1

P2

Physical
Register

File

P0

P1

P2

Physical
Register

File

P0

P1

P2

Physical
Register

File

P0

P1

P2

Figure 2.12: Illustrative Example of CORF++ register allocation (B – D) and

read coalescing (E , F).

mask in the renaming table for the source operands. Any two source operands could be

coalesced if the AND of their allocation masks becomes 0000.

Figure 2.12 shows an illustrative example of CORF++ with three physical registers.

A shows a piece of SASS code. The value loaded in r1 in B is detected by a width detection

unit as a narrow-width value that needs 2 bytes, and since r1 is an unallocated don’t-care

register, we map it to the first available spot (using first-fit policy). The next instruction

writes into r2 which is right-aligned, so we map it to the first available right part of a

physical register. In C , the instruction writes into r4 and is allocated to the first available

right part of a physical register. D shows a local load into r3, so we map it to the first

available left spot (which is P0). In E , we first coalesce the read operation for r2 and r3

and then write into r5, so the allocator maps it to the first available left spot. Finally, in

F , CORF++ coalesces the read operations for r4 and r5 and later r3 and r4. In this

example, we were able to coalesce all available opportunities. In contrast, CORF is not able

to coalesce read operations for r3 and r4 because we can only pick exclusive common pairs.

30

2.6 Additional Implementation Details

CORF assumes as a starting point a register file that implements register packing

RF [43, 139] and extends it in three important ways: (1) It supports operand coalescing:

the ability to identify opportunities for reading registers that are packed in the same

physical register (CORF) or in mutually exclusive sub-banks (CORF++), and the support

to read them together and unpack them; (2) It receives compiler hints to guide register

allocation decisions and uses them to guide allocation to promote coalescing; and (3) It

also supports register virtualization [62], allowing it to free registers when they cease to be

live. Additionally, CORF++ rearchitects the register file to enable coalescing reads from

mutually exclusive sub-banks as we described in the previous section. In this section, we

describe additional important components of CORF and CORF++.

Renaming Table (RT): The renaming table is a table indexed by a tuple of the warp ID

and an architectural register number. Each entry stores the physical register where this value

is stored, and a 4-bit allocation mask. The table consists of (max num of warps per SM ×

max regs per thread) entry, which is 48 × 63 = 3024 in our reference register file. Each

entry has a width of 14 bits (10 bits to represent the physical register number, and the 4-bit

allocation mask).

The renaming table needs to be accessed on register reads to resolve the mapping

to the physical register. The number of ports needed must at least match the number of read

ports on the register file to keep port conflicts from becoming a bottleneck. The renaming

table can be implemented as a general multi-ported table. However, to reduce complexity,

we implement it as a dual-ported sub-banked structure. We use two ports to allow fast

31

lookup of potentially coalesceable registers. We use a design with a separate bank for each

register file bank in the corresponding register file.

Allocation Unit: A small structure that guides the allocation policy using information

provided by the compiler. We designed and synthesized this structure in detail for CORF++.

It holds an allocation vector that carries the alignment for each register (left, right or

don’t-care). We store 128 bits per each kernel, for a maximum storage size of 128 bytes

per SM (please note that we may have up to 8 concurrent kernels running on each SM).

The allocation vector is consulted during allocation in conjunction with a free map that

keeps track of the available physical registers (and register slices). The allocator logic

uses the alignment preference as it consults the free map to identify a target register for

allocation. Note that the renaming logic, free map, and the allocation logic are present in

baseline register packing [43,139]; our allocation unit adds the compiler hints and changes

the allocation logic to use them.

Impact on pipeline: Although the RT access latency is low (0.38ns according to CACTI [121],

which is well below the cycle time of modern GPUs), we want to avoid combining the RT

lookup, coalescing logic, and the register file read in the same cycle. We note that once the

scoreboard marks an instruction to be ready to issue, we need at least one cycle to find a

free operand collector and move the instruction to it. Thus, we use this cycle to initiate

access to the renaming table to avoid trying to fit the renaming table access and the register

file access in the same cycle. The RT is dual-ported and sub-banked; however, in the event

of a port conflict, the arbitrator (which resolves conflicts for the register file) is extended to

delay the register read while the renaming table read is resolved. We extended the pipeline

32

0%

20%

40%

60%

80%

100%
Pe

rc
en

ta
ge

First-fit CORF CORF++ Upper Bound

FP-intensiveINT-intensive

Figure 2.13: Coalesced instructions: CORF and CORF++ significantly in-

creases the amount of coalescing opportunities.

in the simulator to model these effects.

Control divergence: When control divergence occurs, only a subset of SIMT lanes of a

warp are active. CORF operation continues unchanged under divergence but considering all

registers (whether belonging to active or inactive threads) for all operations (importantly

for width determination).

Size changes: If a packed narrow-value register size increases during runtime, we reassign

it to another physical register entry using the same process as the initial assignment. The

original mapping is then cleared. Size change events which require reallocation are rare (less

than 0.3% of writes), which makes these extra accesses to the RT have negligible effects. In

case of a size decrease, we keep the old mapping and adjust only the size in the renaming

table.

Packers and unpackers: Packers and unpackers are placed as shown in Figure 2.1 so that

packed values only exist in the register file and operand collection pipeline stage. Registers

are packed as they are written to the register file by first aligning them into the slice they

will be written to, and writing only that slice of the physical register. Conversely, when

registers are read, they are unpacked by shifting down (if necessary) and sign-extending

33

such that the registers are recovered to full width. Our unpackers are designed to be able to

unpack two values in the case of coalesced reads. The number of packers required matches

the pipeline width for writing (in our case, two packers). To unpack coalesced registers, we

have two unpackers working in parallel in each operand collector, for a total of 8 unpackers

per SM.

Width detection units: The register width detection units are embedded into the final

stage of SIMD execution units in order to detect the width of produced outputs. This is a

combinational circuit: it ORs the 7 least significant bits for each of the three most significant

bytes for every register in addition to the most significant bit of the byte before it (to ensure

that narrow positive numbers always start with a 0 in the MSB). For example, for byte 1

which spans bits 8 to 15, we OR together bits 7 to 14 to identify whether the byte is 0 or

not. This produces a 3-bit output for each register. Moreover, another 3 bits are obtained

by NAND-ing together the same bits of each byte to track the width of negative numbers.

Again, this ensures that any shortened negative number has 1 in the MSB. We use the most

significant bit of the register to multiplex out either the OR outputs (for positive values) or

the NAND outputs (for negative values). A second stage ORs the 3 bits output of the MUX

per register across all 32 registers in the warp producing a single 3-bit output to capture the

maximum width. This 3-bit sequence is used to determine the overall size of the register.

2.7 Performance/Power Evaluation

We have implemented CORF and CORF++ in GPGPU-Sim v3.2.1 [17], based

on an Nvidia Fermi-like GPU configuration with 15 SMs. Each SM has a 128 KB register

34

file organized into four banks, and each bank consists of eight sub-banks, as detailed in

Figure 2.1. We enabled PTXPlus for all of our evaluations. Since GPGPU-Sim provides a

detailed PTX code parser, we modified the parser to carry out our compiler optimizations.

Each SM also has two warp schedulers configured to use a two-level warp scheduler.

In all experiments, we use 20 benchmarks selected from Rodinia [31], Parboil [125],

NVIDIA CUDA SDK [101], and Tango [68] benchmark suites. The benchmarks cover a

range of behaviors and operand mixes (integer/floating point).

0%

10%

20%

30%

40%

BF
S
BT
RE
E

GU
AS
SIA
N
MU

M NW SR
AD SA

D

VE
CT
OR
AD
D

RE
DU
CT
IO
N

BA
CK
PR
OB

HE
AR
TW
AL
L

ST
O

Ale
xN
et[
CN
N]

Sq
ue
ez
eN
et[
CN
N]

Cif
arN

et[
CN
N]

GR
U[
RN
N]

AV
G LIB

SG
EM
M

BL
AC
HS
CH
OL
ES WP AV

G
AV
G

Pe
rc
en
ta
ge

CORF CORF++

Figure 2.14: Reduction in number of accesses to register file.

Coalescing success: Figure 2.14 shows the reduction in register file accesses due to operand

coalescing in CORF and CORF++. CORF reduces the overall number of register file

accesses, by 12% for integer applications, 4.5% for floating point applications, and 10% of all

applications. This reduction percentage is computed against all accesses (including writes,

and instructions with a single register operand, which cannot be coalesced). CORF++ is

able to reduce even more accesses (by 2.3x) because of increased coalescing opportunities.

Specifically, CORF++ reduces register access of integer applications by 27%, floating

35

point applications by 9.9%, and 23% overall. Figure 2.13 shows the impact of compiler

optimizations on the success of coalescing. While first-fit allocation policy results in coalescing

only 4% of the instructions with multiple register operands, CORF and CORF++ are able

to coalesce 23% and 48%, respectively.

Performance: As a result of the reduced register accesses, performance is improved.

Figure 2.15 shows the performance impact of CORF and CORF++. Notably, we observe

IPC improvement across all benchmarks. On average, CORF improves IPC by 4.9% for

integer benchmarks and 1.7% for floating point benchmarks (harmonic mean across all

applications is 4%). For fairness, the IPC computation does not count metadata instructions

since they do not further the computation (but we include their cost). CORF++ is able to

improve IPC for integer benchmarks by 10.5%, floating point ones by 3.6%, resulting in a

harmonic mean of 9%.

0%

5%

10%

15%

20%

BF
S
BT
RE
E

GU
AS
SIA
N
MU

M NW SR
AD SA

D

VE
CT
OR
AD
D

RE
DU
CT
IO
N

BA
CK
PR
OB

HE
AR
TW
AL
L
ST
O

Ale
xN
et[
CN
N]

Sq
ue
ez
eN
et[
CN
N]

Cif
arN

et[
CN
N]

GR
U[
RN
N]

AV
G LIB

SG
EM
M

BL
AC
HS
CH
OL
ES WP AV

G
AV
G

Pe
rc
en
ta
ge

CORF CORF++
FP-intensiveINT-intensive

Figure 2.15: IPC Improvement.

Register file size: A secondary contribution of CORF is that we combine register

packing and register virtualization to reduce the overall register file size beyond either of

36

these techniques alone. Virtualization is essentially obtained for free since it primarily relies

on a renaming table such as the one we already use. Figure 2.16 shows the reduction in

the number of allocated physical registers using register packing, register file virtualization

(RF-Virtualization) [62], and when combined together. We tracked the number of allocated

physical registers (each potentially packing several architectural registers) as a fraction of the

total number of architectural registers averaged over the benchmarks’ execution. Register

packing reduced physical-register allocation by 34%, register file virtualization alone reduced

it by 35%, while both together reduced it by 54%. When combined, packing compresses

spatially, and RF-Virtualization temporally, leading to synergistic improvements [20, 21].

This is the highest compression ratio achieved by techniques that attempt to compress the

register file size [62, 80, 139]. The reduction in effective register file size can be exploited

either: (1) by gating unused registers to save power; (2) by reducing the register file size

while maintaining performance; or (3) by enabling more threads to be active to improve

performance. We demonstrate the advantage using the first option.

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge

Register Packing RF-Virtualization Combined(CORF++)

Figure 2.16: Reduction in allocated physical registers.

37

0%
20%
40%
60%
80%

100%

BF
S
BT
RE
E

GU
AS
SIA
N
MU

M NW SR
AD SA

D

VE
CT
OR
AD
D

RE
DU
CT
IO
N

BA
CK
PR
OB

HE
AR
TW
AL
L
ST
O

Ale
xN
et[
CN
N]

Sq
ue
ez
eN
et[
CN
N]

Cif
arN

et[
CN
N]

GR
U[
RN
N]

AV
G LIB

SG
EM
M

BL
AC
HS
CH
OL
ES WP AV

G
AV
G

Pe
rc

en
ta

ge
Dynamic Energy Overhead Dynamic Energy

(a) CORF

0%
20%
40%
60%
80%

100%

BF
S
BT
RE
E

GU
AS
SIA
N
MU

M NW SR
AD SA

D

VE
CT
OR
AD
D

RE
DU
CT
IO
N

BA
CK
PR
OB

HE
AR
TW
AL
L
ST
O

Ale
xN
et[
CN
N]

Sq
ue
ez
eN
et[
CN
N]

Cif
arN

et[
CN
N]

GR
U[
RN
N]

AV
G LIB

SG
EM
M

BL
AC
HS
CH
OL
ES WP AV

G
AV
G

Pe
rc

en
ta

ge

Dynamic Energy Overhead Dynamic Energy

(b) CORF++

Figure 2.17: Normalized RF dynamic energy

RF energy: Figures 2.17 and 2.18 show the dynamic energy and leakage energy impact

of our techniques. The small segments on top of each bar represent the overheads of the

structures added by CORF/CORF++. Dynamic energy savings in Figure 2.17 are due

to the reduced number of accesses to the register file because of operand coalescing. We

observed 8.5% and 17% reduction to the overall dynamic energy in CORF and CORF++,

38

respectively, after considering the 3% increase in overheads. The source of dynamic energy

overheads include the packers and unpackers, width detection logic, and the accesses to the

renaming table.

0%
20%
40%
60%
80%

100%

BF
S
BT
RE
E

GU
AS
SIA
N
MU

M NW SR
AD SA

D

VE
CT
OR
AD
D

RE
DU
CT
IO
N

BA
CK
PR
OB

HE
AR
TW
AL
L
ST
O

Ale
xN
et[
CN
N]

Sq
ue
ez
eN
et[
CN
N]

Cif
arN

et[
CN
N]

GR
U[
RN
N]

AV
G LIB

SG
EM
M

BL
AC
HS
CH
OL
ES WP AV

G
AV
G

Pe
rc

en
ta

ge

Static Energy Overhead Static Energy
FP-intensiveINT-intensive

(a) Register packing.

0%
20%
40%
60%
80%

100%

BF
S
BT
RE
E

GU
AS
SIA
N
MU

M NW SR
AD SA

D

VE
CT
OR
AD
D

RE
DU
CT
IO
N

BA
CK
PR
OB

HE
AR
TW
AL
L
ST
O

Ale
xN
et[
CN
N]

Sq
ue
ez
eN
et[
CN
N]

Cif
arN

et[
CN
N]

GR
U[
RN
N] AV

G LIB

SG
EM
M

BL
AC
HS
CH
OL
ES WP AV

G
AV
G

Pe
rc

en
ta

ge

Static Energy Overhead Static Energy

FP-intensiveINT-intensive

(b) Combined with virtualization (CORF++).

Figure 2.18: Normalized RF leakage energy

Figure 2.18 shows the leakage energy for register packing and also the combined

register packing and virtualization (CORF++), assuming that we power gate unused

39

Technique IPC
Register

Reads

RF

Dyn. Energy

RF

Size

Register Packing 1 1 1 0.65

Register Packing

+ Virtualization

1 1 1 0.43

CORF 1.04 0.9 0.92 0.43

CORF++ 1.09 0.77 0.83 0.43

Table 2.1: Summary of CORF, CORF++, and register packing (and register

virtualization). All values normalized to the baseline GPU register file.

registers. Leakage energy is reduced by 33% in register packing (Figure 2.18a), and 52%

for the combined with virtualization (CORF++, Figure 2.18b), after accounting for the

overheads. On average, the leakage overhead, due to the additional structures (e.g. renaming

table, free-register map), is 5.4%, which is easily out-weighed by the leakage energy savings.

We summarize the advantages of CORF/CORF++ compared to register files

without coalescing in Table 2.1. Note that Wang et al. [139] evaluate the performance of

register packing when they exploit the smaller effective register file to allow more threads to

run concurrently per SM. This IPC improvement technique is orthogonal to coalescing and

can be combined, therefore we do not include it for comparison.

2.8 Hardware/Software Overheads

Hardware overheads: The largest additional structure in CORF is the renaming table,

which is also needed for simple register packing [43,139]. Each RT entry consists of 14 bits

40

that encodes the physical register and slice to which an architectural register is being mapped.

Since our baseline architecture supports up to 48 warps per an SM, and 63 registers per

warp, for a total of just over 3000 potential warp architectural registers. Each register has an

entry in the table. Therefore, RT total size is 5.16KB which is 4% of total 128KB register

file per each SM. The free register map size is 1024× 4− bits or 512bytes. Supported by

the RT, register packing and virtualization reduce the effective register file size to less than

half of its original size: the benefits of shrinking the register file easily offset the overhead,

before we even consider coalescing. We calculate the renaming table and register file power

consumption using CACTI v5.3 [121] and report them in Table 2.2.

The overhead of logic, such as the allocation policy logic, coalescing logic, packers,

unpackers, and width detection units, was estimated by synthesizing its Verilog HDL

description using Synopsys Design Compiler and the NCSU PDK 45nm library. The static

and dynamic energy of these logics are also included in our power results. All together, these

logic accounts for 57mW of dynamic power, 0.2mW static power, and 0.05mm2 (or 0.11%)

of total on-chip area.

Parameter Renaming table Register bank Percentage

Size 5KB 128KB 3.9%

Banks 4 4 -

Vdd 0.96V 0.96V -

Access energy 1.83pJ 149.76pJ 1.2%

Leakage power 5.56mW 89.6mW 6.2%

Table 2.2: Renaming table overheads in 40nm technology

41

0.0%
0.5%
1.0%
1.5%
2.0%
2.5%
3.0%

BF
S
BT
RE
E

GU
AS
SIA
N
MU

M NW SR
AD SA

D

VE
CT
OR
AD
D

RE
DU
CT
IO
N

BA
CK
PR
OB

HE
AR
TW
AL
L
ST
O

Ale
xN
et[
CN
N]

Sq
uu
eze
Ne
t[C
NN
]

Cif
arN

et[
CN
N]

GR
U[
RN
N] AV

G LIB

SG
EM
M

BL
AC
HS
CH
OL
ES WP AV

G
AV
G

Pe
rc
en
ta
ge

Figure 2.19: Static code size increase.

Software overheads: Figure 2.19 shows the static code increase due to the addition of

extra instructions to guide CORF. Overall, CORF only increases the code size by 1.3%.

Passing information in CORF++ can be simplified, for example, by having the compiler

choose odd register numbers for the left operands, and even numbers for the right operands

without explicit metadata instructions. When considering dynamic instruction count, this

overhead will be significantly lower.

2.9 Related Work

Energy efficiency of GPU has been an area of increasing importance [6, 7, 9, 10, 12,

30,70,83,84,88, 91,114,116–118,131,140–142]. These prior works have explored improving

the performance or energy efficiency of GPU register files in a number of ways. In this

section, we will highlight works related to GPU register files.

Warped Register File [7] introduces a tri-modal register file structure that enables

drowsy mode. Pilot Register File [6] proposed an energy-efficient RF design using FinFETs.

42

Register File Caching [45,46] proposed to add a small register file cache to reduce overall

RF dynamic power by storing frequently accessed registers in an energy-efficient cache.

However, these techniques solely aim to reduce power, with the goal of achieving a negligible

performance penalty.

Several works aim to improve the performance of register files. RegMutex [73]

improved performance by sharing a subset of physical registers between warps during the

GPU kernel execution. FineReg [105] achieved a higher number of concurrent CTAs by

partitioning the register file into two regions, one for active CTAs and another for pending

CTAs. Register file slicing [49] proposed to split the data path into two 16-bit slices, which

enables the register to save power by power gating a slice if storing narrow-values, or to

improve performance by fetching two 16-bit values. RF slicing fundamentally trades-off

between a power-efficient mode, or a performance-enhancing mode.

Another commonly used energy efficiency technique is value compression [13,80,

92,108,109,119,136,144,148]. Register File Compression [80], utilize base-delta-immediate

(BDI) compression to compress data within an entry and power-gate sub-banks. While

Register Packing [43,139] compress narrow values to use less physical register entries, and

power gates unallocated entries.

Wang et al. [139] were the first to propose register packing for GPUs. Specifically,

they greedily pack narrow-value registers together to reduce register file space. They do

not coalesce register reads – each register read still requires a separate physical register file

read operation. Register file virtualization [62] reduces the number of allocated physical

registers required (and power gate unallocated entries), through register liveness analysis.

43

While achieving power savings, these techniques do not improve performance. In our work,

by combining packing and virtualization and also harnessing coalescing opportunities, we

achieve higher compression ratios, power savings, and performance improvements.

RegLess [78] replaces the register file with a smaller staging unit with the help

of compiler annotations, leveraging the short-lived and long-lived behaviors of the register.

RegLess achieves lower power and smaller register storage size while maintaining performance.

The Latency-Tolerant Register File (LTRF) [115] similarly uses compiler-analysis to identify

registers to move into a register cache, which enables tolerance of large register files. However,

this higher performance comes at the cost of a larger, more power-hungry register file.

44

Chapter 3

BOW: Breathing Operand

Windows to Exploit Bypassing in

GPUs

3.1 Introduction

Graphics Processing Units (GPUs) have emerged as an important computational

platform for data-intensive applications in a plethora of application domains. They are

commonly integrated in computing platforms at all scales, from mobile devices and embedded

systems, to high-performance enterprise-level cloud servers. GPUs use a massively multi-

threaded architecture that exploits fine-grained switching between executing groups of

threads to hide the latency of data accesses. In order to support this fast context switching

at scale, GPUs invest in large Register Files (RF) to allow each thread to maintain its

45

0

5

10

15

20

25

30

35

FERMI (2010) KEPLER (2012) MAXWELL (2014) PASCAL (2016) VOLTA (2018)

O
n

-c
h

ip
 M

em
o

ry
 S

iz
e

(M
B

)

L1D Cache + Shared Memory L2 Cache Register File

Figure 3.1: On-chip memory components size in NVIDIA GPUs (from

2010–2018).

context in hardware. The amount of parallelism available on a GPU (e.g., number of

streaming multiprocessors, or SMs) has been steadily increasing as GPUs continue to grow

in performance and size, which in turn increases the number of concurrent thread contexts

needed to keep these units utilized [15,61,72,73,100,103,133].

The large register file accounts for an increasingly larger fraction of on-chip storage,

as shown in Figure 3.1. For example, in NVIDIA Pascal GPU, register file size is 14 MB,

which accounts for around 63% of the on-chip storage area. Due to frequent accesses to the

RF, it is a crucial microarchitectural component whose architecture substantially impacts the

performance and energy-efficiency of GPUs. For example, port conflicts (in register file banks

as well as operand collector units that collect the register operands) cause delays in issuing

instructions as register values are read in preparation for execution. In addition, the RF has

a large energy consumption footprint, since it is the largest SRAM structure that serves a

large number of data accesses from the working threads. Earlier studies estimate that the

46

register file is responsible for 18% of the total power consumption on a GPU chip [81], a

percentage that has most likely increased as the size of RFs has continued to grow.

We propose a new GPU architecture technique, Breathing Operand Windows

(BOW), exploits the temporal locality of the register accesses to improve both the access

latency and power consumption of the register file. More specifically, we observe that

registers are often accessed multiple times in a short window of instructions, as values

are incrementally computed or updated and subsequently used. As a result, a substantial

fraction of register read and register write accesses can bypass the register file if mechanisms

exist to forward them directly from one instruction to the next. This operand bypassing

reduces dynamic access energy by eliminating register accesses (both reads and writes) from

the RF, and improves overall performance by reducing port contention and other access

delays to the register file banks.

BOW re-architects the GPU execution pipeline to take advantage of operand

bypassing opportunities. Specifically, in the baseline design we consider operands reused

within an instruction window: a key to increasing bypassing opportunities is to select the

instruction window size carefully to capture register temporal reuse opportunities while

maintaining acceptable overheads for the forwarding. To facilitate bypassing we dedicate

an operand collector to each warp so that it can hold the set of active registers for that

warp in a simple high performance buffering structure dedicated for each warp. Whenever a

register operand is needed by an instruction, BOW first checks if the operand is already

buffered so it can use it directly without the need to load it from the RF banks. If the

operand is not present in the operand collector unit, a read request will be generated to the

47

RF, which is sent to the arbitrator unit. In the baseline BOW, after an instruction finishes

execution, the computed result is written back to both the operand collector unit as well as

the register file (i.e., a write through configuration). This organization supports reuse of

operand reads and avoids the need for an additional pathway to enable writing back values

from the operand collector to the RF when they slide out of the window. Based on our

experiments, BOW with a window size of 3 instructions reduces the physical register read

accesses by 59% across all of our benchmarks. However, it does not support write bypassing

since every write is still written to the RF; in fact, it increases the overhead for writes which

are now written to both Operand Collector and RF.

In order to be able to capitalize on the opportunities for write bypassing, we

introduce BOW-WR, an improved design that uses a write-back philosophy to overcome

the redundant writes present in BOW. Specifically, the improved design writes any updated

register values back to the operand collector only. When an instruction slides outside of the

active bypass window its updated register value is written back to the RF only if it has not

been updated again by a subsequent instruction in the window (in which case that first write

has been bypassed since the update was transient). As described, BOW-WR shields the

RF from some of the write traffic, but does not capture all write bypassing opportunities,

and preserves some redundant and inefficient write behavior. Consider the following two

cases: (1) Unnecessary OC writes: When a value will no longer be reused, writing it to the

OC first, and then to the RF causes a redundant update. We are better off writing such

value directly to the RF; (2) Unnecessary RF writes: When an updated register value is no

longer live (i.e., it will not be read again before it is updated), it will be written back to the

48

RF unnecessarily when the instruction slides out of the active window. In this case, we are

better off not writing the value back to the RF.

