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Scale-Invariant Neuronal Avalanche Dynamics and the
Cut-Off in Size Distributions
Shan Yu1*., Andreas Klaus1,2., Hongdian Yang1¤, Dietmar Plenz1

1 Section of Critical Brain Dynamics, National Institute of Mental Health, Bethesda, Maryland, United States of America, 2 Nobel Institute for Neurophysiology, Department

of Neuroscience, Karolinska Institute, Stockholm, Sweden

Abstract

Identification of cortical dynamics strongly benefits from the simultaneous recording of as many neurons as possible. Yet
current technologies provide only incomplete access to the mammalian cortex from which adequate conclusions about
dynamics need to be derived. Here, we identify constraints introduced by sub-sampling with a limited number of
electrodes, i.e. spatial ‘windowing’, for well-characterized critical dynamics_neuronal avalanches. The local field potential
(LFP) was recorded from premotor and prefrontal cortices in two awake macaque monkeys during rest using chronically
implanted 96-microelectrode arrays. Negative deflections in the LFP (nLFP) were identified on the full as well as compact
sub-regions of the array quantified by the number of electrodes N (10–95), i.e., the window size. Spatiotemporal nLFP
clusters organized as neuronal avalanches, i.e., the probability in cluster size, p(s), invariably followed a power law with
exponent 21.5 up to N, beyond which p(s) declined more steeply producing a ‘cut-off’ that varied with N and the LFP filter
parameters. Clusters of size s#N consisted mainly of nLFPs from unique, non-repeated cortical sites, emerged from local
propagation between nearby sites, and carried spatial information about cluster organization. In contrast, clusters of size s.
N were dominated by repeated site activations and carried little spatial information, reflecting greatly distorted sampling
conditions. Our findings were confirmed in a neuron-electrode network model. Thus, avalanche analysis needs to be
constrained to the size of the observation window to reveal the underlying scale-invariant organization produced by locally
unfolding, predominantly feed-forward neuronal cascades.
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Introduction

Considerable effort is currently dedicated to characterize

mesoscopic dynamics of the cortex by recording simultaneously

from as many neurons as possible in vitro [1–3] and in vivo [4–14].

However, except for the rare situation like imaging the full larval

zebrafish brain [15], current technologies for the mammalian

cortex allow only for studying relatively small parts of the full

network. For example, in non-human primates, microelectrode

arrays typically cover a cortical area of tens of mm2 [8–

10,12,16,17], which is many times smaller than the full cortical

surface.

The problem of neuronal sub-sampling can be partly alleviated

by studying the local field potential (LFP), which reflects

synchronized activity of neuronal groups [1,8,17]. Yet, despite

the capability to collect activities of many more neurons, the

spatial scale to which the LFP can be measured is still limited by,

e.g., the size of the recording array. The consequences of such

‘windowed’ observations for studying cortical dynamics are not

well understood. In the present study, we investigate this problem

by analyzing cortical neuronal avalanches in both ongoing LFPs

from awake monkeys and neuronal network simulations.

Neuronal avalanches are spontaneous activity cascades in

superficial layers of cortex that follow precise statistical relation-

ships characterized by power laws [1,8,18–21]. The distribution of

avalanche sizes follows a power law with exponent –1.5, which

indicates long-range spatiotemporal correlations for which the

observation is particularly affected by spatially ‘windowed’

recordings. Theory [22,23] and experiments [24–26] suggest that

critical dynamics, indicated by avalanche sizes that follow a power

law [27], provide networks with maximal dynamic range, pattern

entropy, phase variability [28] and learning capabilities [29].

Thus, the power-law distribution in avalanche size is an important

indicator of critical dynamics that requires proper identification.

In the current study, we identify the window-size effect in

analyzing avalanche dynamics and detail how a window intro-

duces an upper cut-off in the power-law distribution of avalanche

sizes composed of a biased sub-sampling of spatiotemporal

patterns. We show that properly taking the cut-off into account

resolves apparent and substantial differences on assessing ava-

lanche dynamics, such as more negative power-law exponents, as

recently reported by [30].
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Materials and Methods

Ethics statement
All experiments were carried out in accordance with the US

National Institutes of Health guidelines for animal use and care.

All procedures were approved by the Animal Care and Use

Committee of the National Institute of Mental Health.

Subjects and experimental procedures
Subjects for this study were two adult macaque monkeys

(Macaca mulatta; one male and one female; 7–8 years old;

weighting 7–9 kg). The animals were housed in individual cages in

an animal room, with 12-h light/dark cycle. For environmental

enrichment, toys were placed within the cages. Water was

provided ad libitum and two meals were given each day. To

implant the head posts and microelectrode arrays, aseptic surgeries

were carried out under anesthesia (isoflurane, 1–4%) and overseen

by a veterinarian. The detailed surgical procedures were described

previously [31]. Recordings were carried out after sufficient

recovery from the surgeries (at least 5 days, determined by a

veterinarian). After experiments were finished, the head posts were

removed and the skins were sutured.

Electrophysiological recordings
In the two adult macaque monkeys, we recorded the LFP with

chronically implanted microelectrode arrays (96 channels; 10610

without corner electrodes, 400 mm inter-electrode distance, 0.5–

1 mm electrode length; BlackRock Microsystems) located in the

superficial layers of the arm-representing area of the left premotor

cortex (monkey 1; 91 working electrodes) or prefrontal cortex (area

46; monkey 2; 95 working electrodes). 20–30 minutes of ongoing

LFP (1 to 100 Hz band-pass filtered) signals were simultaneously

obtained (2 kHz sampling frequency) from each electrode while

the monkey was sitting awake in a primate chair with the head

fixed, but not engaged in any behavioral task. For some analyses,

LFP signals were filtered with a higher cut-off frequency of up to

250 Hz as indicated in the main text and figure legends. The same

data set has been analysed previously [17,31,32].

Avalanche analysis
Large negative deflections in the LFP, i.e., nLFPs, were detected

with a threshold of -2.5 standard deviations (SD) of the LFP

fluctuations estimated separately for individual electrodes. nLFP

events have been demonstrated to be associated with a significant

increase of spiking activities and neuronal synchrony and therefore

reflect the activity of local neuronal populations [8,17]. The nLFP

peak times were subsequently binned using a time window, Dt (2

ms for monkey 1; 4 ms for monkey 2; similar results such as power-

law size distributions can be obtained with different bin widths, see

refs. [1,8]), to identify the cascading activities. A time bin was

defined active if it contained at least one nLFP at any of the

recording sites within the spatial extent of the analysis. Spatio-

temporal clusters of nLFPs were then defined by nLFPs that

occurred within a single time bin or within consecutive time bins,

regardless of their spatial location. By definition, a cluster is always

flanked by inactive bins in which no nLFP was detected (Fig. 1D).

