
UC San Diego
UC San Diego Previously Published Works

Title
Reinforcement learning deficits exhibited by postnatal PCP-treated rats enable deep 
neural network classification.

Permalink
https://escholarship.org/uc/item/3gv9330d

Journal
Neuropsychopharmacology, 48(9)

Authors
Tranter, Michael
Aggarwal, Samarth
Young, Jared
et al.

Publication Date
2023-08-01

DOI
10.1038/s41386-022-01514-y
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3gv9330d
https://escholarship.org/uc/item/3gv9330d#author
https://escholarship.org
http://www.cdlib.org/


ARTICLE

Reinforcement learning deficits exhibited by postnatal
PCP-treated rats enable deep neural network classification
Michael M. Tranter1,2,5, Samarth Aggarwal1,5, Jared W. Young1,2, Daniel G. Dillon 3,4 and Samuel A. Barnes1,2✉

© The Author(s), under exclusive licence to American College of Neuropsychopharmacology 2022

The ability to appropriately update the value of a given action is a critical component of flexible decision making. Several psychiatric
disorders, including schizophrenia, are associated with impairments in flexible decision making that can be evaluated using the
probabilistic reversal learning (PRL) task. The PRL task has been reverse-translated for use in rodents. Disrupting glutamate
neurotransmission during early postnatal neurodevelopment in rodents has induced behavioral, cognitive, and
neuropathophysiological abnormalities relevant to schizophrenia. Here, we tested the hypothesis that using the NMDA receptor
antagonist phencyclidine (PCP) to disrupt postnatal glutamatergic transmission in rats would lead to impaired decision making in
the PRL. Consistent with this hypothesis, compared to controls the postnatal PCP-treated rats completed fewer reversals and
exhibited disruptions in reward and punishment sensitivity (i.e., win-stay and lose-shift responding, respectively). Moreover,
computational analysis of behavior revealed that postnatal PCP-treatment resulted in a pronounced impairment in the learning rate
throughout PRL testing. Finally, a deep neural network (DNN) trained on the rodent behavior could accurately predict the treatment
group of subjects. These data demonstrate that disrupting early postnatal glutamatergic neurotransmission impairs flexible
decision making and provides evidence that DNNs can be trained on behavioral datasets to accurately predict the treatment group
of new subjects, highlighting the potential for DNNs to aid in the diagnosis of schizophrenia.

Neuropsychopharmacology (2023) 48:1377–1385; https://doi.org/10.1038/s41386-022-01514-y

INTRODUCTION
The world is unpredictable and if a course of action is no longer
profitable it is essential to be behaviorally flexible [1–4]. Flexible
decision making can be evaluated using the probabilistic reversal
learning (PRL) task, which has provided evidence that people with
schizophrenia show decision-making deficits. For instance, people
with schizophrenia exhibit abnormalities in the explore-exploit
balance [5], learning rate [6], and reward prediction errors (PEs) [7, 8].
PEs serve as teaching signals to update value estimates [9, 10],
ensuring that deviations in expected outcomes are detected and
appropriate adaptations in subsequent behavior can be implemen-
ted. Hence, aberrant PEs may play an especially important role in
impaired decision making in schizophrenia [11–13].
Deficits in reinforcement learning are evident in patients with

first-episode psychosis [14, 15]. Therefore, it may be possible to use
these disruptions as a tool to assist with the early detection of risk
for schizophrenia. Early intervention and accurate diagnosis are
crucial [16]; however, misdiagnosis or delays between symptom
onset and initiation of appropriate treatment are common [17, 18].
Although the precise reasons for these diagnostic challenges are
unclear, the diagnosis of schizophrenia (and mental illness in
general) still relies on subjective evaluation by psychiatrists [19].
Encouragingly, recent studies have demonstrated the utility of
machine learning or artificial deep neural networks (DNNs) in
psychiatry [20, 21], achieving >80% accuracy in the classification of

healthy participants vs. schizophrenia patients [22, 23]. Hence, this
approach may complement clinical evaluations to improve the
speed and accuracy of diagnosis. One limitation of this approach is
that DNNs are often trained to detect differences in magnetic
resonance images or electrophysiology recordings that many
clinicians may not have. By contrast, the PRL task is easy to
administer, and computational analysis generates a rich dataset that
can be used to probe underlying mechanisms. However, it is not
clear whether DNNs trained using PRL data can accurately classify
controls vs. people with schizophrenia. In summary, accurate DNN-
based classification based on PRL performance could be a valuable
and accessible tool to assist in the initial diagnosis of schizophrenia.
As a first step toward this goal, the current study applied a DNN