Unfortunately, it is difficult to capture either of these opportunities directly in the

architecture because they depend on the subsequent behavior of the program. Thus, to

exploit the opportunity to eliminate these redundant write backs in BOW-WR, we task

the compiler to do liveness analysis and classify each destination register to one of these

three groups: those that will be written back only to the register file banks (to handle

case 1 above); operands that will be written back only to the operand collectors (to handle

case 2); and finally operands that first need to reside in operand collector and then due to

their longer lifetime need to be written back to the register file banks for later use (this

was the default behavior of BOW-WR before the compiler hints). We pass these compiler

hints to the architecture by encoding the writeback policy for each instruction using two

bits in the instruction. This compiler optimization not only substantially minimizes the

amount of write accesses to the register file and fixes the redundant write-back issue, but

also reduces the effective size of the register file as a significant portion of register operands

are transient, not needed outside the instruction windows (52% with a window size of 3):

we avoid allocating registers altogether in the RF for such values.

With respect to implementation, a primary cost incurred by the baseline BOW(and

BOW-WR) is the cost of increasing the number of operand collectors (so that there is one

dedicated per warp) as well as the size of each operand collector to enable it to hold the

register values active in a window. With respect to increasing the number of OCs, we

believe that this is in line with current trends in GPUs: While earlier Nvidia GPUs had a

49

smaller number of operand collector units, starting from the Kepler series, the number of

their operand collector units have increased. For example, NVIDIA TITAN X GPU (Pascal

architecture) has 32 operand collectors which matches the maximum number of in-flight

warps on an SM. With respect to the size of each OC, the baseline implementation adds

additional entries to each operand collector to hold the operands within the active window

(4 registers per instruction in the window). In the baseline implementation, this adds around

36KB of temporary storage for a window size of 3 across all OCs, which is significant (but

still only around 14% of the RF size of modern GPUs). In order to reduce this overhead, we

observe experimentally that this worst case sizing substantially exceeds the mean effective

occupancy of the bypassing buffers. Thus, we provision BOW-WR with smaller buffering

structures. However, since the available buffering can be exceeded under the worst case

scenarios, we have to redesign the OCs to allow eviction of values when necessary. We

also restrict the window size to the predetermined fixed window size and do not bypass

instructions beyond the window size even if there is sufficient buffer space in the buffering

structure. The reason behind this conservative choice is to facilitate the compiler analysis

and tag the writeback target in BOW-WR correctly in the compiler taking into account

the available buffer size. Without this simplifying assumption, an entry which is tagged by

the compiler for no writeback to the RF may need to be saved if it is evicted before all its

reuses happen. We are able to reduce the storage size by 50% with a performance reduction

of less than 2% of the baseline BOW-WR. Considering other overheads (such as modified

interconnect), BOW requires an area increase of 0.17% of total on-chip area.

Because of the importance of the RF structure on GPUs, a number of prior studies

50

have explored optimizations primarily to reduce its energy footprint. A number of works

have explored different approaches to reduce the effective size of the register file [15,62,78,80].

The effect of reducing the register file size is to improve the static energy consumption of

the RF, but it does not impact the performance or the dynamic energy consumption of

the RF. Most similar to our work, RF caching [45] adds a register file cache to keep the

most commonly used data for each active warp, saving dynamic RF energy. This cache is

organized like the original RF, but only smaller, and therefore there it improves energy but

unlike BOW it does not improve performance.

We compare our work with register file caching and other related works in more

detail in Section 3.6.

In summary, the chapter makes the following contributions:

1. Introduces Operand Bypassing, a new technique in the context of GPU microarchi-

tecture that capitalizes on the high temporal reuse of GPU register operands to

substantially reduce accesses to the register file, improving performance and energy.

2. We leverage compiler liveness analysis to guide destination selection of the write-back

register values, substantially reducing unnecessary write traffic. Bypassed transient

values are also never allocated in the RF reducing the effective RF size.

3. We carry out occupancy analysis of the forwarding buffers and discover that their

utilization is low. We propose to provisioning the operand collectors with smaller

buffer structures to substantially reduce storage overhead.

51

Overall, BOW-WR improves IPC by 11%, and reduces dynamic energy of the RF by 55%,

at a modest overhead of 0.17% increase in the total chip area, and 4% increase in storage

(compared to the RF size).

3.2 Background

In this section, we overview the organization of modern GPU architecture, with a

focus on the register file unit, to provide the necessary background for BOW. In the GPU

execution model, a kernel is the unit of work issued typically from the CPU (or directly

from another kernel if dynamic parallelism is supported). A kernel is a GPU application

function, decomposed by the programmer into a grid of blocks mapped each to a portion

of the computation applied to a corresponding portion of a typically large data in parallel.

Specifically, the kernel is decomposed into Thread Blocks (TBs, also Cooperative Thread

Arrays or CTAs), with each being assigned to process a portion of the data. These TBs

are then mapped to streaming multiprocessors (SMs) for execution. The threads executing

on an SM are then grouped together into warps (or wavefronts in AMD terminology) for

the purposes of scheduling their issuance and execution. Warp instructions are selected and

issued for execution by warp schedulers in the SM (typically 2 or 4 schedulers, depending on

the GPU generation). Warps that are assigned to the same warp scheduler compete for the

issue bandwidth of that scheduler. In our baseline GPU (NVIDIA Titan X Pascal), there are

four schedulers per SM, each able to issue two instructions per cycle to available GPU cores.

All the threads in a warp execute instructions in a lock-step manner (Single

Instruction Multiple Thread, or SIMT model). Most GPU instructions use registers as their

52

Sub-bank 0 Sub-bank 1 ... Sub-bank 7

128 bit Write In 128 bit Read

64 Entries
each 128 bit

Bank0

Bank1

Bank31

C
ro

ss
ba

r w
ith

 1
02

4-
bi

t
lin

ks

B
an

k
A

rb
itr

at
or

Issue

SI
M

D
 E

xe
cu

tio
n

U
ni

ts

...
OCU31

OCU1

OCU0

Read requests

Write requests

W
ar

p
ID

Valid

Valid

Valid

Reg ID

Reg ID

Reg ID

Ready

Ready

Ready

src1 data

src2 data

src3 data

...

Figure 3.2: Conventional GPU register file architecture (OCU0-OCU31 are

Operand Collector Units).

source and/or destination operands. Therefore, an instruction will access the Register File

(RF) to load the source operands for all of its threads, and will write back any destination

operand after the execution to the RF. The RF in each SM is typically organized into

multiple single-ported register banks so as to support a large memory bandwidth without

the cost and complexity of a large multi-ported structure. A banked design allows multiple

concurrent operations, provided that they target different banks. When multiple operations

target registers in the same bank, a bank conflict occurs and the operations are serialized,

affecting performance.

Figure 3.2 shows the baseline register file organization for the Pascal generation

53

of NVIDIA GPUs, with a size of 256 KB per SM split across 32 banks. A bank is made

up of 8 sub-banks that are 128 bits wide each. All 32 registers belonging to the 32 threads

in the same warp are statically allocated to consecutive sub-banks (in a single bank) with

the same entry index. Thus, a full register for all the threads within a warp can be striped

using one entry of one bank, allowing it to be operated on in a single cycle. Each bank can

store up to 64 warp-registers.

0%

20%

40%

60%

80%

100%

P
er
ce
n
ta
ge

0%

20%

40%

60%

80%

100%

P
er
ce
n
ta
ge

IW2 IW3 IW4 IW5 IW6 IW7

Figure 3.3: Eliminated read (top) and write (bottom) requests through operand

bypassing.

When a warp instruction is issued for execution, an Operand Collector Unit (OCU)

is assigned to it to collect its source operands values. Assuming 32-thread warps, each source

operand (i.e., warp register) is 32 thread× 32 bits = 128B in size. A warp’s source operands

are read from the RF banks and then buffered in the OCU. The operand collector units are

not used to eliminate name dependencies through register renaming, but rather are used as

a way to space register operand accesses out in time so that no more than one access to

a bank occurs in a single cycle. To reduce the interconnect network complexity, operand

collectors are designed as single-ported buffers. An OCU fetches the register operands from

54

the register banks they reside in, bound by the two following constraints: (1) OCU port

serialization: Each OCU has only one port and therefore has to serialize reads when an

instruction has multiple operands (NVIDIA GPU’s use SASS whose instructions have up to

3 source operands); and (2) Register bank conflicts: While operands from different banks

may be concurrently read from different OCUs, operands that access the same bank cause

bank conflicts and cannot be issued together. The port constraints causing these conflicts

are difficult to bypass by increasing the number of ports: the cost of a port is extremely

high when considering the width of a warp register (128 Bytes).

Once all the source operands for a warp instruction are collected, it is ready for

execution. Since each instruction may have up to three source operands [101], each OCU

has three entries, each 128B to hold these operands. After the warp completes the execution,

its results are written back to the RF, also competing for bank access with read operations.

When this set of operations is performed repeatedly, it will generate many accesses to the

large register file, and will incur a significant portion of the power consumed by the GPU.

The RF also impacts performance due to the serialization that occurs due to port contention

(in both register file banks as well as operand collector units).

3.3 Motivation

In this section, we motivate operand bypassing by studying register reuse patterns

within different instruction window sizes. We use the GPGPU-Sim simulator [17], modeling

a Pascal GPU. Given the in-order execution of GPUs, repeated accesses on operands within a

small window of consecutive instructions are inevitable. Although we show results only for the

55

Pascal architecture configuration, we repeated the results for Fermi and Volta configurations,

which exhibit almost identical reuse statistics confirming that operand reuse patterns are

computational properties rather than architecture dependent [18,21]. Experiments in this

chapter use benchmarks from Rodinia [31], Parboil [125], NVIDIA CUDA SDK [101], and

the Tango DNN Benchmark Suite [68].

Temporal locality in register operand accesses: In a conventional GPU

Register File, each operand collector unit sends read requests for the source operands of one

instruction (the one which currently resides in the operand collector unit). This read request

process repeats independently for each individual instruction, with all register operands

fetched from or written to the register file independently for each instruction. Our work is

motivated by the observation that there is high temporal locality in the accesses of registers:

in other words, the same register values are read and updated by nearby instructions,

within a short window of instructions. If this is indeed the case, the traditional execution

pattern where these operands are read and written repeatedly through the register file causes

redundant expensive operations to the RF increasing both the power consumption of this

large structure, as well as the access time due to the increased pressure on the limited ports

of the RF.

To characterize the temporal reuse opportunity [19,20,22], we show in Figure 3.3

all bypassing opportunities for read (top) and write (bottom) requests to the register file,

for different window instruction sizes and across 15 different benchmarks. An instruction

window (IW) refers to a number of consecutive instructions from the same warp: an IW

of 2 considers a sliding window of two instructions at a time and examines whether the

56

operands of the first instruction are also needed by the second one. Note that a value that

is reused in three consecutive instruction can continue to be bypassed even with an IW of 2

since the instruction window for bypassing is a sliding window. While we can bypass 45%

of total read accesses and 35% of total write accesses to the register file with a window of

just two instructions, a window of three instructions would eliminate substantially more

accesses: 59% of total reads, and 52% of total writes on average. Beyond a window size of

three instructions, the reuse opportunities continue to increase slowly, reaching over 70%

with an instruction window of 7. Clearly, if we save this portion of register file accesses, we

can substantially improve the dynamic energy consumption of the register file (by reducing

the number of RF accesses) as well as performance (by reducing access time and port

contentions in register file banks). A larger window size increases reuse opportunities, but

comes at the price of wider (bigger) operand collectors which increase the area and energy

consumption within those components. An effective BOW configuration balances these

competing considerations.

Impact of operand collection stage latency on performance: The operand

collection stage of the GPU pipeline holds issued instructions until their operands can be

collected, typically from the register file. Figure 3.4 shows a breakdown of the percentage of

cycles taken on average for memory instructions versus non-memory instructions within the

operand collection stage of the pipeline. In our experiments, we excluded the amount of time

spent for an instruction to be fetched; total execution time assumed to be from the moment

that an instruction is scheduled by one of the warp schedulers until it finishes execution.

Overall, about a quarter of the instruction execution time (and up to 47% for benchmarks

57

Same as above but separated for memory vs. non-memory instructions

0%

10%

20%

30%

40%

50%

60%
Pe

rc
en

ta
ge

Non-Memory instructions Memory instructions overall

Figure 3.4: Average time taken by operand collection stage for memory vs.

non-memory instructions.

such as STO) is spent in the operand collector unit. We note that this percentage is skewed

by memory access instructions which have long execution times as well as a fewer number of

operands (especially global load and global store instructions with cache misses).

The operand collector unit consumes a substantial percentage of the execution time of

non-memory instructions, as depicted in Figure 3.4. The primary delays in the OC occur

while registers are read from the RF and are being collected in the single-ported operand

collectors. As discussed previously, register reads for each OC are serialized since it is a

single-ported buffer-like structure. Moreover, some reads are delayed due to register bank

conflicts. With bypassing, as we decrease RF traffic, and with more operands already

available in the OC, we expect the time spent in the OC to significantly decrease, improving

overall performance.

58

3.4 Breathing Operand Windows

In this section, we overview the design of BOW, the proposed architecture which

exploits high temporal operand reuse to bypass having to read and write reused operands to

the register file. We also introduce a number of compiler and microarchitectural optimizations

to improve reuse opportunities, as well as to reduce overheads. BOW consists of 3 primary

components. (1) Bypassing Operand Collector (BOC) augmented with storage for active

register operands to enable bypassing among instructions. Each BOC is dedicated to a single

warp; this restriction simplifies buffering space management since each buffer is accessed

only by a single warp. The sizing of the BOC is determined by the instruction window

size within which bypassing is possible; (2) Modified operand collector logic that considers

the available register operands and bypasses register reads for available operands (whereas

baseline operand collectors fetch all operands from the RF); and (3) Modified write-back

pathways and logic which enable directing values produced by the execution units or loaded

from memory to the BOCs (to enable future data forwarding from one instruction to another)

as well as to the register file (for further uses out of the current active window) in the

baseline design. The writeback logic is further optimized with compiler-assisted hints in the

improved BOW-WR.

3.4.1 BOW Architecture Overview

Figure 3.5 overviews the proposed architecture highlighting the primary changes

and additions. The design centers around new operand collector unit additions, called the

Bypassing Operand Collectors (BOC) in our design, that will allow the GPU to bypass

59

Bank0

Bank1

Bank31

C
ro

ss
ba

r w
ith

 1
02

4-
bi

t
lin

ks

B
an

k
A

rb
itr

at
or

Issue

SI
M

D
 E

xe
cu

tio
n

U
ni

ts

...
BOC31

BOC2

BOC1

...

Write requestsUn-bypassed read/write requests Bypassed Acc.

(a)

W
ar

p
ID

Source1

W
ar

p
ID

Source1_instruction1

Source2

Source3

Source2_instruction1

Source3_instruction1

Destination_instruction1

Source1_instruction2

Source2_instruction2

Source3_instruction2

Destination_instruction2

Fo
rw

ar
di

ng
 L

og
ic

(b)

Figure 3.5: (a) An overview of BOW. BOCX is Bypassing Operand Collector

assigned to Warp X; (b) Baseline operand collector unit (left) compared to the

proposed wider Bypassing Operand Collector (BOC) unit with forwarding logic

support (right).

60

RF accesses. Each BOC is assigned to a single warp (BOC0-BOC31) in Figure 3.5(a).

While the operand collectors in our baseline architecture have three entries to hold the

data of the source operands of a single instruction (Figure 3.5(b), left), BOW widens the

operand collectors to enable the storage of source and destination register values for the

usage of subsequent instructions (Figure 3.5(b), right). In addition, the forwarding logic

in the BOC will check whether the requested operands are already in the BOC so will be

sent to the next instruction. Similar to the baseline architecture, and to avoid making the

interconnection network more complicated, BOCs have a single port to receive operands

coming from the register file banks. However, the forwarding logic within the BOCs allows

forwarding multiple operands available in the forwarding buffers when an instruction is

issued. In the baseline design, we conservatively reserve four entries per each instruction

in the BOC to match the maximum possible number of operands which is three source

operands plus one destination. Later we show that such conservative sizing is rarely needed,

enabling us to provision the BOC with substantially smaller storage.

Instructions for the same warp are scheduled to the assigned BOC in program

order as the instruction window slides through the instructions. When instruction x at

the end of the window is inserted into the BOC, the Forwarding Logic checks if any of the

required operands by instruction x is already available in the current window, then the

oldest instruction (first instruction in the current window) with its operands are evicted

from the window to make room for the next instruction, which will become available when

the window moves. It is important to note that the instruction window is sliding; every time

an operand is used by an instruction it remains active for window size instructions after

61

that. If it is accessed again in this window, its presence in the BOC is extended in what we

refer to as the Extended Instruction Window. When a branch occurs, the BOC waits until

the next instruction is determined.

Instructions from different BOCs are issued to the execution units in a round-robin

manner. As soon as all the source operands for an instruction are ready (which potentially

have been forwarded directly within the active window and without sending read requests

to the register file), the instruction is dispatched and sent to the execution unit. When

the execution of an instruction ends, its computed result is written back to the assigned

BOC (to be used later by next instructions in the window). In the baseline BOW, this value

is also written back to the register file (for potential later uses, if any, by an instruction

out of the current window). It is worth mentioning that only the pathway from execution

units to the BOCs has been added in our design thusfar, as the pathway from execution

units to the register file is already established in the baseline architecture. While such

simple write-through policy minimizes the complexity, it suffers substantial of redundant

write backs (to the BOCs as well as register file); an inefficiency which will be addressed

in BOW-WR.

Please note that two dependent instructions (where there is a RAW or WAW

dependency between them) can never be among the ready to issue instructions within

the same BOC. The scoreboard logic checks for this kind of dependencies prior to issue

instructions to the operand collection stage (this is actually done when a warp scheduler

schedules an instruction). Having an instruction in one of the BOCs means that it has

already passed the dependency checks and its register operands exist either in the BOC or

62

the register file. For independent instructions, there is no delay for bypassing: both can

start executing, and even finish out-of-order.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

//write to $r3, immediate use in line 14

ld.global.u32 $r3, [$r8];

mov.u32 $r2, 0x00000ff4;

mul.wide.u16 $r1, $r0.lo, $r2.hi;

mad.wide.u16 $r1, $r0.hi, $r2.lo, $r1;

shl.u32 $r1, $r1, 0x00000010;

mad.wide.u16 $r0, $r0.lo, $r2.lo, $r1;

add.half.u32 $r0, s[0x0018], $r0;

add.half.u32 $r0, $r9, $r0;

add.u32 $r1, $r0, 0x000007f8;

ld.global.u32 $r2, [$r1];

Shl.u32 $r2, $r2, 0x00000100

Add.u32 $r4, $r2, 0x0000008f;

set.ne.s32.s32 $p0/$o127, $r3, $r1;

Figure 3.6: Code snippet from BTREE application illustrating bypassing oper-

ation in BOW.

3.4.2 BOW-WR: Compiler-guided writeback

BOW exploits read bypassing opportunities, but is not able to bypass any of the

possible write operations as every computed value is written not only to the RF, but also

to the BOC, following a write-through policy for simplicity. However, write bypassing

63

opportunities are important: often a value is updated repeatedly within a single window. For

example, consider $r1 being updated by the instructions in lines 4, 5, and 6 of Figure 3.6;

it only needs to be updated in the RF after the final write.

BOW-WR approaches bypassing using a write-back philosophy to enable write

bypassing. In the simplest cast, it writes the computed results always to the BOC to provide

opportunities for both read and write bypassing. When an updated operand slides out of

the current active window, the forwarding logic checks if it has been updated again by a

subsequent instruction within the active window. If so, the write operation will be bypassed,

allowing the consolidation of multiple writes happening within the same window. In our

prior example (Figure 3.6), when instructions 4 and 5 slide out of the active window, their

updated $r1 is discarded since in each case $r1 is updated again within the window. When

instruction 6 slides out, the value is written back (since neither instruction 7 nor 8 update

$r1). The primary cost of BOW-WR (write-back instead of write-through) is that a new

pathway needs to be established from BOCs to the RF.

Although using a write-back philosophy [69] significantly reduces the amount of

redundant writes to the register file (Table 3.1), it is not able to bypass all such write

operations; in many instances, as an operand slides out of an active window, it is written

back from the BOC to the register file while it is not actually going to be used again by

later instructions (the operand is no longer live). Another source of inefficiency arises since

computed operands are always written back to the BOC; if these operands are not needed

again in the active window, they could have been written directly to the RF, eliminating

the write to the BOC.

64

In either of these situations, unfortunately, the microarchitecture does not have

sufficient information to identify the optimal target of the writeback, since it depends on

the future behavior of the program which is generally not visible at the point where the

writeback decisions are made, leading to the redundant writes. Thus, to enable elimination

of these redundant writes, we rely on the compiler to analyze the program and guide with

the selection of the write back target. Specifically, the compiler performs liveness analysis

and dependency checks to determine if the output data from an instruction should be

written back only to the register file bank (when it will not be used again in the instruction

window), only to the bypassing operand collector (for transient values that will be consumed

completely in the window and no longer live after it), or both (which is the default behavior

without the compiler hint). When we avoid writing values back to the RF, we reduce the

pressure on the RF and avoid the cost of unnecessary writes for operands that are still in

use. Similarly, when we write data to the BOC which is not going to be used, we pay the

extra cost of this write only to later have to save the value again to the RF. An interesting

opportunity also occurs in that transient values that are produced and consumed completely

within a window, no longer need to be allocated a register in the RF. We discover that

many operands are transient, leading to a substantial opportunity to reduce the effective RF

size. Compiler-guided optimizations will allow us to avoid unnecessary writes and minimize

energy usage. Table 3.1 shows the needed number of write accesses to the RF for the code

in Figure 3.6 in the different versions of BOW(note that BOW write-through is identical to

the unmodified GPU).

65

Destination

Operand

of write accesses to the Register file in:

BOW

(write-through)

BOW

(write-back)

BOW-WR

(compiler Opt.)

$r0 3 1 0

$r1 4 2 1

$r2 2 1 0

$r3 1 1 1

Total 10 5 2

Table 3.1: Number of write operations to the register file for code snippet shown

in Figure 3.6.

There are three possible actions which can be taken after an instruction’s output

value is generated, which we explain using a piece of code from BTREE kernel as shown in

Figure 3.6. Please note that in the following explanation, we assume the instruction window

size is 3 (each sliding window contains three consecutive instructions).

1) Reuse outside of instruction window: The first instruction in Figure 3.6

(ld.global in line 2) loads the data from the global memory into $r3. Reuse of $r3

occurs in the set.ne instruction in line 14. Since the first use of $r3 is outside of the

instruction window (please recall that window size is 3), the compiler liveness analysis marks

$r3 to be written back directly to the register file as there is no bypassing opportunity

within the window containing ld.glonal instruction.1 In this case, where the first reuse

distance is greater than the window size, there is no need to write this value back to the

1Further compiler optimizations to reorder instructions to increase bypassing opportunities are possible
but we did not pursue this opportunity in the current version of our implementation.

66

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

Pe
rc

en
ta

ge
Writes only to the regfile banks

Writes to the operand collectors then regfile banks

Writes only to the operand collectors (transient operands)

Figure 3.7: Distribution of write destinations in BOW-WR

bypassing operand collector. Figure 3.7 shows the breakdown of the instruction writes into

the three categories that we are in the process of explaining. The leftmost bar represents

this case where reuse is outside the instruction window, and occurs on average, in 21% of

the computed operands. In this case, writing these operands to the BOC is unecessary.

2) Reuse inside of instruction window: Operand reuse occurs in this case as

a produced value is consumed again in the window. For example, mov instruction in line

3 of Figure 3.6 writes into $r2, where the immediate reuse of $r2 happens in the next

instruction (mul instruction in line 4). $r2 will be used one more time in this window by the

third (last) instruction of this window (mad in line 5). In this scenario, by writing $r2 into

the bypassing operand collector, we can directly forward it to the next instructions. Later

on, the mad instruction in line 7 will also read $r2, which can be forwarded from previous

mad instruction (in line 5) as they fall within the same window. As another example, the

67

add instruction in line 10 writes into $r1. Later on, this register will be accessed by the

next instruction (ld.global in line 11) as a source operand. We can directly forward the

value from add to ld.global by storing it in the bypassing operand collector. However,

this is not the end of lifetime for $r1 since it will be used later in set.ne instruction in

line 14 (please note that the value could not be forwarded from ld.global to set.ne as

they do not belong to the same instruction window).

In the case where there is reuse of the value in the active window, we obviously

would like to write it to the BOC to enable this reuse. However, these reusable cases break

into two categories based on whether we will eventually need to save the register back to

the RF or not (avoiding the write altogether). We describe these two cases next.

(a) Reuse of a transient operand: In some instances, a value produced by an instruction

will be reused only while it resides in the bypassing operand collector. As a result, the

value’s lifetime does not exceed the instruction window, meaning that there is no need for

write backs to the register file bank once the instruction slides out of the instruction window.

Lines 3, 4, 5, and 7 of Figure 3.6 show a case where an output value (register $r2 in line

3) should be written back only to the BOC, because it is only used by future instructions

already within the same window (or within the window of neighboring instructions). In this

case, the write-back to the RF is bypassed since the $r2 is a transient register value. In

some cases, if this value came directly from memory or was produced by another instruction,

we do not need to allocate a physical register in the register file for it. In this case, the

immediate reuse distance across all the accesses is always less than IW . Figure 3.7 shows

that these kinds of writes account for 52% of all operands. If indeed we can avoid allocating

68

registers in many of these instances, we can further gain efficiency by reducing the effective

size of the register file, allowing us for example to provision the GPU with smaller RF for

the same performance, or gain performance by allowing additional Thread blocks for the

same register file size.

