
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Livewire Feedback Control and Data Acquisition

Permalink
https://escholarship.org/uc/item/3gw2h19r

Author
Bohannon, Ewan Yulun

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3gw2h19r
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Livewire Feedback Control and Data Acquisition

A thesis submitted in partial satisfaction of the

requirements for the degree Master of Science

in

Engineering Sciences – Applied Ocean Science

by

Ewan Yulun Bohannon

Committee in Charge:

 Professor Andrew Lucas, Chair

Professor Matthew Alford

Professor Renkun Chen

2023

iii

The thesis of Ewan Yulun Bohannon is approved, and it is acceptable

in quality and form for publication on microfilm and electronically

University of California San Diego

2023

iv

TABLE OF CONTENTS

Thesis Approval Page ...

Table of Contents ...

List of Figures & Tables ...

Acknowledgements ..

Abstract of the Thesis ..

Chapter 1: Introduction ..

1.2: The Wirewalker ...

1.3: The Livewire ...

1.4: Regenerative Braking ..

1.5: Livewire-Wirewalker Integration ..

Chapter 2:System Layout ..

 2.1: Control Environment ...

 2.2: The EFM32GG11 STK ...

 2.3: STK Sensor Inputs ...

 2.4: Tasks ..

 2.5: Control System ..

 2.6: Controller Overview ..

 2.7: Software Overview ..

Chapter 3: Controller Development Process ...

 3.1: Data Acquisition Software Development ..

 3.2: Software Validation on the Kinco Servo Motor ..

 3.3: Controlling the Livewire ...

 3.4: Next Steps ..

Conclusion ...

References ...

..iii

..iv

...v

.vii

viii

...1

...1

...2

...3

...6

...9

...9

...9

.10

.16

.20

.21

.21

.23

.23

.25

.26

.31

.33

.34

v

LIST OF FIGURES & TABLES

Figure 1. CAD of the Livewire motor-generator showing the red polyurethane idler wheel for

gripping the cable. Two connectors at the bottom output the motor phases and Hall effects. CAD courtesy

of Jonathan Ladner. ...3

Figure 2. Wye and delta configurations. The common wye point often provides a neutral lead or

ground. ..5

Figure 3. Halbach array for the Livewire showing five pole-pairs. Image courtesy of Aaron

Goldin. ...5

Figure 4. Left: Top-down view of the cable being gripped. The red is the wheel attached to the

Livewire’s rotor. Right: Full view of a Livewire-Wirewalker. The Wirewalker frame was widened to

accommodate the Livewire’s bulk. The electronics for the pool test are in the pressure case mounted on

the lower right. ..7

Figure 5. Schematic for the GG11 to receive simulated SBE49 data. Both the actual Seabird49

and the simulated program use the same USART communication, but the actual Seabird49 would need

power from the onboard battery rather because the GG11 3V3 or 5V bus would be insufficient.11

Figure 6. Cutout of the Livewire motor-generator CAD showing the Hall effect sensor positions

within the stator and the magnets arranged around the outside in the rotor. CAD courtesy of Jonathan

Ladner. ..12

Figure 7. Visualization of magnetic poles showing the offset positioning of the Hall effect

sensors, in green, that prevents them all from reaching the same state at the same time. The state

displayed is 0,1,1, or 011. CAD courtesy of Jonathan Ladner, Halbach array image courtesy of Aaron

Goldin. ...12

Figure 8. Livewire Hall effect pulses on an oscilloscope. ...13

Table 1. Hall effect truth table values with direction indicated to go from one state to another. ..14

Figure 9. Schematic showing the components for communicating Hall effect pulses from the

Livewire to the GG11. Unused inputs to the hex buffer are grounded to prevent floating voltages

disturbing the system. Pull-up resistors on the inputs similarly keeps them from self-biasing when not

toggled. ..15

Figure 10. Motor control schematic using a GPIO pin and solid state relay to toggle a load in and

out of the rectifier DC power. The negative motor phases are shorted out to create a wye motor

configuration. ..16

Figure 11. Circular buffer. Note that the consumer doesn’t remove data- it represents software

making use of data after the producer adds it to the buffer. ..18

Figure 12. Livewire data file setup with comma-separated values. ...19

Figure 13. Waveforms interface showing three signals set up to simulate Hall effect pulses.

Changing the frequency of the trio simulates different rpms. Flipping the phase difference changed

direction. The terminal on the left shows the STK streaming data- this setup simulates 45 RPM

counterclockwise. ..24

vi

Figure 14. Bench test setup for the Kinco servo motor. The power supply powers the motor’s Hall

effect sensors. Of note here is that the Kinco motor’s cogging made it easier to validate Hall pulses.26

Figure 15. Blue shows the voltage of the control pin. Yellow shows the voltage drop across the

load resistor. This oscilloscope picture shows zero energy harvesting on either end of the control toggle

and rpm-dependent generation when enabled. ..27

Figure 16. Oscilloscope showing the load voltage rising and falling with the GPIO pin toggle.

The yellow line is the load voltage. The blue line is the control pin voltage. The Livewire was rotated at

various speeds. ..28

Figure 17. Oscillating the Livewire. The load resistor voltage gives an inference to the Livewire

motion. ..29

Figure 18. Connectorized board showing connector functions. Figure 19 below shows the wiring

between them. There is space for more components, and the existing connectors can be used to swap

peripherals. ..30

Figure 19. Underside of the Livewire control board showing wire wrap connections in white

between the STK and peripherals. These connections are made mechanically and have a special tool for

removal. ...30

Figure 20. Test setup with ideal diode bridge on the top right. ...31

vii

ACKNOWLEDGEMENTS

Firstly, thank you to Dr. Drew Lucas for giving me the opportunity to work directly on the exact

type of project I was looking for in my graduate school experience, and thank you also for the opportunity

to take on the software and electronics aspect of this project with more enthusiasm than background

knowledge. Thank you Mai Bui, San Nguyen, and Arnaud Le Boyer for teaching me software

fundamentals and for helping me debug my code. Thank you Riley Baird and Sean Lastuka for teaching

me the electrical side and showing me how to not blow up components. Thank you Mike Goldin for

guiding me and teaching me in both depth and breadth on engineering- mechanical, electrical, and

software. Thanks again, MODLAB, I am definitely a better engineer and researcher now than I was when

I got here.