to data from an experimental system relevant to schizophrenia.
Disrupting glutamate transmission during postnatal neurodeve-
lopment in rodents by administering NMDA receptor antagonists
(i.e., phencyclidine (PCP) or ketamine) has been used to model the
neurodevelopmental origins of schizophrenia [24, 25]. Postnatal
PCP-treatment induces several neuropathological abnormalities
evident in schizophrenia [26], such as deficits in inhibitory
GABAergic interneuron expression [27, 28]. Moreover, postnatal
PCP-treatment also results in deficits in memory [29], sociability
[30], and executive functioning [31, 32]. However, it remains
unclear whether postnatal PCP-treatment impairs PRL perfor-
mance. Thus, the goal of the current investigation was two-fold:
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(1) to test the hypothesis that postnatal PCP-treated rats exhibit
impairments in PRL, and (2) to develop a DNN to identify the
treatment group of rodents based on their PRL performance.

METHODS
Animals
Timed-pregnant Wistar dams (Charles River Laboratories, Raleigh, NC) were
obtained at day 13 of gestation. Dams were housed individually in a
climate-controlled room on a reverse 12 h light cycle (lights off at 07:00)
with ad libitum access to food and water. Within 12 h of parturition, male
and female pups were randomly assigned to one of six litters of four pups
per sex and cross-fostered between six lactating dams. All procedures were
conducted following guidelines from the National Institutes of Health and
the Association for the Assessment and Accreditation of Laboratory Animal
Care, and were approved by the University of California, San Diego
Institutional Animal Care and Use Committee.

Drug treatment
As previously described [27, 31], rat pups were subcutaneously administered
saline (0.9%) or PCP (20mg/kg) on postnatal days (PND) 7, 9, and 11.
Representatives from each treatment group were present in each litter. Pups
were weaned on PND 21, split by sex, and group-housed until 4–5 weeks of
age, after which they were housed in pairs of the same sex and treatment
group (n= 12 per sex/treatment). Behavioral testing began after PND 60.

Apparatus
Behavioral training and testing were conducted in 9-hole operant boxes (Med
Associates, St Albans, VT) contained within light- and sound-attenuating
chambers [33]. Briefly, the rear wall was a curved array with five open response
apertures. Throughout training and testing, only apertures 2 and 4 were active.
A 3-W stimulus light located at the aperture rear provided visual stimuli. On the
opposite wall, a receptacle delivered food rewards (45mg sucrose pellets, Test
Diet 5TUT, Richmond, IN). The apparatus was controlled by a PC running
MedPC software (Med Associates, St. Albans, VT).

Probabilistic reversal learning (PRL)
Throughout training and testing, rats were food restricted to 90% of their
free-feeding body weights. PRL training was conducted as previously
described [34, 35]. Once the criterion during the basic training session was
met, PRL testing commenced the next day. During PRL testing, rats were
presented with two illuminated apertures (holes 2 and 4). One aperture
was designated the target location, and the other was the non-target
location. Target responses were reinforced with 80% probability, while
non-target responses were reinforced with 20% probability (Fig. 1A). A 2-s
inter-trial interval (ITI) separated the trials, and responses during the ITI
resulted in a time-out. Once a rat made eight consecutive target responses,
the contingencies switched, and the previous non-target location became
the target location. Reversals continued throughout the session each time
the rat made eight consecutive target responses. Sessions were terminated
after 300 trials or 60min, whichever occurred first. Rats were tested once
daily for 20 days. Performance was assessed by determining the number of
reversals completed per 100 trials [36]. Win-stay responding for either the
target or non-target responses was calculated as the percentage of trials
where the rat repeated the same choice after being rewarded on the
preceding trial. Lose-shift responding for target or non-target responses
was calculated as the percentage of trials where the rat switched
responses after a reward was withheld during the preceding trial.

Computational modeling
To investigate mechanisms that drive behavior, we fit variants of a
Rescorla–Wagner Q-learning model to the data [5, 37–39]. Briefly, on each
trial (t), the decision (i.e., which action to select) is likely guided by the
value (Q) assigned to each action. Action values are updated according to
whether a reward was delivered or not (r; reward = 1, no reward = 0) on
each trial. Q values were initialized to 0.5 (neither good nor bad as the
target/non-target locations were randomly assigned for each session).
Prediction errors (PEs)—the difference between the estimated value of the
action taken on trial t (Qc(t)) and the reward delivered on trial t (r(t))—
served to update the value estimate of the chosen action on each trial. The
rate at which the PE signal updated value estimates was controlled by the
α parameter, the learning rate. Action values were converted into choice

probabilities using the softmax function, which controls the degree to
which the subject engages in exploratory vs. exploitative choices. We
evaluated a total of 18 model variants (see Fig. 2A for an overview of each
model. A detailed description of each model variant can be found in the
Supplementary Methods and Supplementary Table 1).