(b) Reuse of a persistent operand: When a value is reused in the window, but continues

to be live and will be reused later in the program, it must be saved back to the RF when

it is evicted from the BOC. Lines 10, 11, and 14 of Figure 3.6 show such a case where

the output value of the add ($r1) is going to be used within the same window (by the

ld.global instruction), so it has to be written back to the corresponding BOC to take

advantage of this bypassing opportunity. However, when the add operand is evicted from

the BOC (to be replaced with the instructions in the next window), we need to write back

$r1 to the register file banks as well, as it is going to be used later by another instruction

outside of the current window (which is set.ne in this example). More specifically, first

read operation on register $r1 will be simply bypassed within the BOC (as the value is

being used immediately in the ld.global instruction). After this point, $r1 is still alive

but it is not going to be used within the same instruction window (distance is more than

Instruction Window Size), so it has to be written back to the register file bank at the time

of eviction for later use by the very bottom instruction. Figure 3.7 shows that 27% of all

values fall in this category with window size of 3.

Identifying which of the three cases above to implement the most effective writeback

option requires the ability to predict of how a register will be reused within and even outside

the active register window. We elected to use compiler analysis to identify the type of each

69

instruction writeback to provide hints to the architecture to identify the correct action for

register writes. We use two additional flags in every instruction with a destination register,

to indicate where the output data should be written. One bit is to enable writing to the

BOCs, while the other bit is to enable writing back to the RF. Table 3.1 showcases the

effectiveness of such compiler optimizations on the number of write operations on the register

file. BOW with write-back policy is able to bypass a fraction of write operations. For

example, the two consecutive writes into $r1 in lines 4 and 5 of figure 3.6 could be bypassed

as there $r1 is being updated immediately by the next instruction. However, operands such

as $r2 in line 3 has to be written back to the register file as they slide out of the window,

as there is no information on their future uses. Such redundant writes are avoided by the

compiler annotations as $r2 immediate reuse distance across all the accesses is always less

than IW . Moreover, with the proposed compiler optimization, useless writes to the BOCs

(about 21% of all write operations according to Figure 3.7) are avoided (for example, $r3 in

line 2 where it is not going to be used within the active window).

3.4.3 Reducing the Bypassing Storage Space

Thusfar, we have assumed that we provision each BOC conservatively with 4 registers for

each instruction in an IW to account for the maximum possible storage required. The total

size of a single bypassing operand collector will be 4×128B×3, or 1.5KB which is four times

larger than an operand collector in our baseline architecture (which is 3× 128B = 384B).

However, we believe that these structures’ occupancy likely to be low for the following three

reasons.

70

• There are substantial bypassing opportunities within a window (nearly 60% with IW 3

as we saw in Figure 3.3). Only a single value of a reused register is stored and shared

as it is forwarded to reusing insturctions.

• In the NVIDIA ISA, most instructions do not require three source registers. As

shown in Figure 3.8, on average only 2% of the instructions need all three entries

in the operand collector unit. For some applications such as BFS, BTREE, and

LPS, no instructions with three register source operands are used. Please note that

OCUoccupancy = 0 corresponds to those instructions that do not have any register

source operand (such as NOP and RET with no source operand, or SSY and BRA with

immediate operands).

• With the compiler optimizations, a considerable fraction of computed values (about

21% of total write operations) are not written back to the BOCs as they have no reuse

within the window. In those situations, we do not use the entry for the destination

register in the BOC.

To confirm our intuition, we analyze the occupancy of the conservatively sized

operand collector (four entries per each instruction) for a window of three instructions. As

Figure 3.9 shows, about half the benchmarks (for example, BFS, BTREE, and BACKPROP)

never need more than half of the entries in each BOC. Even benchmarks with higher

occupancy (like WP and SAD), do not use many of the available registers. On average,

across all of our benchmarks, only 3% of the cycles require more than 50% of the available

entries. There were no instances where the worst case scenario (all 12 entries occupied)

arose in our experiments.

71

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Pe
rc

en
ta

ge
OCU occupancy = 0 OCU occupancy = 1 OCU occupancy = 2 OCU occupancy = 3

Figure 3.8: Operand collector units’ occupancy.

Given this occupancy behavior, we reduce the buffer size in the BOC to half of

the maximum possible size. As a result, there are situations where the occupancy is high

and not all the operands within the window can be kept in the BOC, in which case we use

a FIFO replacement policy to evict the oldest entry. We restrict the window size to the

nominal window size (3 instructions in our example) and do not bypass instructions beyond

the window size even if there is sufficient buffer space in the BOC. This allows us to simplify

the compiler analysis and tag the writeback target in BOW-WR correctly in the compiler

taking into account the available buffer size (without this simplifying assumption, an entry

tagged for no writeback to the RF may need to be saved if it is evicted before all its reuse

targets use it). In future work, we will consider enabling bypassing beyond the nominal

window size limited only by the buffer space.

In worst case scenarios, sharing fewer number of entries in a BOC across multiple

instructions may lead to an increase in the write-back traffic from BOC to the register file

72

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Pe
rc

en
ta

ge
Occupancy = 2 Occupancy = 3 Occupancy = 4

Occupancy = 5 Occupancy = 6 Occupancy >= 7

Figure 3.9: BOC occupancy with a window 3: half of the entries are unused.

due to space limitation, which in turn can potentially hurt performance and energy efficiency

of BOW-WR. However, given that this happens only 3% of the time across our benchmarks

(Figure 3.9), this effect is small. At the same time, reducing the size of the buffering from

12 to 6 entries per BOC means that the storage overhead in the BOC was reduced from 4x

to only 2x that of the baseline GPUs.

3.5 Evaluation

We use GPGPU-Sim [17] which models an NVIDIA TITAN X Pascal (GP102)

configuration [71] shown in Table 3.2. Benchmarks have been selected from the Rodinia [31],

ISPASS [4], Parboil [125], and CUDA SDK [99] (see Table 3.3).

73

of SMs 56

of cores per SM 128

Max # of TBs/Warps/Threads per SM 16/32/1024

Register File size per SM 256KB

L1 Cache/Shared Memory Size per SM 48KB/96KB

L2 Cache Size 3MB

Warp Scheduling Policy GTO

Table 3.2: Nvidia TITAN X (Pascal Arch.) Configuration

3.5.1 Performance/Energy Evaluation

Performance: Figure 3.10 displays the normalized IPC improvement achieved by BOW and BOW-

WR compared to the baseline, using different instruction windows. As a result of bypassing

substantial amount of read and write operations, port contention decreases (on both register

file banks as well as BOCs), leading to better performance. Notably, we observe IPC

improvement across all benchmarks. BOW-WR achieves marginally better performance due

to its ability to reduce considerable amount of write operations, while BOW’s improvement

comes from bypassing the read operations. On average, with a window of three instruc-

tions, BOW and BOW-WR can improve the IPC by 11% and 13%, respectively. The small

magnitude of advantage in IPC for BOW-WR over BOW is not surprising since writes

are not on the critical path of instructions; however, as we will see later, the advantage

of BOW-WR is higher in terms of energy savings. As IW grows beyond 3, we observe

74

Suite Bench. Name Description

ISPASS [4]

LIB LIBOR Monte Carlo

LPS 3D Laplace solver

STO StoreGPU

WP Weather prediction

Rodinia [31]

BackProp Back-propogation

BFS Breadth first search

BTree Braided B+ Tree

Gaussian Gaussian elimination

MUM
MummerGPU
(Sequencing)

NW Needleman-Wunsch

SRAD
Speckle Reducing

Anisotropic Diffusion

Tango [68]
CifarNet CifarNet NN

SqueezeNet SqueezeNet NN

CUDA SDK [99] VectorAdd
Vector-Vector

Addition

Parboil [125] SAD
Sum of

Absolute Differences

Table 3.3: List of used benchmarks

diminishing returns in the IPC improvements. Operand bypassing is more effective on

register-sensitive applications (such as SAD). In contrast, benchmarks such as WP with

lower register usage and fewer operand reuse opportunities gain little performance.

75

0%

5%

10%

15%

20%

25%

30%

35%

Pe
rc
en

ta
ge

IW2 IW3 IW4

(a) BOW

0%

5%

10%

15%

20%

25%

30%

35%

Pe
rc
en

ta
ge

IW2 IW3 IW4

(b) BOW-WR

Figure 3.10: IPC improvement.

To evaluate the impact of reducing the storage size in the BOCs, we reduce the

bypassing storage space by half (assuming window size of 3, each BOC has six entries instead

of twelve, which are shared across every three consecutive instructions). Figure 3.11 shows

76

0%

5%

10%

15%

20%

25%

30%

35%
Pe
rc
e
n
ta
ge

Figure 3.11: IPC increase with 6-entry BOC (half-size).

the performance effect of this space optimization. While most of the benchmarks with lower

BOC occupancy sustain their performance improvement under this space constraint, the

IPC improvement slightly degraded for benchmarks with higher BOC occupancy such as

SAD. On average, we have observed a 2% performance loss with half bypassing storage; we

still obtain nearly 11% IPC improvement even with half the storage size.

Figure 3.12 shows the normalized time that each application spends in the operand

collection stage. The OC residence time is reduced significantly when IW = 2 and 3 (by

about 60% in the latter case). However, we do not see substantial additional benefit with

larger windows. This result demonstrates that BOW is able to successfully find most of the

reuse opportunities and reduce the OC residency in a consistent way for all applications.

In most cases, the more time the application spends in the OC stage in the baseline case,

the more benefit it can get from operand bypassing. However, we do not see that this

77

0

0.2

0.4

0.6

0.8

1

1.2

Fr
ac
ti
o
n

Baseline IW2 IW3 IW4

Figure 3.12: Cycles spent in OC stage for different window sizes (normalized

to the baseline).

hypothesis hold across all applications since the impact on IPC varies because the application

performance may be bound by other stages of the pipeline.

RF Energy: Figure 3.13 shows the dynamic energy normalized to the baseline GPU for

BOW and BOW-WR respectively. The small segments on top of each bar represent the

overheads of the structures added by BOW. Dynamic energy savings in Figure 3.13 are due

to the reduced number of accesses to the register file as BOW and BOW-WR shield the

RF from unnecessary read and write operations. Specifically, BOWwith a window size of

3 instructions reduces RF dynamic energy consumption by 36%, after considering the 3%

increase in overheads. BOW-WR is even more successful in saving dynamic energy because

it also avoids substantial amount of write operations to the RF. We observed 55% reduction

to the overall dynamic energy in BOW-WR, after considering 1.8% increase in overhead.

Note that even the overhead of BOW-WR is lower since the eliminated writes also consume

78

Energy consumption for baseline BOW (write-through)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Pe
rc

en
ta

ge
Dynamic energy Overhead

(a) BOW

Energy consumption for baseline BOW (write-back + compiler)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Pe
rc

en
ta

ge

Dynamic energy Overhead

(b) BOW-WR

Figure 3.13: Normalized RF dynamic energy

overhead through the additional BOW structures. The source of dynamic energy overhead

include the accesses to the BOCs as well as the modified interconnect. It is interesting that

although the IPC impact of BOWvaries across applications, the advantage in energy saving

79

is relatively consistent: shielding the RF from operations reduces dynamic energy.

Comparison to Register File Cachine: Similar to BOW, there have been attempts to

reduce the RF dynamic energy by caching the outputs in a smaller cache structure [45], a

technique called register file cache (RFC). RFC was proposed in conjunction with liveness

information provided by the compiler and used by a two-level warp scheduler to reduce

the energy consumption by 36%. Comparing RFC to BOW, there are at least two major

differences:

• Register File Cache (RFC) is organized like the original RF, but only smaller and

closer to the operand collectors. Hence, it does not resolve the port contention issues.

In contrast, BOW resolves this by distributing the cache across operand collectors.

• In RFC, all computed results are written back to the cache, regardless of whether or

not they will be used in near future. This leads to redundant cache write backs which

are avoided in BOW-WR through compiler hints.

We implemented RFC with 6 entries per each thread (with 32 threads in each warp

and 32 warps per SM), and on average, observed less than 2% performance improvement.

Note that RFC overhead in this configuration is 24KB, which is double than that of BOW-

WR with space optimization. BOW-WR also saves substantially more power by consolidate

writes.

Hardware Overhead: The largest additional structure in BOW is the widened bypassing

operand collectors. In baseline BOW with an IW = 3 configuration, each BOC holds 12

entries, each 128B wide (1.5KB in total), while in our baseline architecture, each operand

collector is 384B. This adds around 36KB of temporary storage across all BOCs, which is

80

significant (but still only around 14% of the total register file). However, we have showed

that this choice is highly conservative. BOW-WR is able to sustain most of the performance

improvement with half-sized buffer storage, which adds 12KB of temporary storage across

all BOCs (4% of the total register file size). We calculate the BOC (in baseline BOW) and

register file power consumption using CACTI v7.0 [24] and report them in Table 3.4.

Parameter BOC Register bank Percentage

Size 1.5KB 64KB 2%

Vdd 0.96V 0.96V -

Access energy 2.72pJ 185.26pJ 1.4%

Leakage power 1.11mW 111.84mW 0.9%

Table 3.4: BOC overheads in 28nm technology

To analyze the hardware overhead, we modeled a network consisting of the 32x32

crossbar, BOCs, bus arbiters, and the bus in RTL using Verilog and synthesized it in 28nm

technology using Synopsys Design Compiler. The power and area of the register banks were

modeled in CACTI. The design comfortably meets the timing constraint for 1GHz clock.

The total energy for the redesigned BOC network is 33.2mW assuming a 50% of the cycles

write. This is small compared to the 2.5W power of the whole register bank. The overall

area of the added circuitry is less than 0.04mm2 compared to the 1.72mm2 size of a register

bank: the additional network area is less than 3% of the area of a register bank, and less

than 0.1% the area of the full RF.

81

3.6 Related Work

Energy efficiency of GPUs has been an area of increasing importance [6, 7, 9–12, 30,

44, 70,83, 84,88, 91,114,116–118,131,140–142]. These prior works have explored improving

the performance or energy efficiency of GPU register files in a number of ways.

GPU Register File Scalability: Since the number of live registers in proportion to the

total number of registers is relatively small, there are also trends to compress, reduce, and

even replace the register file altogether so as to save power used for registers that would

never need be utilized in most applications. Jeon et al [62] introduced a method to virtualize

the RF addressing, which would leverage the variations in the instructions being executed by

different warps, and allow the dead registers from one warp to be renamed and reallocated

to another. As a result, this approach effectively shares the same physical registers with

multiple warps during the course of a kernel run, with the performance suffering little to no

loss with even the RF cut down to 50% of its size. However, it incurs a significant overhead.

On a similar note, motivated by the low ratio of live registers for a CTA to its allocated

registers, Oh et al [105] proposed FineReg, a new GPU architecture which would enable

running more concurrent CTAs, increasing the RF utilization and the overall performance.

It featured a RF divided into active and pending regions, with running CTAs using the

active region, and stalled CTAs being moved to the pending region, allowing a new CTA to

be run in the active region. RegMutex [73] improved performance by sharing a subset of

physical registers between warps during the GPU kernel execution. However, it substantially

increases the dynamic energy due to higher warp occupancy on the SM. RegLess [78] replaces

the register file with a smaller staging unit with the help of compiler annotations, leveraging

82

the short-lived and long-lived behaviors of the register. RegLess achieves lower power and

smaller register storage size while maintaining performance. The Latency-Tolerant Register

File (LTRF) [115] uses compiler-analysis to identify registers to move into a register cache,

which enables tolerance of large register files. However, this higher performance comes at the

cost of a larger, more power-hungry register file. Compared to these solutions, BOW is the

only solution that improves both the energy consumption and the performance of the RF.

Register File Compression: Some of the state-of-the-art have targeted narrow register

values, i.e. values which use less than half of their allocated register. Not only do they

cause unnecessary energy leakage due to the storage of unused bits, but also there will

also be additional delay when accessing those elements, since they are treated as a wide

register when accessed, regardless of the actual value. With compiler optimizations, if narrow

values are identified, two of them can be squeezed into a physical register, which leads to

more RF utilization and less overall energy consumption. Wang et al [139] proposed a

method to pack narrow values in the GPU register file in a greedy fashion, achieving an

average speedup of 18%. On top of register packing, Esfeden et al [15] also proposed to

coalesce register file accesses in order to reduce the number of RF accesses, thereby reducing

dynamic energy consumption by 17% as well as improving the performance by coalescing

multiple register read operations into a single physical access. Voitsechov et al [137] aimed

to increase GPU thread occupancy by identifying the last register usages within the code

and releasing them at those points in the kernel for the usage of other threads. Combined

with techniques for more efficient allocation for scalar and narrow values (de-duplication and

packing, respectively), their method achieved an average of 12% speedup on register-bound

83

workloads.

Related CPU register file optimizations: Register file efficiency has been an ongoing

research topic in the CPU industry as well, having started long before the era of GPGPUs.

Balkan et al [25] observed that a substantial fraction of computed values in a typical

superscalar datapath are transient. They proposed a microarchitectural technique which

predicts transient registers and avoids register allocations for predicted transient values.

BOW also identifies and eliminates transient registers but does so using compiler hints. Park

et al [106] predicted the bypassing opportunities to reduce the energy consumption, enabling

register banks to be designed with lower number of ports. Swensen et al [126] addressed the

issue that larger register sets have a longer access time than a smaller one, and based on this,

proposed a hierarchical register set that contained close, middle and distant register sets,

which would be used for different scenarios based on their time criticality, e.g. more critical

tasks would be performed on the smaller, but closer, register set. There have also been

other works that mainly target the access latency of CPU register sets [23,38,65,98,147].

The nature of RFs for superscalar CPUs is substantially different from those of GPUs, and

therefore these techniques do not directly carry over to GPUs.

84

Chapter 4

RegMutex: Inter-Warp GPU

Register Time-Sharing

4.1 Introduction

Registers are the fastest available memory to the threads in a machine executing a

program. Register are being kept in-core closely coupled with the ALUs and usually are the

most expensive form of memory (per-byte) in a machine. The set of registers for a processor

are packed in a structure called register file. In GPUs, in order to enable concurrent residence

of thousands of threads for massive Thread-Level Parallelism (TLP), the architecture employs

a very large SRAM storage structure as the register file. A considerable fraction of die area

and chip power has to be dedicated to this structure [81,130].

Nonetheless the allocation of physical registers to architected registers in the kernel

binary is static, i.e., the maximum number of live registers at any given point determines the

85

kernel’s physical register demand, and is exclusive, i.e., a warp’s physical registers are solely

its own for the lifetime of the thread-block containing the warp. This allocation scheme

carves a portion of the physical registers for the warp regardless of the fluctuations in the

register usage by the warp. In other words, even if all the requested registers are live only

for a few instructions, the hardware reserves all the allocated physical registers for the warp,

thereby making them inaccessible by other warps. This results in underutilization of a large

portion of the register file during GPU kernel execution and hence ignoring the potential

performance gain opportunity.

A number of solutions have been proposed to remedy this issue. Most notably,

Jeon et al. [62] built on the Register Renaming Table (RRT) idea from the CPU realm

to proactively map architected registers to physical registers on-demand. However, this

solution, as well as other work that suggest fundamental modifications to the structure of the

register file and its allocation mechanism [63,132], impose significant hardware overheads.

In addition, proposals such as the work of Jatala et al. [59] fail to address fluctuations in

warp register demand during kernel execution, hence lack general applicability.

In this work, we present RegMutex (Register Mutual Exclusion), a synergistic

compiler-microarchitecture design that enables efficient register time-multiplexing between

warps. In RegMutex, a subset of the architected registers are allocated on-demand as-a-whole

and deallocated upon no demand. RegMutex utilizes the information gathered by compiler

analysis to instruct the hardware for physical register allocation and deallocation. At compile

time, RegMutex separates the group of kernel architected registers into a base register set

and an extended register set. Using live-register analysis, the compiler determines the

86

locations within the kernel where the number of live registers exceeds the size of the base

register set and marks them as acquire points. Similarly, program points where the number

of live registers falls equal to or below the size of the base register set are marked as release

points. On the hardware side, the physical registers are allocated for the base register set

whenever the warp is resident. The extended register set, on the other hand, is allocated

physical registers only when the warp reaches an acquire point, and deallocated once the

warp faces a release point. The extended register sets of all warps are allocated out of a

communal pool of registers that is shared by all hardware-resident warps (the shared register

pool).

RegMutex diminishes the pressure on the register file by eliminating the necessity

of register file size accommodation with the maximum number of live registers at any point

in the kernel. The warps proceed in the program as usual and will be blocked only when a

large number of them have acquired the extended register set. A blocked warp will resume

execution by acquiring the extended set as soon as one of other warps releases the shared

resource. Essentially, the benefit of RegMutex can be viewed from two perspectives. First,

RegMutex allows GPU programs to sustain approximately the same performance with a

smaller hardware register file. Second, for programs that incur low SM occupancy due to

excessive register usage, our technique enables higher number of concurrent warps to be

resident in the hardware via sharing their register allocations with each other, leading to

a superior performance. In other words, if a warp asks for a large number of architected

registers, it can now co-reside with more warps on the SM. This chapter makes the following

contributions:

87

• We present RegMutex, a coordinated compiler-microar-chitecture technique as a

remedy for GPU register file underutilization due to static and exclusive physical

register allocation.

• We describe the RegMutex compiler and microarchitecture support schemes and show

that this synergistic design introduces much lower (less than 2%) hardware storage

overhead compared to existing solutions.

• We analyze the effectiveness of our solution by implementing it in the GPGPU-Sim

simulation framework. We show that RegMutex enhances the performance of kernels

for which the occupancy is limited by high register demand, and makes the application

performance resilient on architectures that supply small register files.

The rest of this chapter is organized as follows. Section 4.2 expresses the motivation

for a GPU register sharing approach. Section 4.3 describes our solution, elaborating

RegMutex’s compiler and micro-architectural design. Section 4.4 presents the experimental

evaluations, and Sections 4.5 summarizes related work.

4.2 Motivation

A program, in its closest-to-machine language form, works with a set of registers.

This set of registers are referred to as architected registers, and will be mapped to physical

registers by the processor’s hardware. To map architected registers to physical registers,

CPUs utilize a mechanism called register renaming and a table called Register Rename

Table (RRT). GPUs, on the other hand, use a simpler method for this purpose [60]. The

88

mapping allows a simple Y = X +B equation for each SIMD group (warp) to calculate its

physical register indices where B is the base address of the block of registers assigned at

run time to the specific warp, X is the architected register index (i.e., the offset into the

block of registers), and Y gives the physical register index. This simple mapping avoids the

overhead of performing register renaming for thousands of concurrently running threads.

The set of physical registers is statically reserved for the warp’s life-time (i.e., B is constant

for the duration of the warp’s execution), and becomes available for other threads only after

the CTA (Cooperative Thread Array) to which the warp belongs retires [75].

One important drawback of the above scheme, especially compared to RRT, is

physical register underutilization during kernel execution. The static reservation is conserva-

tive in a sense that it requests for the maximum number of registers that are alive at any

point in the GPU program. However, during a GPU program execution by the warp, not

all the reserved physical registers are alive at all times. In fact, the time interval in which

all the requested physical registers are utilized may only be a small fraction of the kernel

execution time. This is particularly true for GPU applications containing nested loops in

which register consumption increases within inner loops. Figure 4.1 illustrates this claim by

showing the percentage of live registers with respect to the allocated registers during the

program execution for a sample thread and six GPU kernels. Here we define a register live

if its value is used in later instructions. It is evident from the plots that for the majority

of the program execution only subsets of the requested registers are alive, and therefore, a

large portion of the thread’s allocated registers remain unutilized. Figure 4.1 also shows

that register utilization may fluctuate constantly due to the GPU code shape.

89

0%

20%

40%

60%

80%

100%

0 1000 2000 3000

(a) CUTCP.

0%

20%

40%

60%

80%

100%

0 300 600 900

(b) DWT2D.

0%

20%

40%

60%

80%

100%

0 500 1000 1500 2000

(c) Heartwall.

0%

20%

40%

60%

80%

100%

0 150 300 450

(d) HotSpot3D.

0%

20%

40%

60%

80%

100%

0 2500 5000 7500

(e) ParticleFilter.

0%

20%

40%

60%

80%

100%

0 125 250 375 500

(f) SAD.

Figure 4.1: The utilization of a sample thread’s allocated register set during

kernel execution. X axis shows the number of instructions executed by the

thread and Y axis shows the percentage of live registers with respect to allo-

cated registers. Results are extracted using our extension to GPGPU-Sim [17].

Applications are from Rodinia [31] and Parboil [124].

90

Another drawback of the aforementioned scheme is limiting the occupancy for

GPU programs (kernels) with threads that require a high number of architected registers.

Occupancy is described as the ratio of the number of warps residing on the Streaming

Multiprocessor (SM) over the maximum number of warps that warp schedulers in the SM

allow for residency. For example, on Nvidia Volta GPUs, there can be up to 64 warps

residing on an SM [3]. The higher the occupancy, the larger the number of candidate warps

to be executed by the SM at any given time. This enables the GPU cores to cover memory

access latency more effectively through having more concurrent warps (note that higher

occupancy does not necessarily lead to better performance [138] due to possible side-effects

such as cache pollution, but a low occupancy can cause resource underutilization). A warp

that requires a high number of registers lowers the SIMD occupancy. It essentially disallows

co-residency of other warps due to register file resource limitations, however the warp may

need excessive registers only for a short period of the GPU program. In summary, these two

drawbacks are two different faces of the same coin: registers are statically and exclusively

reserved but not all of them are utilized at the same time.