The size of a cluster, s, was defined as either the number of nLFPs

in that cluster (discrete size) or the sum of the absolute amplitudes

of all nLFPs in that cluster (continuous size). Continuous sizes were

logarithmically binned. All cluster size distributions were plotted in

double-logarithmic coordinates for visual inspection.

Figure 1. Observation window limit introduces cut-off in
avalanche size distributions. (A) Sketch of macaque brain with
microelectrode array locations (squares; black: premotor cortex,
monkey 1; gray: prefrontal cortex, monkey 2). CS: central sulcus; PS:
principal sulcus. (B) An example trace of an LFP signal, showing the
detection of nLFPs (marked by asterisks) using a threshold of 22.5 SD
(dashed line). (C) Raster plot of nLFPs detected from all 91 electrodes
(monkey 1) in a period of 2 seconds. nLFPs are represented by
individual dots in the plot. (D) nLFPs occurring during either the same
or consecutive time bins are detected as a spatiotemporal cluster with
the size, s, defined as the number of nLFPs involved. (E) Avalanche size
distributions are plotted in double-logarithmic coordinates for four
observation windows, i.e., groups of electrodes in the recording array.
The size of the observation window, N, is defined as the number of
electrodes within the window (see inset for spatial coverage of the
windows). The positions of arrows indicate the values of the
corresponding N. (F) Continuous avalanche size distributions are
plotted for the same observation windows with the size of an
avalanche, sAmp, defined as the summated absolute amplitudes of all
nLFPs involved. The positions of arrows indicate the values of N6mean
absolute nLFP amplitude across all electrodes. For visual comparison, a
power law with exponent 21.5 is shown in E and F (dashed lines). E is
re-plotted from [17,32].
doi:10.1371/journal.pone.0099761.g001
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Estimation of the branching parameter
The branching parameter, s, is defined as the ratio between the

number of active sites at time t+1 and the number of active sites at

time t. For a single avalanche, s can be obtained by averaging the

ratio across all time bins of that avalanche. Similarly, by averaging

the ratio across specific groups of avalanches, we can calculate s
for 1) avalanches with the same size (Fig. 2D), or 2) all avalanches

observed by the same observation window (Fig. 2C). Note that in

previous studies (e.g., see [1]), s was calculated by looking at the

same ratio but only for the first time bin in avalanches (if an

avalanche lasts only for one time bin, the ratio is zero). Here we

calculated the ratio for all time bins in avalanches in order to take

more information about activity propagation into account. We

also analyzed our data according to the previously used definition

of s and all conclusions held.

Visualization and analysis of probability distributions
with and without a cut-off

The fitting of a statistical model to empirical data requires both

a well-motivated statistical model (power law, exponential, etc.)

and a proper specification of the range of values over which the

data is properly fitted by the model. The importance of the latter

becomes evident when considering a power-law distribution with

an upper cut-off (see below).

For the continuous power-law density function (PDF) without

cut-off, p(s) = csa, the corresponding complementary cumulative

distribution function (CCDF) is P(s)~ Pr (Xws)~

ð?
s

cxadx~

{c=(az1)saz1, where c is the normalization factor. Thus, the

CCDF is a power law with exponent a+1, which allows examining

the linear relation in double-logarithmic coordinates to visually

assess if an empirical distribution follows a power law [30,33,34].

Consequently, the exponent, a, of a power law without cut-off can

be inferred by estimating the exponent of the corresponding

CCDF. This method, however, has a caveat in the case of power

laws with an upper cut-off as pointed out by others [35]. For a

distribution with an upper, finite cut-off, smax, the CCDF is given

by P(s)~

ðsmax

s

cxadx~
c

az1
(smax

az1{saz1). Such a function is

equivalent to a power law plus a constant, and will not be a

straight line in the log-log plot. Note that the above results assume

p(s) = 0 for s.smax but the same conclusion holds for an arbitrary

form of p(s) that deviates from the power law with exponent a for

s.smax. As for continuous distributions, a cut-off in discrete power-

law distributions abolishes the linear trend of the CCDF in double-

logarithmic coordinates (see Results). In addition to the problems

of data visualization, ignoring a cut-off in the data introduces a

bias in parameter estimations (see Results). Therefore, in the

current study, we identified the cut-off in the size distributions and

used it to specify our statistical models accordingly [31].

Parameter estimation
For the parameter estimation, we used a maximum likelihood

approach [31,33]. Parameter values for discrete size distributions

were obtained by fitting the discrete power-law model pa(s) for

avalanche size s,

pa(s)~
saPN

x~smin
xa

, ð1Þ

to the body of the distribution, s = smin, …, N. Here, N denotes the

array or window size and was defined as the number of electrodes

used in the analysis of avalanche sizes. Using the upper bound N

instead of infinity, prevents the parameter estimates to be affected

by the cut-off in the probability distribution for s.N [31,36,37]. If

Figure 2. Local activity propagation leads to avalanche
dynamics that can be observed by windows with varying sizes.
(A) Small avalanches identified within small windows are parts of larger
avalanches identified in large windows. Examples of the spatiotemporal
pattern of an avalanche as observed through windows of increasing
size. Note that for the smallest window, the avalanche was separated
into two smaller avalanches. (B) Probability map of nLFP propagations,
showing the probability, p, of detecting a decedent nLFP at certain
location in the next time bin (2 ms, upper row; 4 ms, lower row) after a
single nLFP has been detected. The initial nLFP is always positioned at
the center of the map (0, 0) and the unit of distance, Dd, is the inter-
electrode distance of the recording array (0.4 mm). (C) Estimation of
balanced propagation depends on window size. The estimated
branching parameter, s, increases with window N, approaching the
critical value of s = 1. (D) Branching parameter as a function of
avalanche size, s(s), is plotted for the four observation windows used in
A (color coded). Individual dots represent average s for avalanches with
different sizes, s = 1, …, N for monkey 1 (monkey 2 gave similar results;
not shown).
doi:10.1371/journal.pone.0099761.g002
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not noted otherwise, the lower bound of the power law, smin, was

set to the smallest possible cluster size s = 1.