Deep neural network (DNN)
To predict the treatment group of subjects, we trained a DNN on the
behavioral variables described in Supplementary Table 2. The model was
trained using 44 of 48 subjects, with the remaining 4 subjects (2 salines, 2
PCP) set aside to evaluate the generalizability of the trained model. The model
architecture is described in detail in the Supplementary Material. Briefly, our
DNN architecture consisted of three one-dimensional convolutional (1D CNN)
layers, two long short-term memory (LSTM) layers, and two fully connected
dense layers. The output layer consisted of two nodes with a softmax
activation function to predict whether the subject was saline- or PCP-treated.

Statistical analysis
PRL performance was analyzed using 3-way repeated measures ANOVAs
that included treatment and sex as between-subject factors and day as the
within-subject factor. The association between the two variables was
determined using Pearson’s correlations. Data were analyzed using R and,
where appropriate, significant interactions underwent post hoc adjust-
ments using the Bonferroni correction for multiple comparisons.
P values < 0.05 were considered significant. Data were presented as the
mean ± SEM and graphically displayed using GraphPad Prism or Matplotlib.

RESULTS
The number of completed reversals increased across days
[F(19,836)= 65.34, p < 0.001] demonstrating that performance
improved with training. In addition to the main effect of treatment
[F(1,44)= 12.78, p < 0.001], we found that there was also a
treatment × day interaction [F(19,836)= 2.01, p < 0.01] showing
that PCP-treated rats completed fewer reversals compared to
saline-treated control rats (p < 0.05) (Fig. 1B). Although the main
effect of sex approached significance [F(1,44)= 2.91, p= 0.09] there
was no interactive effect between sex and treatment [Fs < 0.52].
To gain additional insight into these performance alterations, we
inspected the win-stay and lose-shift measures. Consistent with
the increase in reversals, the tendency to repeat a rewarded target
response increased across test days [F(19,836)= 140.97, p < 0.001].
However, while we did not observe a treatment × day interaction
[F(19,836)= 1.32, p < 0.15], there was a main effect of treatment
[F(1,44)= 17.52, p < 0.001] that was mediated by an overall
reduction in target win-stay responding in PCP-treated rats
(Fig. 1C). A day × sex interaction was evident [F(19,836)= 3.18,
p < 0.001] that was driven by higher target win-stay responses in
female rats during the first two days only (p < 0.05).
Target lose-shift (TLS), non-target lose-shift (NTLS), and non-

target win-stay (NTWS) measures were also reduced in PCP-
treated rats testing (Supplementary Fig. 1A–C). Although PCP-
induced alterations were evident for the latency to respond
(Supplementary Fig. 2A), there was no effect on the reward latency
or the number of completed trials (Supplementary Fig. 2B, C),
indicating that postnatal PCP-treatment did not induce a non-
specific impairment in the ability to complete the task.
Performance was then analyzed using a logistic regression that

used the action selected and the outcome received for the
previous six trials to predict the choice on the next trial, as
previously described [40, 41]. In both groups of rats, positive
feedback from the previous two trials was associated with
repeating the same action (positive regression coefficient)
whereas negative feedback from the last trial only was associated
with switching (negative regression coefficient) (Fig. 1D). Relative
to saline-treated rats, PCP-treated rats were less likely to repeat an
action after a reward and less likely to switch an action after no
reward, corroborating the observed effects on win-stay and lose-
shift responding. To determine whether repeating rewarded
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choices or avoiding non-rewarded choices play an important role
in PRL, we correlated the win-stay and lose-shift measures with
the primary outcome variable. As expected, target win-stay
responses were positively correlated with the number of
completed reversals (Fig. 1E). By contrast, target lose-shift, non-
target lose-shift, and non-target win-stay measures displayed no
correlation with reversals (Supplementary Fig. 1D–F). Collectively,
these findings show that a reduced tendency to repeat rewarded
choices drove the overall deficit in PRL performance observed in
postnatal PCP-treated rats.
To probe the behavioral mechanisms underlying these deficits,