Jatala et al. [59] propose a register sharing technique in which a few warps share

the set of registers having higher-than-a-certain-threshold architected index. They propose

a hardware lock for a pair of warps to acquire. The first warp that asks for a shared register

acquires the lock and disallows the execution of its pair until it reaches the end of program.

The main shortcoming of this solution is the one-time acquire with no in-kernel release. In

other words, the warp that gets the ownership of the shared registers will not release it until

the warp is finished. In addition, the solution requires hardware modification at the register

91

file level for the accesses. For each register access, up to three conditions have to be verified

(if the warp is shared, if the register is shared, if the lock is already acquired). The warp

will have to loop inside these conditions if the answer to all of them is positive.

Jeon et al. [62] suggest virtualizing the register file to share the physical registers

between the warps. They suggest embedding the dead or liveness information of the

architected registers into the source code by the compiler, and using a Register Renaming

Table (RRT) inside the hardware to proactively release dead registers from one warp and

re-allocate them to a different warp. In other words, they borrow the idea of RRT from CPUs

and implement it for the GPUs. The final outcome of this scheme is a smaller register file

and reduced power consumption at the unignorable expense of higher hardware complexity.

Jing et al. [63] take an even more drastic measure; they emulate the behavior of the register

file using a cache by combining the register file and SM-private L1 cache. These solutions

necessitate heavy hardware modifications such as RRT, Release Flag Cache as well as adding

required support in the fetch stage of the GPU pipeline.

These drawbacks motivate the need for an inter-warp register sharing approach

that introduces low hardware complexity while, simultaneously, being effective at reducing

the underutilization of the register file.

4.3 RegMutex: Inter-Warp Register Time-Sharing

In this section, we propose RegMutex, an effective approach to remedy GPU

register file underutilization. RegMutex time-multiplexes the allocation of a subset of

registers required by the kernel between multiple warps. During the execution of the kernel,

92

when a warp is at a program point in which it does not work with any of the registers in

this subset, its execution progresses normally. However, when the warp needs this subset,

those registers need to be obtained from a shared register pool for the warp. More formally,

RegMutex divides the architected register set into base register set Bs and extended register

set Es. Bs is assigned to physical registers in the register file as soon as the warp resides in

the SM, similar to what we observe in existing hardware. On the other hand, Es is allocated

to register files only when the program requires more live registers than |Bs|; and also Es

is de-allocated right after the number of live registers in the kernel becomes equal to or

less than |Bs|. The communality of the shared register pool enables on-demand register

allocation for segments of the GPU kernel where the number of live registers increases.

When a warp is launched for execution on the hardware, while the Bs physical

register assignment is instantaneous and lasts for the duration of warp execution, the

allocation of Es is controlled via compiler-generated instructions that enforce an acquire-

release semantics. The compiler identifies the code segments in the program where the

number of live registers exceeds |Bs|. Right before entering each such code segment, the

compiler inserts an instruction that acquires Es from the Shared Register Pool (SRP). And

immediately after each such code segment, the compiler inserts a release instruction to

release its Es back to SRP. For an acquire, if the currently unused registers in SRP is

insufficient to satisfy the acquire instruction for the extended registers, the warp has to wait

for a release by another warp in SM to free up shared registers. In this case, the warp stalls

and only becomes eligible for execution once sufficient shared registers have been freed up.

In summary, the compiler drives the warps within SM to time-multiplex the pool of shared

93

0

8

16

24

32

40

48

Time
R

eg
is

te
r

A
ll

oc
at

io
n

Warp A ends execution and
warp B starts execution

Warp A starts
execution

Unused registers
allocated to warp A

Unused registers
allocated to warp B

Registers allocated to
and used by warp B

Registers allocated to
and used by warp A

(a) Baseline execution without RegMutex.

0

8

16

24

32

40

48

Time

R
eg

is
te

r
A

ll
oc

at
io

n

Warp A releases its
extended register set

Warp A starts
execution

Warp A acquires its
extended register set

Warp A ends
execution

Warp B acquires its extended
register set and resumes

Warp B tries to acquire its
extended register set but stalls

Warp B starts
execution

Warp B releases its
extended register set

Warp B ends execution

Shared pool for
extended register set

Warp B
base register set

Warp A
base register set

(b) Execution using RegMutex.

Figure 4.2: Example of two warps A and B executing identical code with and

without RegMutex. Base register set size is 16 registers (per thread) as well as

the Shared Register Pool (SRP) size. The architecture is assumed to have 48

hardware registers per thread.

hardware registers.

Figure 4.2 shows a simplified, illustrative example of a case akin to typical GPU

execution, where multiple warps execute the same code. Each warp has a maximum register

requirement of 31 registers per thread in the example. As shown in Figure 4.2(a), a baseline

architecture without RegMutex reserves 31 registers per thread for the full duration of the

94

execution of each warp, preventing any overlapping of execution of the two warps (as the

combined register use of the two warps, at 62, exceeds the 48 available hardware registers

per thread). Figure 4.2(b) shows an execution configuration using RegMutex where base

register sets of 16 registers per thread each and extended register sets of 16 registers per

thread each are utilized by the two warps. Here, the code regions that only require the base

register sets can execute in parallel, serializing only the portions that require use of the

extended register sets thus enhancing the execution time. Note that in this example, for

simplicity, we assume the registers are the only hardware resource constraint.

RegMutex allows a warp to acquire and release its Es as many times as needed

during its lifetime. Here we enforce a fixed |Es| for the acquires within a kernel. Also,

nested acquire-release instructions are not permitted. In other words, an acquire after

another acquire without an intervening release or a release after another release without

an intervening acquire should have no effect. Both these assumptions keep the hardware

complexity of the design low and enable flexible use of acquire or release within conditional

code. To facilitate the discussion on our solution in this chapter, we assume that concurrent

warps on an SM execute identical programs, which is the case for the majority of GPU

applications.

In the rest of this section, we elaborate upon the compiler and architecture support

for our technique.

4.3.1 Compiler Support

The compiler performs a number of methodical steps to support RegMutex:

95

1. Register liveness analysis of the GPU assembly code to extract the register usage

information.

2. Extended register set size determination.

3. Acquire/release primitive injection into the assembly code.

4. Architected register index compaction before and throughout the release state.

The first two steps analyze the kernel program and the latter two modify it. After

these steps, the GPU kernel contains functionally the same code added only with extended

register set acquire and release directives at proper locations. We now elaborate upon these

steps.

Register Liveness Analysis

RegMutex relies on static (compile-time) register liveness information for setting

the boundaries for extended register set use. Register liveness analysis helps our technique

to recognize the program’s register requirements at different instructions in order to instruct

the executing microarchitecture for extended set acquire or release actions at appropriate

locations.

As in [36], we define the static liveness for an architected register index as the set

of (not necessarily consecutively placed) instructions at which the value previously written

into the register has to be held intact since there is a non-zero probability that it will be

read later. Figure 4.3 shows an example from a GPU program and the static liveness of

registers. Within a basic block, if an architected register is written (defined) at an instruction

and read (used) at some later instructions for the last time and without any intervening

96

/*0368*/ IADD32I R0, -R2, 0x0;

/*0370*/ ISET.S32.C2 o [0x7f], R2, R3, LT;

/*0378*/ MOV.SFU R0 (C2.EQU), R2;

/*0380*/ G2R.S.U32 R1, g [0x8].U32;

/*0388*/ IADD32I R2, R0, 0xfffffffe;

0 0 1 1

1 1 1 0

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 0 0

R0 R1 R2 R3

/*0340*/ BRA C2.EQ, 0x368;

/*0348*/ SHL R1, g [0x8], 0x1;

/*0350*/ IADD R1, R1, -R2;

/*0358*/ IADD32I R0, R1, 0xfffffffe;

/*0360*/ BRA 0x380;

s
0

s
1

s
2

s
3

Figure 4.3: A GPU code sample from DWT2D application and its static register

liveness.

register definition, all the instructions between the definition point and the last use point

are considered live for that particular register. Register R1 in basic block s1 in Figure 4.3 is

an example of this case.

However, in the presence of control flow divergence, liveness analysis is not straight-

forward because of the unavailability of path traversal information at compile time. If a

register is defined before a branch and is used within at least one of the branched basic

blocks, the register has to be considered alive within all the resulted branch basic blocks

due to the uncertainty of the execution serialization by threads within the warp. In other

words, the compiler has to be conservative in its assumptions. This makes the immediate

post-dominator instruction of the branches the first candidate for considering the architected

register dead. For instance, in Figure 4.3, although R3 is used within only s2 it has to be

considered alive throughout s1 as well. Similarly, if a register is defined within a branch

and is going to be used in a post-dominator basic block, it has to be assumed alive in other

branches. The liveness status of Register R2 throughout basic block s1 in Figure 4.3 is due

to this observation.

97

RegMutex performs this analysis on architected registers in the GPU assembly

program. The outcome of this step is a collection of Boolean vectors each representing the

liveness of particular architected registers at particular instructions. We have visualized this

in Figure 4.3 1. This information will be used in the next steps to determine the appropriate

size for the extended register set as well as to inject the compiler-to-microarchitecture

directives at appropriate program locations.

Extended Register Set Size Selection

Using static liveness information, the compiler now needs to determine the size of

the extended register set, i.e., |Es|. Note that |Es|+ |Bs| is fixed and equals to the total

number of registers the kernel asks for, hence, selecting either |Es| or |Bs| enforces the value

of the other. Also, note that increasing |Es| may have adversarial effects. On one hand, a

large |Es| is expected to give higher occupancy by allowing more warps to be resident on the

SM. On the other hand, the compiler has to mark larger sections of the program as being

in an acquire state, thus warps execute more instructions while holding their extended set

which may result in more contention over SRP sections during the run time.

As both the number of warps resident on SM and their scheduling freedom impact

overall hardware utilization and performance, we use a simple yet methodical policy that

achieves a desirable trade-off between improving physical register utilization and not curtailing

scheduling freedom. After finding the baseline kernel’s theoretical occupancy and the

contribution of kernel register usage as a limiting factor, we select candidate values for |Es|

from an empirically-derived set of {0.1, 0.15, 0.2, 0.25, 0.3, 0.35} multiplied by the number

1A similar analysis and liveness representation are provided for CUDA application by the nvdisasm CUDA
binary tool [2].

98

of registers used by the kernel. Then we keep the even numbers that result in the highest

occupancy calculated only with the base set size. If multiple candidate elements for |Es|

give the same theoretical occupancy, we go with the largest element that possibly results in

concurrent progress of more than half the warps in the current occupancy in the acquire mode.

Let us illustrate these steps using an example. Assume the kernel asks for 24 registers to

run on our baseline (Nvidia Fermi architecture) which supports up to 20 registers per thread

without limiting the occupancy. Let us also assume that register usage is the only factor

limiting the theoretical occupancy here. Based on our approach, the candidate set for |Es|

consists of the even numbers in b24� {0.1, 0.15, 0.2, 0.25, 0.3, 0.35}c (� is the element-wise

product) which yields {2, 4, 6, 8}. From this set, 4, 6, and 8 result in |Bs| equal to 20, 18,

and 16 respectively which have full occupancy for only the base set. Assuming maximum

number of warps per SM is 48 and the total number of registers in the register file is 32K,

these configurations leave 16, 26, and 32 sections for SRP which indicate the number of

warps that can acquire Es concurrently. RegMutex selects |Es| = 6 since it is the largest

candidate that allows more than half of the warps on the SM (in this example 26) in the

calculated occupancy be in the acquire state.

After determining the number of registers in the extended set, the new theoretical

occupancy of the kernel is obtained using calculated |Bs|. This occupancy gives the number

of CTAs that the SM can host, and also determines the total size for the SRP.

Deadlock Avoidance To avoid deadlocks in our design, two additional rules govern |Es|

selection. First, the distribution of |Bs| and |Es| has to be such that there are enough

registers in the shared pool for at least one warp’s Es. This ensures that warps do not stall

99

indefinitely for an acquire. Second, |Bs| has to be greater than or equal to the number of

live registers at any point in the program that CTA-wide synchronization primitives such as

syncthreads() exist. This avoids any deadlock due to inter-dependency of warps. In

other words, while a warp Wa is waiting for another warp Wb to arrive at the synchronization

PC, warp Wb will not wait at an acquire instruction for warp Wa to release its extended

register set.

Acquire/Release Primitive Injection

After recognizing the regions within the program that use the extended register

set, the compiler injects acquire and release primitives respectively at the beginning and the

end of such regions. For RegMutex, we create an instruction to convey acquire or release

information to the hardware. Unlike [62] RegMutex need not rely on meta-instructions since

the content of this instruction is either a release or an acquire command.

Architected Register Index Compaction

To preserve the simple Y = X +B equation for the architected to physical register

assignment (different B’s for extended and base register sets), architected register indices

have to stay within their boundaries during the release state. The compiler must therefore

ensure that none of the extended register set members contain live values when the extended

register set is released. We essentially need a mechanism to compact the architected register

indices for the duration the extended set is not acquired, and also right before releasing the

extended register set.

To achieve this goal, the compiler may have to move any live values in the extended

100

register set to available registers in the base set during the release state and before releasing

the extended register set. For example, let us assume a scenario where the base register

set size is 6 and a warp has a live register set {2, 4, 5, 9} right before the release. Before

releasing the extended set, the compiler has to move architected register 9 to one of 0, 1,

or 3 locations. Note that the movement of architected registers is instrumented by the

compiler (usually with MOV operations). This is similar to what [59] suggests under the

name of register declaration reordering but it is different in that index compaction may

happen multiple times right before each release by moving the architected registers, whereas

in register declaration reordering the index minimization is limited to happen only once by

reordering register declarations. In addition, the compiler has to apply register location

renaming for all the uses of that particular register until the end of its current live range.

We use a similar analysis to that done in Section 4.3.1 for those registers exceeding the

boundary at release states.

We emphasize that the above compiler analysis steps, when embedded within

a compiler, need to be applied during the last stages of the compilation chain. This is

because the technique needs to know the architected register assignment whereas compiler

middle-ends such as LLVM work with virtual registers in SSA form.

4.3.2 Architecture Support

In this section, we explain the architectural requirements to enable RegMutex. We

used the baseline design offered by GPGPU-sim [17], a simplified depiction of which is shown

at the top of Figure 4.4. After decoding acquire/release primitive at the decode stage as a

barrier operation, the acquire or releases command is given to the issue stage. At this stage,

101

the warp acquires the extended set or waits for an extended set to be freed, or releases its

extended set. Upon a successful acquire, the information for the acquired SRP section as

the extended set is passed to the Operand Collector Unit for register mapping. Below we

elaborate upon the hardware implementation of RegMutex at these two stages.

Warp Issue Management Organization

In RegMutex a warp has to ask for physical registers for its extended set upon

reaching an acquire instruction. If no physical extended set is available, the warp has to wait

for another warp to release their set. The warp needs to essentially imitate the behavior

of already existing barrier synchronization and communication in GPUs. CUDA barrier

synchronization instructions allow one warp Wa to signal its arrival to another warp Wb, and

to warp Wb to wait for warp Wa to arrive at a particular barrier. These instructions have been

used for warp specialization purposes and implementing producer-consumer models [26,27]

via PTX instructions bar.sync and bar.arrive. For RegMutex, we exploit a similar

design where warps have to wait for the release of an extended physical set when faced with

acquire or signal the release of their own extended physical set upon a release. Since barrier

operations in SM are executed at the issue stage, we design RegMutex’s allocation logic

closely coupled with it.

The highlighted section of Figure 4.4 shows the RegMutex’s modification interacting

mostly with the issue stage of the microarchitecture model. Because we need to keep track

of each warp’s execution mode (acquired or not-acquired), we use a single bit per warp to

indicate the warp status. In the baseline model, each SM can host up to 48 resident warps

102

FFetch I-Cache Decode

Scoreboard

I-Buffer

Issue
Operand
Collector

ALU

MEM

Nw

Warp Status Bitmask

Nw

SRP Bitmask

Nw

ceil(log2(Nw))

LUT

Figure 4.4: The baseline design from GPGPU-sim [17] (top) and RegMutex’s

added storage structures (bottom). Specified sizes are in bits.

(Nw = 48) and therefore the warp status bitmask is 48 bits long. This bitmask is indexed by

the warp index within the SM. In addition, another bitmask holds the status of sections of

the Shared Register Pool (SRP). Since there can be up to Nw sections in the SRP, and since

we disallow nested acquires and releases, the SRP bitmask is Nw bits long as well. Each

bit in SRP bitmask indicates if a particular extended physical register set is acquired or

not. The mapping between a warp and a bit in the SRP bitmask is performed via a lookup

table (LUT in Figure 4.4). The table has one entry for each warp while each entry contains

dlog2Nwe bits indicating which one of the Nw SRP sections the warp has acquired (if warp’s

status bit is set). The total size for this table in our baseline is therefore 48× 6 = 288 bits.

As depicted in Figure 4.5(a), when an acquire instruction reaches the issue stage,

SRP bitmask is searched for an unset (zero) bit. This is equivalent of the Find First Zero

(FFZ) operation on the SRP bitmask which returns the index of the least significant zero

bit. If a valid index (for instance, 0 <= idx < 48 in the baseline model) is returned, a

section is available. Therefore, the index is written into the lookup table and the warp’s

status bit and the SRP availability bit are set. This index is then passed to the Operand

103

SRP Bitmask Warp Status BitmaskLUT

1

3

2

loc=FFZ(SRP)

Set(Widx)LUT[Widx]=loc

Wait

(a) Acquire.

Warp Status Bitmask SRP BitmaskLUT

1 2 3

Unset(Widx) srpidx = LUT[Widx] Unset(srpidx)

(b) Release.

Figure 4.5: Acquire/release procedure implementation in RegMutex.

Collector Unit. However, if the returned index is invalid, the warp waits at the barrier

and retries at later rounds when the warp gets scheduled again. Moreover, when a release

instruction arrives at the issue stage, the warp status bit is unset, and the warp’s acquired

SRP section index is retrieved from the lookup table, as shown in Figure 4.5(b). This index

determines the bit to unset in the SRP bitmask, specifying the release of the previously

acquired extended physical register set. Also, note that in case the extended register set size

does not allow having maximum number of SRP sections, those bits in SRP bitmask that

do not correspond to any SRP section are set at the beginning of the kernel placement and

stay intact throughout the execution.

Total number of bits introduced into the baseline by RegMutex is 384. Compared

to register file virtualization approach [62], which requires 30, 240 bits for the renaming

table and 1024 bits for register availability indication (excluding Release Flag Cache),

RegMutex reduces the additional structure storage cost by more than 81x. Moreover,

104

since the introduced acquire/release instruction is simple, RegMutex does not need to use

meta-instructions, as opposed to [62], which necessitates partitioning the fetch stage into

two separate stages.

Architected-To-Physical Register Mapping

In GPUs registers are allocated per warp and indexed by the warp ID within SM.

For instance, the baseline design from GPGPU-sim [17] is from Nvidia Fermi architecture

containing 32K 32-bit physical registers. Given there are 32 threads within the warp, there

are 1K of physical register packs to distribute among the warps. As we mentioned earlier,

to map packs of architected registers to physical registers GPUs use a simple equation

Y = X +B. In this equation, B is a warp specific base address assigned at run time and

is resulted from multiplying the warp index within SM (Widx) with a constant coefficient

(Coeff) determined by the kernel’s total register usage: B = Coeff ×Widx. This baseline

design can be viewed in Figure 4.6(a) and is implemented within GPU’s Operand Collector

unit before accessing the register file banks.

To support RegMutex, we augment the baseline design as shown in Figure 4.6(b).

Since the base addresses for physical registers designated to hold Bs and Es of a warp are

disjoint, the warp compares the architected register index with |Bs| to realize if the register

belongs to the base set or the extended set. If the register belongs to the base set, in a

fashion similar to baseline, the warp index within SM gets multiplied to |Bs| to result the

base address for the physical register. Otherwise, the SRP section assigned to the warp

(LUT (Widx)) is multiplied by |Es| to get the base address within SRP. The result is added

with SRPoffset, the offset of SRP within register file, to constitute the physical base address

105

+

x

YXWidxCoeff

(a) Baseline.

+ YX

M
U
X

>

|Bs|

x

Widx

+
x

SRPoffsetLUT(Widx) |Es|

(b) Augmented for RegMutex.

Figure 4.6: Architected to physical register mapping design in the Operand

Collector Unit. X is the architected register index and Y is the resulted physical

register index.

for the register. In this design, the values of |Bs| and |Es| are supplied by the compiler and

alongside SRPoffset are given to the Operand Collector Unit at the kernel launch.

In summary, RegMutex enjoys a much simpler design compared to existing ap-

proaches such as [62] and [132] which micromanage the allocation of every register and

necessitate additional structures such as Release Flag Cache.

4.3.3 Paired-Warps Specialization

In this part, we introduce a specialization of RegMutex that, rather than time-

multiplexing the registers across all the SM’s resident warps, shares the extended register set

between specific pairs of warp. Although this approach reduces the register sharing opportu-

nity, it lowers the amount of hardware modifications even further. In this specialization, the

design sets aside 2× |Bs|+ |Es| physical registers for each pair of warps. Each warp’s |Bs|

allocation is static and exclusive but Es is time-multiplexed between the two. Therefore,

while both warps can move forward in release state, only one of them may progress in the

acquire state, disallowing the other warp to acquire Es until the release point. Paired-warps

specialization of RegMutex eliminates the need for the lookup table and the SRP bitmask,

106

and only requires a bitmask with the length half the maximum number of warps in the SM,

i.e., Nw/2, to specify the status of the extended set shared between pairs of warps.

4.4 Experimental Evaluation

To evaluate RegMutex’s performance, we extended GPGPU-Sim v 3.2.2 [17]

simulator. We used the microarchitecture specifications for GeForce GTX480 GPU that

comes with the simulation framework. It includes 15 SMs, 128 KB register file size per

SM, 2 warp schedulers per SM, and the default greedy-then-oldest scheduling policy. In

addition to the register file size in SM, we allow shared memory usage per SM and the

maximum number of resident threads in SM to act as other constraints that affect the

theoretical occupancy of the CUDA kernels. Note that although we carry out our simulations

based on an Nvidia Fermi GPU, the principles behind register allocation on newer Nvidia

CUDA-enabled architectures including Kepler, Maxwell, Pascal, and Volta have stayed the

same: registers are still statically and exclusively reserved. Therefore, the resulting register

file underutilization challenge does indeed still exist. Even though per-SM register file size

has been doubled in newer architectures, the maximum number of resident warps on the SM

in newer GPUs is also increased. As a result, in all post-Fermi Nvidia GPUs having more

than 32 registers per thread definitely results in incomplete occupancy, which is troubling for

applications with high register demand. Hence, our solution is applicable and generalizable

to newer GPU architectures as well.

We utilized PTXPlus to extract basic block information as well as control flow

analysis in order to implement RegMutex’s compiler support. PTXPlus is a tool integrated

107

with GPGPU-Sim that enables implementation of compiler optimizations when working

with the simulator. It uses an augmented form of PTX intermediate representation that

is extracted from the binary, and therefore is expected to fully preserve the optimizations

applied at the PTX-to-SASS level. PTXPlus is the closest level to machine code that

GPGPU-Sim allows for applying compiler optimizations.

We selected a total of 16 applications from Rodinia [31], Parboil Benchmark

Suite [124], and Nvidia CUDA SDK [1] to verify the effectiveness of RegMutex under

different workloads. These applications are shown in Table 4.1 and exhibit different SM

resource requirements. Please note that these workloads suffer from high register usage and

are selected to show the benefits of RegMutex in different scenarios. Applications that do

not have such property are not affected by applying our technique since RegMutex evaluates

all the registers as the members of the base register set, therefore, it does not insert any

acquire or release instructions into the program. Moreover, none of the presented workloads

incur simultaneously executing dissimilar kernels. Co-scheduling dissimilar kernels on an

SM is not supported by our technique and results in falling back to the default execution

mode (zero-sized extended set). Table 4.1 also specifies the number of registers per thread

for each kernel. The numbers in the parenthesis show the number of registers rounded to

the upper multiple of 4. The simulation framework uses this number for resource allocation

calculations. We also showed the calculated base set size for RegMutex for each application

in the table. All the applications are compiled with NVCC 4.0 and GCC 4.6 with -O3

compilation flag. Since PTXPlus is not compatible with CUDA Compute Capability 2.0 or

higher, applications are compiled for Compute Capability 1.3.

108

Application # Regs. |Bs| Application # Regs. |Bs|

BFS 21 (24) 18 Gaussian 12 (12) 8

CUTCP 25 (28) 20 HeatWall 28 (28) 20

DWT2D 44 (44) 38 LavaMD 37 (40) 28

HotSpot3D 32 (32) 24 MergeSort 15 (16) 12

MRI-Q 21 (24) 18 MonteCarlo 13 (16) 12

ParticleFilter 32 (32) 20 SPMV 16 (16) 12

RadixSort 33 (36) 30 SRAD 18 (20) 12

SAD 30 (32) 20 TPACF 28 (28) 20

Table 4.1: Workloads used in experiments. The number of registers per thread

and RegMutex’s base register set size are shown for each kernel.