Most importantly, I thank my parents for supporting my aspirations by giving me the freedom to

come to UCSD and hone my vision.

viii

ABSTRACT OF THE THESIS

Livewire Feedback Control and Data Acquisition

by

Ewan Yulun Bohannon

Master of Science in Engineering Sciences – Applied Ocean Science

University of California San Diego, 2023

Professor Andrew Lucas, Chair

 The Wirewalker is a vertical profiling system that is driven by ocean waves along a cable using

its mechanical cam. All onboard power is dedicated to instrumentation, but battery capacity remains one

of the main limitations of Wirewalker deployments. A custom electric motor-generated called the

Livewire was built by the same lab that created Wirewalkers. Its purpose is to replace the Wirewalker

rectifying cam. Using ocean wave regenerative braking, the Livewire will provide both motion and

charging. The mechanism for doing so is like the cam- the Livewire either brakes or allows the cable to

freely rotate its idler wheel. This paper discusses my successful development of a foundational data

acquisition and control system for the Livewire that uses depth and direction data from a CTD and Hall

ix

effect sensors to regulate motion. Next steps are implementing a charge circuit and four quadrant motor

control.

1

CHAPTER 1: INTRODUCTION

 Wave energy is one of the major sources of renewable energy alongside wind and solar,

yet its development hasn’t become mainstream. Yet, surface waves, mostly generated by wind,

are ever-present. Because waves are relatively consistent, wave energy conversion has been a

long-sought after addition to wind and solar for offshore energy harvesting.

There are limitations to scaling up wave energy conversion to power an electrical grid,

including transportation of power from offshore to the grid and producing sufficient power to

make infrastructure investment feasible. However, at smaller scales, the challenges associated

with wave energy are more tractable. Current ocean instrument research is producing smaller,

smarter, and more efficient devices. Some even have solar arrays that enable year-long

deployments (Corredor, 2018). The sun is a great resource if the instrument can charge at the

surface, but the ocean waves can be used to continuously charge instruments at any depth by

coupling between wave motion and a floating surface buoy. Ocean research instruments are prime

candidates for wave energy integration because their power consumption is relatively low.

Overcoming existing battery capacity limitations would make longer instrument deployments

feasible. This paper features a wave energy conversion device designed to power an instrument-

bearing platform by generating about 10W. The focus of this paper is my work on the

development of a data acquisition and control system for that application.

1.1 The Wirewalker

The Wirewalker is a wave-powered, instrument-bearing platform designed to provide

two-dimensional time-depth data series by taking vertical profiles along a surface buoy-

suspended, tensioned cable. Its current design is driven by a mechanical cam in the center of its

rectangular frame that allows wave motion to propel it downwards, releasing the cable when the

wave motion is upwards (Smith et. al, 2012). A physical bottom stop triggers the free ascent of

2

the Wirewalker to the surface, the speed of which is determined by its buoyancy. This allows

users to ballast according to their specific plans and payloads to achieve a desired rise rate. A

physical top stop sets the mechanism to cam downwards again. The purely mechanical design

accomplishes automation of rapid, consistent vertical profiling using relatively inexpensive

materials. The battery it does carry is wholly dedicated to powering onboard sensors. Without

onboard charging, however, the Wirewalker has a limited operational time on the scale of weeks

because it needs to be brought to the surface to recharge or swap out the batteries. Useful wave

energy is lost to friction within the camming mechanism and wears out its parts. Therein lies an

opportunity to develop wave energy conversion technology and improve the Wirewalker’s

capabilities.

1.2 The Livewire

The Livewire electric motor-generator was designed and built by the Multiscale Ocean

Dynamics Lab at SIO to replace the mechanical cam and address the battery capacity issue by

using wave power as both a motive force along the cable and as a power source to recharge the

battery during operation. It is a waterproof, three-phase motor that uses wave-induced cable

motion as a mechanical input to provide three-phase electrical output when an electrical load is

switched on. There are two main Livewire motor-generator components: the rotor and the stator.

The rotor is a rotating cylindrical shell lined with magnets parallel to its central axis. The stator is

a fixed cylinder of rectangular, copper coils arranged parallel to its central axis. Brushless DC

motors, or BLDCs, have the stator placed concentrically inside the rotor with an air gap between

the two. Rotation is controlled by the magnitude and direction of current supplied to the stator.

This current induces a magnetic field in the stator by Faraday’s Law. The attraction or repelling

of the two fields causes the rotor to move. This is also the source of the motor’s torque. Torque in

an electric motor is maximized when the two magnetic fields are 90o out of phase because the

3

force of attraction between two poles then is entirely tangential to the motor instead of having

both tangential and radial components.

Figure 1. CAD of the Livewire motor-generator showing the red polyurethane idler wheel for

gripping the cable. Two connectors at the bottom output the motor phases and Hall effects. CAD courtesy

of Jonathan Ladner.

1.3 Regenerative Braking

One way to maintain rotor motion is to power the stator with a 3-phase AC current with

each phase shifted 120o from each other. This induces a rotating magnetic field, or RMF, that

keeps the rotor in motion because the stator coils do not share the same polarity at a given time.

Reversing this process turns a BLDC from a motor into a generator and describes the basics of

regenerative braking. When a car brakes, kinetic energy is typically converted to heat in the brake

pads to slow down the car. Regenerative braking uses the kinetic energy of the car to rotate its

electric motor against an electrical load that includes a battery. When the motor is turning, the

moving magnetic fields generate a backwards electromotive force, or back EMF, that opposes the

input current to the coil. In this scenario the car’s forward momentum keeps the motor spinning

with mechanical energy. The spinning rotor magnets generate an EMF that induces current

inversely proportional to the resistance of the load plus the motor’s inherent resistance. This

follows from Ohm’s Law: the current through a closed electrical loop is equal to the

4

electromotive force, or voltage, divided by the total resistance of that loop. The induced current

produces a torquing magnetic field by Lenz’s Law. Shorting out the motor gives the maximum

current and braking because the resistance is nearly zero. Conversely, a highly resistive load or

open loop circuit results in no current generated, so no torque opposes rotation besides torque

from other sources like friction. The difference between high and low resistance loads relative to

the motor’s impedance is described by the maximum power transfer theorem, or Jacobi’s law, as

a tradeoff between efficiency and amplitude. To transfer maximum power from an external

source with internal resistance, the load resistance should equal the source resistance (Shaalan,

2005). A higher load is more efficient because it dissipates a greater percentage of the power than

the source, but it reduces the induced current and thus overall power. A lower load leads to a

larger current and more overall power, but more of the power is dissipated in the source. Thomas

Kelly, a Multiscale Ocean Dynamics lab alum, found that the ideal load is 4.3 Ohms by the

maximum power transfer theorem after performing an experiment to find the Livewire’s

impedance.

