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Abstract

In CASP14, 39 research groups submitted more than 2,500 3D models on 22 protein complexes. 

In general, the community performed well in predicting the fold of the assemblies (for 80% of the 

targets), though it faced significant challenges in reproducing the native contacts. This is especially 

the case for the complexes without whole-assembly templates. The leading predictor, BAKER-

experimental, used a methodology combining classical techniques (template-based modeling, 

protein docking) with deep learning-based contact predictions and a fold-and-dock approach. The 

Venclovas team achieved the runner-up position with template-based modeling and docking. By 

analyzing the target interfaces, we showed that the complexes with depleted charged contacts 

or dominating hydrophobic interactions were the most challenging ones to predict. We also 

demonstrated that if AlphaFold2 predictions were at hand, the interface prediction challenge could 

be alleviated for most of the targets. All in all, it is evident that new approaches are needed for the 

accurate prediction of assemblies, which undoubtedly will expand on the significant improvements 

in the tertiary structure prediction field.

Keywords

CASP; quaternary structure prediction; protein assembly; contact prediction; template-based 
modeling

INTRODUCTION

Proteins do not act alone; they carry out their functions as a part of protein communities. 

Various “omics” technologies have generated a wealth of information on these communities, 

waiting to be interpreted at the structural level. The recent developments in the Electron 

Microscopy (EM) field have helped accelerate the structure determination of protein 

complexes (Benjin & Ling, 2020; Ognjenovíc et al., 2019). In parallel, template-based 

modeling and diverse docking strategies have been developed and applied to produce 
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reliable protein complex models (Lensink et al., 2019; Muratcioglu et al., 2015; Park et 

al., 2015; Porter et al., 2019; Vakser, 2020). CAPRI (Critical Assessment of PRedicted 

Interactions) has been gauging the accuracy of these computational approaches since 2002 

(Janin et al., 2003; Wodak et al., 2020). In the meantime, CASP has seen substantial 

developments in the field of protein structure prediction (Kryshtafovych et al., 2019). Since 

2016, CASP has been offering an independent assessment of protein assembly prediction, 

where the community has been focused on pushing the limits of the computational structural 

biology field forward in the area of protein assembly prediction (Guzenko et al., 2019; 

Lafita et al., 2018). As a reflection of this, in CASP14, we covered several challenging 

complexes, which were large, heterogeneous, and cannot be resolved with the classical 

assembly prediction methods. More and more groups have started to implement deep 

learning-based inter-residue distance/contact predictions into their assembly modeling to 

address the assembly-related challenges (Elofsson, 2021; Hopf et al., 2014; Ovchinnikov et 

al., 2014; Yan & Huang, 2021). Here we examine the state of the art in assembly prediction 

methods and identify the best performing CASP14 prediction groups.

METHODOLOGY

Classification of the CASP14 Assembly Targets

For all CASP14 assembly targets, except H1047, the symmetry and stoichiometry 

information were shared with the predictors (Table 1). We validated the provided symmetry 

information with AnAnaS (Analytical Analyzer of Symmetries) (Pagès et al., 2018; Pagès 

& Grudinin, 2018) and the biological interface definition with EPPIC (Bliven et al., 2018). 

For only one target, T1034o, we had a mismatch between the experimentally determined 

stoichiometry (tetramer) and the one predicted by EPPIC (dimer). The assembly targets 

were categorized according to the availability of templates for the individual subunits 

and the interface between them. The template search was performed with HHPred (https://

toolkit.tuebingen.mpg.de/tools/hhpred, (Gabler et al., 2020; Söding et al., 2005)). As in the 

previous rounds, we classified a target as easy, if there is a structural template covering the 

whole assembly; medium, if there is a partial template for the subunits or their interaction; 

or difficult, if there is no template neither for the subunits nor the assembly. In CASP14, we 

had five targets (H1036, H1047, H1060, H1081, T1099o), which were challenging to assess 

with the standard CASP metrics. To assess these cases, we divided them into sub-targets and 

treated each sub-target as an independent evaluation unit. While identifying the sub-targets, 

we concentrated on isolating the minimum repeating unit(s) of the global assembly, as 

explained below (Figure S1):

• H1036: is an antibody complex with a viral particle with A3B3C3 stoichiometry 

and C3 symmetry. The viral component had very good templates (pdb ids: 

6esc(Vallbracht et al., 2017), 5ys6(Li et al., 2017)). On the other hand, there was 

no template for the virus antibody interface. As the viral protein has nearly 

five times more amino acids than the antibodies, its successful predictions 

were dominating our assessment. We, therefore, analyzed only the viral particle-

antibody interface as the evaluation unit H1036v0 (Figure S1A).
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• H1047: is a bacterial assembly, formed by the 26 repeats of an A1B1 dimer. 

Here, we concentrated on the A1B1 dimer predictions only. As this complex 

has pseudosymmetry, we calculated the number of contacts between each A1B1, 

falling within 5Å. Then, we selected the A1B1 pair having the largest number 

of contacts as the reference. The same procedure was followed to isolate the 

relevant A1B1 evaluation unit from the models (Figure S1B).