The best-fit power-law exponent for a sample of n cluster sizes,

x = (x1, …, xn), can be obtained by maximizing the likelihood of

the power-law model with exponent a,

L(aDx)~ P
n

i~1
pa(xi), ð2Þ

or, mathematically equivalently, the logarithmically transformed

likelihood

l(aDx)~
Xn

i~1

ln pa(xi): ð3Þ

Thus, the best-fit power-law exponent âa is given by

âa~ arg max
a

l(aDx): ð4Þ

For the maximization of Eq. 3, the Nelder-Mead method was

applied (using the Matlab function fminsearch). For a subset of

distributions, the objective function in Eq. 3 was visually inspected

by using a grid search over a wide parameter range (22#a#21)

to ensure the absence of multiple, local maxima. In addition, for a

subset of distributions, different initial values were tested to ensure

that the algorithm would converge to the same optimum. To

obtain parameter estimates for continuous size distributions, pa(s)

in Eqs. 1-3 can be substituted bypa(s)~csa, where c~

1=
ÐN

smin
xdx

� �
is the normalizing constant (see also refs. [36,37]).

Simulation of power law distributed data
To generate power law distributed samples on the range s = 1,

…, N, we applied the inverse method using the cumulative

distribution P(s)~
Xs

x~1
cxa for s = 1, …, N and P(s) = 0 for s ,

1. The exponent a is the desired power-law exponent and

c~
XN

s~1
sa is the normalization factor. For a sample, u, from a

uniform distribution on the interval (0, 1), the value s that fulfils the

condition P(s-1) , u # P(s) is a sample from the desired power-law

distribution. If not stated otherwise, we used a = 21.5 and

generated 10,000 samples for each distribution.

Rescaling of power-law distributions
To better visualize the cut-off behavior for different window

sizes, N, we adopted the rescaling approach described in ref. [31].

This approach collapsed power-law distributions with the same

exponent for s # N, and allowed for a direct visual comparison of

the distribution tails (s.N). First, the power-law distribution p(s)

was normalized within the range s = smin, …, N:

pN (s)~
p(s)PN

x~smin
p(s)

: ð5Þ

Second, dividing Eq. 5 by the the rescaling function [31],

A(N)~
Na

PN
x~smin

xa
, ð6Þ

results in the collapse at pN (s)/A(N) = 1 and s/N = 1 for s = N. Note

that p(s) in Eq. 5 can be an empirical distribution without or with

cut-off. The only requirement for achieving a collapse is that p(s)

follows a power law between smin and N with exponent a (a can be

estimated from the data as described above).

Calculation of the cut-off index (CI)
To quantify the cut-off behavior of a power-law distribution p(s)

for cluster sizes s.N, we defined the measure

CI~1{

P?
s~Nz1 p(s)P?

s~Nz1 p?(s)
, ð7Þ

where p(s) is the empirical distribution of interest, and

p?(s)~
saP?

x~smin
xa

denotes a power-law distribution without

cut-off. The normalization constant for p‘(s) can be obtained

by using the Riemann zeta function:
X?

x~smin
xa~f(a){

Psmin{1

x~1 xa. The exponent a used for p‘(s) should be estimated

from the empirical distribution in the range s = smin, …, N using

the likelihood estimation described above. CI is close to 0 if the

empirical distribution p(s) follows a power law without a cut-off,

and equal to 1 if p(s) shows a perfect cut-off beyond N (i.e., the

probability for s.N is zero). We note that CI does not strictly

range between 0 and 1 but could result in a negative value for a

distribution that shows an increase in probabilities for s.N

compared to a power law (this was not observed for the

distributions tested in this study). The above definition of CI was

not systematically affected by a change in the number of samples.

In addition, the influence of varying N for theoretical distributions

was very small, thus allowing the use of CI to compare the cut-off

behaviour across different window sizes N.

Two-layer network model
The network model consisted of two components: (i) a two-

dimensional network of binary nodes that exhibited critical

branching dynamics, and (ii) a layer of ‘‘electrodes’’ that

represented the local spiking activity (LSA) of the underlying

nodes. The neuronal network comprised 1006100 = 10,000 nodes

on a grid connected with different topologies, that is, local (a node

only connects to other nodes in its neighbourhood), small-world

(predominantly local with some long-distance connections), and

all-to-all (fully connected). If not stated otherwise, results are

shown for a network with local connectivity, which resembled the

average functional connectivity observed in the data (see Results).

The distance between nearest-neighbour nodes (assumed to be

equal to one without loss of generality) was the same along the two

dimensions of the grid and was used to set the connectivity

strength for the local topology. The connectivity strength, pji, of the

‘‘postsynaptic’’ nodes j = 1, …, 10000 for a given ‘‘presynaptic’’

node i was proportional to

pji!e
{ r2

2$2 , ð8Þ

where r denotes the Euclidian distance between nodes i and j in the

two-dimensional space. To avoid dissipation of activity at borders,

periodic boundary conditions were applied. We used v = 4 (Eq. 8)

if not stated otherwise. The resulting function corresponds to a

Gaussian kernel with a half-max width of ,9.4, resulting in ,70

‘‘postsynaptic’’ nodes that had larger than half-max connectivity

strength. Connections of a neuron to itself were not considered

Neuronal Avalanche Dynamics and Cut-Off

PLOS ONE | www.plosone.org 4 June 2014 | Volume 9 | Issue 6 | e99761



(pii = 0). The robustness of the presented results was confirmed in

networks with small-world topology, in which 1% of connections

were randomly rewired (without multiple connections between any

pair of neurons and without self-connections). In addition, an all-

to-all connectivity regime was tested, in which the strength of

connections between neurons was drawn from a uniform

distribution. As in the cases above, no self-connections were

allowed. Nodes were implemented as binary units with ‘‘0’’

representing the inactive state and ‘‘1’’ representing the active

state in which a spike was being generated. The postsynaptic

activation of nodes was probabilistic, where pji is the probability of

node j being active at time step t+1 due to node i being active at

time step t. For the simulation of a single neuronal activity cascade,

the network was initialized with all nodes being inactive. An

avalanche was initiated by activating a single, randomly selected

node i at time step t = 1. Activity was propagated in the next time

step t+1 according to the connectivity matrix pji. Activity

propagation was repeated until no further node was activated.