4.4.1 Kernel Occupancy Boost Analysis

We first analyze the performance improvement enabled by RegMutex for 8 GPU

kernels from Table 4.1 on the baseline architecture. The theoretical occupancy of this set

of kernels are limited by the excessive register demand, hence, enhancing their occupancy

by time-sharing a portion of the registers using RegMutex can be beneficial. For these

applications, Figure 4.7 shows the percentage of execution cycle reduction with RegMutex

calculated with respect to the number of baseline execution cycles. It also shows the influence

of RegMutex on the theoretical occupancy of the kernel by plotting the initial occupancy of

the kernels alongside the occupancy with RegMutex. On average, RegMutex has reduced

the execution cycle of the kernels by 13% via enhancing the overall register file utilization.

In a case such as BFS, the boost in the occupancy resulted in 23% reduction in

the execution cycles. On the other hand, SAD application does not enjoy such performance

109

0%

20%

40%

60%

80%

100%

0%

5%

10%

15%

20%

25%

O
cc

u
p

an
cy

E
xe

c.
 C

yc
le

 R
ed

u
ct

io
n

 (
h

ig
h

er
 is

 b
et

te
r)

Exec. Cycle Red. Init. Occupancy Occupancy with RegMutex

Figure 4.7: The performance improvement enabled by RegMutex over the base-

line.

improvement with the same amount of occupancy enhancement. This tells us that theoretical

occupancy cannot be directly indicative of the performance enabled by RegMutex, yet, is

one of the contributing factors. In the case of BFS and SAD, extended set size and SRP

section are other impactful parameters. SAD requires a considerably larger extended set

compared to BFS (see Table 4.1) for the occupancy increase. This makes the number

of SRP sections limited which increases the contention over acquiring the extended set

between warps. DWT2D and ParticleFilter applications suffer from the same issue as well.

Program nature is another contributing factor to the performance improvement provided

by RegMutex. A kernel that holds an extended set more often and for longer instructions

increases the chance of other warps having to wait at acquire points. The contribution extent

for all these parameters depend on each other, and most importantly, for typical kernels

that are data-driven, to the input of the kernel. Therefore, speculating suitable parameters

using heuristics requires careful analysis of the program.

110

0%

20%

40%

60%

80%

100%

0%

10%

20%

30%

40%

O
cc

u
p

an
cy

E
xe

c.
 C

yc
le

 I
n

cr
ea

se
 (

lo
w

er
 is

 b
et

te
r)

Exec. Cycle Increase RegMutex Exec. Cycle Increase

Init. Occupancy Occupancy with RegMutex

Figure 4.8: The performance of applications with and without RegMutex on an

architecture with half the baseline’s register file size.

4.4.2 Register File Size Reduction Analysis

In this part, we analyze the effect of RegMutex on 8 applications for which the

register file size is not limiting the theoretical occupancy. For these applications, similar to

GPU-Shrink [62], we halve the register file size of the baseline to 64 KB per SM and see

the effect of this reduction with and without RegMutex and compare it with the baseline

mode. Jeon et al. [62] argue that this design leads to significant power savings by reducing

the register file dynamic and overall power consumption by 20% and 30% respectively. Note

that unlike GPU-Shrink we did not enforce register spilling, but rather allowed GPU to

determine the number of resident warps on SM under specified circumstances.

Figure 4.8 compares the execution cycle for scenarios where RegMutex is present

and absent with the kernel’s number of execution cycles for the architecture with full register

file. It is evident that in presence of RegMutex, the kernel experiences much less increase in

the number of execution cycles and allows the kernels to preserve the performance when an

architecture with smaller number of physical registers is provided. For the applications in

111

Figure 4.8, while the design without RegMutex suffers from 23% increase in the number

of execution cycles on average, with RegMutex we observe an average of 9% growth in the

number of execution cycles.

We also plotted the occupancy of the kernels before and after applying RegMutex on

the architecture with half the baseline’s physical registers in Figure 4.8. Similar to previous

part, we observe that occupancy is a contributing factor to RegMutex’s performance. In 7

out of these 8 applications RegMutex has successfully increased the register utilization by

enhancing the occupancy of the kernel. It is only in MergeSort workload that our heuristic

for extended register set size determination comes up with a size that does not increase the

occupancy. Therefore, we observed no benefit, but a slight increase in execution cycle due

to added RegMutex instructions. This is, in fact, the only workload among 16 applications

for which the default RegMutex incurred slowdown.

4.4.3 Performance Comparison with Related Work

In this section, we compare performance improvement provided by RegMutex with

the two most closely related approaches: i) Resource Sharing with the Owner Warp First

(OWF) scheduling optimization [59], and ii) Register File Virtualization (RFV) [62]. To

perform an apples-to-apples comparison, we used implementations of both approaches on

GPGPU-Sim similar to the extensions used to implement RegMutex. Figure 4.9(a) presents

the results of the comparison on the baseline architecture. The average reduction in kernel

execution time in cycles is 1.9%, 16.2%, and 12.8% for OWF, RFV, and RegMutex respectively.

We see that both RFV and RegMutex significantly out-perform OWF. While the improvement

112

0%

5%

10%

15%

20%

25%

30%

35%

E
xe

c.
 C

yc
le

 R
ed

u
ct

io
n

 (
h

ig
h

er
 i
s

b
et

te
r)

OWF RFV RegMutex

(a) On the baseline architecture.

0%

10%

20%

30%

40%

E
xe

c.
 C

yc
le

 I
n

cr
ea

se
 (

lo
w

er
 is

 b
et

te
r)

No Technique OWF RFV RegMutex

(b) With half the baseline architecture’s registers.

Figure 4.9: RegMutex performance comparison with Register File Virtualiza-

tion (RFV) [62] and the work of Jatala et al. [59], which we refer to it as OWF.

113

-10%

-5%

0%

5%

10%

15%

20%

25%

E
xe

c.
 C

yc
le

 R
ed

u
ct

io
n

 (
h

ig
h

er
 is

 b
et

te
r)

|Es|=2 |Es|=4 |Es|=6 |Es|=8 |Es|=10 |Es|=12

Figure 4.10: The sensitivity of kernel performance to variations in the extended

set size with RegMutex. Columns with diagonal stripes are our heuristic’s pick.

due to RFV is 3.4% higher than that of RegMutex on average, RegMutex has much lower

hardware implementation complexity than RFV, as discussed in Section 4.3.2. RVF demands

more than 31 kilobits for additional structure storage in the default architecture with 128

KB registers, whereas RegMutex only needs 384 bits, reducing the storage requirement by

more than 81x.

We also perform this comparison on the architecture with half the baseline’s register

file size. The results are shown in Figure 4.9(b). We observe an average of 22.9% increase in

execution cycles that results from halving the register file size when no technique is applied.

The average increase in kernel execution cycles is 20.6%, 5.9%, and 10.8% for OWF, RFV,

and RegMutex respectively. Again, we see that both RFV and RegMutex significantly

out-perform OWF in this case as well, and that RFV performs better than RegMutex, but

does so with increased hardware implementation complexity (as discussed in Section 4.3.2).

114

4.4.4 Extended Set Size Sensitivity Analysis

Here we analyze the performance sensitivity of our technique to the size of the

extended set. In Section 4.3.1 we mentioned that the size of the extended set, i.e., |Es|,

which is chosen at compile time, affects the performance in two ways. Increasing |Es| results

in |Bs| decreasing which allows more concurrent warps to reside on the SM thus enhancing

the occupancy. On the other hand, a higher |Es| means larger sections of a program are

marked as acquire state therefore it is more probable for warps to be holding extended sets,

hence, warps may have to wait more often and for longer times before they can acquire

physical registers for their extended set.

To observe the influence of extended set size on the performance of kernels, we

manually set |Es| to 2, 4, 6, 8, 10, and 12, and observed the execution cycle reductions.

Figure 4.10 plots the results. We distinguished the extended set size determined by our

heuristic (described in Section 4.3.1) using diagonal stripes. As you can see, although

the best performing |Es| differs from one application to another and does not follow any

particular trend, our method has been able to pick the best or one of the best extended set

sizes for each application. This is due to prioritizing occupancy and then adjusting it based

on the number of sections in SRP.

To further investigate the results, for different |Es|’s, we measured the theoretical

occupancy of each kernel and the percentage of successful acquire requests with respect to

all acquire instructions executed and plotted them in Figure 4.11(a) and Figure 4.11(b). By

comparing the results in these plots, it becomes clear that as |Es| gets larger, occupancy

increases but the chance of a successful acquire usually reduces. Both of these two adver-

115

40%

60%

80%

100%

O
cc
u
p
an
cy

|Es|=2 |Es|=4 |Es|=6 |Es|=8 |Es|=10 |Es|=12

(a) Theoretical occupancy.

40%

60%

80%

100%

Su
cc

es
sf

u
l A

cq
u

ir
es

|Es|=2 |Es|=4 |Es|=6 |Es|=8 |Es|=10 |Es|=12

(b) Successful acquires among all acquire instructions.

Figure 4.11: The variations in the theoretical kernel occupancy and the ratio of

successful acquires with respect to changes in the extended set size. Columns

with diagonal stripes are our heuristic’s pick.

sarial effects contribute to RegMutex’s performance. This makes suitable |Es| selection a

challenging task that requires careful observation of the program behavior as well as static

calculation of the kernel occupancy in the given architecture.

4.4.5 Paired-Warps Specialization Performance Analysis

As we mentioned earlier in Section 4.3.3, paired-warps specialization of RegMutex

eliminates the need for the SRP bitmask and the lookup table by privatizing SRP sections

116

0%

20%

40%

60%

80%

100%

-5%

5%

15%

25%

35%

45%

O
cc

u
p

an
cy

E
xe

c.
 C

yc
le

 R
ed

u
ct

io
n

 (
h

ig
h

er
 i

s
b

et
te

r)

Exec. Cycle Reduction Occupancy

(a) Execution cycle reduction is measured against the baseline architecture.

0%

20%

40%

60%

80%

100%

0%

10%

20%

30%

40%

50%

O
cc

u
p

an
cy

E
xe

c.
 C

yc
le

 I
n

cr
ea

se
 (

lo
w

er
 i
s

b
et

te
r)

Exec. Cycle Increase Occupancy

(b) Execution cycle is measured for the architecture with half the baseline phys-

ical registers. To be consistent with previous plots, the increase is measured

against the baseline kernel performance on the architecture with full register

file.

Figure 4.12: The effect of RegMutex’s paired-warps specialization on the exe-

cution cycle and the occupancy of kernels.

among pairs of warps. This reduces the hardware storage cost by more than 20x compared

to the non-specialized RegMutex at the expense of lower generality. Figure 4.12(a) shows the

execution cycle reduction and the resulted theoretical occupancy after applying paired-warps

RegMutex to the baseline architecture. As can be derived by comparing this figure with

Figure 4.7, this specialization is effective when the occupancy can be improved, as is the

117

case for 5 of our 8 applications. For a few applications such as SAD, we observe even a

higher reduction in execution cycles compared to the default RegMutex. We found that

this is generally due to higher probability of acquires with this specialization, as shown

in Figure 4.13. While paired-warps specialization guarantees the exclusive access to the

extended set for a warp be shared with at most one other warp, default RegMutex may have

to share a few SRP sections among many resident warps on SM. This can lead to an increased

waiting time on acquire instructions for the default mode. However, when the occupancy

stays intact, paired-warps specialization is unable to improve the performance. The inability

to improve the occupancy in such cases stems from the guarantee this specialization has

to provide for pairs of warps. This makes paired-warps specialization susceptible for such

scenarios while the default mode exhibits flexibility and therefore resistance in these cases. In

other words, exclusivity of 2×|Bs|+ |Es| registers for pairs of warps makes the specialization

outperform or underperform the default mode depending on the application. On average,

paired-warps specialization reduces the execution cycles for applications in Figure 4.12(a)

by 8% which is 4% less compared to the default mode.

Figure 4.12(b) illustrates the increase in the execution cycles as well as the resulted

occupancy when paired-warps specialization is used on the architecture with half the baseline

physical registers. Here we observe the similar phenomenon as we described above as

well. When the occupancy stays the same, as it is the case for 4 out of 8 applications, no

performance improvement is provided. However, in other cases where the occupancy could

be increased, paired-warps specialization becomes effective. For these applications, this

specialization has increased the execution cycles over the baseline with full register file by

118

50%

60%

70%

80%

90%

100%

B
F

S

C
U

T
C

P

D
W

T
2

D

H
O

T
SP

O
T

3
D

M
R

I-
Q

P
ar

ti
cl

eF
il

te
r

R
ad

ix
So

rt

SA
D

G
au

ss
ia

n

H
ea

rt
W

al
l

L
av

aM
D

M
er

ge
So

rt

M
on

te
C

ar
lo

SP
M

V

SR
A

D

T
P

A
C

F

Su
cc

es
sf

u
l

A
cq

u
ir

es

No Specialization With Paired-Warps Specialization

Figure 4.13: Acquire instruction success rate in RegMutex with and without

paired-warps specialization. The results for the 8 leftmost applications are

reported on the baseline architecture, and the rest, on the architecture with

half of the baseline register file size.

17% which is 5% less than the baseline with half the register file but it is outperformed by

the default RegMutex by 8% difference.

4.5 Related Work

As we explained earlier in Section 4.2, a number of directly related works propose

solutions for static and exclusive GPU register assignment. Tarjan et al. [132] suggest

virtualizing the registers and assigning them onto physical registers on-demand. However,

this method is expected to incur hardware complexities even beyond what was proposed

by Jeon et al. [62]. Gebhart et al. [45, 46] propose multi-level register file designs where

long-lived registers and short-lived registers are placed in different register hierarchies for

power efficiency purposes. While imposing high amount of modifications to the existing

hardware, these solutions also lack generality due to the fixed sizes of the register file

119

hierarchy levels. RegMutex, in contrast, does not disturb the performance of an application

that does not utilize it. Tan and Fu [129] suggest another hierarchical approach where

registers are classified into fast and slow categories to reduce susceptibility of GPU register

file to process variation. However, RegMutex’s aim is to offer approximately the same

performance at a lower cost, or higher performance at the same cost, by reducing the number

of required registers or by allowing residence of more warps on an SM. Also, as opposed

to the work by Jatala et al. [59], RegMutex offloads the register ownership arbitration

to the compiler and allows the set of shared registers be handed over between the warps

multiple times. Zorua [135] is another work that utilizes a runtime-compiler-hardware

synergistic approach for resource virtualization at runtime. While in Zorua, performance

portability across multiple architectures is the goal and is achieved via virtualizing on-chip

resources, RegMutex tackles the challenge of static resource assignment during the kernel

execution. RegLess [78] replaces register file with a smaller actively-managed staging unit and

LTRF [115] suggests a hierarchical RF design, both utilizing the compiler to provide hints to

the hardware for the run-time use. Unlike these works, RegMutex does not fundamentally

change or replace the RF structure, and can easily be disabled or enabled by the compiler.

A patent application by Coon and Lindholm [35] also has the notion of grouping threads

together based on resource sharing; however, they only allow one thread from each group to

execute at a time while our goal is to maximize concurrent execution while sharing a limited

resource.

Another body of papers, orthogonal to RegMutex, target economical use of GPU’s

available resources. Kim et al. [76] utilized unused registers for executing the warps in a

120

special mode called pre-execution in order to cope with long stalls due to memory accesses.

Warped-Compression [80] exploits the similarity of the register values between threads

within a warp during the execution in order to eliminate redundant register file occupations.

Compressing similar registers into one register essentially results in saving on the GPU

register file power consumption. It also resembles the works of Jourdan et al. [66] for

CPUs where logical registers are mapped into physical ones when sharing the same content.

KernelMerge [50] aims to allow co-residency of two GPU kernels on one device to enables

utilization of resources that are left unutilized when only one of the kernels is running.

CCC [74] utilizes on-chip shared memory to collect tasks for future warp-efficient use. Also,

Yoon et al. [146] propose an architecture to increase the on-chip resource utilization by

improving the CTA scheduling policy. While sharing the same general goal with RegMutex,

we observe no restriction on simultaneous application of these works with our proposed

technique.

In the CPU realm, hardware-only approaches [90,93] as well as combined compiler-

microarchitecture solutions [64,85,89] have been proposed for quick dead register identification

and release. Ayala et al. [16] suggest a software-hardware technique that tags sections of

the program which require only a small amount of registers for execution and allows

disabling regions of the register file during the execution for energy saving purposes. As we

mentioned before, such techniques in massively multi-threaded devices such as GPUs are

often impractical due to the their heavy reliance on TLP between resident warps.

121

Chapter 5

LARF: Locality-Aware Register

File for GPUs

5.1 Introduction

In big data era, one of the most critical computing problems is to speedup memory

accesses. To deliver huge data requested by massively parallel threads, big data workloads

such as deep learning are accelerated on many-core processors such as GPUs that are

equipped with multiple high-bandwidth memory controllers as well as various on-chip

memories. Though the on-chip memory size is almost doubling every new generations of

GPU architectures, long memory latency and limited on-chip memory size are still the main

performance bottlenecks of big data workloads. However, many big data workloads inherently

have data sharing features. For example, large matrix operations such as matrix multiply and

dot product are one of the most commonly used algorithms in big data workloads. In matrix

122

X
+

X

+

shaded region:
common inputs of
neighboring
neurons

input output
X

+

Figure 5.1: Input data sharing among three neurons that are vertically and

horizontally neighboring in a conv layer

multiply, any two neighboring threads that are assigned to the adjacent output matrix entries

in a row use the same row of the first input matrix. Also, the core algorithm of convolutional

neural network (CNN), which is one of the most successful deep learning algorithms that

has proved its efficiency in image recognition problems is dot-product operation. In a CNN,

neighboring neurons calculate convolutions (dot-product) of sliding sub-windows of the input

data where sub-windows overlap significantly.

Figure 5.1 shows an example data sharing across neighboring neurons in a con-

volution (conv) layer computation. The colored entries of the output matrix are the conv

results of three neurons where blue and yellow neurons are horizontal neighbors and blue

and green neurons are vertical neighbors. Each neuron uses a sub-set of data of the input

matrix, which is highlighted with colored border lines in the input matrix. The blue-colored

neuron takes the data in the first 5×5 matrix region, runs dot-product operations and stores

the result to the output entry. Likely, the green and yellow neurons each takes a matrix

from the one row below and one column after the blue neuron’s input matrix. The data in

123

the shaded regions that are overlapping between any two input regions are used by both

neurons. In this example, out of 25 input data of each neuron, 20 are shared between any

two neighboring neurons and 16 of them are used by all three neurons. In the typical CNN

computing, as individual neurons executions are considered as independent, each neuron

issues 25 memory reads even when the 20 and 16 shared data are somewhere in the on-chip

memory already.

These redundant memory accesses lead to performance and energy overhead. Even

when many of the data can be cached as they are accessed in the similar time windows,

due to the limited size of L1 cache, L2 cache should be also excessively accessed. Given

that interconnection between L1 and L2 is one of the critical performance bottlenecks of

GPUs, it is not desirable that all the neurons independently access memory for their data.

Shared memory may be used for reducing the memory access latency. However, due to the

limited size, the workload code should be carefully designed to have each CTA to load only

a small block of data over multiple iterations as in blocked matrix multiply. Also, using

shared memory adds a burden of loading data from global memory to shared memory and

then register file. Thus, allocating a data to the shared memory that is referenced only

once by the code only elongates the data access latency. Therefore, the programmer should

carefully determine access frequency of individual data at compile time to determine the

placement of the data allocation, which is not easy. Also, these independent and redundant

memory accesses lead to a significant on-chip memory waste. Because individual neurons

(threads) store the loaded data to their private on-chip memories such as registers before

computation, the on-chip memory ends up with maintaining multiple copies of identical

124

data. For example, in Figure 5.1, each of the 16 data that are shared by all three neurons

will be stored in a register of all three neurons. Therefore, there will be three redundant

copies of the same data in the register file. If data sharing is done in the other on-chip

memories such as shared memory, four copies of each data should be stored in the SM in

this example: a copy in the shared memory and three copies in the register file for the three

neurons. Given the massive parallelism of big data workloads, there will be a significant

amount of redundant data in the on-chip memory. Therefore, there should be a mechanism

that effectively exploits the inherent data sharing patterns of big data workloads to mitigate

performance and on-chip memory shortage problems, instead of blindly increasing memory

size and bandwidth which is costly.

In this chapter, we propose a locality-aware register file (LARF) for GPUs that

reduces the redundant memory accesses by sharing data directly in the register file without

any help from L1 or shared memory. Instead of having the three neurons in Figure 5.1

to store their 25 input data separately, our approach stores the overlapping 20 data to a

common set of registers. A neuron accesses memory only when the data is not already in the

register file. This approach not only helps reduce the redundant memory accesses but also

decreases the register file usage because the three neurons share one physical copy of register

for each of the overlapping data rather than having them in their private register separately.

The registers that are saved by our approach and the other on-chip memories may be used for

improving the performance further (e.g., by running more CTAs). Note that our approach

can be orthogonally applied with the other optimizations as we do not require software

modifications. The larger size and the lower typical utilization also makes the GPU register

125

file more favorable for the data sharing over the other on-chip memories [15, 62]. Therefore,

we leverage large register file space to support more threads by preserving common data

longer without worrying about cache thrashing, insufficient shared memory space, or a

sophisticatedly designed software. To maximize the coverage of data sharing, we also propose

a locality-aware warp scheduler (LAS). To share a data with the other threads, the register

should keep the data until when most of the shared parties (the other threads) consume

the data. However, due to the scheduling timing disparity between threads especially in the

advanced warp schedulers such as two level scheduler (TWL) and greedy scheduler (GTO),

the register may be overwritten before the other threads are even scheduled to issue the load

instruction. To resolve this timing issue, LAS checks the list of memory addresses of the

data shared in register file and assigns higher priority to the warps whose next instruction is

an off-chip memory load instruction and the target address is in the shared address list. Our

evaluation results show that the LARF and LAS together improve performance by up to 3×

and reduce the global load accesses by up to 80% for an assorted set of state-of-the-art deep

learning and matrix multiply workloads.

5.2 Background and Related Work

5.2.1 On-chip Inter-thread Data Sharing

On-chip inter-thread data sharing have been explored by several studies [14,32,53].

However, many of them used specialized data flow architectures where data sharing is easier

via direct communication channels among processing elements. Diamos et al. and Khorasani

et al. [40,72] leveraged GPU register file to maintain RNN parameters. However, as they aim

126

to share parameters across multiple time steps and hence do not need to consider concurrent

accesses, the register mapping is relatively straightforward. WIR [77] leveraged physical

register sharing to skip instructions. As WIR focused on reducing arithmetic operation

executions for a better energy efficiency, WIR has a more complex design that consists of

hash and instruction meta information tables. Also, the register reuse is allowed only when

the warp-unit register has a perfectly identical data. Our approach focuses on memory access

overhead and hence exploits common memory access patterns that enables warps to share

data for both perfect- and partial-matching cases with a simpler address mapping table.

Unlike their sophisticate design for also covering shared memory accesses, we simply focus on

global memory accesses because skipping shared memory accesses does not provide notable

performance advantage and unnecessarily idles the shared memory unless the application is

re-written not to use shared memory. The state-of-the-art deep learning libraries use register

file and shared memory to speedup the data access latency [33]. However, software-level

data sharing leads to an excessive register file usage with redundant data copies because

current GPUs do not allow inter-warp register sharing. In this chapter, we extend the

architecture-to-physical register mapping in the architecture level to enable data sharing

across warps.

5.3 Locality-Aware Register File

Warps may share either perfectly-matching data or partially-matching data. We

explain how our approach supports both cases by using a conv layer example.

127

1 2 3 4 5P1

n n+1n+2n+3n+4

k k+1 k+2 k+3 k+4

. . .

n n+1n+2n+3n+4

k k+1 k+2 k+3 k+4

. . .

N1 N2 N3 N4 N5 Nn Nn+1 Nn+2 Nn+3 Nn+4

j j+1 j+2 j+3 j+4

k k+1 k+2 k+3 k+4

j j+1 j+2 j+3 j+4

. . .

Nk Nk+1 Nk+2 Nk+3 Nk+4

q q+1q+2q+3q+4

Pointer
Sharing

Time

Pn

Pk

Pn

Pk

Pj

Pointer
Sharing

Pointer
Sharing

Pk

Pj

Pq

Pointer
Sharing

(a) Perfect sharing among

vertically neighboring neurons

1 3 4 5 6 7 . . .P1

N1 N2 N3 N4 N5

Time

Shuffle Shuffle
N1 N2 N3 N4 N5 N1 N2 N3 N4 N5

2 3 4 5 2 3 4 5 6P2 P3

6 8 9 10 11 12 . . .Pn

Shuffle Shuffle

N6 N7 N8 N9 N10

7 8 9 10 7 8 9 10 11Pn+1 Pn+2

N6 N7 N8 N9 N10

Merge
Merge

N6 N7 N8 N9 N10

(b) Partial sharing among horizon-

tally neighboring neurons

Figure 5.2: Proposed Data Sharing (an example of CNN)

5.3.1 Perfect Sharing

Any two vertically neighboring neurons have commonly used input data as illus-

trated as a shaded region between the input matrices of the blue and the green neurons

in Figure 5.1. The entire contents of each row in the overlapping region are shared by the

two neurons, which enables perfect sharing. As each neuron is assigned to a GPU thread in

typical CNN implementations, vertically neighboring neurons are likely to be in different

warps. For example, if the blue neuron is thread 0 of warp 0, the green neuron is thread 0

of warp N. Figure 5.2a shows the register updates of perfect sharing in a warp unit, where

we assume that each warp has only five threads for simplicity. Each five-element array is

a warp-unit register where each entry is a register of a thread (neuron) in the same warp.