Generating power from a three-phase motor depends on the configuration of the AC

current conductors, which must come in multiples of three to accommodate the three motor

phases. The Livewire features six terminal leads, one positive and one negative for each motor

phase. These leads can be connected in several ways, but the two most common configurations

for three-phase motors are the wye and delta configurations in Figure 2. In wye one end of each

coil lead is connected to a common point, and in delta the phases are connected in series. The

other ends are available as leads in both cases. Phase current and phase voltage come from the

stator windings. The line voltage and line current are carried out from those windings. Wye-

configured motors have a line current equal to the phase current and higher line voltage while

delta-configured motors have equal line and phase voltages but greater line current. Though they

deliver the same power, the wye configuration has less transmission losses due to the lower line

5

current (Goodstall, 2012). Because the phases are spaced 120 degrees, the increase to voltage or

current depending on the configuration is by a factor of √3. The delta configuration line current is

that much greater than the wye line current. This equates to triple the power loss by transmission:

 𝑃𝑙𝑜𝑠𝑠 = 𝐼𝑙𝑖𝑛𝑒
2𝑅 (1)

While the lengths of wire connecting the phases to the control circuitry are relatively short

compared to typical industrial applications like transformers, the scale of power generation for the

Livewire makes this power savings valuable, so the wye configuration was chosen.

Figure 2. Wye and delta configurations. The common wye point often provides a neutral lead or ground.

One of the Livewire’s unique features is its Halbach array. By clocking the 29 magnets in

the rotor at specific angles relative to each other, the magnetic field inside the rotor is

strengthened while the field outside the rotor is reduced to near zero. This increases the torque

density of the motor, which means more current is generated per rotation. The magnetic field

within the motor is represented by five pole-pairs. These are visible in Figure 3 as concentrations

of magnetic field strength.

6

Figure 3. Halbach array for the Livewire showing five pole-pairs. Image courtesy of Aaron Goldin.

1.4 Livewire-Wirewalker Integration

Wave energy conversion with a three-phase motor is possible through a process similar to

regenerative braking because wave motion supplies a reliable kinetic input to the system.

Consider the Livewire motor-generator, an integrated, switchable electrical load, and the

Wirewalker’s surface-mounted buoy. If the Livewire is constrained to rotate along the length of

the cable, then the waves oscillating the surface buoy will rotate the rotor. The permanent

magnets in the rotor then induce a current in the stator coils. Because the Livewire is a three-

phase motor, the output current will be 3-phase AC current. If the load includes a battery, then

7

converting the output AC current to DC current via a rectifier concludes the wave energy

conversion from kinetic to potential energy.

The Livewire is defined such that switching on the charging circuit closes its loop and is

otherwise connected in an open loop to ground. By default, the load is switched off, so the

Livewire rotates freely. Regenerative braking makes the rotor harder to turn and forms the basic

method for traversing the cable. By braking on the upward wave motion and switching off the

electrical load during downward wave motion, the Livewire can emulate the Wirewalker’s

mechanical cam. Unlike the mechanical cam, the Livewire is not limited to travel in just one

direction so long as an appropriate cable gripping mechanism is installed that constrains it to the

cable without slippage. The Livewire should grip the cable when braking and freely rotate along

the cable otherwise. The Livewire rotor has a polyurethane wheel mounted to it, and a prototype

cable gripper with two wheels designed by Thomas Kelly currently grabs the cable in an omega

formation. This prototype was able to generate 0.1 Watts in the pool, but this measurement,

which is far below the test production on the lab bench, was probably confounded by friction in

the power take-off system fabricated by Kelly.

Figure 4. Left: Top-down view of the cable being gripped. The red is the wheel attached to the Livewire’s

rotor. Right: Full view of a Livewire-Wirewalker. The Wirewalker frame was widened to accommodate the

Livewire’s bulk. The electronics for the pool test are in the pressure case mounted on the lower right.

8

Besides a cable-gripping mechanism, the other required element to integrate the Livewire

into the Wirewalker is a system for toggling the charging circuit because this determines how it

moves and recharges the battery. This requires the development of a control system to adhere the

system to a mission plan since the combined system will no longer travel solely based on physical

stops and cable lengths. The benefit of an onboard control system is that it can use data from the

onboard sensors to make smart decisions about charging and profiling with minimal delay;

therefore, an ideal Livewire Wirewalker system could be deployed for longer and would operate

more efficiently. A typical Wirewalker payload includes a CTD while the Livewire has Hall

effect sensors built into it. The CTD provides pressure data, and the Hall effect sensors provide a

means to calculate the direction and rpm of the Livewire. The bare minimum Livewire control

system should decide when to use the Livewire’s braking mode to ascend or descend the cable

based on these data. My thesis project was to develop such a system. In this paper I discuss the

system elements and how I developed a complete control system for the Livewire that can

accomplish profiling and hovering based on default states or user input using CTD and Hall effect

data.

9

CHAPTER 2: SYSTEM LAYOUT

2.1 Control Environment

 Controlling the Livewire requires the selected control device to interface with multiple

sensors and travel with the Livewire-Wirewalker system along the cable. Iridium satellite

communication capability has been developed for the Wirewalker but is outside the scope of this

project. Therefore, the deployed Livewire should function first on its own. The Multiscale Ocean

Dynamics Lab builds and deploys instruments regularly with electronics safely packaged in a

cylindrical pressure case. Making use of an existing pressure case was an easy choice because its

volume should easily fit an electronic control board and attached circuitry, including batteries.

The end caps of the pressure case feature subsea connectors that allow electronics within the case

to communicate with external sensors.