An active node became inactive at the next time step if it was not

activated by another node. The size of the activity cluster at the

neuronal level was defined as the total number of spikes within the

cluster. For each topology, between 100,000 to 150,000 avalanch-

es were simulated. To obtain a critical branching process, the

connectivity strengths were scaled to fulfil the following condition:

XG

j~1

pji~1,(i~1,:::,G), ð9Þ

where G = 10,000 denotes the number of nodes in the network.

We note that the above activation rules and the condition in Eq. 8

can lead to a significant amount of dissipation (i.e., a node was

activated by multiple inputs) if each node only connects to a few

nodes in the neighborhood (e.g., for networks with 4 connections

per node). For the local topology as defined above, the effect of

dissipation was sufficiently small (less than 0.8% of activations

resulted in multiple activations). Thus, the mean number of

descendents for each active node was very close to one in the next

time step. Consequently, the distribution of avalanches sizes at the

neuronal level followed a power law with exponent 21.5 (see

Results).

For calculation of the LSA, we created an array of 10610 = 100

‘‘electrodes’’. Each ‘‘electrode’’ sampled the summed spiking

activity from a field of 10610 = 100 adjacent, non-overlapping

nodes for each time step. The raw LSA varied between 0 and 100

(the number of sampled nodes per ‘‘electrode’’). For some

simulations, additional configurations were tested to confirm the

robustness of the presented modeling results: (i) overlapping

sampling of nodes, and (ii) increased number of ‘‘electrodes’’ (up to

625 with non-overlapping sampling of 464 = 16 nodes each).

Similar to the temporal filtering of the LFP in the data, the raw

LSA was temporally smoothed using a Gaussian function with a

varying half-max width wh = 1, …, 40 time steps. For the detection

of spatiotemporal clusters in the LSA, we applied a threshold

z = 0.1 and determined the time stamp of the positive maxima

above threshold, which is equivalent to detecting the negative peak

below a certain threshold in the LFP. The definition of avalanches

was the same as described above for the LFP activity (bin size: 8

time steps). We note that different choices of the temporal

smoothing parameters and the threshold value (up to 5 times of the

above value) did not change the power-law scaling of avalanche

sizes s # N (N denotes the number of simulated electrodes in the

model). Results are shown for wh = 10, …, 30.

Results

Predominantly local propagation of neuronal activities
underlies scale-invariant avalanche dynamics

When recording neuronal activity in the brain, the absolute

dimension of a neuronal event that can be measured, such as the

size or spatial extent of a synchronized neuronal population, is

limited by the number of neurons or cortical sites recorded from

or, in general, the size of the observation window. Despite this

uncertainty in the absolute size of neuronal events, relative size

relationships between events can still be obtained, which allows for

the identification of scale-free dynamics in neuronal avalanches

[1,31,38]. This is demonstrated in figure 1 for ongoing LFP

activity (1–100 Hz; 20–30 min) recorded with microelectrode

arrays (,10610 spatial configuration; 400 mm inter-electrode

distance) in premotor and prefrontal cortex of two awake macaque

monkeys sitting in a primate chair not engaged in any particular

task (Fig. 1A). From the ongoing LFP, transient negative

deflections (nLFPs) at individual electrodes, indicative of local

synchronized activity [8,17], were detected by thresholding (–2.5

SD; Fig. 1B). The resulting spatiotemporal organization of nLFPs

among all recording sites appeared rather complex (Fig. 1C). Yet,

when nLFPs on the array were concatenated into spatiotemporal

clusters (Fig. 1D, see Materials and Methods), the cluster size, s,

defined as the number of nLFPs involved, followed a fairly simple

probability distribution. This probability distribution revealed a

linear relationship in double-logarithmic coordinates up to the size

of the entire electrode array and an abrupt drop, i.e., cut-off,

beyond the array size (Fig. 1E, purple). The linear part of this

distribution demonstrates that the relative occurrence for clusters

of different sizes (i.e., the ratio of their respective probabilities) is

constant. For example, clusters of size s = 1 versus s = 5 occur as

often as clusters of size s = 10 versus s = 50. This constancy in size

relationship is indicative of a power law p(s) , sa here with an

exponent a close to -1.5, the hallmark of neuronal avalanches

[1,8,18,20,21,39]. The power-law scaling before the cut-off does

not depend on the size of the observation window, which is defined

as the number of electrodes N of compact sub-arrays used for the

detection of nLFP clusters (Fig. 1E). In contrast, the location of the

cut-off changes systematically with N (Fig. 1E, shown for N = 10

electrodes to the whole array with N.90 electrodes). Similar

scaling is found for continuous avalanche size probability

distributions in which the size of nLFP clusters is defined as the

sum of absolute nLFP peak amplitudes (Fig. 1F) [24–26].

The invariance of the power law to observation window size

demonstrates a specific underlying organization of avalanches as

exemplified in figure 2A, where avalanches in a given time period

were plotted for different window sizes. As expected, avalanches

observed in the small window are part of larger avalanches

identified in the bigger window, demonstrating that there is no

certainty as to the absolute size of an observed avalanche. In

principle, any observed avalanche could have originated within

and remained confined to the observation window, could have

migrated to the window from cortical regions outside the window,

or could have left and revisited the cortical region covered by the

array (i.e., window) multiple times (Fig. 2A). Given that the

observed avalanche size varies with window size N, how can it be

that the probability distribution before the cut-off in figure 1E and

F is invariant to N? The answer is related to the propagation of

nLFPs in the cortical network. Fig. 2B shows the propagation

profile for near future nLFPs, i.e., nLFPs occurring at time t0+Dt,

given an nLFP at t0. This spatial probability profile is largely local;

on average, the next nLFP in an avalanche is likely to be spatially

close to the current nLFP. Thus, as long as the window of

Neuronal Avalanche Dynamics and Cut-Off
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observation is large enough to monitor such local propagation, the

size relationship of the observed avalanches will reflect the scale-

invariant organization of the underlying dynamics.