we fit several Q-learning models to behavior. Each model
contained the same three essential components: choice, feedback,
and learning (Fig. 2A and Supplementary Tables 1 and 3). Action
values were converted into choice probabilities using the softmax
function. The degree to which choices are exploratory (i.e.,
selecting the lower-valued action) vs. exploitative (i.e., selecting
the higher-valued action) is controlled by the β parameter. A
higher β parameter indicates a greater tendency to engage in
exploitative choices. To determine whether the subject exhibited a
bias for one side or another, a modified softmax function was used
that included a bias parameter in addition to the inverse
temperature parameter [42]. A bias parameter of 1 demonstrated
a strong bias for the left aperture whereas a value of –1 indicated
a strong bias for the right aperture. A value of 0 indicated no bias
for either side was evident.
In addition to the typical delta rule that captures the difference

between the expected and actual value of an action (i.e., the PE)

we included two variants that would capture differences in overall
outcome sensitivity or differences in reward vs. punishment
sensitivity [43]. For example, if the reward sensitivity parameter
equals one then a rewarded trial would generate a positive PE in a
manner consistent with typical delta rule. By contrast, reducing
the reward sensitivity parameter would result in a less positive PE
value given the same reward. Finally, during the learning
component, PEs were used to update action values. The rate at
which PEs update the value of the chosen action was controlled
by a learning rate, α. An alternative approach is the so-called
“double update” rule, whereby the value of both the chosen and
unchosen actions are updated [11]. With this variant, if a reward is
received after a left response, the value of the left option will
increase and the value for the right option will decrease. By
contrast, if the left option was unrewarded then its value would
decrease and the value of the right option would increase. The
final variant included a method to decay the value of the
unchosen action, designed to capture “forgetting” the value of an
action if it has not been selected for several trials [42, 44]. For
example, if the forget parameter is zero, then the value of the
unchosen action is unaffected. By contrast, if the forget parameter
equals 0.5 then the value of the unchosen action is reduced by
50% for each trial that the action is unchosen.
In total, we fit 18 models to our behavioral data, each of which

used one variant from each of the three components (choice,
feedback, learning) (summarized in Fig. 2A, described in detail in
the Supplementary Methods). To determine the best-fitting
model, we calculated the AICc, ΔAICc and relative likelihood

Fig. 1 Postnatal PCP-treatment impairs PRL performance. A Schematic of PRL task. The rat is presented with two illuminated nose-poke
apertures. Target responses are mostly rewarded (80%), whereas non-target responses are rarely rewarded (20%). After eight consecutive
target responses, the target and non-target levers reverse. B Across test days, the number of completed reversals in saline- and PCP-treated
rats increased, but this increase was blunted in PCP-treated rats. C The propensity to repeat rewarded target responses also increased with
training, but PCP-treated rats displayed weaker target win-stay responding than saline-treated rats. D Logistic regression coefficients that used
the nose-poke selected and the outcome received from the previous six trials to predict the choice on the current trial. A rewarded right
response was coded with +1 while a rewarded left response was coded –1 (non-rewarded responses were coded 0). As a separate predictor,
non-rewarded right responses were coded +1 and non-rewarded left responses were coded –1 (rewarded responses were coded 0). Each
predictor included in the model was used to determine how choices and outcomes from the previous trials influenced the choice of the
current trial. A positive coefficient indicates a higher likelihood of selecting the previous nose-poke aperture whereas a negative coefficient
indicates a greater likelihood of choosing the alternative nose-poke aperture. PCP-treated rats were less likely to repeat a rewarded choice and
less likely to switch after an unrewarded choice, relative to saline-treated rats. E Scatterplot and Pearson’s correlation demonstrating the
relationship between target win-stay responding and the number of completed reversals. Sal, n= 24. PCP, n= 24. *p < 0.05, ***p < 0.001. $$$

denotes main effect of treatment, p < 0.001.
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scores [45] (Fig. 2B and Supplementary Table 3). The best-fitting
model included α, β, and forget parameters (termed the one-alpha
with forget parameter model).
To determine whether we could accurately estimate the

parameter values for the winning model, we performed parameter
recovery by simulating PRL performance using known parameter
values (Fig. 2C). Recovery of the α (r= 0.91, p < 0.0001) and β
(r= 0.9, p < 0.0001) values was excellent. Recovery of the forget
parameter was less robust, but the correlation between the actual
and fitted αf values was significant (r= 0.71, p < 0.0001). Finally, we
performed a posterior predictive check by simulating PRL
performance using the parameter values obtained from the fitted
model on each day of testing. This posterior predictive check
revealed a close correspondence between actual and simulated
data for two key variables not explicitly included in the modeling—
namely, the number of completed reversals and the extent of target
win-stay responding (Fig. 2D). Thus, the one-alpha model with
forget parameter was able to capture key aspects of the data,
indicating that analysis of its parameters should provide insight into
underlying behavioral mechanisms that drive PRL performance.
To this end, we analyzed the learning rate (α parameter) and