2.2 The EFM32GG11 STK Microcontroller

 Like the pressure case, the Silicon Labs’ EFM32GG11 STK microcontroller, or STK, is

already used in the Multiscale Ocean Dynamics Lab and has the necessary pins and peripherals to

develop the Livewire controls. It has a 32-bit ARM Cortex-M4 processor that can handle more

software operations than would be developed for the controls. The STK features more than 100

general-purpose I/O, or GPIO, pins, but only seven are necessary to get sensor inputs/outputs for

the Hall effects, Seabird49 CTD, and simple control of the motor. To gather data rather than

high/low signals, we used the alternate functions of some of those pins to enable USART, which

is a transmitter-receiver hardware for serial communication. This simply allows the board to read

in actual data rather than high/low voltage states on the GPIO pins. The STK features multiple

USARTs, UARTs, and other communication modules. Two USARTs are used in this project- one

for reading Seabird49 data and one for streaming out a compound data string for debugging and

user input. The STK’s complementary software IDE is Simplicity Studio. It provides a working

10

environment in C with libraries for STK board functions. It also features a SEGGER J-Link

debugger that allows users to set breakpoints in the code to stop and run a program on the STK

line-by-line to help find issues. The 4.1.4 version of the gecko SDK is currently used.

2.3 STK Sensor Inputs

 The Seabird49 CTD, or SBE49, provides a 24-character, hex-encoded data string

describing the local conductivity, pressure, and temperature. It also includes a pressure

temperature correction and two delimiter characters. The SBE49 is typically mounted to the

Wirewalker frame in deployment and is an external input to the STK’s pressure case. Due to its

bulk and the need for a bench-testing method for the Livewire controls, a simulated SBE49 was

used to provide varied pressure inputs. Arnaud Le Boyer and San Nguyen, both engineers of the

Multiscale Ocean Dynamics lab, developed SBE49 simulator software. For this project, Arnaud’s

Python program was modified to output random SBE49 data or a linear depth profile depending

on the testing requirements. The simulator provides data through a computer’s serial port to the

STK via a Pmod connector board at a rate of 16 Hz, which is the SBE49’s actual stream rate.

While the connection between the actual SBE49 and STK could require a couple additional

components, the STK pins selected would work for either input. The SBE49 data is streamed in

through an STK USART using the sl_iostream functions developed by Silicon Labs. Then, it is

decoded and streamed out using another USART for debugging purposes.

11

Figure 5. Schematic for the GG11 to receive simulated SBE49 data. Both the actual Seabird49 and the

simulated program use the same USART communication, but the actual Seabird49 would need power from

the onboard battery rather because the GG11 3V3 or 5V bus would be insufficient.

 Hall effect sensors change states on the rising or falling edge of a magnet passing it. In

magnetism, the south pole has a positive magnetic field strength, and the north pole has a

negative magnetic field strength. A strong south pole turns on the sensor, which toggles the GPIO

pin HIGH. A strong north pole turns off the sensor, toggling the GPIO pin LOW. Hall effect data

is not gathered at a specific rate; rather, it is collected using a software interrupt method. When

any of the three GPIO pins assigned to the three Hall effect sensors changes state, the software

pauses its current task to address the interrupt flag that the change raises. After completing the

interrupt routine, the software resumes its tasks. It is during the interrupt routine that the Hall

effect data is used to calculate the direction and RPM of the Livewire. The RPM can be found by

finding the difference in time between the current Hall interrupt and the previous one and

dividing it by the defined pulses per revolution for the Livewire. Because the Halbach array

arranges the magnetic field into five pole-pairs that will trigger each of the Hall effect sensors

twice, there are 30 pulses per mechanical revolution. The Hall effect sensors are laid out such that

they can never all be the same state at the same time. Overlaying the stator from the CAD in

Figure 6 with the five pole-pair Halbach array in Figure 3 helps visualize this in Figure 7. A

specific pulse pattern is created for rotation in each direction. The direction can be found by

checking the state of either of the other Hall effect GPIO pins.

12

Figure 6. Cutout of the Livewire motor-generator CAD showing the Hall effect sensor positions within the

stator and the magnets arranged around the outside in the rotor. CAD courtesy of Jonathan Ladner.

Figure 7. Visualization of magnetic poles showing the offset positioning of the Hall effect sensors, in green,

that prevents them all from reaching the same state at the same time. The state displayed is 0,1,1, or 011.

CAD courtesy of Jonathan Ladner, Halbach array image courtesy of Aaron Goldin.

13

Figure 8. Livewire Hall effect pulses on an oscilloscope.

For example, the oscilloscope reading in Figure 8 shows four Hall effect triggers across

the three sensors. The middle signal shows a rising edge and falling edge, so a magnetic pole

entered the view of the sensor and then left it. If we assign the signals from top to bottom in the

figure to sensors U, V, and W, it is clear that at the instant sensor V went HIGH, sensor W was

HIGH, and sensor U was LOW. The sensors are arranged clockwise around the stator in the order

U, V, W. The Livewire rotation must be counterclockwise because sensor V and sensor W are

now both in the same state. This deduction depends on the Hall effect sensor order and the

magnetic poles alternating north-south around the rotor. The magnetic poles are the only forces

that change the state of the sensor, so in the absence of a magnetic field they remain in the same

state caused by the most recent magnetic pole passage. In this case, sensor V triggering and going

HIGH reveals that a south pole must have just switched it and should be physically next to it.

Before this, a north pole flipped sensor V. Sensor U is LOW with a north pole while sensor V is

HIGH with a south pole. The state of the Hall effects before the switch was 001 and is now 011.

Each state can only go to two possible states based on rotation because the patterns in each

direction are fixed. Based on the figures and the truth table below, it is only possible to reach the

011 state from the 001 state if the Livewire is rotating counterclockwise.

14

Table 1. Hall effect truth table values with direction indicated to go from one state to another

^

|

|

CCW

HALL_U HALL_V HALL_W

CW

|

|

V

0 1 1

0 0 1

1 0 1

1 0 0

1 1 0

0 1 0

 Although the Livewire controls will use the SBE49 pressure to reference its position, it is

also possible to calculate the Livewire’s displacement from its starting position by tracking the

net pulses in the clockwise or counterclockwise direction. Given the rotor wheel’s outer

circumference of 9.029 inches, dividing by the pulses per revolution results in a linear distance

traveled per pulse of 0.30 inches. While this method doesn’t account for slippage of the cable past

the wheel, it provides one more way to debug the software and check the Livewire’s position on

the bench. In the ocean it could serve as a backup in case the CTD stops sending pressure data.