Neuronal avalanches have been originally introduced with the

hallmarks of a power law in sizes with slope of 21.5 and a critical

branching parameter s = 1 [1]. The branching parameter

estimates how many descendent sites will be activated given a

certain number of ancestors. When s = 1, on average, each nLFP

at time t should spawn 1 nLFP at t + Dt. The predominant local

propagation as shown in figure 2B might initially suggest that the

estimation of s does not exhibit finite-size effects. However, as

shown in figure 2C, s increases with window size N, approaching

the value of s = 1 for large N. To clarify this dependency of s on N,

we calculated s as a function of avalanche size s for 4 different

window sizes. Figure 2D demonstrates that s(s) increases with s,

which can be understood intuitively when one recognizes that

activity propagation is a probabilistic process. That is, large

avalanches happen to produce more descendants than ancestors

during their initial unfolding thereby increasing their continued

survival. The converse is true for small avalanches. Importantly,

the relation s(s) is found to be independent of the observation

window size N (Fig. 2D). Therefore, the branching ratio s tends to

be underestimated for small windows given the cut-off in the

avalanche size distributions for s .N, but recovers towards s = 1

with increase in N.

Dynamical feed-forward propagation characterizes
neuronal avalanches

The cut-off in avalanche sizes, while not part of the power law,

details additional aspects of avalanche dynamics. In fact, the size

distribution plotted in figure 1 for fixed window size results from

two different counting strategies imposed by the window size. This

is demonstrated by re-plotting figure 1E for two window sizes of

N = 24 and 91 electrodes, respectively, and displaying the spatial

pattern of randomly selected avalanches of sizes below and above

N (Fig. 3A and B). Repeated activations of individual sites are

common for avalanches with s.N, whereas they are relatively rare

for s # N, which is quantified further in figure 3C and D. Fig. 3C

demonstrates that the cluster size for s # N largely reflects the

spatial extent of an avalanche. This is clearly shown by all points in

Fig. 3C falling on or close to the diagonal line up to N, whereas

data differ for s.N. We note that, if avalanches were dominated

by repeated activations of sites, individual avalanche sizes would

scatter within the area below the diagonal. Instead, these plots

demonstrate the general lacking of repeated activations in

avalanche propagation, that is, the set of active sites at time t is

not likely to be revisited as the avalanche unfolds. We refer to this

as dynamical feed-forward propagation of avalanche activity. In

contrast, avalanches with s.N are composed of activity that spans

nearly the whole observation window in addition to repeated

activations of many recording sites, resulting in a rapid decrease of

the percentage of non-repeating electrodes (Fig. 3D). The

apparent over-abundance of repeats is not a true aspect of

avalanche dynamics, but instead arises from highly biased

counting due to the inability of observing non-repeated patterns

of s.N. Accordingly, the small percentage of non-repeating

electrodes measured for a given size, s, beyond the cut-off with a

smaller window is no longer observed for the same size s when

observed with a larger window [e.g., compare any size from s = 60

to70 for N = 47 (green) with the same size for N = 91 (purple) for

monkey 1 in Fig. 3D]. Thus, the pattern space for sizes below and

beyond the observation window size differs, which is based on two

different counting schemes. Up to the cut-off, avalanche sizes can

be realized by non-repeated as well as repeated activations,

whereas beyond the cut-off, avalanche sizes can only be realized

with repeated activations. Accordingly, each avalanche size

distribution in figure1E and 3A and B in fact is composed of

two different distributions separated by the window size N.

A two-layer neuron-electrode model of avalanche
dynamics captures feed-forward propagation and size
cut-off

Further insights into these experimental findings were obtained

using a 1006100 network of binary neurons (Fig. 4A) placed on a

grid with local connectivity that approximated the spatial

unfolding of cortical avalanches (Fig. 2B). Spike propagation in

the model was tuned to be critical, that is, on average, one neuron

excited one neuron in the next time step (see Materials and

Methods). Accordingly, the size of spike avalanches followed a

power-law probability distribution with slope of 21.5 (Fig. 4B, see

also [40]). To simulate population activity in a layer of 100

electrodes, local spiking activity (LSA) was summed from non-

overlapping, compact 10610 groups of binary neurons and

temporally smoothed (Fig. 4A and C). Suprathreshold, positive

LSA maxima (LSA $ 0.1; Fig. 4C, red dots) identified local

transients in population synchrony similar to nLFPs.

For the local connectivity regime (Fig. 4E, inset), the LSA raster

(Fig. 4D) exhibited the spatiotemporal organization of avalanche

activities, which distributed in size according to a power law with

slope of 21.5 for s # N and exhibited a cut-off for s.N (Fig. 4E).

Similar to the result observed for the empirical data, we found that

the estimated branching parameter for LSA cascades depended on

window size N (Fig. 4F), although the model was tuned to be

critical and the mean number of descendants of each active node

was equal to one at the neuronal level. Importantly, our

simulations also demonstrated dynamic feed-forward propagation

of local group activity within avalanches for s # N, i.e., the

avalanche size reflects its spatial extent with few reactivations of

individual electrodes. In contrast, reactivation was prevalent for

s.N (Fig. 4G and H). In the absence of external input to the

simulated neuronal network, these reactivations reflect the re-

recruitment of sites active earlier in an avalanche as the avalanche

unfolds. The power law with exponent 21.5 was also observed in

a network with small-world topology (with ,1% long-range

connections; data not shown), which is in line with the previous

finding of the coexistence of small-world topology and avalanche

dynamics in the cortex [41]. In contrast, a network with all-to-all

connections produced distributions with a shallower initial part

and a cut-off that was characterized by a pronounced peak

(Fig. 4I). We point out that the distribution of avalanche sizes at

the neuronal level for the all-to-all connectivity is well described by

a power law with exponent 21.5 (similar to the local connectivity

as shown in Fig. 4B). Therefore, the local propagation of LSA

activities, which is consistent with the LFP results, was required to

achieve the scale invariance of the power-law distributions and the

cut-off as shown in figure 1.

The cut-off in size distribution depends on sampling
parameters

We found that the steepness of the cut-off changed with the

observation window size for both data and the model. To allow for

a direct visual comparison of the cut-offs, we calculated rescaled

cluster size distributions that resulted in a collapse of the

distributions for s # N. As shown in Fig. 5A and B for the data

and model, respectively, smaller window sizes have stronger

(steeper) cut-offs. The fact that the same qualitative behavior was

found in both data and our model tuned to be critical suggests that

Neuronal Avalanche Dynamics and Cut-Off
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such a relation between the steepness of cut-off and the window

size N is a result of observing critical avalanche dynamics with a

limited observation window.