found that it increased across the testing period [F(19,836)= 72.03,
p < 0.001] and was reduced in PCP-treated rats [F(1,44)= 16.97,
p < 0.001]. Moreover, a treatment × day interaction was evident
[F(19,836)= 2.73, p < 0.001] (Fig. 3A). Relative to saline-treated rats,
the learning rate was reduced in PCP-treated rats from day five
onwards (p < 0.05). By contrast, the β parameter decreased across

test days [F(19,836)= 32.66, p < 0.001] indicating that a greater
tendency to engage in exploration was associated with improved
PRL performance (Fig. 3B). In addition, a main effect of treatment
revealed that the β parameter was elevated in PCP-treated rats
[F(1,44)= 4.88, p < 0.05], indicating an increase in exploitation.
Moreover, analysis of β also revealed a treatment × day interaction
[F(19,836)= 1.62, p < 0.05]. Post hoc comparisons revealed that β
was elevated in PCP-treated rats, relative to saline-treated rats, on
days 1, 4, 5, 6, and 8. Finally, although the forget parameter
increased across test days [F(19,836)= 16.84, p < 0.001], there was
only a trend toward a main effect of treatment [F(1,44)= 2.83,
p= 0.09] (Fig. 3C). No other main or interactive effect was
significant [Fs < 1.03].
To illustrate how these effects affected the value attributed to

each stimulus, we plotted the Q value for the left and right
apertures from two representative animals. During the earlier test
day (Fig. 3D), the value for each action changed very gradually
over multiple trials, corresponding to the low learning rate. By
contrast, during the later test day (Fig. 3E)—when the learning
rate was increased—the value for each stimulus rapidly alternated
when a reversal was triggered. Notably, this effect was blunted in
the PCP-treated rat due to their relatively reduced learning rates.
Furthermore, these plots highlight that the value of an action
decays when it is not selected. This effect is mediated by the
forget parameter decaying the value of an action in each trial that
it is unselected. Hence, although the performance of PCP-treated
rats improved with training (i.e., increased reversals, Fig. 1B), their

Fig. 2 Validation of Q-learning model. A Our modeling approach investigated variations within three distinct components related to
decision making: choice, feedback, and learning. In total, 18 separate models were built by combing each of the options from each of the
three different components. The free parameters that were estimated (panel A, red) include β and bias (choice component), outcome
sensitivity, reward sensitivity, and punishment sensitivity (os, rs, ps, respectively; feedback component), and learning rate and forget rate (α and
αf, respectively; learning component). B We fit each model to the behavior and calculated the ΔAICc value and the relative likelihood score.
The two most plausible models for our data included the one-alpha forget model (free parameters: α, β, forget) or the one-alpha bias forget
model (α, β, bias, forget). C Using known free-parameter values, the one-alpha forget model was used to simulate PRL performance 75 times
and the free parameters were then recovered. Using Pearson’s correlation, we found a significant positive correlation between the actual and
recovered α, β, and forget values. D Using the parameter estimates obtained from the rodent data, we then simulated PRL performance. This
posterior predictive check revealed good correspondence between actual and simulated data for the number of completed reversals and
target win-stay behavior, in both saline- and PCP-treated rats.
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relative inability to rapidly update value estimates in response to a
contingency reversal led to suboptimal performance vs. what was
observed in the saline-treated controls.
Indeed, plotting the value of the selected action for trials

surrounding a reversal revealed that PCP-treated rats were slower
to adapt in the trials immediately after the reversal (Supplemen-
tary Fig. 3A). After the initial reduction in value (due to responding
to the new non-target stimulus), saline-treated rats began
selecting the stimulus with a higher value (i.e., the new target).
PEs are integral to value updating [37] and were also modulated in
response to the contingency reversal (Supplementary Fig. 3B). On
trials immediately after the reversal, saline-treated rats showed an
adaptive pattern whereby negative PEs typically predicted a
response switch on the next trial, whereas positive PEs typically
led to the same action being repeated (Supplementary Fig. 3C).
These effects were blunted in PCP-treated rats. Moreover, the
mean PEs elicited during repeat and switch trials were correlated
with between-subject differences in overall target win-stay
responding (Supplementary Fig. 3D). Tentatively, these data imply
that PCP-induced deficits in PRL potentially result from aberrant
PE signaling.
Finally, we used the trial-by-trial behavior (specific variables