 The Hall effect sensors in the Livewire require power, which is supplied by the one of the

STK’s 3.3V and ground pins. The STK’s GPIO pins can only handle up to 3.3V themselves, so

the Hall effect inputs are shifted from a maximum of 26V down to 3.3V using a hex buffer as a

level shifter because the value of the sensor doesn’t matter for simple control. The HIGH or LOW

state of the sensor is what is useful.

15

Figure 9. Schematic showing the components for communicating Hall effect pulses from the Livewire to

the GG11. Unused inputs to the hex buffer are grounded to prevent floating voltages disturbing the system.

Pull-up resistors on the inputs similarly keeps them from self-biasing when not toggled.

 The next subsystem of the Livewire concerns the Livewire’s motor phases and involves

motor control and battery charging. Shorting out the three negative phases gives the wye

configuration for the motor. The three positive phases pass into a rectifier to change the input AC

current to DC current. Toggling the load on the motor is the main requirement of the control

system. This requires a few components to execute. A solid-state relay grabs the rectifier outputs-

one pin to a load to the 1st relay pin, the other just to the 2nd relay pin. The relay’s 3rd and 4th pins

use 5V and a MOSFET respectively to switch the load in and out of the circuit. The relay’s first

two pins are DC power, and the last two pins are DC control. The MOSFET connected to the

relay is controlled by the switching of a GPIO pin. Toggling this single pin based on the input

data forms the basis for the current control system.

16

Figure 10. Motor control schematic using a GPIO pin and solid state relay to toggle a load in and out of the

rectifier DC power. The negative motor phases are shorted out to create a wye motor configuration.

2.4 Tasks

 Even though the STK only has one processor, it can handle multiple continuous software

loops using tasks as defined in its micriumOS. The micriumOS kernel schedules tasks and runs

them from highest to lowest priority, although it can do round-robin scheduling where each task

is also only run for a certain amount of time before switching tasks. A task is an infinite loop of

code with a user-defined stack size and priority. The stack is a list of memory registers in the

order that the kernel must run functions for the task. Each task’s stack also serves as saved

context for the kernel that is restored when the task is run again. The priority of the task simply

tells the kernel what order each task is run. Even though each task has a priority and stack size,

they each require a wait function to inform the kernel when to switch off of the current task. Each

task only waits a few ticks, but this is enough to allow other tasks to run. The STK’s high

frequency clock runs at 50 MHz, which converts to 50 million ticks per second.

 Organizing the Livewire’s software needs into appropriate tasks was done based on

priority and computational load. The main jobs of the Livewire software are to acquire data, log

data to an SD card, stream data, accept user input, and toggle the control pin. Grouping

everything into one task would require a massive stack size and could place a lot of strain on the

17

processor that could lead to the system freezing. Partitioning the software into multiple tasks

increases performance and makes the software easier to debug.

 The highest priority task is the data acquisition task. Its main function is to gather data

from every source and combine it into one string. The combined data string whether encoded or

decoded has a delimiter, timestamp, CTD data, signed Hall effect rpm, and an ADC voltage. The

ADC voltage isn’t used yet but is set up to help read voltage later of a battery. Data acquisition is

synchronized with the SBE49 because its 16Hz clock is fast and sets the control system to a

consistent rate. Using any of the STK timers would have worked too, but that would create

additional work for data synchronization and additional load on the system. The data handling

and control tasks are also based off of the receipt of a new SBE49 packet. The STK continuously

reads the SBE49 serial port and checks one character in its read buffer at a time to find the SBE49

delimiter, “\n”. This synchronizes the task with the SBE49 because the next expected character

would be the first one of a new data packet. The next 24 bits are read since this is the full SBE49

data string length. After checking for the full delimiter, “\r\n”, the SBE49 string is decoded from

hex to decimal, and the full data string can then be assembled by grabbing a timestamp from the

STK’s sleeptimer, the Hall effect rpm, and the ADC pin value. The ADC pin is set up with the

intent of measuring analog battery voltage or analog motor commutation- features that are not yet

implemented. Because the Hall effect code is interrupt driven, the last calculated rpm is assumed

to be the current rpm and included with each new SBE49 packet. Two data strings are created:

one encoded for logging and one decoded for streaming out.

 Circular buffers are a way to store data that balances memory management with the

desire to capture every incoming data packet. The Livewire software features two such buffers:

one for encoded data and one for decoded data. Each buffer is a struct in C that can store up to

100 entries. Incoming data fills the buffer, then the 101st entry overwrites the first entry and so on.

The data acquisition task is a producer that fills circular buffers, and intelligent use of these

18

buffers requires consumers that use data from the buffers at the rate they are added. Timing the

Livewire system to the SBE49 16Hz clock is possible and best in the simple control application

because the logging, streaming, and control loops are all set up to access the buffers right after a

new entry is added. An alternative to this method would be to process data one entry at a time,

but that would naturally consume data slower than it’s produced and desync from the input

stream. Writing data to a queue with no size limit is dangerous because it could consume all the

system’s memory, and once data is used there wouldn’t be a reason to hold onto it.

Figure 11. Circular buffer. Note that the consumer doesn’t remove data- it represents software making use

of data after the producer adds it to the buffer.

 Logging and streaming the data is combined into one task. This task is the most intense

on the processor but is relatively less important than the data acquisition and control tasks. File

management on the SD card was tricky to get right due to an aging driver and processor load.

After the data acquisition task creates the decoded and encoded data strings, the logging and

streaming task grabs them both from their respective circular buffers. The decoded string is

streamed out via the VCOM port USART. Then, the encoded string is written to a text file.

19

Figure 12. Livewire data file setup with comma-separated values.

The 78 millisecond gaps between the timestamps in Figure 12 show that the system is not

entirely in step with the SBE49 clock, and this is likely due to the runtime of each task including

its required delays. The timestamp is grabbed in the data acquisition task. The tasks that check for

a new data entry like the logging and streaming task currently check only while they are running.

It is possible that another method, perhaps using interrupts or round-robin task scheduling, but

12.8 Hz based on the 78 millisecond gaps is sufficient for Livewire controls because it just needs

to make decisions in the context of ocean waves. The frequency of surface ocean waves depends

on wind speed, and we expect surfaces waves of interest to have a period of at least one second.

The sampling rate of the Livewire system is an order of magnitude greater than the waves it will

feel, so missing a value due to buffer overflow or task delays is acceptable so long as the

producers and consumers otherwise work at a consistent rate.