In addition, the cut-off was affected by how quickly a given site

was reactivated, which is related to the frequency components in

the LFP signals. Consequently, signals with more high-frequency

components tended to have a less steep cut-off for relevant

frequency ranges of the LFP signal, i.e., below 250 Hz (Fig. 5C).

As expected for scale-invariant dynamics, the avalanche size

distributions for s # N were invariant to changes in signal

frequency components. This behavior was also replicated in our

model using temporal smoothing kernels with decreasing widths

(Fig. 5D). The impression given by these examples can be

substantiated by quantitative analysis. To this end, we used the

cut-off index, CI, to characterize how strong the cut-off is. CI is 1

for size distributions with a complete cut-off (probabilities for s.N

are strictly zero) and is smaller than 1 for size distributions with a

less pronounced cut-off (see Materials and Methods for details).

Figure 5E summarizes for data from monkey 1 how the window

size and frequency components of the signal jointly affect the

steepness of the cut-off. In essence, the cut-off is most pronounced

for small observation windows and signals containing less high-

frequency components. Importantly, the same behavior can be

observed for our critical model (Fig. 5F).

The cut-off is not predictive of avalanche size
relationships

As shown above, cascade sizes beyond the cut-off do not reflect

the scale-invariant properties of neuronal avalanches. The lack of

such scale-invariance, however, does not exclude the possibility

that cascades in the cut-off are predictive of cascade sizes within

sub-regions of the array, thus reflecting a size relationship across

different observation windows. For all avalanches before the cut-

off, we found a positive relation between sizes sN1 and sN2, obtained

by using two windows of size N1 and N2 (N2 , N1), respectively, to

observe the corresponding avalanches. However, this relationship

breaks down for sN1.N1 as observed in the data and the model

(Fig. 6A and B, respectively). In addition, this breakdown can be

observed with different upper cut-off frequencies used for filtering

the LFP (Fig. 6C) or temporal smoothing settings used in the

simulation (Fig. 6D). Thus, observing a pattern of size sN1.N1 does

not predict the size of the corresponding pattern observed within a

smaller spatial window of size N2. These results demonstrate that

neuronal cascades with sizes beyond the cut-off contain limited to

no information about the scale-invariant organization of ava-

lanches.

Figure 3. Characteristics of spatial patterns for avalanches observed before and after the cut-off. (A) Avalanches observed with a
window of N = 24 (see inset). Top panel: the probability distribution is redrawn from Fig. 1E (Monkey 1). Bottom panel: five randomly chosen spatial
avalanche patterns each are shown for s = 3, 6, …, 24. In addition, all 19 spatial patterns for avalanches larger than the observation window size (i.e.,
s.24) are depicted. The number of times that any specific electrode participated in a given avalanche is color-coded. (B) Same as A for the largest
observation window with N = 91 electrodes. Only 15 example patterns with s.91 are depicted. (C) The average spatial extent of avalanches,
quantified by the number of unique electrodes involved in an avalanche, is plotted as a function of avalanche size for different observation windows.
Horizontal dashed lines indicate window size N. The diagonal red line indicates equality. (D) Average percentage of electrodes that do not exhibit
repeated activation in an avalanche is plotted as a function of the avalanche size for different observation windows. Vertical dashed lines correspond
to the different observation window sizes. The observation windows used are the same as those in Figure 1E.
doi:10.1371/journal.pone.0099761.g003
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Figure 4. The two-layer model exhibits dynamics similar to LFP-based cortical neuronal avalanches. (A) The diagram of the model,
showing a part of the two-dimensional network of binary neurons and the generation of signals at the ‘‘electrode level’’, i.e., the local spiking activity
(LSA). The LSA sampled by simulated electrodes is produced by summation of spiking activities from spatially compact, non-overlapping 10 by 10
neuronal groups (dark gray and blue nodes) and subsequent temporal smoothing. (B) The size distribution of spike avalanches (n = 150,000; red) in
the critically tuned network follows a power law with exponent 21.5 (dashed line). (C) Example trace of raw (blue) and temporally smoothed (black)
LSA activities (half-width of the Gaussian smoothing window: 30 time steps). LSA peaks (red dots) were detected by applying a threshold of LSA = 0.1.
(D) Raster of LSA peaks detected at the electrode level (individual dots represent LSA peaks). (E) Avalanche size distributions observed at the
electrode level of the model with local connectivity are plotted for four different observation windows (n = 50,105 avalanches for N = 100). Inset:
probability of LSA propagation across the two-dimensional array of simulated electrodes. The positions of arrows indicate the corresponding window
sizes. The dotted line is a power law with exponent of 21.5. (F) The estimated branching parameter, s, is plotted against the observation window size
N. (G) The average spatial extent, quantified by the number of unique electrodes involved in an avalanche, is plotted against avalanche size for
different observation windows. The horizontal dotted lines indicate window sizes (same as E). The diagonal dotted line indicates equality. (H)
Percentage of electrodes without repeated activation during an avalanche is plotted as a function of avalanche size. (I) The same as in E for all-to-all
connectivity (inset shows the probability of LSA propagation across the electrodes).
doi:10.1371/journal.pone.0099761.g004
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The impact of the cut-off on estimating avalanche
parameters

Finally, we quantified how the failure to identify a cut-off in

avalanche size distributions affects the examination and interpre-

tation of potential power-law behaviour. For power-law distribu-

tions without a cut-off, i.e., p , sa is valid for arbitrarily large s, it

has been suggested that, instead of studying the probability

function of the distribution, it might be beneficial to study the

corresponding cumulative distribution function (CDF) or its

complementary form (CCDF) [34]. The benefits stem from the

fact that both CDF and CCDF do not require binning and are

relatively robust against sampling noise. For the case without cut-

off, the CCDF follows a power law with exponent a+1 (Fig. 7A).

However, if the power-law probability density/mass function

(PDF/PMF) has a cut-off, i.e., the power-law relationship does not

hold for sR‘, the corresponding CCDF will not be a simple

power law [35], and consequently, will not exhibit a linear relation

in double-logarithmic plots (see Material and Methods for details).