described in Supplementary Table 2) to train a DNN using a 44-
subject training dataset to predict the treatment group of the
4-subject test dataset (Fig. 4A). The training dataset was split into
training (75%) and validation (25%) sets and the model was
trained for 250 epochs in batches of 500 trials. The compiled
network had a total of 325,038 trainable parameters throughout

all the node and layers. The model evaluates each batch of data,
predicts the treatment group, and then updates the weights and
biases throughout the network via backpropagation to improve its
prediction of the next batch. At the end of each epoch, model
performance is evaluated using the validation set. Throughout this
process, the accuracy of the predictions for both the training and
validation sets increased and the model loss (i.e., the degree to
which the predictions were incorrect) decreased (Fig. 4B). Once
trained, we then evaluated the performance using the test dataset
(n= 4) to determine the model’s ability to predict the treatment
group of new subjects. The classification report revealed that the
overall accuracy was 82%. Moreover, the precision, recall, and f1-
score ranged between 80 and 84% (Fig. 4C). Finally, we generated
the group probability for each individual subject. The predicted
probability that each subject belonged to the correct treatment
group ranged between 0.783 and 0.863 (Fig. 4D), demonstrating
that the trained model accurately predicted the treatment group
of each subject in the test dataset.

DISCUSSION
The present findings demonstrate that disrupting normal gluta-
matergic transmission during early postnatal neurodevelopment
leads to PRL impairments in adulthood. Our computational
analysis revealed that these deficits were accompanied by a
reduced learning rate. Finally, these behavioral alterations were
sufficient to train a deep neural network (DNN) that accurately
predicted the treatment group of subjects.

Fig. 3 Postnatal PCP-treatment disrupts Q-learning. A The learning rate increased throughout the PRL testing period, but the increase was
weaker in PCP-treated vs. saline-treated rats. B As testing progressed, rats showed a greater tendency to explore lower-valued options (i.e., β
value reduced over test days). During the first half of testing, PCP-treated rats exhibited a greater tendency to exploit higher-valued actions,
but this effect was transient and only evident for several days. C The rate at which the value for the non-chosen action decayed increased with
training. However, there was no significant difference between treatment groups. D, E To demonstrate how the changes in α, β, and the forget
parameters may influence value assignment and choice behavior we plotted how the value attributed to the left and right nose-pokes (blue
and orange lines, respectively) evolved throughout a session. Blue circles above the plot denote a left nose-poke response whereas orange
circles below the plot denote a right nose-poke response. Green or red circles indicate whether the response was rewarded or not,
respectively. D During an earlier test day (day 3), although both rats reached the criteria and triggered a reversal (black vertical dashed line)
the low learning rate in both saline and PCP-treated rats resulted in a more gradual change in action value. This effect was also more
pronounced in the PCP-treated rat. E During one of the later test days (day 18), the value attributed to each action was subjected to more
rapid swings in response to reversals, an effect that resulted from an increase in the learning rate. Sal, n= 24. PCP, n= 24. *p < 0.05. $ denotes
main effect of treatment, p < 0.05, $$$ denotes main effect of treatment, p < 0.001.
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PRL deficits in schizophrenia are characterized by impairments
in reward sensitivity that result in excessive switching between
stimuli [5, 11, 13, 46, 47]. We observed a similar impairment profile
after postnatal PCP-treatment; rats completed fewer reversals and
exhibited a pronounced reduction in win-stay responses. In
addition, we also observed a reduction in lose-shift responding
in PCP-treated rats, thereby reducing the tendency to switch
choices that were not rewarded. Interestingly, PRL performance
(i.e., completed reversals) was only correlated with correct win-
stay responses. Hence, despite the observation that PCP-induced
alterations were not valence-specific, the overall impairment in
PRL performance evident in postnatal PCP-treated rats likely
resulted from the reduced willingness or ability to repeat
rewarded actions. Administration of PCP during adulthood is
another commonly used approach to model aspects of schizo-
phrenia in experimental rodents [48]. Sub-chronic PCP-treatment
in adulthood has been shown to either impair [49] or have no
effect [50] on reversal learning. Notably, however, these studies
used a deterministic variant of the reversal learning task. The
discrepancy in behavioral alterations between these studies and
our findings likely results from differences in the dosing regimen
(i.e., early postnatal vs. adult acute or sub-chronic) or behavioral
task (i.e., deterministic vs. probabilistic reversal learning). Interest-
ingly, social isolation rearing [35] or maternal immune activation
[51] also impair PRL performance. Like postnatal PCP-treatment,
these two manipulations model the neurodevelopmental origins
of schizophrenia [24].