The three warp-unit registers in the same row are of the three groups of neurons that are

vertically neighboring. In other words, the first warp having N1 to N5 is the warp that has

the blue neuron of Figure 5.1, the Nth warp consisting of Nn to Nn+4 is the one that has

green neuron, and the Kth warp is another group of neurons that are mapped to one row

below the Nth warp. As can be noticed, the second row of the first warp is identical with

128

the first row of the Nth warp. Likely, the third row of the first warp is the second row of

Nth warp as well as the first row of Kth warp.

These vertically overlapping rows can be directly shared by simply mapping the

same physical register pointer to the architectural registers of the neighboring warps. For

example, if the Nth warp loaded its first row to a physical register Pn, the first warp can get

its second row values by simply mapping its destination register of the load instruction for

the second row to Pn without needing to access memory or copy data from other registers.

Likely, once one of the three warps loads the values in Pk, the other two warps can get these

data by simply mapping their registers to Pk. With this pointer sharing, we can eliminate

redundant loads and reduce the register file utilization by keeping only one copy of warp-unit

register values across the neurons. To enable warps to check if their target data is in the

register file already, we design an address mapping table which contains the target address

information and the mapped physical register id. The details will be explained in Section 5.5.

The perfect sharing can be also found among horizontally neighboring warps in

matrix multiply. For example, if two 128×128 matrices are multiplied, four horizontally

neighboring warps that are assigned to the same row will use the same input row of the

first matrix that can be shared by using physical register mapping. The perfect sharing is

light weight because it only requires to map an architectural register to an existing physical

register instead of a memory load. However, it is possible only when warps use exactly the

same data. For partially-matching data, we use partial sharing, which is explained below.

129

5.3.2 Partial Sharing

The blue and yellow neurons in Figure 5.1 show the partial sharing between

neighboring neurons. The horizontally neighboring neurons are likely to be processed by

the neighboring threads in the same warp. For example, if the blue neuron is assigned to

the thread 0 of warp 0, the yellow neuron is operated by the thread 1 of warp 0. For each

load operation, these threads read data that are next to each other with a given stride

distance. In this example, the stride is set to 1 and hence, thread 1 and 2 read (0,0) and

(0,1) of the input matrix as their first data and (0,1) and (0,2) for their second data and

so on. Figure 5.2b shows the register updates by these load patterns in a warp unit. The

three arrays in each row show the first three data that each of the five neurons load from

the memory. For example, N1 loads 1, 2, and 3 (the first data in each array) for its first

three data and stores them to the first 32-bit entry of the warp-unit registers P1, P2, and P3,

respectively. For each load operation, the values of the warp unit register (each array) are

shuffled down by one of the previous load result. For example, N1 uses 2 as the second data,

which is the first data of N2 and so on. This operation can be represented with NVIDIA

CUDA Shuffle instruction, P2 = shfl down(P1, 1, 5);. If the destination register value

of each load is kept until the second load, the majority of the data (four out of five each

time) can be reused without issuing another load operation.

We still have one out of five data that should be newly loaded each time (6 and 7

in the second and the third loads, respectively in the example). These values can be fetched

from neighboring warp’s registers. The second row of Figure 5.2b shows the register updates

of the neurons 6 to 10, which are grouped to the second warp. As warps are interleavingly

130

scheduled in GPUs, after the first warp loads the data 1 to 5, the second warp loads the data

6 to 10. When the first warp is to load the second values, the data 6 is already in a register

Pn. Therefore, the second warp-unit register values of the first warp can be constructed

by merging the shuffled four values (2 to 5) and the first value of the second warp (6). By

running two simple logical operations (SHIFT for shuffle and OR for merge) on the existing

register values, individual data do not need to be loaded from the memory multiple times.

5.4 Locality-Aware Warp Scheduler

In LARF, warps share data opportunistically as far as the data is retained in the

register file. A shared data will be retained in the register file until when 1) the mapped

memory address is not overwritten and 2) the mapping information is not evicted from

the system. The first condition will be enforced by checking the target address of store

instructions. When an off-chip store instruction is issued, the target address is looked up in

the address mapping table. Once the address is hit in the mapping table, the corresponding

entry is evicted from the table because the contents of the memory address will be overwritten

by the store instruction and hence the value in the mapped physical register will be stale.

More details will be described in Section 5.5. Regarding the second condition, there are

two timings that the mapping information is evicted from the address mapping table: 1)

when the target address is updated, which is related to the first condition that we just

explained and 2) when the address mapping table is full and new entry is to be entered.

To minimize the space and energy overhead, we cannot hold infinite number of entries in

the address mapping table. Thus, in our evaluation, we assumed to have up to 100 400

131

entries in the mapping table. To use the big data input, the mapping table is quickly filled,

especially because the system cannot determine whether the data will be potentially shared

by others at the load issuing time. Thus, the address mapping table is obliviously filled in

first-in-first-out fashion. Therefore, sharing opportunity is depending on the warp scheduling

timing. When the warps that share the same data are scheduled in a closer time proximity,

the sharing chance will be higher.

The state-of-the-art warp schedulers follow a design that increases the timing

disparity between warps to reduce long latency memory access overhead. For example,

in two-level scheduler (TWL), warps in the ready queue are scheduled until when they

encounter global memory load instructions and then move to the pending queue. The warps

in the pending queue can be scheduled only when there is an empty spot in the ready queue,

which will be the timing when a ready warp reaches a global load instruction. Therefore,

memory access timing of groups of warps is highly diverse. The greedy algorithm (GTO)

makes the timing gap even further. Though these state-of-the-art scheduling algorithms

help individual warps to mitigate the memory access latency, due to the longer proximity of

memory access timing among warps, the data sharing opportunity is lower.

Our proposed locality-aware warp scheduler (LAS) considers inter-warp load issuing

proximity. To schedule warps that access the same memory address before the mapping

information is evicted from the address mapping table, LAS prioritizes the warps whose

next instruction is global memory load instruction and the target address is in the address

mapping table. To reduce the timing gap between warps, the baseline scheduling algorithm

is round robin (LRR). Like the baseline LRR, LAS schedules warps in first-in-first-out

132

IADD R4, g [0x4], R4;
GLD.U32 R4, global14 [R4]

(a) SASS code of Tesla GPU

IADD R8, R6, R3;
LD R6, [R8+0x7f8];

(b) SASS code of Fermi GPU

add.s64 %rd52, %rd43, %rd53;
ld.global.nc.f64 %fd663, [%rd52];

(c) PTX code of Pascal GPU

Figure 5.3: Instruction Sequences of Global Memory Accesses in GPUs

fashion as far as the warps are executing non-global load instructions. When a warp’s next

instruction is global load instruction, it looks up the address mapping table and changes the

scheduling order such that the warp is scheduled as early as possible if the target address is

in the table. If otherwise, the warp is scheduled according to the baseline LRR policy.

To identify the warps to prioritize, LAS checks the opcode of the next instruction

when a warp is finishing the write back pipeline stage. Note that in the GPU architecture

that we used as a baseline [17], each warp has an instruction buffer that holds two following

instructions. Whenever one of the instructions in the buffer is issued (evicted from the

buffer), a new instruction (next instruction) is fetched from instruction cache, decoded,

and filled in the buffer. Therefore, LAS can retrieve the next instruction opcode from the

instruction buffer. Once the opcode indicates a global load instruction, the target address is

checked. In GPUs, the memory address calculation is done in the memory execution logic.

However, we observed that the global load target address calculation is done before the

133

load instruction as can be seen in Figure 5.3. The three code snippets are acquired from

AlexNet of Tango benchmark suite [68] that is compiled for NVIDIA Tesla GPU, B+Tree

Rodinia benchmark suite [31] that is compiled for Fermi GPU, and cuDNN-based LeNet

of GPGPU-Sim benchmark suite that is compiled for Pascal GPU. As can be seen in all

codes, the target address of individual global load instructions is hold in a register, which

is calculated apriori. In Pascal and Tesla GPUs, there is no offset in the address field.

Therefore, the target address can be simply retrieved from the register %rd52 and R4. Note

that the prefix global14 in Tesla GPU is an indicator for global memory accesses. In

Fermi, an immediate value is added to the register value R8. Thus, the target address of

global load instruction can be acquired simply from a register value without any calculation

or in the worst case with a simple addition operation if there is an offset. Also as can be seen

in Figure 5.3, we observed that the load instructions typically follow an add instruction that

calculates the load target or base address. This means that the load target address can be

checked without a register file lookup at the write-back stage of the warp. Note that to avoid

data hazards between consecutive instructions, GPUs normally schedule different warps

every cycle where a six-warp batch is known to be golden. Thus, when the add instruction

is finishing the write-back stage, the following load instruction is not likely to be scheduled

yet. Therefore, by simply checking the value that is about to be written back to the register

file, LAS can check the target memory address and prioritize the load instruction, without

an extra register file access.

In case newer GPU generation does not follow such a back-to-back target address

calculation, we still check the operand register id of the load instruction. As the hardware

134

knows the global load instruction format, the opcode and source register fields of the load

instruction will be retrieved from the instruction buffer and the source register id is checked

with the write-back stage instruction’s destination register id. If they do not match, a register

file will be referenced with the source register id. Note that as this checking happens when

load instruction is the next instruction, the source register is guaranteed to be up-to-date in

the register file already.

5.5 Architectural Modification

5.5.1 Dynamic Register Mapping

To share data in a register across multiple warps, it is essential to decouple the

architectural registers used by the application code from the physical registers that actually

contain the data. Due to the space and energy issues of large register file, there have

been a few studies that explored the dynamic architectural-to-physical register mapping

already [15,62]. These studies used a compiler technique to detect register lifetime. Then,

the hardware uses the compiler annotated register file lifetime information to map and release

an architectural register to/from a physical register. With this method, the register file can

maintain only the live registers and proactively reuse the physical register space for other

architectural registers. The mapping information is managed by using a register renaming

table. We used a similar mechanism to map multiple architectural registers to one physical

register in LARF. As can be seen in Figure 5.4, a register renaming logic is implemented that

checks the physical register availability and maps an available (unmapped) physical register

to an architectural register whenever an architectural register lifetime begins (when the

135

Fetch Decoder

w0 add
1 r3 1
1 r7 0
0 ‐ 0

w3 add
1 r3 1
1 r7 1
0 ‐ 0

Reg. Renaming
. . .

. . .

Operand
Collector

Bank0

Bank1

Bank2

Bank3
w‐merge add

1 r3 1
1 r7 1

Ar
bi
tr
at
or

MEM

Base
Addr. Str.Act. Mask Phy

Reg ID
0x800002A0 4 0xFFFFFFFF P15
0x80046BB0 128 0xFFFFFFFE P14

Mapping
Controller

Warp Issue
Arbiter

Address Mapping Table

Locality
Checker

ALU

Figure 5.4: Architectural Modification

register is written by an instruction). The physical register availability is checked by using a

bit vector that has as many bits as the number of physical warp-unit registers where the bit

is set when the physical register is mapped to an architectural register and reset when the

corresponding physical register is not mapped with an architectural register. The mapping

between architectural and physical registers can be made by entering a new entry in the

register renaming table. According to the compiler annotated lifetime information [62], once

a register lifetime ends (when the register is last read in the code), the mapping is released

by simply deleting the mapping information from the renaming table. The design of the

renaming table is the same with the existing studies [62].

5.5.2 Address Mapping Table and Mapping Controller

Besides the dynamic register mapping logic that we followed existing designs, the

new components that designed for LARF are highlighted with bold outline and dark color in

136

Figure 5.4. To indicate the physical register that holds the shared data, an Address Mapping

Table is added. Address mapping table holds the load instruction target address information

and the mapped physical register id. The data sharing in our proposed approach is done

in warp level. Thus, each entry of this table contains the information of a warp-unit load

accesses. As threads in a warp typically access consecutive addresses with a fixed stride, we

record the base address (the address of the first thread) and the stride rather than storing

addresses of all the threads. Though most of the input data are read by fully utilized warps

(all 32 active threads), to also support various length input data, the active lane mask of the

load instruction is also recorded in the table.

To identify global load instruction and target memory address as well as managing

the address mapping table accesses, we design Mapping Controller. The mapping controller

checks the opcode of instructions at operand collector pipeline stage. Once the opcode

field of an instruction indicates a global load instruction, the target memory address is

calculated. As explained in Section 5.4, the load target address can be either retrieved from

the source register or by executing a simple addition operation over the source register value

and an offset value. As instructions at operand collector stage are reading their operands

from the register file, the source register value can be acquired without an extra register

access. Once the source register value is ready, the target address is quickly calculated

and the address mapping table is looked up with the address. If the address is not in the

table already, the target memory address, stride, and active mask of the load instruction

are recorded to the table and the load will be issued as normal. The destination register

of the load instruction will be mapped to an available physical register by using dynamic

137

register mapping mechanism and the physical register id is also filled in the address mapping

table as shown in the figure. Note that the architectural-to-physical register mapping is still

maintained in the register renaming table which is in the register renaming logic. Therefore,

even when the entry in the address mapping table that is associated with the physical register

id is evicted later due to a lot of memory accesses, as far as the architectural register lifetime

is not ended, the physical register maintains the loaded value and the mapping between the

architectural register and the physical register will be retained. In other words, the address

mapping table holds the physical register id as a pointer such that the future load accesses

can find the value from the mapped physical register as far as the mapping information is

not evicted from the table, as explained in Figure 5.2a as pointer sharing. To calculate the

stride of the memory access, a 32-bit subtractor logic is incorporated in mapping controller

that calculates the address gab between adjacent threads. In our current design, we only

support one stride per warp unit instruction because we observed that most of the memory

loads fall in single-stride accesses. However, the mapping table can be extended to also

support multi-stride accesses at the cost of space.

Figure 5.5 shows the interactions between address mapping table and register

renaming logic when the load instruction is hit and miss in the address mapping table.

Suppose that the address mapping table had one entry that is mapped to a global load

instruction which accessed 32 data from 0x10000000 with 4-byte gap such as 0x10000000,

0x10000004, 0x10000008, and so on by a warp. Then, the address mapping table’s initial

status will look like what is shown in Figure 5.5a, which has base address as 0x10000000,

stride as 4, and active mask as 32 1’s. Assume that the loaded data are stored in a warp-unit

138

SM

. . .

SIMT Cluster 0

.

.

.

P0P0
P4P4

P1020P1020

.

.

.

P1P1
P5P5

P1021P1021

.

.

.

P2P2
P6P6

P1022P1022

.

.

.

P3P3
P7P7

P1023P1023

SIMT Cluster 7

.

.

.

P0P0
P4P4

P1020P1020

.

.

.

P1P1
P5P5

P1021P1021

.

.

.

P2P2
P6P6

P1022P1022

.

.

.

P3P3
P7P7

P1023P1023

Occupied
Available

PHYS.
REG
ID

..
.

P3
P3
P2
P5

. .
.

Renaming
Table

Register Banks

24

Base Addr. Stride Act. mask Reg
ID

..
.

0x10000000 4 0xFFFFFFFF P3

Address Mapping Table

w7: ld.global.nc %r0 [%rd2]



 hit!

Copy phys reg. id
Skip ld

(a) Steps of Address Mapping

Table Hit.

SM

. . .

SIMT Cluster 0

.

.

.

P0P0
P4P4

P1020P1020

.

.

.

P1P1
P5P5

P1021P1021

.

.

.

P2P2
P6P6

P1022P1022

.

.

.

P3P3
P7P7

P1023P1023

SIMT Cluster 7

.

.

.

P0P0
P4P4

P1020P1020

.

.

.

P1P1
P5P5

P1021P1021

.

.

.

P2P2
P6P6

P1022P1022

.

.

.

P3P3
P7P7

P1023P1023

Occupied
Available

PHYS.
REG
ID

..
.

P1
P3
P2
P5

. .
.

Renaming
Table

Register Banks

25

Base Addr. Stride Act. mask Reg
ID

..
.

0x10000000 4 0xFFFFFFFF P3
0x10004000 8 0xFFFFFFFF P1

Address Mapping Table

w7: ld.global.nc %r0 [%rd2]



miss

Allocate

Update

 Issue ld

(b) Steps of Address Mapping

Table Miss.

Figure 5.5: Example Scenarios with LARF

register, P3, which means that the 4-byte value of 0x10000000 is in lane 0 of P3, that of

0x10000004 is in lane 1 of P3, and so on. We assume that the baseline register file consists

of clusters of four register banks such that there are eight clusters of four banks as shown in

Figure 5.5a. In each cluster, a physical register such as P3 consists of 16 bytes that support

four SIMT lanes, 4 bytes per lane. Thus, P3 of all eight clusters are accessed concurrently

by a warp as a warp-unit register. As the mapping is retained in the address mapping table,

P3 in the register file is marked as occupied in the figure. Given the initial status, assume

that a fully utilized (32 active lanes) warp 7 is trying to issue a global load instruction and

the source operand %rd2 of thread 0 is 0x10000000 and that of the following threads are

increasing 4 bytes each. The mapping controller looks up the address mapping table with

this load information and finds that there is an entry already (1). As the data can be

found from the register file, the mapping controller simply copies the register id mapped

in the address mapping table entry to register renaming logic where the renaming logic

fills the the register renaming table with the physical register id (2). Note that individual

139

architectural register of each warp has a designated entry in the renaming table where the

location is calculated as max. theoretical register count per thread × warp id + destination

arch. register id [62]. Once the register id is copied from the address mapping table to

the register renaming table, the load instruction does not need to be executed and written

back because the data that the instruction wanted to load is already in P3. If the register

renaming logic receives a physical register id from the mapping controller, it skips allocating

a new physical register, but simply copies the id to the renaming table.

Figure 5.5b shows another example when the load is not found from the address

mapping table. Now, the same instruction is about to be issued but the value of %rd2

is 0x10004000. Suppose that the initial status of the address mapping table was like the

table in Figure 5.5a. As 0x10004000 is not in the table already (1), the mapping controller

inserts an entry with the load information, as highlighted. Once the register renaming logic

maps the destination register of the instruction to an available physical register (P1 in this

example) (2), the id is sent to the mapping controller so that the new entry in the address

mapping table is filled with the register id (3). Then, the load instruction is issued as

normal (4) and the loaded values will be written back to P1. As can be seen in Figure 5.5b,

P1 is newly activated in the register file.

An entry of the address mapping table is deleted when the corresponding memory

address is newly written, when the address mapping table does not have a space to fill a new

entry, or when there is no more mapped architectural registers. When a store instruction is

issued, the address is checked from the address mapping table and the corresponding entry

is deleted so that the following load instructions do not use outdated value. Also, when

140

an architectural register becomes dead and the mapped physical register is released, the

mapping controller searches the register renaming table by the physical register id to check

if there is any more architectural register that is mapped to the same physical register. If

there is no more entry in the renaming table that has the physical register id, the address

mapping table entry associated with the physical register is deleted.

The address mapping table is sufficient for supporting perfect sharing. However, to

support partial sharing that needs to merge two registers, we add one dedicated operand

collector slot as marked with w−merge in Figure 5.4. This new slot loads two registers that

contain subsets of the requested warp-unit register data. These two registers can be found

by checking the address mapping table. For each global memory load instruction, if mapping

controller finds that no entry in the address mapping table can cover the requested data, it

finds up to two entries that together cover the requested warp-unit data. For example, if a

load needs to access addresses from 0x1000000C with stride 4 for 32 SIMT lanes, while the

address mapping table has two entries where one entry covers 32 addresses from 0x10000000

with 4-byte stride and another has 32 data loaded from 0x10000080 with 4-byte stride, these

two warp-unit registers can be used to create a warp-unit register for the requested load

instruction, by shuffling the first warp register by 3 to make the 0x1000000C data to be

placed in the SIMT lane 0 and merging with the lanes from 0 to 2 of the second register. If

there are no two entries that can support all the requested data, the load is issued to the

memory. Otherwise, the two registers are requested to the operand collector logic and the

load execution is skipped. Once two register values are ready, the mapping controller uses

them to construct the requested data. For this merging process, we design a small ALU

141

that runs bit-level SHIFT operations for shuffling and an OR operation for merging. The

merged value is written to the load instruction’s destination register at the writeback stage.

The perfect sharing does not add any performance overhead because it only requires

one address mapping table lookup and a register renaming table update. If the corresponding

entry is found from the address mapping table, it does not even require register writeback

because the destination register is mapped to a physical register that already has the

requested value. When an entry is not found, the load is issued to the lower-level memory by

following the normal load operation. The partial sharing takes longer time than the perfect

sharing because two registers should be read from the register file and shuffle and merge

operations should be done on them. However, as the destination register will be updated at

write-back stage, which is multiple cycles later than the operand collector stage, it does not

impose performance overhead.

Discussions: Is there any memory consistency or program correctness

problem? No. One may wonder if the proposed load early completion at operand collector

stage may cause a memory consistency problem by making load instructions to be completed

before the previous store instruction. However, this never happens because 1) in GPU

computing, all the warps are considered as independent unless there is a synchronization

barriers such as synchthreads() and hence the load and store of different warps are

independent as far as the program is correctly implemented, 2) LARF follows the baseline

hardware design that halts all active warps execution at barrier or synchronization point

from proceeding to the following instructions until when all warps reach the barrier point,

and 3) it is very rare that multiple warps interactively update and read to and from the

142

same memory address in the target big data workloads such as deep learning and matrix

multiply. To avoid unnecessary synchronization, most of these workloads assign one thread

to one of the output matrix entries and have the one thread to update the entry exclusively.

For example, in a convolution layer, the kernel is implemented by using as many threads as

the number of entries in the output feature map and each thread calculates the designated

entry value by reading multiple input data concurrently. No other threads update the same

output entry. Also, in these workloads, the inputs are normally read-only. For example, in

convolution layer, the input matrix and the convolution kernel are never updated but only

read. Likely, in the matrix multiply, the two input matrices are never updated but only

read. Therefore, the load early completion does not cause memory consistency or program

correctness problem.

5.5.3 LAS Support

To prioritize a warp that is likely to have hit in the address mapping table, LAS

checks the opcode of the next instruction of the warp that is executing the write-back stage

and the value that is updated to the register file (which is the following load’s target or base

address) by the warp, as explained in Section 5.4. As at write-back stage, the computation

results are returning back to the register file from the execution units and locality check needs

address mapping table lookup, we added a Locality Checker near the mapping controller

that has interfaces with both register file and address mapping table. The locality checker

is an extension of the instruction buffer updation logic that clears dependencies of the

decoded instructions in the instruction buffer whenever an instruction finishes the execution

at write-back stage. At the write-back stage, the locality checker checks the opcode and

143

offset field of the instructions in the instruction buffer of the corresponding warp. If the

opcode is global load’s, the offset value is sent to the mapping controller. The mapping

controller than intercepts the values that are passed to the register file to be written back,

sums the register value and the offset, and looks up the address mapping table with the

calculated target memory address. If the address mapping table search hits, the mapping

controller sends a signal to the warp issue arbiter so that the warp scheduler can decide

the scheduling priority, as can be seen in Figure 5.4. The warp issue arbiter is the main

logic of warp scheduler that determines the warp scheduling order. We assume that the

baseline warp issue arbiter follows the LRR scheduling algorithm. Once the warp issue

arbiter receives a signal from the mapping controller, it gives higher priority to the warp and

then the warp will be scheduled at the earliest possible time when the instruction becomes

ready, without waiting for its scheduling turn, which typically takes tens of cycles. The

locality checker is implemented with a subtractor that checks if the opcode of the instruction

matches the global load instruction’s opcode, and an multi-bit AND logic that captures the

offset field value and send it to the mapping controller. The target address calculation can

reuse the existing address calculation logic in the mapping controller, which is explained in

Section 5.5.2.

5.6 Evaluation

The idea is implemented in GPGPU-Sim v4.0.0 that is adapted to PyTorch inte-

gration to run DNN workloads. The simulator is configured as a Pascal GPU (GP102) that

has 28 SMs, 128KB register file per SM, and 96KB shared memory per SM. CUDA version 8

144

Workload Type Name Benchmark Suite

CNN

AlexNet (AN) Tango DNN

Benchmark

Suite [68]

CifarNet (CN)

MobileNet (MN)

LeNet (LN)

GPGPU-Sim

cuDNN

Benchmark

Conv

Function

3DCONV

(3DCV)
PolyBench/GPU [110]

MatrixMul
2MM

3MM

was used. Though ptxplus configuration option should be used to measure a more realistic

register usage statistics, we could not use ptxplus because ptxplus is not supported by CUDA

version 8. Thus, we ran all experiments based on ptx code. However, our measurements

show a close-to-real register allocations because we implemented the lifetime-aware dynamic

register mapping, which minimizes the register usage. For example, even when the ptx

code keeps allocating a new architectural register by assuming that it has infinite registers,

our code still uses as many registers as the number of live registers because whenever an

architectural register’s lifetime ends, the mapped physical register becomes available again

and is reused by other architectural registers. To verify the realistic register utilization, we

checked the register file usage statistics of a few workloads with lower version gpgpu-sim

code with ptxplus option. We observed that the register utilization statistics of ptx code

145

well synchronizes with ptxplus results. We evaluated our proposed design while running

deep learning and matrix multiply workloads that include three CNNs (AlexNet, CifarNet,

MobileNet) of Tango DNN benchmark suite [68], one CNN (LeNet) of GPGPU-Sim cuDNN

benchmark suite, and two matrixMul (2MM and 3MM) and a 3 dimensional convolution

workload (3DCONV) of PolyBench-GPU [110].