We simulated four power-law PMFs with various cut-offs

(kmax = 102, 103, 104, 105) and plotted the PMFs and correspond-

ing CCDFs in figure 7B. The linear relation in the PMFs was

abolished in the corresponding CCDFs. Although the approxi-

mate linear regime in the CCDFs enlarges with the increase in cut-

off location, no clear linear regime can be found for kmax ,100,

which is the upper size for most currently available microelectrode

arrays (Fig. 7B, black). To illustrate how this can affect the

examination of actual neuronal avalanches, we re-plotted the

CCDFs for the avalanche size distributions for the data (Fig. 7C;

monkey 1). Clearly, although the linear relation is striking in the

PMFs (cf. Fig. 1E), it no longer exists in the corresponding CCDFs.

We conclude that, if visual examination is used as a first step to

evaluate the power-law hypothesis, the PMF is more informative

than the CCDF. Note that Fig. 7A and B illustrate the case for

discrete distributions. The same conclusion, that is, a power law

distribution with a cut-off will lead to a curved CCDF in log-log

plot, holds true also for continuous distributions (see Materials and

Methods).

A cut-off in the empirical distribution will also affect the

estimation of the power-law exponent using statistical models. We

estimated the exponent a of a synthetic power law with cut-off by

using maximum likelihood estimation with a model that does not

Figure 5. Quantification of the cut-off. (A) Rescaled cluster size
distributions for monkey 1 show the collapse of the distributions before
s/N = 1 (vertical arrow) and different cut-off behaviour for s/N.1 for four
different array sizes. (B) The same as A for the model. (C) Cut-off
behaviour of cluster size distributions that were obtained for different
temporal filter settings. Data was filtered with the same lower cut-off
frequency (1 Hz) but different upper cut-off frequencies, fhigh = 100, 150,
and 250 Hz (monkey 1; vertical arrow indicates the array size: N = 24
electrodes). (D) The same for the model. Raw LSA traces were smoothed
with Gaussian filters of various half-widths (wh = 10, 15, and 30 time
steps; array size: N = 30 electrodes). (E) Cut-off index CI (Eq. 7) for size
distributions in monkey 1 for all combinations of fhigh and N. (F) CI for
distributions obtained from the model with different values of temporal
smoothing (wh) and N. To estimate a for the calculation of CI for the
model, smin = 4 was used.
doi:10.1371/journal.pone.0099761.g005

Figure 6. Size relationship of avalanches is only preserved for
avalanches smaller than the observation window size. (A)
Observing an avalanche of size sN1 # N1 predicts the size sN2 of the
corresponding avalanche observed in window N2 , N1. This prediction
power is lost for sN1.N1. The sizes of nLFP clusters were measured for a
window of size N1 and plotted against the corresponding cluster sizes
that were obtained for a window half as large, i.e., N2 = 0.56N1 (monkey
1). Vertical arrows indicate the sizes of the larger window. Shown are
averages for each size sN1 (gray symbols) and smoothed lines for better
visualization (6: N1 = 20, +: N1 = 40, o: N1 = 80). The smaller window with
N2 electrodes was completely contained within the larger window with
N1 electrodes. (B) The same as A for the model. (C) The same analysis for
various values of the upper cut-off frequency, fhigh (N1 = 40, N2 = 20;
monkey 1). (D) The same as C for the model with various settings for
temporal smoothing of the raw LSA signal.
doi:10.1371/journal.pone.0099761.g006
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take the cut-off into account. Figure 7D (black line) shows that

ignoring the cut-off results in more negative estimates of a (the

same behavior was observed when estimating a using the

Kolmogorov-Smirnov statistic; data not shown). Intuitively, this

is because a more negative exponent is required to explain the

abrupt drop in probabilities beyond the cut-off. The bias is

particularly pronounced for smaller cut-off sizes, N, and is more

tolerable for N.103 (Fig. 7D, black). In contrast, taking the cut-off

into account results in the correct estimation of a in both the

model and data (Fig. 7D and E, red).

Discussion

This study demonstrates that limitations imposed by a small

observation window to study large neuronal populations can be

overcome for neuronal avalanche dynamics. Based on ongoing

cortical activity from awake, non-human primates at rest and

neuronal modeling, we show that proper size relationships of

neuronal avalanches are obtained within the window of observa-

tion despite the general uncertainty about the absolute size of the

population events, i.e., avalanches. Using neuronal modeling, we

show that this result is a consequence of both critical dynamics and

local activity propagation. By comparing our results obtained with

observation windows of different sizes, we identify the unbiased

regime of measurements to identify avalanche dynamics and

demonstrate its qualitative separation from a sampling-biased

regime identified by the size cut-off beyond the window size.

Ignoring the cut-off in avalanche size distributions leads to false

estimates of avalanche properties, e.g., the exponent of the

avalanche size distribution. In contrast, the proper identification of

the cut-off allowed us to demonstrate the dynamical feed-forward

property of avalanche propagation.

The effects of observation window on examining and
interpreting neuronal avalanches

A major motivation for the current study was to identify the

influence imposed by observing neuronal dynamics through a

relatively small spatial window. For neuronal avalanches, we found

that such windowed access indeed affects the visualization and

analysis of the data, as well as the interpretation of the results.

Specifically, we found that the spatiotemporal clusters with s.N

were affected by sampling parameters and failed to reflect the

Figure 7. The impact of a cut-off on visualizing a power-law distribution and estimating the exponent. (A) Probability mass function
(PMF, inset; calculated as p(k)~k{1:5=f(1:5), where f(x) is the Riemann zeta function) and the corresponding complementary cumulative distribution

[CCDF, defined as P(k)~
X?

k
p(k)] for a power-law distribution without cut-off, i.e., the power law holds for arbitrarily large k. The exponents are 2

1.5 and 20.5 for the PMF and CCDF, respectively. (B) PMFs (inset; defined as p(k)~k{1:5=
Xkmax

l~1

l{1:5 if k # kmax and p(k)~0 if k.kmax, where kmax is the

cut-off size) and corresponding CCDFs [defined as P(k)~
Xkmax

k
p(k)] for power-law distributions with cut-off sizes, kmax = 102, 103, 104, and 105