The improvement in task performance evident in both saline-
and PCP-treated rats as training progressed was associated with
an increased learning rate. Notably, however, the learning rate was
reduced in PCP-treated vs. saline-treated rats. Moreover, during
the initial test days—when performance was poor—rats tended to
engage in more exploitative choices and this tendency was
initially greater in PCP-treated rats. Initially, this sounds counter-
intuitive as one may assume that a bias toward exploitation would
be beneficial. However, the preference for exploitative choices was
evident when the learning rate was comparatively low. Impor-
tantly, this combination (low α, high β) would contribute to rigid,
inflexible behavior [52]. The values of the target and non-target
stimuli need to update rapidly after a reversal, but with a low α
this updating occurs too gradually, which causes the value for the
former target stimulus to remain elevated for too long post-
reversal. When paired with a high β (i.e., exploit the high-valued
action), the subject would persistently choose the former target
stimulus for too many trials since its value would remain elevated.
As training progressed, the β parameter was reduced indicating
that action selection had shifted toward exploration and the
difference between treatment groups diminished. However, the
reduction in the learning rate evident in PCP-treated rats persisted
throughout testing.
It has long been established that PEs highlight whether an

outcome was better or worse than expected [53]. Moreover, PE
signaling is disrupted in schizophrenia [8] and in human subjects
administered NMDA receptor antagonists [54, 55]. Normalizing PE

Fig. 4 Deep neural network (DNN) predicts treatment group. A Schematic of approach and network architecture. The PRL behavioral data
were analyzed and split into training (n= 44 rats) and testing set (n= 4 rats). For training of the model, the training set was split into a train
and validation set (75:25 split) and passed into the DNN. The first layers consisted of one-dimensional convolutional layers. The output from
the last convolutional layer was pooled, flattened, and then passed to two long short-term memory (LSTM) layers, which in turn passed its
output to two fully connected dense layers. The output of the DNN consisted of two nodes and used a softmax activation function to predict
the treatment group of the subject. Once the model was trained, the four subjects set aside were then used to evaluate the generalizability of
the model by predicting the treatment group of new rats. B The model was trained in batches of 500 trials for a total of 250 epochs. The
training and validation accuracy increased across epochs. In addition, the model loss for both the training and validation sets decreased
across epochs. C Using the trained model to evaluate the performance of the four unseen rats we generated a classification report. An overall
accuracy of 82% was achieved, with similarly high precision, recall, and f1-scores. D The predicted probability scores for individual subjects
ranged from 78 to 86%.
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signaling in schizophrenia patients, via transcranial stimulation,
attenuated learning deficits [56]. For the trials immediately after a
reversal, we found that responses eliciting a positive PE were likely
to be repeated whereas responses that elicited a negative PE were
likely to be avoided on the next trial. The PEs for these trials were
correlated with the propensity to repeat rewarded target
responses, consistent with the notion that PEs serve as a teaching
signal [9] and guide the subject to make the appropriate decision
when reward contingencies changed. These considerations point
to a fundamental role for abnormal PEs in the performance
deficits observed in the PCP group. However, two important
caveats must be noted. First, our study is strictly behavioral and
thus we cannot make strong claims about underlying neural
mechanisms. It is well known that changes in dopamine cell firing
represent the neurophysiological marker of reward PEs [9, 53], and
although several studies have evaluated PEs using behavior alone
[57–60], many studies have successfully related PEs to activity
within the dopaminergic mesolimbic pathway [12, 41, 61–63].
Consequently, we suggest that the performance reductions we
observed in the PCP group may reflect aberrant activity of
dopaminergic networks; the fact that perturbation of early
postnatal NMDA receptor signaling also disrupts dopaminergic
neurotransmission [64–66] is consistent with this suggestion.
However, this interpretation is speculative given the absence of
neurophysiology in the current study.
Second, although we found that postnatal PCP-treatment-