5.6.1 Performance

Individual CNN workloads consist of multiple layers where each layer is typically

implemented in one or more CUDA kernel(s). Due to individual layers’ algorithmic unique-

ness, the performance characteristics of each layer type are quite different. For example, in

CifarNet, there are three convolution layers, three pooling layers, and two fully-connected

layers. In convolution layers, individual threads (neurons) run dot-product operations for a

subset of the given large input matrix, while the pooling layer’s operations are more like

vector operations that extract the maximum or the average value of the given input. In

fully-connected layers, each neuron run dot-product operations for all input entries and

hence typically memory intensive. Therefore, the architectural characteristics of individual

layers are quite different and hence it is necessary to investigate the performance in both

per-layer level and end-to-end full network level. We show per-layer performance statistics

of CifarNet and MobileNet. Due to the limited space we show end-to-end performance

statistics for the remaining workloads.

146

0
0.1
0.2
0.3
0.4
0.5

Cv1 Pl1 Cv2 Pl2 Cv3 Pl3 FC1 FC2 MEANLo
ad

 C
ov

er
ag
e

TWL GTO LRR LAS

(a) Normalized Load Sharing

Coverage

0.7
0.8
0.9
1

1.1

Cv1 Pl1 Cv2 Pl2 Cv3 Pl3 FC1 FC2 MEAN

No
rm

.
Sp

ee
du
p

TWL GTO LRR LAS

(b) Normalized Speedup

Figure 5.6: Scheduler Impact on CifarNet Execution: Cv: convolution layer,

Pl: pooling layer, FC: fully-connected layer

Impact of Locality-Aware Scheduler:

Our proposed LAS is designed based on LRR to increase the data sharing coverage.

This may be counter intuitive because TWL and GTO are known to be more advantageous

for memory-intensive workloads as these schedulers effectively hide memory access latency by

running two warp queues. To justify the better timing proximity of LRR, we measured the

performance speedup and data sharing coverage of CifarNet while varying the warp scheduler

between TWL, GTO, LRR, and our proposed LAS. By setting the address mapping table

size as infinite, we checked the percentage of shared and skipped load instructions and the

corresponding performance impact. Figure 5.6a shows the fraction of global load instructions

that are shared by LARF out of total global loads when using different warp scheduler.

Though TWL showed higher coverage than LRR in the first two layers, the remaining six

layers consistently show better data sharing under LRR. This is because LRR minimizes the

scheduling timing disparity among warps. As the warps in the same CTA run the same copy

of code, if they are scheduled back to back, there is a higher chance to run load instructions

that access neighboring memory addresses in the near time window, which helps increase

147

0
0.5
1

1.5
2

2.5
3

3.5
4

Sp
ee

du
p

LARF (Infinite) LARF (400) LARF (400) + LAS

(a) Normalized Total Simulation Cycles

0
0.2
0.4
0.6
0.8

1
1.2

No
rm

a.
 G

lo
ba
l

Me
m

Re
ad

s

LARF (Infinite) LARF (400) LARF (400) + LAS

(b) Normalized Total Global Memory Reads

Figure 5.7: Per-Layer Speedup and Global Memory Accesses of MobileNet:

Numbers in parenthesis are the address mapping table entry counts. DWC:

depth-wise convolution layer, Cv: 3D convolution layer, PWC: point-wise con-

volution layer

the data sharing opportunity. Our proposed LAS is plotted as the darkest yellow bar charts

in Figure 5.6a. As can be seen, it shows superior data sharing of all warp schedulers. The

data sharing coverage is directly reflected in the performance. In Figure 5.6b, the speedup

of individual layers over LAS is plotted (higher is better). The bar charts trend of individual

layers and overall average are well aligned with the load coverage. The superior load coverage

of LAS especially in the first two layers over TWL leads to higher performance.

148

0
0.5

1
1.5

2
2.5

Sp
ee

du
p

LARF (Infinite) LARF (400)
LARF (400) + LAS

(a) Normalized Total

Simulation Cycles

0
0.2
0.4
0.6
0.8

1
1.2

No
rm

.
Gl

ob
al

Me
m

Re
ad

s

LARF (Infinite) LARF (400) LARF (400) + LAS

(b) Normalized Total Global

Memory Reads

Figure 5.8: Per-Layer Speedup and Global Memory Accesses of CifarNet

Per-Layer Performance:

Figure 5.7 and Figure 5.8 show per-layer speedup and global memory accesses of

the proposed LARF and LAS, normalized by a vanilla Pascal architecture that does not

use any of the proposed designs. We used the vanilla Pascal architecture as baseline of

all experiments. To understand the theoretical maximum performance improvement and

memory access reduction with LARF, we measured these metrics by setting the address

mapping table to have infinite number of entries (LARF (Infinite) in the figure). Then, we

set the address mapping table entry count to be realistic, which is 400 in this case that

makes the total address mapping table size within 1 KB (LARF (400)). The bar charts

entitled LARF (400) + LAS show the measurements when LAS is also activated.

In Figure 5.7, we can observe that regardless the order of layers, the layer type

distinguishes the impact of LARF notably. For example, the depth-wise convolution layers

show significantly better speedups than point-wise convolutions, where the first depth-

wise convolution layer reaches almost 3.5× speedup. This is intuitive because depth-wise

149

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

2MM 3MM 3DCV AN LN
Sp

ee
du
p

LARF (Infinite) LARF (400)

LARF (400) + LAS

(a) Normalized Total

Simulation Cycles

0
0.2
0.4
0.6
0.8
1

1.2

2MM 3MM 3DCV AN LN

No
rm

.
Gl

ob
al

Me
m

Re
ad

s

LARF (Infinite) LARF (400)
LARF (400) + LAS

(b) Normalized Total Global

Memory Reads

Figure 5.9: End-to-End Speedup and Global Memory Accesses of Remaining

Workloads

convolutions typically handle a larger 2D matrix inputs that are sliced from a given 3D

input, while point-wise convolutions typically use 1×1×N small square inputs to merge the

depth-wise convolution outputs. The sliced depth-wise convolution layer enables a more

regular access patterns across neurons compared to 3D convolutions, which leads to a higher

data sharing opportunity. As expected, the reduction of global memory reads turned out to

be the main driver of the speedup as can be seen in Figure 5.7b.

Another notable thing that we can observe is that the LAS can escalate the impact

of LARF even above the theoretical maximum impact that LRR scheduler can derive.

According to our experimental results, in these layers, the idle stalls were reduced further,

which means that the warp scheduling reordering can make warps to be ready faster by

effectively reducing warp’s waiting time to be scheduled.

Likely, in Figure 5.8, the two plots show that LARF is more effective to boost the

performance of convolution layers. In CifarNet, the earlier layers showed higher improvement

and global read reduction ratio, which is because of the larger input size in the earlier layers.

With the same reason, in Figure 5.8b, we can observe a notable trend across convolution

150

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

CN AN MN LN 2MM 3MM 3DCV MEANUt
il

iz
at

io
n

of
 C
om

pi
le

r
Al

lo
ca

te
d
Re

gi
st

er
s

Max Avg Min

Figure 5.10: Utilization of Compiler Allocated Registers

layers that the global read reduction is reducing as going into the deeper layers. The highest

impact of LAS is also found from the very first convolution layer that has a higher potential

of data sharing opportunity. In summary, with LARF, the end-to-end performance of

MobileNet and CifarNet was sped up to 7% and 10%, respectively both when LAS was used

with LARF.

End-to-End Performance

Figure 5.9 shows end-to-end speedup and global memory reads reduction in the

remaining five workloads. Each of the workloads shows up to 70%, 60%, 9%, 7%, and 6%

speedup, respectively. In all workloads, LARF and a combination of LARF and LAS enable

the workloads to reach the theoretical maximum speedup. Especially in 2MM, the LAS

improves the performance over LARF-only solution by 40%.

5.6.2 Register File Utilization

As LARF inherently saves register usage by proactively share a copy of physical

register across multiple architectural registers, we evaluated the impact of LARF towards

the register utilization. Figure 5.10 shows the min, average, and max register utilization over

compiler allocated architectural registers throughout the execution of individual workloads.

151

The utilization was measured per kernel unit. Across the workloads, out of the compiler

allocated architectural registers, only 50% were utilized at any given point of time. This is

different from register file utilization because the architectural register may not use up all

the provided registers. As ptx code assumes to use infinite number of architectural registers,

we measured the maximum number of architectural registers that are live at the same time

in each warp execution. Out of them, LARF even saved almost 50% register usage because

one copy of physical register can be shared across the architectural registers. Given that the

parallelism of many big data workloads is limited by register usage, the register saving will

help improve the performance of the big data workloads further. Note that, in LeNet of

cuDNN benchmark suite, register was the limiting factor of CTA assignment for almost 80%

of kernels.

5.6.3 Synergy With Existing Optimizations

As LARF can be orthogonally implemented with existing software-level optimiza-

tion algorithms, we evaluated the impact of LARF over the existing optimizations and

the performance improvement that is expected when applying LARF with the existing

optimizations. To measure the impact with a more realistic code, by using ptxplus option,

we evaluated only this experiment on Fermi architecture and used a 128×128 matrixMul

code that is similar to NVIDIA CUDA SDK. We evaluated performance of matrixMul

without any optimization and a blocked matrixMul using shared memory to understand the

impact of the register sharing over the existing optimizations. The mapping was limited to

200 entries because the register file size is smaller than Pascal architecture. The register

sharing without any optimization derived 83% speedup as plotted as the darkest yellow

152

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

2.2

S
p
e
e
d
u
p

Reg Sharing
+ Global Mem

Shared Mem

Reg Sharing
+ Shared Mem

0
100
200
300
400
500
600
700

Global
Mem

Shared
Mem

#

W
a
r
p
-
u
n
i
t

R
e
g
i
s
t
e
r
s

Arch Regs

Phy Regs

Phy Regs +
Reg Sharing

Figure 5.11: Speedup and Register Usage of 128×128 MatrixMul

bar in Figure 5.11 where software optimization (medium yellow bar) shows only 8% further

speedup. Regarding the register usage, the optimized matrixMul uses 50% more registers

than unoptimized one. With register sharing, both matrixMuls showed almost 40% register

usage reduction, which spares 17KB and 24KB register file space each. With these spared

registers, LARF allowed to run more CTAs and achieved 10% further speedup over the

optimized code as shown in the lightest yellow bar of the left graph.

5.6.4 Area

Our design adds an operand collector slot, an address mapping table, a mapping

controller, and a locality checker. An operand collector slot adds insignificant overhead as

GPUs have 16 operand collector slots per SM already. Each address mapping table entry

consists of a total of 83 bits where base address, stride, active count, and physical register id

are 32 bits, 8 bits, 32 bits, and 11 bits, respectively, where the stride length is set based on

the statistics of big data workloads which spans from zero to 512 and is typically multiple of

four and the physical register id is set based on the Pascal GPU’s per-SM register size which

is 2048 warp-unit registers. The address mapping table size is limited to 1KB, which can

have up to around 400 entries and the register renaming table in the baseline is 1KB. The

153

mapping controller includes a small ALU that can run add, sub, shift, and or operations

on two 1024-bit warp-unit registers. The locality checker consists of a sub logic for the

opcode-field-length inputs, and an and logic that extracts the offset field value.

154

Chapter 6

Conclusions

Over the past decade, GPUs have continued to grow in terms of performance and

size. The number of execution units has been steadily increasing, which in turn increases

the number of concurrent thread contexts needed to keep these units utilized. In order

to support fast context switching between large groups of active threads, GPUs invest in

large register files to allow each thread to maintain its context. The Register File (RF) is

a critical structure in GPUs responsible for a large portion of the area and power. In this

dissertation, we sought to address some of main register allocation challenges by designing

synergistic compiler/microarchitecture techniques to enable high-performance and energy

efficient GPUs.

We first introduced the concept of register coalescing. We proposed CORF, a

coalescing-aware register file design for GPUs that simultaneously reduces the leakage and

dynamic access power, while improving the overall performance of the GPU. CORF achieves

these properties by enabling the reads to multiple operands that are packed together to

155

be coalesced, reducing the number of reads to the RF, and improving dynamic energy and

performance. CORF combines compiler-assisted register allocation with a re-organized

register file (CORF++) in order to maximize operand coalescing opportunities. Specifically,

the new register file organization allows operands to be coalesced even if they reside in

different physical registers, provided they reside in non-overlapping sub-banks.

In BOW, we observed that register values are reused repeatedly in close proximity in

GPU workloads. We exploit this behavior to forward data directly among nearby instructions,

thereby shielding the power-hungry and port-limited register file from many accesses (59%

of accesses with an instruction window size of 3). Our best design (BOW-WR) can bypass

both read and write operands, and leverages compiler hints to optimally select write-back

operand target.

In RegMutex, we noted that static and exclusive register allocation on GPUs

leads to register file under-utilization. We addressed this challenge by time-multiplexing

the register use between warps. On the compiler side, RegMutex divides the architected

register set into a base register set and an extended register set, and by analyzing the

program, injects instructions in the kernel code where the extended register set activates

and deactivates. On the microarchitectural side, while physical registers are allocated to

the base architected registers for the lifetime of the kernel, RegMutex takes a communal

approach on allocating physical registers to the extended architected register set. Using the

information provided by the compiler, the warp acquires the physical registers for extended

architected registers from a shared register pool when needed, and releases them to the

shared pool upon deactivation of the extended register set. We showed that this approach

156

enhances the performance of GPU kernels exhibiting a limited occupancy due to high register

pressure, and allows application resilience when underlying microarchitecture employs a

smaller register file.

Finally, in LARF, instead of modifying software or over-provisioning on-chip

memory size, we proposed a data sharing mechanism among warps within the existing

register file space. By exploiting the inherent data sharing feature of big data workloads, our

proposed locality-aware register file and warp scheduler effectively reduce off-chip memory

accesses. Our proposed design showed up to3.5×speedup and 80% global memory access

reduction for the data-intensive kernels.

157

Bibliography

[1] Cuda computing sdk 4.2. https://developer.nvidia.com/cuda-toolkit-
42-archive. accessed: 2017-08-11.

[2] nvdisasm cuda binary tool. http://docs.nvidia.com/cuda/cuda-binary-
utilities/#nvdisasm. Accessed: 2017-08-11.

[3] Nvidia tesla v100 gpu architecture whitepaper. http://www.nvidia.com/
object/volta-architecture-whitepaper.html. accessed: 2017-08-11.

[4] https://github.com/gpgpu-sim/ispass2009-benchmarks, 2009.

[5] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur,
Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul
Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
TensorFlow: A System for Large-scale Machine Learning. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and Implementation, OSDI’16,
pages 265–283, Berkeley, CA, USA, 2016. USENIX Association.

[6] M. Abdel-Majeed, A. Shafaei, H. Jeon, M. Pedram, and M. Annavaram. Pilot register
file: Energy efficient partitioned register file for gpus. In 2017 IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2017.

[7] Mohammad Abdel-Majeed and Murali Annavaram. Warped register file: A power effi-
cient register file for gpgpus. In High Performance Computer Architecture (HPCA2013),
2013 IEEE 19th International Symposium on, pages 412–423. IEEE, 2013.

[8] Mohammad Abdel-Majeed, Hyeran Jeon, Alireza Shafaei, Massoud Pedram, and Murali
Annavaram. Pilot Register File: Energy Efficient Partitioned Register File for GPUs.
In Proceedings of IEEE Symposium on High Performance Computer Architecture.
IEEE, 2017.

[9] Mohammad Abdel-Majeed, Daniel Wong, and Murali Annavaram. Warped gates:
Gating aware scheduling and power gating for gpgpus. In Microarchitecture (MICRO),
2013 46th Annual IEEE/ACM International Symposium on, 2013.

158

https://developer.nvidia.com/cuda-toolkit-42-archive
https://developer.nvidia.com/cuda-toolkit-42-archive
http://docs.nvidia.com/cuda/cuda-binary-utilities/#nvdisasm
http://docs.nvidia.com/cuda/cuda-binary-utilities/#nvdisasm
http://www.nvidia.com/object/volta-architecture-whitepaper.html
http://www.nvidia.com/object/volta-architecture-whitepaper.html
https://github.com/gpgpu-sim/ispass2009-benchmarks

[10] Mohammad Abdel-Majeed, Daniel Wong, Justin Kuang, and Murali Annavaram.
Origami: Folding warps for energy efficient gpus. In Proceedings of the 2016 Interna-
tional Conference on Supercomputing, ICS ’16, 2016.

[11] Amirali Abdolrashidi, Hodjat Asghari Esfeden, Ali Jahanshahi, Kaustubh Singh, Nael
Abu-Ghazaleh, and Daniel Wong. Blockmaestro: Enabling programmer-transparent
task-based execution in gpu systems. In 2021 48th Annual IEEE/ACM International
Symposium on Computer Architecture (ISCA). IEEE, 2021.

[12] AmirAli Abdolrashidi, Devashree Tripathy, Mehmet Esat Belviranli, Laxmi N. Bhuyan,
and Daniel Wong. WIREFRAME: Supporting Data-dependent Parallelism through
Dependency Graph Execution in GPUs . In MICRO ’17: Proceedings of the 2017 50th
Annual IEEE/ACM International Symposium on Microarchitecture, 2017.

[13] Alaa R. Alameldeen and David A. Wood. Adaptive cache compression for high-
performance processors. In Proceedings of the 31st Annual International Symposium
on Computer Architecture, ISCA ’04, 2004.

[14] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie Enright
Jerger, and Andreas Moshovos. Cnvlutin: Ineffectual-neuron-free Deep Neural Network
Computing. In ISCA, pages 1–13, 2016.

[15] Hodjat Asghari Esfeden, Farzad Khorasani, Hyeran Jeon, Daniel Wong, and Nael
Abu-Ghazaleh. Corf: Coalescing operand register file for gpus. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 701–714. ACM, 2019.

[16] José L. Ayala, Alexander Veidenbaum, and Marisa López-Vallejo. Power-aware compi-
lation for register file energy reduction. International Journal of Parallel Programming,
31(6), 2003.

[17] Ali Bakhoda, George L Yuan, Wilson WL Fung, Henry Wong, and Tor M Aamodt.
Analyzing cuda workloads using a detailed gpu simulator. In Performance Analysis of
Systems and Software, 2009. ISPASS 2009. IEEE International Symposium on, pages
163–174. IEEE, 2009.

[18] Mohammad Bakhshalipour, Aydin Faraji, Seyed Armin Vakil Ghahani, Farid Samandi,
Pejman Lotfi-Kamran, and Hamid Sarbazi-Azad. Reducing Writebacks Through In-
Cache Displacement. ACM Transactions on Design Automation of Electronic Systems
(TODAES), 24(2):16, 2019.

[19] Mohammad Bakhshalipour, Pejman Lotfi-Kamran, Abbas Mazloumi, Farid Samandi,
Mahmood Naderan, Mehdi Modarressi, and Hamid Sarbazi-Azad. Fast Data Delivery
for Many-Core Processors. IEEE Transactions on Computers (TC), 67(10):1416–1429,
2018.

[20] Mohammad Bakhshalipour, Pejman Lotfi-Kamran, and Hamid Sarbazi-Azad. Domino
Temporal Data Prefetcher. In International Symposium on High-Performance Com-
puter Architecture (HPCA), pages 131–142. IEEE, 2018.

159

[21] Mohammad Bakhshalipour, Mehran Shakerinava, Pejman Lotfi-Kamran, and Hamid
Sarbazi-Azad. Bingo Spatial Data Prefetcher. In International Symposium on High-
Performance Computer Architecture (HPCA), 2019.

[22] Mohammad Bakhshalipour, Seyedali Tabaeiaghdaei, Pejman Lotfi-Kamran, and Hamid
Sarbazi-Azad. Evaluation of hardware data prefetchers on server processors. ACM
Computing Surveys (CSUR), 52(3):1–29, 2019.

[23] Rajeev Balasubramonian, Sandhya Dwarkadas, and David H Albonesi. Reducing the
complexity of the register file in dynamic superscalar processors. In Microarchitecture,
2001. MICRO-34. Proceedings. 34th ACM/IEEE International Symposium on, pages
237–248. IEEE, 2001.

[24] Rajeev Balasubramonian, Andrew B Kahng, Naveen Muralimanohar, Ali Shafiee,
and Vaishnav Srinivas. Cacti 7: New tools for interconnect exploration in innovative
off-chip memories. ACM Transactions on Architecture and Code Optimization (TACO),
14(2):1–25, 2017.

[25] Deniz Balkan, Joseph Sharkey, Dmitry Ponomarev, and Kanad Ghose. Spartan:
speculative avoidance of register allocations to transient values for performance and
energy efficiency. In Proceedings of the 15th international conference on Parallel
architectures and compilation techniques, pages 265–274, 2006.

[26] Michael Bauer, Henry Cook, and Brucek Khailany. Cudadma: Optimizing gpu memory
bandwidth via warp specialization. In SC, 2011.

[27] Michael Bauer, Sean Treichler, and Alex Aiken. Singe: Leveraging warp specialization
for high performance on gpus. In PPoPP, 2014.

[28] Etienne Birmelé, Rui Ferreira, Roberto Grossi, Andrea Marino, Nadia Pisanti, Romeo
Rizzi, and Gustavo Sacomoto. Optimal listing of cycles and st-paths in undirected
graphs. In Proceedings of the twenty-fourth annual ACM-SIAM symposium on Discrete
algorithms, pages 1884–1896. Society for Industrial and Applied Mathematics, 2013.

[29] Preston Briggs. Register allocation via graph coloring. Technical report, 1992.

[30] N. Chatterjee, M. O’Connor, D. Lee, D. R. Johnson, S. W. Keckler, M. Rhu, and
W. J. Dally. Architecting an energy-efficient dram system for gpus. In 2017 IEEE
International Symposium on High Performance Computer Architecture (HPCA), 2017.

[31] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-Ha
Lee, and Kevin Skadron. Rodinia: A benchmark suite for heterogeneous computing.
In Workload Characterization, 2009. IISWC 2009. IEEE International Symposium on,
pages 44–54. Ieee, 2009.

[32] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A Spatial Architecture for
Energy-efficient Dataflow for Convolutional Neural Networks. In ISCA, June 2016.

160

[33] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran,
Bryan Catanzaro, and Evan Shelhamer. cuDNN: Efficient Primitives for Deep Learning.
In arXiv:1410.0759, 2014.

[34] Cody Coleman, Deepak Narayanan, Daniel Kang, Tian Zhao, Jian Zhang, Luigi
Nardi, Peter Bailis, Kunle Olukotun, Chris Ré, and Matei Zaharia. DAWNBench: An
End-to-End Deep Learning Benchmark and Competition. In Conference on Neural
Information Processing Systems (NIPS), Long Beach, CA, USA, Sep 2016.

[35] B. Coon and J. Lindholm. System and method for grouping execution threads, July 21
2007.

[36] Keith Cooper and Linda Torczon. Engineering a compiler. Elsevier, 2011.

[37] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. Binarized Neural Networks: Training Deep Neural Networks with Weights
and Activations Constrained to +1 or -1. In arXiv:1602.02830, 2016.

[38] José-Lorenzo Cruz, Antonio González, Mateo Valero, and Nigel P Topham. Multiple-
banked register file architectures. In ACM SIGARCH Computer Architecture News,
volume 28, pages 316–325. ACM, 2000.

[39] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In IEEE Computer Vision and Pattern Recognition,
2009.

[40] Greg Diamos, Shubho Sengupta, Bryan Catanzaro, Mike Chrzanowski, Adam Coates,
Erich Elsen, Jesse Engel, Awni Hannun, and Sanjeev Satheesh. Persistent RNNs:
Stashing Weights On-Chip. In ICLR, May 2016.

[41] Shi Dong and David Kaeli. DNNMark: A Deep Neural Network Benchmark Suite for
GPUs. In ACM General Purpose GPUs (GPGPU-10), pages 63–72, New York, NY,
USA, 2017.

[42] Sindhuja Gopalakrishnan Elango. Convolutional Neural Network Acceleration on GPU
by Exploiting Data Reuse. In Master’s thesis at San Jose State University (SJSU),
2017.

[43] Oguz Ergin, Deniz Balkan, Kanad Ghose, and Dmitry Ponomarev. Register packing:
Exploiting narrow-width operands for reducing register file pressure. In Proceedings
of the 37th annual IEEE/ACM International Symposium on Microarchitecture, pages
304–315. IEEE Computer Society, 2004.

[44] Hodjat Asghari Esfeden, Amirali Abdolrashidi, Shafiur Rahman, Daniel Wong, and
Nael Abu-Ghazaleh. Bow: Breathing operand windows to exploit bypassing in gpus.
In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 996–1008. IEEE, 2020.

161

[45] Mark Gebhart, Daniel R Johnson, David Tarjan, Stephen W Keckler, William J Dally,
Erik Lindholm, and Kevin Skadron. Energy-efficient mechanisms for managing thread
context in throughput processors. In ACM SIGARCH Computer Architecture News,
volume 39, pages 235–246. ACM, 2011.

[46] Mark Gebhart, Stephen W Keckler, and William J Dally. A compile-time managed
multi-level register file hierarchy. In Proceedings of the 44th annual IEEE/ACM
international symposium on microarchitecture, pages 465–476. ACM, 2011.