[dashed lines: power law with exponent a = 21.5 (inset) and 20.5 shown for comparison]. (C) CCDFs for cluster sizes in monkey 1 (see Fig. 1E for
corresponding PMFs). (D) Power-law exponents were estimated for synthetic data with varying cut-off size, N, ranging from 8 to 104, assuming the
correct model with upper bound (smax = N, red) or an incorrect model without cut-off (smax = ‘, black). Exponents were estimated using a maximum-
likelihood approach (shown are the means with error bars indicating the standard deviation across n = 10 synthetic distributions). (E) Power-law
exponents were estimated for size distribution of monkey 1 with varying cut-off size, N, ranging from 10 to 91, assuming the correct model with
upper bound (smax = N, red) or an incorrect model without cut-off (smax = ‘, black).
doi:10.1371/journal.pone.0099761.g007
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scale-invariant properties of the underlying dynamics. Therefore,

the cut-off in size distributions needs to be identified and to be

excluded for a proper analysis of the data and interpretation of the

results. Firstly, an upper limit in size (smax) that corresponds to the

cut-off is necessary when formulating a statistical model to fit size

distributions as suggested previously [31,36,37]. Secondly, if a cut-

off is present in the probability distribution, one cannot judge if the

distribution follows a power law by visually inspecting the

corresponding CCDF [35]. Recently, Dehghani et al. [30]

reported for recordings in cats, monkeys and human subjects

curved CCDFs in log-log plots as well as more negative exponents

(e.g. 23 to 24) in cluster size distributions, which was interpreted

as a lack of avalanche dynamics. Closer examination of their

figures, however, revealed that clusters with s.N were not

excluded and many estimations were exclusively based on clusters

with s.N for which fits with steep slopes are to be expected. In line

with our analysis, Dehghani et al. noticed that in many of their

cases, the PMFs exhibited linearity in log-log plots with a steep

slope beyond system size and a rather curved appearance of the

corresponding CCDFs.

In summary, visual inspection of the PMF or PDF is a useful

first step to select the proper model (e.g., with or without a cut-off)

in order to apply a more quantitative approach to examine power-

law distributions.

Features and limitations of the two-layer network model
Neuronal avalanches have been studied in networks of binary

neurons (e.g. see [24]) or integrate-and-fire neurons with short-

term synaptic depression [42,43]. However, these models do not

exhibit the typical, sharp cut-off behavior found in neuronal

avalanches from LFP recordings. In the current study, local

summation and temporal filtering of simulated, critical spiking

activity at the electrode level combined with a predominantly local

connectivity scheme replicated the scale invariance of the power-

law body as well as the cut-off in the tail of the distribution.

Although this simple mechanism could account for many statistical

features observed in the data, other factors that control the specific

shape of the distribution that constitutes the cut-off might also

exist. For example, non-specific inhibition in cortical networks

could create temporal windows of decreased excitability and

consequently lead to a reduced likelihood of repeated activation of

a cortical site during an avalanche. In addition, refractory periods

that are well-known to influence spiking at the cellular level, might

also influence dynamics at the population level. It should be noted,

however, that the implementation of a simple refractory period

does not lead to a sharp cut-off in spike avalanche distributions,

but instead results in distributions with an exponential cut-off

caused by the dissipation of input to neurons during their

refractory periods [44].

Despite the simplicity of our model and the fact that not all

aspects were precisely tuned to match the data, e.g., exact

functional connectivity or exact match of the time step for spike

propagation, the model of simulated LSA activities was able to

correctly replicate major aspects of cortical neuronal avalanches.

Importantly, the model allowed us to study neuronal avalanches in

the absence of any external inputs and volume conduction. Highly

consistent results obtained in both the monkey recordings and the

simulations suggest that the nLFP recordings were not affected by

external noise but instead reflect the intrinsic organization of

neuronal dynamics.

Predominantly local feed-forward activity propagation of
neuronal avalanches

In the current study, we extracted both local and global aspects

of avalanche dynamics. The local, average activity profile that

characterizes the spatial propagation of successive nLFPs within an

avalanche is consistent with the general notion that neuronal

activity in the recurrent cortical network can propagate in a local

and feed-forward manner. Using LFP or voltage sensitive dye

signals, spontaneous activity in many cortical areas, including the

visual, auditory, somatosensory, motor and premotor cortices is

often characterized as wave-like [9,45–48]. The feed-forward

propagation may reflect the distributed nature of cortical

operation [49], such as the maintenance of memory in recurrently

connected circuits [50] and selective signal amplification by

hidden feed-forward connectivity between activity patterns [51].

Moreover, our finding about the dominantly feed-forward

propagation of avalanche activities is also consistent with previous

suggestion that avalanches can arise from cascading activities

unfolding in networks of functionally feed-forward connections

[52,53]. It is worth noting that although avalanche propagation

was found to be dominantly feed-forward, avalanche dynamics

does not establish exclusively feed-forward propagation [53].

Importantly, with increasing observation window size, more repeat

activations can be detected even for s , N. One possible

explanation is that with the increased observation window, longer

lasting avalanches, which allow more time for sites to reactivate,

can be detected. Thus, feed-forward propagation characterizes the

local evolution of avalanches in both space and time.

Our study, besides demonstrating local feed-forward propaga-

tion for avalanche dynamics, in addition, also identifies the regime

in which these local dynamics operate, which has direct

implication for the global aspect of these dynamics. Specifically,

if feed-forward propagation was subcritical and quickly died out,

activation initiated within the observation window would not

spread far and therefore would allow for a fairly complete

observation using a window of limited size. Similarly, if

propagation was supercritical and always engaged the majority

of sites in the system, a window of limited size would also suffice,

because the entire system is synchronized and observing a part of it

would be predictive of the full system dynamics. In between these

extreme scenarios, local propagation of activities, in principle, can

lead to cascades of all possible sizes, in which case a limited

observation window will be insufficient to capture the complete

activity patterns. Specifically, in the critical state, the variability in

cascade sizes is maximized [25], quantified by the scale-free power

law in pattern size distribution, and, accordingly, the difficulty in

predicting the complete pattern. The empirical data used in the

current study was previously shown to be in line with critical state

dynamics [32], in which long-range correlations that extend

beyond the size of limited observation windows exist [54].

Moreover, the model we simulated in the current study was

tuned to be critical. Despite the absence of information about the

full activity patterns, we found that, in the critical state, a limited

observation window can, nevertheless, correctly reflect the true

organization of the underlying dynamics if the activity propagation

is predominantly local. This was demonstrated by the invariant

power law across different observation windows for both the data

and the model with critical dynamics.

In summary, our results show that the observation window

effect, i.e., the cut-off, can be identified for avalanche dynamics

and, when taken properly into account, reveals a dominant local

feed-forward propagation that underlies the scale-invariant

organization of cortical neuronal avalanches.
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