Communication between a laptop and the STK is simple on a test bench and doable for

shallow water tests. The USB power cable between the STK and laptop also serves as a USART,

so no additional pins are needed. For submerged tests with limited depth, a 30-foot tether cable

links the pressure case to a laptop on land. Mike Goldin and Mai Bui of the Multiscale Ocean

Dynamics Lab laid the groundwork for command-line interface, or CLI, communications and SD

card file system management for the lab’s work with the STK. The CLI allows a user to

communicate to the STK by typing on a keyboard within a terminal connected to one of the

STK’s serial ports. The base level of the CLI allows a user to view and create files and

directories, and mount and unmount the SD card. It has since been modified for this project to

allow a user to tell the Livewire system to profile or hover at user-specified depths.

20

2.5 Control System

 A finite state machine is a system that can be in only one state at a time. The Livewire’s

states are defined as: initialization, idle, upward, downward, and hover. Both state machines use

the Livewire’s position and user input to determine whether or not they should switch between

these states. The only difference between the two state machines is that one is based on the

SBE49 pressure data while the other uses the Hall effect-based displacement as its inputs. The

pressure-based machine is a closed loop controller because the SBE49 pressure is calibrated and

provides accurate positional feedback. While the Hall effect calculations are a form of positional

feedback, the machine is more akin to an open loop controller because it has no way of correcting

itself if the Livewire slips or otherwise changes position without triggering the Hall effects. The

only reference point for the Hall effect displacement currently is that it is zeroed when the GG11

is first powered on. The Livewire controller is defined around profiling, so when the receipt of a

new SBE49 packet alerts the system to check its state, it checks based on an upper depth limit and

a lower depth limit. While in the upward state, the Livewire only allows upward motion until it

reaches the upper limit, and the opposite happens in the downward state. The hover state merely

sets the upper and lower limits to equal the same value. It sets the Livewire to profile a length of

zero meters at a target depth. The Livewire only enters the initialization state on startup. Once a

new SBE49 packet is received, it moves to the idle state. The Livewire never returns to the

initialization or idle state. This method stems from best practices. While the system is warming

up in these two states, sensor noise from starting up is kept from causing unwanted behavior. For

example, the Hall effect sensors on another motor showed a huge, negative rpm on startup several

times even though the motor wasn’t moving.

To achieve positioning based on a target depth or depth boundaries, the Livewire simply

allows the waves to propel it only in the direction that brings it closer to its target. The Livewire

is either fully braking or freewheeling. This simple form of control is enacted by a lag controller,

21

which is analogous to a thermostat. A thermostat regulates temperature by letting hot or cold air

flow to reach a target temperature. If the temperature deviates from the target, the thermostat just

tries to reverse the deviation. A user can change the target temperature at will. These three

thermostat traits are represented in the Livewire controls. In this case, the waves are to position

what air is to temperature for the thermostat. It regulates position by allowing the Livewire motor

to rotate either clockwise or counterclockwise to ascend or descend the cable based on depth and

direction data. If the Livewire is pushed beyond a boundary, it uses the waves to return to it. A

user can change profiling or hover depths through the CLI at any time. The Livewire controls are

isolated to their own task that checks the state of the Livewire every time it receives a new SBE49

packet. It is a higher priority than logging and streaming and self-contained to keep the controller

simple, independent, and as fast as possible.

2.6 Controller Overview

 The Livewire’s thermostatic controller established a launching pad for additional

Livewire development. It is a data acquisition and storage system that provides positional control

of the Livewire based on depth and direction data. While the pressure case package will evolve to

include more sophisticated software, motor control hardware, and battery management, the

current system featuring the STK persists as a customizable, working system that communicates

with the Livewire and onboard sensors.

2.7 Software Overview

 Upon startup, the software first runs through core initializations and then application

initializations, which set up tasks, a data file, and allocates memory for the Livewire circular

buffers. If the STK receives SBE49 data, it will gather all data in its data acquisition task. Then, a

global write counter ticks up. The logging and streaming task and control task continuously check

this value to determine if they should run their loops or sleep. The control task takes precedence

22

because it has a higher task priority. Hall effect data is gathered via an interrupt routine that

calculates rpm and direction. The software was coded in C through the Simplicity Studio IDE and

runs on the micriumOS kernel on the STK board.

23

CHAPTER 3: CONTROLLER DEVELOPMENT PROCESS

3.1 Data Acquisition Software Development

I got started on the Livewire software and electronics development with simple example

projects on the STK. The first milestone was to demonstrate effective capture of Hall effect

pulses. This meant writing software to monitor the status of GPIO pins and writing an algorithm

to calculate rpm and direction during the GPIO interrupt routine. Simplicity Studio provides a

pushbutton example that uses GPIO interrupts raised by the buttons to toggle LEDs. This

example was used to build out the Hall effect code- the current software still blinks the STK’s

LEDs when the Hall effects trigger. The two pushbuttons mounted on the STK were used to

simulate Hall effect inputs and demonstrate the Hall effect code. It worked, but the pushbuttons

couldn’t provide an exact, known rpm to reference.

Because the pushbuttons are technically GPIO pins, the button-based Hall code was

retained but with the pins remapped using the Simplicity Studio slcp setup file. The slcp provides

an interface for users to set up or enable functions like serial ports and GPIO pins, and often they

can be changed using a simple drop-down menu of available options. Simplicity Studio uses the

slcp to autogenerate handles specific to the selected options that are used to fill out generic

templates of functions. When a GPIO pin was always reading as HIGH despite a lack of inputs, I

used the slcp to quickly change pins. It also lists every software component available and

included on the STK along with a button to view the source code. This was used to debug and

patch some of the sl_iostream code used to read in the SBE49 data and stream out to the terminal.

Pushing the buttons quickly was one way to test the Hall effect code, but the next step

was to provide more realistic inputs. Simulated Hall effect signals were provided courtesy of a

Waveforms Analog Discovery 2, or AD2, which is an oscilloscope and logic analyzer. Three

GPIO pins were connected to three of the AD2 pins, and the Waveforms software was used to

24

generate square waves offset by 60 degrees each. The typical spacing between Hall effect sensors

is either 60 or 120 degrees, and it’s 60 degrees for the Livewire. Testing only required a laptop,

the STK, and the AD2 sending signals via Waveform as in Figure 13.

Figure 13. Waveforms interface showing three signals set up to simulate Hall effect pulses. Changing the

frequency of the trio simulates different rpms. Flipping the phase difference changed direction. The

terminal on the left shows the STK streaming data- this setup simulates 45 RPM counterclockwise.