[47] Lal George and Andrew W. Appel. Iterated register coalescing. ACM Trans. Program.
Lang. Syst., 18(3):300–324, May 1996.

[48] Felix A. Gers, Jurgen Schmidhuber, and Fred Cummins. Learning to Forget: Continual
Prediction with LSTM. In Neural Computation, pages 2451—-2471, 2000.

[49] Syed Zohaib Gilani, Nam Sung Kim, and Michael J Schulte. Power-efficient computing
for compute-intensive gpgpu applications. In High Performance Computer Architecture
(HPCA2013), 2013 IEEE 19th International Symposium on, pages 330–341. IEEE,
2013.

[50] Chris Gregg, Jonathan Dorn, Kim Hazelwood, and Kevin Skadron. Fine-grained
resource sharing for concurrent gpgpu kernels. In Presented as part of the 4th USENIX
Workshop on Hot Topics in Parallelism, 2012.

[51] Kaiyuan Guo, Lingzhi Sui, Jiantao Qiu, Song Yao, Song Han, Yu Wang, and Huazhong
Yang. From model to FPGA: Software-hardware co-design for efficient neural network
acceleration. In Proceedings of IEEE Hot Chips Symposium. IEEE, 2016.

[52] Philipp Gysel, Mohammad Motamedi, and Soheil Ghiasi. Hardware-oriented Approxi-
mation of Convolutional Neural Networks. In Proceedings of International Conference
on Learning Representations (ICLR), May 2016.

[53] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz,
and William J. Dally. EIE: Efficient Inference Engine on Compressed Deep Neural
Network. In ISCA, pages 243–254, 2016.

[54] Song Han, Huizi Mao, and William J Dally. Deep Compression: Compressing Deep
Neural Networks with Pruning, Trained Quantization and Huffman Coding. In
Proceedings of International Conference on Learning Representations, 2016.

[55] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for
Image Recognition. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, NV, USA, June 2016.

[56] Parker Hill, Animesh Jain, Mason Hill, Babak Zamirai, Chang-Hong Hsu, Michael A.
Laurenzano, Scott Mahlke, Lingjia Tang, and Jason Mars. DeftNN: Addressing
Bottlenecks for DNN Execution on GPUs via Synapse Vector Elimination and Near-
compute Data Fission. In Proceedings of IEEE/ACM International Symposium on
Microarchitecture (MICRO), October 2017.

162

[57] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,
Tobias Weyand, Marco Andreetto, and Hartwig Adam. MobileNets: Efficient Con-
volutional Neural Networks for Mobile Vision Applications. In arXiv:1704.04861,
2017.

[58] Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally,
and Kurt Keutzer. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters
and 0.5MB model size. In arXiv:1602.07360, 2016.

[59] Vishwesh Jatala, Jayvant Anantpur, and Amey Karkare. Improving gpu performance
through resource sharing. In HPDC, 2016.

[60] Nuwan Jayasena, Mattan Erez, Jung Ho Ahn, and William J. Dally. Stream register
files with indexed access. In HPCA, 2004.

[61] Hyeran Jeon, Hodjat Asghari Esfeden, Nael B Abu-Ghazaleh, Daniel Wong, and
Sindhuja Elango. Locality-aware gpu register file. IEEE Computer Architecture
Letters, 18(2):153–156, 2019.

[62] Hyeran Jeon, Gokul Subramanian Ravi, Nam Sung Kim, and Murali Annavaram. Gpu
register file virtualization. In Proceedings of the 48th International Symposium on
Microarchitecture, pages 420–432. ACM, 2015.

[63] N. Jing, J. Wang, F. Fan, W. Yu, L. Jiang, C. Li, and X. Liang. Cache-emulated
register file: An integrated on-chip memory architecture for high performance gpgpus.
In MICRO, 2016.

[64] T. M. Jones, M. F. R. O’Boyle, J. Abella, A. Gonzalez, and O. Ergin. Compiler
directed early register release. In PACT, 2005.

[65] Timothy M Jones, Michael FP O’Boyle, Jaume Abella, Antonio González, and Oğuz
Ergin. Energy-efficient register caching with compiler assistance. ACM Transactions
on Architecture and Code Optimization (TACO), 6(4):13, 2009.

[66] Stephen Jourdan, Ronny Ronen, Michael Bekerman, Bishara Shomar, and Adi Yoaz.
A novel renaming scheme to exploit value temporal locality through physical register
reuse and unification. In MICRO, 1998.

[67] Deepak Kadetotad, Sairam Arunachalam, Chaitali Chakrabarti, and Jae sun Seo. Effi-
cient Memory Compression in Deep Neural Networks Using Coarse-grain Sparsification
for Speech Applications. In ICCAD, pages 78:1–78:8, 2016.

[68] Aajna Karki, Chethan Palangotu Keshava, Spoorthi Mysore Shivakumar, Joshua
Skow, Goutam Madhukeshwar Hegde, and Hyeran Jeon. Tango: A deep neural
network benchmark suite for various accelerators. In IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS). IEEE Press, 2019.

163

[69] Mehmet Kayaalp, Khaled N Khasawneh, Hodjat Asghari Esfeden, Jesse Elwell, Nael
Abu-Ghazaleh, Dmitry Ponomarev, and Aamer Jaleel. Ric: Relaxed inclusion caches
for mitigating llc side-channel attacks. In 2017 54th ACM/EDAC/IEEE Design
Automation Conference (DAC), pages 1–6. IEEE, 2017.

[70] Onur Kayiran, Adwait Jog, Ashutosh Pattnaik, Rachata Ausavarungnirun, Xulong
Tang, Mahmut T. Kandemir, Gabriel H. Loh, Onur Mutlu, and Chita R. Das. µc-
states: Fine-grained gpu datapath power management. In Proceedings of the 2016
International Conference on Parallel Architectures and Compilation, PACT ’16, 2016.

[71] Mahmoud Khairy, Jain Akshay, Tor Aamodt, and Timothy G Rogers. Exploring
modern gpu memory system design challenges through accurate modeling. arXiv
preprint arXiv:1810.07269, 2018.

[72] Farzad Khorasani, Hodjat Asghari Esfeden, Nael Abu-Ghazaleh, and Vivek Sarkar.
In-register parameter caching for dynamic neural nets with virtual persistent pro-
cessor specialization. In 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 377–389. IEEE, 2018.

[73] Farzad Khorasani, Hodjat Asghari Esfeden, Amin Farmahini-Farahani, Nuwan
Jayasena, and Vivek Sarkar. Regmutex: Inter-warp gpu register time-sharing. In
Proceedings of the 45th Annual International Symposium on Computer Architecture
(ISCA), pages 816–828. IEEE Press, 2018.

[74] Farzad Khorasani, Rajiv Gupta, and Laxmi N. Bhuyan. Efficient warp execution in
presence of divergence with collaborative context collection. In MICRO, 2015.

[75] Hyesoon Kim, Richard Vuduc, Sara Baghsorkhi, Jee Choi, and Wen-mei Hwu. Per-
formance analysis and tuning for general purpose graphics processing units (gpgpu).
Synthesis Lectures on Computer Architecture, 7(2):1–96, 2012.

[76] K. Kim, S. Lee, M. K. Yoon, G. Koo, W. W. Ro, and M. Annavaram. Warped-
preexecution: A gpu pre-execution approach for improving latency hiding. In HPCA,
2016.

[77] Keunsoo Kim and Won Woo Ro. WIR: Warp Instruction Reuse to Minimize Repeated
Computations in GPUs. In HPCA, 2018.

[78] John Kloosterman, Jonathan Beaumont, D Anoushe Jamshidi, Jonathan Bailey, Trevor
Mudge, and Scott Mahlke. Regless: just-in-time operand staging for gpus. In Proceed-
ings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture,
pages 151–164. ACM, 2017.

[79] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet Classification with Deep
Convolutional Neural Networks. In Conference on Neural Information Processing
Systems (NIPS), Lake Tahoe, NV, USA, Dec 2012.

164

[80] Sangpil Lee, Keunsoo Kim, Gunjae Koo, Hyeran Jeon, Won Woo Ro, and Murali
Annavaram. Warped-compression: Enabling power efficient gpus through register
compression. In ACM SIGARCH Computer Architecture News, volume 43, pages
502–514. ACM, 2015.

[81] Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani, Nam Sung Kim,
Tor M Aamodt, and Vijay Janapa Reddi. Gpuwattch: enabling energy optimizations in
gpgpus. In ACM SIGARCH Computer Architecture News, volume 41, pages 487–498.
ACM, 2013.

[82] John Erik Lindholm, Ming Y Siu, Simon S Moy, Samuel Liu, and John R Nickolls.
Simulating multiported memories using lower port count memories, March 4 2008. US
Patent 7,339,592.

[83] Z. Liu, S. Gilani, M. Annavaram, and N. S. Kim. G-scalar: Cost-effective generalized
scalar execution architecture for power-efficient gpus. In 2017 IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2017.

[84] Zhenhong Liu, Daniel Wong, and Nam Sung Kim. Load-triggered warp approximation
on gpu. In Proceedings of the 2018 International Symposium on Low Power Electronics
and Design, ISLPED ’18, 2018.

[85] J. L. Lo, S. S. Parekh, S. J. Eggers, H. M. Levy, and D. M. Tullsen. Software-directed
register deallocation for simultaneous multithreaded processors. IEEE Transactions
on Parallel and Distributed Systems, 10(9), 1999.

[86] Jack L Lo, Sujay S Parekh, Susan J Eggers, Henry M Levy, and Dean M Tullsen.
Software-directed register deallocation for simultaneous multithreaded processors.
IEEE Transactions on Parallel and Distributed Systems, 10(9):922–933, 1999.

[87] Luis A Lozano and Guang R Gao. Exploiting short-lived variables in superscalar proces-
sors. In Proceedings of the 28th annual international symposium on Microarchitecture,
pages 292–302. IEEE Computer Society Press, 1995.

[88] A. Majumdar, L. Piga, I. Paul, J. L. Greathouse, W. Huang, and D. H. Albonesi.
Dynamic gpgpu power management using adaptive model predictive control. In 2017
IEEE International Symposium on High Performance Computer Architecture (HPCA),
2017.

[89] M. M. Martin, A. Roth, and C. N. Fischer. Exploiting dead value information. In
MICRO, 1997.

[90] J. F. Martinez, J. Renau, M. C. Huang, and M. Prvulovic. Cherry: Checkpointed
early resource recycling in out-of-order microprocessors. In MICRO, 2002.

[91] Sparsh Mittal and Jeffrey S. Vetter. A survey of methods for analyzing and improving
gpu energy efficiency. ACM Comput. Surv., 47(2):19:1–19:23, August 2014.

165

[92] Sparsh Mittal and Jeffrey S. Vetter. A survey of architectural approaches for data
compression in cache and main memory systems. IEEE Trans. Parallel Distrib. Syst.,
27(5):1524–1536, May 2016.

[93] Mayan Moudgill, Keshav Pingali, and Stamatis Vassiliadis. Register renaming and
dynamic speculation: An alternative approach. In MICRO, 1993.

[94] Shubhendu S. Mukherjee, Christopher Weaver, Joel Emer, Steven K. Reinhardt, and
Todd Austin. A systematic methodology to compute the architectural vulnerability
factors for a high-performance microprocessor. In Proceedings of the 36th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 29–, 2003.

[95] S.S. Mukherjee, C. Weaver, J. Emer, S.K. Reinhardt, and T. Austin. A System-
atic Methodology to Compute the Architectural Vulnerability Factors for a High-
performance Microprocessor. In Proceedings of IEEE/ACM International Symposium
on Microarchitecture (MICRO), December 2003.

[96] D. Kaeli N. Farazmand, R. Ubal. Statistical Fault Injection-Based AVF Analysis of a
GPU Architecure. In The IEEE Workshop on Silicon Errors in Logic - System Effect
(SELSE), March 2012.

[97] Negin Nematollahi, Mohammad Sadrosadati, Hajar Falahati, Marzieh Barkhordar,
and Hamid Sarbazi-Azad. Neda: Supporting direct inter-core neighbor data exchange
in gpus. IEEE Computer Architecture Letters, 17(2):225–229, 2018.

[98] Peter R Nuth and William J Dally. The named-state register file: Implementation
and performance. In High-Performance Computer Architecture, 1995. Proceedings.,
First IEEE Symposium on, pages 4–13. IEEE, 1995.

[99] NVIDIA. Cuda toolkit. https://developer.nvidia.com/cuda-toolkit,
2007. Accessed: 2018-04-11.

[100] Nvidia. ”Whitepaper: Nvidia’s Next Generation CUDA Compute Architecture: Fermi”,
2009.

[101] Nvidia. Nvidia cuda sdk 2.3. [Online]. Available: http://developer.nvidia.
com/cuda-toolkit-23-downloads, 2009.

[102] Nvidia. Cuda programming guide, 2010.

[103] Nvidia. ”Whitepaper: Nvidia’s Next Generation CUDA Compute Architecture:
KeplerGK110”, 2012.

[104] NVIDIA. Nvidia tesla v100 gpu architecture. http://images.nvidia.
com/content/volta-architecture/pdf/volta-architecture-
whitepaper.pdf, 2017. Accessed: 2018-11-26.

[105] Yunho Oh, Myung Kuk Yoon, William J Song, and Won Woo Ro. Finereg: Fine-
grained register file management for augmenting gpu throughput. In 2018 51st Annual

166

https://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit-23-downloads
http://developer.nvidia.com/cuda-toolkit-23-downloads
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 364–376.
IEEE, 2018.

[106] Il Park, Michael D Powell, and TN Vijaykumar. Reducing register ports for higher
speed and lower energy. In 35th Annual IEEE/ACM International Symposium on
Microarchitecture, 2002.(MICRO-35). Proceedings., pages 171–182. IEEE, 2002.

[107] Jinpyo Park and Soo-Mook Moon. Optimistic register coalescing. ACM Trans. Program.
Lang. Syst., 26(4):735–765, July 2004.

[108] G. Pekhimenko, E. Bolotin, N. Vijaykumar, O. Mutlu, T. C. Mowry, and S. W. Keckler.
A case for toggle-aware compression for gpu systems. In 2016 IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2016.

[109] Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Phillip B. Gibbons, Michael A.
Kozuch, and Todd C. Mowry. Base-delta-immediate compression: Practical data
compression for on-chip caches. In Proceedings of the 21st International Conference
on Parallel Architectures and Compilation Techniques, PACT ’12, 2012.

[110] Louis-Noël Pouchet. Polybench: The polyhedral benchmark suite. URL: http://www.
cs. ucla. edu/pouchet/software/polybench, 2012.

[111] Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama, Hyunkwang Lee,
Sae Kyu Lee, José Miguel, Hernández-Lobato, Gu-Yeon Wei, and David Brooks.
Minerva: Enabling Low-Power, Highly-Accurate Deep Neural Network Accelerators.
In Proceedings of The International Symposium on Computer Architecture (ISCA),
June 2016.

[112] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and Stephen W.
Keckler. vDNN: Virtualized Deep Neural Networks for Scalable, Memory-Efficient
Neural Network Design. In Proceedings of IEEE/ACM International Symposium on
Microarchitecture (MICRO), October 2016.

[113] H. Roth, L. Lu, J. Liu, J. Yao, A. Seff, K. M. Cherry, E. Turkbey, and R. Summers.
Improving computer-aided detection using convolutional neural networks and random
view aggregation. In IEEE Trans. on Medical Imaging, 2016.

[114] Mohammad Sadrosadati, Seyed Borna Ehsani, Hajar Falahati, Rachata Ausavarung-
nirun, Arash Tavakkol, Mojtaba Abaee, Lois Orosa, Yaohua Wang, Hamid Sarbazi-
Azad, and Onur Mutlu. Itap: Idle-time-aware power management for gpu execution
units. ACM TACO, 2018.

[115] Mohammad Sadrosadati, Amirhossein Mirhosseini, Seyed Borna Ehsani, Hamid
Sarbazi-Azad, Mario Drumond, Babak Falsafi, Rachata Ausavarungnirun, and Onur
Mutlu. Ltrf: Enabling high-capacity register files for gpus via hardware/software
cooperative register prefetching. In Proceedings of the Twenty-Third International Con-
ference on Architectural Support for Programming Languages and Operating Systems,
pages 489–502. ACM, 2018.

167

[116] M. H. Santriaji and H. Hoffmann. Grape: Minimizing energy for gpu applications with
performance requirements. In 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2016.

[117] A. Sethia, G. Dasika, M. Samadi, and S. Mahlke. Apogee: Adaptive prefetching on
gpus for energy efficiency. In Proceedings of the 22nd International Conference on
Parallel Architectures and Compilation Techniques, 2013.

[118] A. Sethia and S. Mahlke. Equalizer: Dynamic tuning of gpu resources for efficient execu-
tion. In 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture,
2014.

[119] A. Shafiee, M. Taassori, R. Balasubramonian, and A. Davis. Memzip: Exploring
unconventional benefits from memory compression. In 2014 IEEE 20th International
Symposium on High Performance Computer Architecture (HPCA), 2014.

[120] Hardik Sharma, Jongse Park, Naveen Suda, Liangzhen Lai, Benson Chau, Vikas
Chandra, and Hadi Esmaeilzadeh. Bit Fusion: Bit-Level Dynamically Composable
Architecture for Accelerating Deep Neural Networks. In Proceedings of IEEE/ACM
International Symposium on Computer Architecture (ISCA), June 2018.

[121] Premkishore Shivakumar and Norman P Jouppi. Cacti 3.0: An integrated cache
timing, power, and area model, 2001. Technical Report 2001/2, Compaq Computer
Corporation.

[122] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks For Large-
scale Image Recognition. In International Conference on Learning Representations
(ICLR), San Diego, CA, USA, 2015.

[123] Vilas Sridharan and David R. Kaeli. Eliminating microarchitectural dependency from
architectural vulnerability. In IEEE International Symposium on High Performance
Computer Architecture, 2009.

[124] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang,
Nasser Anssari, Geng Daniel Liu, and Wen-mei W Hwu. Parboil: A revised benchmark
suite for scientific and commercial throughput computing. Center for Reliable and
High-Performance Computing, 127, 2012.

[125] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang,
Nasser Anssari, Geng Daniel Liu, and Wen-Mei W Hwu. Parboil: A revised benchmark
suite for scientific and commercial throughput computing. Center for Reliable and
High-Performance Computing, 127, 2012.

[126] John A Swensen and Yale N Patt. Hierarchical registers for scientific computers. In
Proceedings of the 2nd international conference on Supercomputing, pages 346–354.
ACM, 1988.

168

[127] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going Deeper
with Convolutions. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Boston, MA, USA, June 2015.

[128] Guangming Tan, Linchuan Li, Sean Triechle, Everett Phillips, Yungang Bao, and
Ninghui Sun. Fast Implementation of DGEMM on Fermi GPU. In SC, pages 35:1–35:11,
2011.

[129] J. Tan and X. Fu. Mitigating the susceptibility of gpgpus register file to process
variations. In IPDPS, 2015.

[130] J. Tan, S. L. Song, K. Yan, X. Fu, A. Marquez, and D. Kerbyson. Combating the
reliability challenge of gpu register file at low supply voltage. In PACT, 2016.

[131] Mohammadkazem Taram, Ashish Venkat, and Dean Tullsen. Mobilizing the micro-ops:
Exploiting context sensitive decoding for security and energy efficiency. In 2018
ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA),
pages 624–637. IEEE, 2018.

[132] D. Tarjan and K. Skadron. On demand register allocation and deallocation for a
multithreaded processor, June 30 2011. US Patent App. 12/649,238.

[133] Devashree Tripathy, Hadi Zamani, Debiprasanna Sahoo, Laxmi N Bhuyan, and
Manoranjan Satpathy. Slumber: static-power management for gpgpu register files. In
Proceedings of the ACM/IEEE International Symposium on Low Power Electronics
and Design, pages 109–114, 2020.

[134] Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella, Michaela Blott, Philip
Leong, Magnus Jahre, and Kees Vissers. FINN: A Framework for Fast, Scalable Bina-
rized Neural Network Inference. In Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pages 65–74, 2017.

[135] N. Vijaykumar, K. Hsieh, G. Pekhimenko, S. Khan, A. Shrestha, S. Ghose, A. Jog,
P. B. Gibbons, and O. Mutlu. Zorua: A holistic approach to resource virtualization in
gpus. In MICRO, 2016.

[136] Nandita Vijaykumar, Gennady Pekhimenko, Adwait Jog, Abhishek Bhowmick, Rachata
Ausavarungnirun, Chita Das, Mahmut Kandemir, Todd C. Mowry, and Onur Mutlu. A
case for core-assisted bottleneck acceleration in gpus: Enabling flexible data compres-
sion with assist warps. In Proceedings of the 42Nd Annual International Symposium
on Computer Architecture, ISCA ’15, 2015.

[137] Dani Voitsechov, Arslan Zulfiqar, Mark Stephenson, Mark Gebhart, and Stephen W
Keckler. Software-directed techniques for improved gpu register file utilization. ACM
Transactions on Architecture and Code Optimization (TACO), 15(3):38, 2018.

[138] Vasily Volkov. Better performance at lower occupancy. In Proceedings of the GPU
technology conference, GTC, volume 10, 2010.

169

[139] Xin Wang and Wei Zhang. Gpu register packing: Dynamically exploiting narrow-width
operands to improve performance. In 2017 IEEE Trustcom/BigDataSE/ICESS, pages
745–752. IEEE, 2017.

[140] Daniel Wong, Nam S. Kim, and Murali Annavaram. Approximating warps with
intra-warp operand value similarity. In 2016 IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2016.

[141] G. Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena, and D. Chiou. Gpgpu perfor-
mance and power estimation using machine learning. In 2015 IEEE 21st International
Symposium on High Performance Computer Architecture (HPCA), 2015.

[142] Qiumin Xu and Murali Annavaram. Pattern aware scheduling and power gating for
gpgpus. In Parallel Architectures and Compilation Techniques (PACT), 2014 23nd
International Conference on, 2014.

[143] Qiumin Xu, Hyeran Jeon, Keunsoo Kim, Won Woo Ro, and Murali Annavaram.
Efficient Intra-SM Slicing through Dynamic Resource Partitioning for GPU Multi-
programming. In Proceedings of IEEE/ACM International Symposium on Computer
Architecture. IEEE, 2016.

[144] Jun Yang, Youtao Zhang, and Rajiv Gupta. Frequent value compression in data
caches. In Proceedings of the 33rd Annual ACM/IEEE International Symposium on
Microarchitecture, MICRO 33, 2000.

[145] Zahra Yarahmadi. Study of the Bipartite Edge Frustration of Graphs, pages 249–267.
Springer International Publishing, Cham, 2016.

[146] M. K. Yoon, K. Kim, S. Lee, W. W. Ro, and M. Annavaram. Virtual thread:
Maximizing thread-level parallelism beyond gpu scheduling limit. In ISCA, 2016.

[147] Hui Zeng and Kanad Ghose. Register file caching for energy efficiency. In Low Power
Electronics and Design, 2006. ISLPED’06. Proceedings of the 2006 International
Symposium on, pages 244–249. IEEE, 2006.

[148] Youtao Zhang, Jun Yang, and Rajiv Gupta. Frequent value locality and value-
centric data cache design. In Proceedings of the Ninth International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS
IX, 2000.

[149] Hongyu Zhu, Mohamed Akrout, Bojian Zheng, Andrew Pelegris, Amar Phanishayee,
Bianca Schroeder, and Gennady Pekhimenko. TBD: Benchmarking and Analyzing
Deep Neural Network Training. In arXiv:1803.06905, 2018.

170

	List of Figures
	List of Tables
	Introduction
	CORF: Coalescing Operand Register File for GPUs
	Introduction
	Background
	The Virtues of Register Coalescing
	CORF: Coalescing Operands in Register File
	CORF Overview
	Generating Compiler-assisted Hints
	CORF Run-time Operation

	CORF++: Re-architected RF
	Compiler-assisted Register Allocation
	Coalescing-aware RF Organization
	CORF++ Run-time Operation

	Additional Implementation Details
	Performance/Power Evaluation
	Hardware/Software Overheads
	Related Work

	BOW: Breathing Operand Windows to Exploit Bypassing in GPUs
	Introduction
	Background
	Motivation
	Breathing Operand Windows
	BOW Architecture Overview
	BOW-WR: Compiler-guided writeback
	Reducing the Bypassing Storage Space

	Evaluation
	Performance/Energy Evaluation

	Related Work

	RegMutex: Inter-Warp GPU Register Time-Sharing
	Introduction
	Motivation
	RegMutex: Inter-Warp Register Time-Sharing
	Compiler Support
	Architecture Support
	Paired-Warps Specialization

	Experimental Evaluation
	Kernel Occupancy Boost Analysis
	Register File Size Reduction Analysis
	Performance Comparison with Related Work
	Extended Set Size Sensitivity Analysis
	Paired-Warps Specialization Performance Analysis

	Related Work

	LARF: Locality-Aware Register File for GPUs
	Introduction
	Background and Related Work
	On-chip Inter-thread Data Sharing

	Locality-Aware Register File
	Perfect Sharing
	Partial Sharing

	Locality-Aware Warp Scheduler
	Architectural Modification
	Dynamic Register Mapping
	Address Mapping Table and Mapping Controller
	LAS Support

	Evaluation
	Performance
	Register File Utilization
	Synergy With Existing Optimizations
	Area

	Conclusions
	Bibliography