induced alterations in PEs may have influenced subsequent choices,
dissociating these alterations from changes in the learning rate is
challenging, and indeed—as emphasized above—we found that
learning rates were reduced in the PCP group. On the one hand,
learning rates and PEs are dissociable in the sense that learning rates
—as fit in the models we used—are stable within a session whereas
PEs change on a trial-by-trial basis. Moreover, as just discussed, there
is extensive evidence linking trial-level fluctuations in mesolimbic
dopamine signaling to PEs, whereas the neural systems that control
individual differences in learning rates are less well-understood.
Critically, however, PEs reflect the difference between outcomes and
the expected values of actions, and because learning rates control
the rate for which value estimates are updated, they also affect PE
sign and magnitude—thus, these two measures are not fully
dissociable in the current study. Therefore, although alterations in
PEs may influence subsequent choices and win-stay performance,
these changes may result from a downstream consequence of the
PCP-induced reduction in the learning rate; additional work is
needed to disentangle these two mechanisms. Encouragingly, EEG
measures of PEs during PRL tasks have been obtained in humans
and rodents [67] and are similarly pharmacological sensitive across
species [68], thus the PRL task may continue to provide a useful
method for pursuing these more complex questions.
Deep learning approaches are becoming more common in

psychiatry [20, 21, 69] and have been applied to solve a variety of
complex problems from predicting treatment efficacy [70, 71] to
assisting with diagnostics [72, 73]. Deep learning algorithms can
identify unique features within large, complex datasets [21], and have
been successful in classifying schizophrenia patients using neuroima-
ging data [74]. However, the rising costs [75] and the requirement for
specialized technical staff [76] associated with neuroimaging preclude
their routine use during a psychiatric evaluation. Using our behavioral
dataset, we were able to train a DNN to classify the treatment group
of new subjects with approximately 82% accuracy, and we correctly
predicted each treatment group with a high probability. Importantly,
this classification accuracy is consistent with previous studies that
used neuroimaging data [77–81]. Hence, our findings demonstrate
the potential utility for deep learning approaches to assist in
diagnostics using behavioral data easily obtained using a simple
computer-based task.
This work is not without limitations that warrant discussion.

First, although the one-alpha model with a forget parameter used

here was able to capture the key behavioral processes underlying
PRL performance, it is possible that another model would provide
an even better fit and potentially lead to different conclusions.
There are many model variants that could be used to evaluate PRL
performance, such as Q-learning models with separate learning
rates for reward vs. non-rewards [82], Q-learning models with a
dynamic learning rate [83–85], actor-critic models [86], or hybrid
models incorporating elements of Q-learning and actor-critic
models [60]. Hence, in addition to exploring a variety of Q-learning
variants (as we have done, here), future investigations that
evaluate conceptually distinct reinforcement learning models may
provide additional insight into behavior. For example, the one-
alpha model with the forget parameter had a fixed learning rate
that precluded the dissociation of the α parameter from trial-by-
trial PEs. Using a Q-learning model with a dynamic learning rate
[83, 85] while also measuring dopaminergic activity may provide a
method to disentangle changes in PEs from the learning rate and
provide confirmation of the hypothesis that PCP-induced altera-
tions in PE signaling play a central role in dysfunctional PRL.
Second, while our DNN accurately classified saline- vs. PCP-treated

rats, these remain rodent outcomes. Thus, future work is required to
confirm whether this approach can achieve a similar accuracy using
schizophrenia patients. Another avenue for future work involves
mental disorders other than schizophrenia. PRL performance is
disrupted in several psychiatric conditions, including major depression
[87], obsessive-compulsive disorder [88], and substance use disorder
[89]. Since the pattern of PRL deficits appears to vary somewhat
across disorders, these differences open the possibility that deep
learning approaches could identify these differences and assist with
diagnostic classification. Moreover, in addition to the PRL task, other
tasks that evaluate distinct constructs such as risky or effortful
decision making, executive functioning, or cognitive control are
impaired in several mental illnesses [90–95]. Training a DNN on
behavior obtained from a battery of tasks would undoubtedly
improve the robustness of diagnostic classifications based on
behavioral profiles. Third, due to their nature, when using deep
learning algorithms it is unclear exactly what combination of
parameters helps to discriminate between groups [69]. The initial
layers of our model were one-dimensional convolutional layers that
would have likely learned how the relationship between each of the
variables differed between groups for each trial [96], whereas the
subsequent LSTM layers would have likely captured how these
relationships varied across trials [97]. Future research involving feature
importance could help delineate which of the behavioral parameters
are essential for detecting the differences that exist between groups.
In conclusion, our findings show that disrupting early postnatal

glutamate transmission in rats leads to impaired PRL performance.
Although pinpointing the exact neurocognitive mechanisms that
most strongly contribute to these impairments remains a key goal,
the differences in behavior were sufficient to train a DNN to
accurately predict the treatment group of rodents in a test dataset.
Consequently, combining PRL with a DNN has the potential to
ultimately assist with the initial diagnosis of psychiatric conditions
in a manner more accessible than previous DNN approaches.
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