It was at this point in development that other features were narrowed down like the usage

of the SBE49 and its clock, logging on the SD card, and streaming out to a terminal. The task

structure was also implemented. Before the control code was written, the following tests on the

motors were primarily focused on getting accurate Hall effect rpm and direction. The Hall effect

portion of testing was relatively straightforward because issues that showed up in the logic

analyzer were due to simple errors and quickly fixed. Most of the issues encountered during

testing were during development of the logging and streaming functionalities. The

aforementioned patch to the sl_iostream was written by Mike Goldin, who fixed the issue where a

read function read only a few bits at a time instead of reading in the requested number. Before

that, I’d written a workaround that achieved the same result but with more computations. Mike

also resolved an issue in a read function where the developers wrote in a condition for the

software to hang forever. Issues with writing to the SD card weren’t explicitly resolved, but I was

able to successfully build and validate the logging task after the usual isolating and debugging.

Creating the text file to store data was moved into the initialization stage of the code because it

would cause the system to hang if inside a task loop, function, or initialization. In one version of

25

the Simplicity Studio software, a large increase in stack size enabled the logging, but in the most

recent version, that stack size increase caused the whole system to freeze. Reducing the stack size

down to its initial size resolved logging in the most recent version even though the SD card driver

didn’t change. Regardless, logging and streaming were developed and achieved in parallel with

the following tests.

3.2 Software Validation on the Kinco Servo Motor

Before testing on the Livewire itself, I tested the software on a smaller, cheaper, off-the-

shelf Kinco servo motor was a good intermediary step for educational purposes and to make sure

the nascent control system was safe to install. My goal was to stress test the code with real hall

effect inputs. Changing the pulses per revolution parameter in the code was the only software

adaptation needed to make it work. The Kinco test was necessary to introduce the electronics that

would be required to connect Hall inputs from a real motor to the STK pins. The circuit was

relatively simple and included a connector cable, a jumper board, and the level shifter. The

jumper board was used throughout testing to view the Hall effect pulses using an AD2. This

demonstrated that there are spots where the Hall effects are not triggered when the motor is

oscillating such that the sensors remain viewing the same poles. During this test, the Hall effect

sensors of the Kinco motor spiked on startup and gave an rpm of about two million. On the next

Hall effect trigger, the rpm was correct, but this startup behavior was described in section 2.6 as a

reason to let the system run a few idle cycles before making any control decisions.

26

Figure 14. Bench test setup for the Kinco servo motor. The power supply powers the motor’s Hall effect

sensors. Of note here is that the Kinco motor’s cogging made it easier to validate Hall pulses.

After verifying the hall effect code on the Kinco motor, I tested the software on the

Livewire. The goal here was to make sure that data acquisition, streaming, and logging tasks were

working correctly by looking at the hall effect and SBE49 data in the stream and SD card. The

SBE49 simulator was useful because it could be programmed to provide various inputs and could

be paused in the Windows Command Prompt if anything unusual appeared on the STK output

stream. The data stream and user input both use the same terminal to display on the computer, so

pausing the simulator made it easier to debug by cross-referencing simulator inputs to data stored

in the SD card or streamed on the terminal. Plugging into the Livewire required additional

circuitry compared to the Kinco motor. Thomas Kelly built a prototype circuit to switch on and

off the Livewire braking by hand. It also provided leads for viewing the voltage across the 4.3

Ohm load using a multimeter. I added the level shifter to that circuit to make the Hall effects

work and swapped the manual switch for a MOSFET to give the STK digital control over the

relay.

3.3 Controlling the Livewire

Development of the control loop began after these tests validated the data acquisition,

streaming, and logging processes. The first goal was to demonstrate any response to an external

27

input, so the Hall effect inputs were used to toggle a GPIO pin based on the Livewire’s rotation

direction. If it was rotating clockwise, the STK would set the GPIO pin LOW. If it was rotating

counterclockwise, the STK would set the GPIO pin HIGH. This would switch in and out the load.

The physical output of this test was to make the Livewire easy and hard to rotate. The STK was

used to stream out the state of the pin while the AD2 showed the Hall effect pulses on its

Waveforms program to validate the control.

Figure 15. Blue shows the voltage of the control pin. Yellow shows the voltage drop across the load

resistor. This oscilloscope picture shows zero energy harvesting on either end of the control toggle and

rpm-dependent generation when enabled.

Toggling a GPIO pin occurs quickly, but switching the brakes on the Livewire did not

physically feel as fast because there is a delay between physically changing direction and

detection of that change. There was a consistent ramping-up braking and ramping-down release

feeling to the Livewire when the control pin was toggled that lasted a fraction of a second. This

delay between freewheeling and full braking modes helps characterize the motor but doesn’t

cause any significant issues in the context of the lag controller. There are two causes for this

phenomenon. One is the spacing of the Hall effect sensors because their resolution for

determining rotor position is coarse compared to a motor encoder that explicitly tracks motor

shaft position. For a given state of the Hall effect sensors, it is possible for rotation of the

magnetic poles such that the sensors remain in the same state. This wiggle room is slight but can

delay the brakes toggling because that depends on the direction sense updating. The other cause

for the ramping is that the GPIO pin doesn’t instantaneously switch between 0 V and 3.3 V.

28

Based on the oscilloscope readings in Figure 16, the GPIO pin takes between 4.8 and 5.0

milliseconds to switch either HIGH or LOW. The voltage drop across the resistor rises and falls

in time with the GPIO pin regardless of the amplitude of motor rotation.

Figure 16. Oscilloscope showing the load voltage rising and falling with the GPIO pin toggle. The yellow

line is the load voltage. The blue line is the control pin voltage. The Livewire was rotated at various speeds.

Switching the Livewire rotation direction can be broken down into three steps. First, the

rotation direction switches but is not yet sensed by the Hall effects. The load remains either fully

on or fully off. Then, the Hall effects detect the change in direction, and when the next SBE49

packet is received, the control loop toggles the GPIO pin. The load varies during this step. The

third step is when the load is fully on or off in the correct direction. The combination of the first

two steps and the expectation of an instant reaction from the system creates the ramping feeling

of the Livewire.

29

Figure 17. Oscillating the Livewire. The load resistor voltage is directly related to the Livewire motion.

Demonstration of the direction-based control spurred quick development of the Livewire

thermostatic controller. It was first written with hard-coded depth values, proven successful on

the bench, and then successfully tested with the user inputs for profiling and hover added. A

sample profiling plan was issued to the Livewire to keep between 1- and 3-meters depth using the

Hall effect displacement state machine. The Hall effect displacement was used because neither

the actual SBE49 nor the SBE49 simulator could be quickly or easily configured for a bench test

where the Livewire wasn’t moving. Coupling the SBE49 pressure, real or simulated, to the

Livewire’s rotation will occur when the Livewire-Wirewalker system is prepared for a pool test

though. While the cable-gripping mechanism remains installed on the Livewire on the bench, the

test was done by rotating the Livewire rotor by hand since it would be easier to validate the

software by avoiding the cable slip issue. Although it would have been interesting to test with

SBE49 data, the success of the displacement-based control is a proxy for the success of the

pressure-based control because both machines are functionally the same except for the sources of

their depth data. The SBE49 simulator was used for its clock rate, which means the control loop

was able to access the global data struct where the SBE49 pressure is stored. It did work when

providing a fixed depth, but further testing with the actual SBE49 would confirm its validation.

Packaging the electronics for a pressure case was the next step in Livewire development.

The circuitry external to the motor leads was disassembled for redesign to accommodate the STK

and Hall effects. Most elements on the circuit were connectorized on one protoboard with the

30

STK for ease of development. The components that are mounted in sockets in Figure 18 are

easily replaceable, and the sockets have long pins suitable for wire wrapping in Figure 19, which

made connecting pins quicker. Wire wrapping makes connections between pins by physically

wrapping stripped wire tightly around the pin. A wire wrap gun was used for this that

automatically stripped wire while making the connections.

Figure 18. Connectorized board showing connector functions. Figure 19 below shows the wiring between

them. There is space for more components, and the existing connectors can be used to swap peripherals.

Figure 19. Underside of the Livewire control board showing wire wrap connections in white between the

STK and peripherals. These connections are made mechanically and have a special tool for removal.

31

Demonstrating the Livewire’s regenerative braking was done by hooking up an ideal

diode bridge, capacitor, and resistor together. The three positive motor phases were fed into the

three diode bridge inputs, and the three negative phases were shorted out for wye configuration of

the motor. This test was also used to determine the suitability of the ideal diode bridge in

replacing or complementing the rectifier. Their circuitry is similar because they are both three-

phase bridge devices, but the ideal diode uses MOSFETs instead of Schottky diodes. The

MOSFETs dissipate less power and consume less voltage than the Schottky diodes, so less heat is

generated, and more DC power is available to the charging circuit.

Figure 20. Test setup with ideal diode bridge on the top right.

3.4 Next Steps

 There are two subsystems left to pack in the pressure case. The first is the

communications. Communication with the Livewire in shallow water or in the pool will be done

32

through a tether cable and will allow the same functionality from the bench tests: CLI input and

data streaming. Integrating an actual SBE49 CTD would only require a few additional

components, one of which would be another subsea cable. The second subsystem to flesh out

would be the charging system and use it to power the Livewire electronics. This charging system

would need a battery, a charge controller, and a way to redirect excess power when it is fully

charged.

 The lag controller will be succeeded by a full four quadrant motor controller. Four

quadrant motor control divides motor operation into four stages: forward motoring, forward

braking, reverse motoring, and reverse braking (Kim 2017). This requires control over motor

torque and speed in both directions. While the lag controller can technically put the Livewire into

those four stages, it can only control by reacting to wave motion and does not have active control

over the motor. Implementing PWM control over the Livewire by pulsing the control pin is a next

step and would make use of the STK’s two ADC channels to try to better follow the wave

motion. Pairing the STK with an off-the-shelf motor controller, such as the O-Drive Pro, would

give the Livewire system the capability to precisely control its position and charging. It could

charge its battery with the waves and then use that power to motor along the cable to maintain a

specified profiling rate.

One more element that would complete the system would be an auxiliary power supply to

kickstart the control board and onboard sensors if the main battery pack was completely expended

or otherwise becomes unavailable. This could happen on a day where the winds and waves

completely die down, or it could be dead on deployment. The auxiliary power system would run

only sensors required to detect if there is sufficient wave motion to recharge. Because the

Livewire could extend the operating time of Wirewalker profiling, it is important to design a

backup system so that the Livewire-Wirewalker could operate autonomously and indefinitely.

33

CONCLUSION

 The Livewire electric motor-generator harvests energy from ocean waves to power itself

and the onboard sensors on a Wirewalker vertical ocean profiler. It is intended to replace the

Wirewalker’s mechanical camming system as its method of movement. By engaging and

disengaging from the cable, the Livewire can act like a cam but allow motion freely in either

direction along the cable. When the Livewire clamps onto the cable, it switches on an electrical

load that turns generated AC current from the Livewire’s rotation into DC power to recharge an

onboard power supply. The Wirewalker’s autonomy came from a ratcheting system, but the

Livewire requires a more sophisticated control system. The development of the thermostatic lag

controller led to successful demonstration of Livewire motion control by toggling a load fully on

or fully off to allow the cable to move in a desired direction. The control is driven by the 16 Hz

clock of a Seabird49 CTD. Pressure data is collected along with Hall effect rpm and direction

using the new data acquisition system. User input through the CLI gives the Livewire’s state

machines parameters for profiling or hovering in place. Simple charge and discharge of a

capacitor was completed, so the system can now progress to developing onboard power and four

quadrant motor control.

34

REFERENCES

Corredor, J. E. Coastal Ocean Observing: Platforms, Sensors and Systems. Germany,

Springer International Publishing, 2018.

Goodstal, G. Electrical Theory for Renewable Energy. United States, Cengage

Learning, 2012.

Kim, S-H. Electric Motor Control: DC, AC, and BLDC Motors. Netherlands, Elsevier

Science, 2017.

Shaalan, H. E., and J. H. Bentley. Electrical Engineering: A Referenced Review. United

States, Kaplan, 2005.

Smith, J. A., R. Pinkel, M. Goldin, O. Sun, S. Nguyen, T. Hughen, M. Bui, and A. Aja.

2012. “Wirewalker dynamics”. Journal of Atmospheric and Oceanic Technology 29(1):103-115,

http://dx.doi.org/10.1175/ JTECH-D-11-00049.1.