• H1060: is a bacteriophage T5 tail complex, composed of five stacked rings, 

involving four distinct monomers. The unique symmetric rings were offered as 

four separate targets (H1060v2–5). To assess the H1060 models, we manually 

isolated these four unique rings in PyMOL (The PyMOL Molecular Graphics 

System). The asymmetric repeating unit was defined as the vertical cross-section 

of the assembly (H106v1). This evaluation unit was defined upon selecting the 

mostly contacting vertical subunits (within 5 Å). The same protocol was applied 

to the submitted models (Figure S1C).

• H1081: is a bacterial arginine decarboxylase made of 20 repeating units 

assembled in a D5 symmetry. This complex is made by two stacked decameric 

rings (2 x A10), where there is a reliable template for each (pdb id: 2vyc (Andréll 

et al., 2009)). For this target, we defined the evaluation unit as the pentamer as 

presented in H1081v0 (Figure S1D). H1081v0 contains all the unique interfaces 

(intra- and inter-decamer), which is repeated four times within the complex.

• T1099o: is a 240-subunit viral capsid of the duck hepatitis B virus, having a 

T=4 icosahedral symmetry. This target was divided into three evaluation units, 

defining the core C3 and C5 symmetric interactions (T1099v0–2). As it was 

not possible to assign any rule to isolate the relevant dimers and tetramers from 

the models, we performed the annotation of the evaluation units manually, upon 

inspecting each model in PyMOL (The PyMOL Molecular Graphics System) 

(Figure S1E).

The dissection of H1036, H1060, H1081, and T1099o was carried out together with the 

CAPRI organizers.

To analyze the interface characteristics of the CASP14 assembly targets, we calculated 

the percentage of the polar, hydrophobic and charged residues residing within 7Å contact 

range. To calculate the interface RMSD (i-RMSD) between the targets and the AlphaFold2 

monomer models (Jumper et al., 2021), we focused on the residues falling within 5Å contact 

range. The i-RMSDs were calculated over the interfacial backbone atoms (C, CA, N, O) 

with McLachlan algorithm (McLachlan, 1982) as implemented in the program ProFit (http://

www.bioinf.org.uk/software/profit/ (Martin, 2021)).

CASP14 Assembly Scoring

The CASP14 assembly predictors were ranked according to the cumulative Z-score 

distributions of oligomeric lDDT (local Distance Difference Test, (Mariani et al., 2013)), 

TM (Template Modelling, (Xu & Zhang, 2010; Zhang & Skolnick, 2004)), ICS (Interface 

Contact, (Lafita et al., 2018)), and IPS (Interface Patch, (Lafita et al., 2018)) scores. lDDT 
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and TM measure the global similarity, whereas ICS and IPS define the interface accuracy. 

The definitions of these metrics are:

• lDDT-oligo measures the difference in the interatomic distances within a model 

and the reference structure. For convenience, throughout the paper, we will refer 

to this metric as lDDT.

• TM assesses the topological similarity of the model with respect to the reference.

• ICS is calculated as an F1-score, measuring the relationship between the 

precision (P) and recall (R) of predicted inter-chain contacts:

ICS M, T = F1 P , R = 2 P M, T × R M, T
P M, T + R M, T (Eq.1)

In Eq. 1, M and T represent the model and target. P is the fraction of the correct 

inter-chain contacts among all model inter-chain contacts. R is the fraction of 

correctly reproduced native inter-chain contacts. Two residues are considered in 

contact when at least two of their non-hydrogen atoms (one from each residue) 

are within 5Å from each other.

• IPS is calculated as a Jaccard coefficient (Jc) over the interface amino acids (I) 

predicted by the model (IM) compared to the target (IT):

IPS M, T = JC M, T = IM ∩ IT
IM ∪ IT

(Eq.2)

To obtain the final ranking, we followed the below-given protocol:

• Given a target, the Z-score of each metric was calculated either over the first or 

the best model submitted.

• Then, the cases with Z-score < -2 were removed from the model list on a 

per-case basis.

• Afterwards, a new Z-score set was calculated on the reduced case-based set.

• Finally, the models having a Z-score > 0 were kept.

The final cumulative Z-scores were calculated according to Equation 3.

CASP14−assembly − scoring − function = Z − score F1 + Z − score Jaccard
+ Z − score lDDT + Z − score TM (Eq.3)

RESULTS and DISCUSSION

Twenty-two different protein complexes were offered for the CASP14 assembly prediction 

category. Among these, five were dissected into sub-targets, so that they can be assessed 

by using the standard CASP metrics (Methods, Figure S2A). In the end, the assembly 

predictions were assessed over 29 evaluation units, half of which came from the structures 
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determined by EM techniques (Table 1). The CASP14 assemblies mostly came from 

bacterial (38%) and viral (48%) systems (Figure S2B). 38% of these targets were dimers 

and the remaining had three or more chains. These were mostly homomeric protein 

assemblies arranged in a symmetric fashion. For all the targets, except for H1047, the 

assembly stoichiometry was shared with the predictors. After the evaluation unit definitions, 

the stoichiometrically largest complex contained 12 monomers. In this round, we had 39 

prediction programs (30 research groups) participating. A parallel joint CASP14-CAPRI 

round was organized on a subset of 12 targets (19 evaluation units), and additional eight 

groups took on CAPRI-only targets (Table S1–S2). The assessment of these targets was 

carried out in close collaboration with the CAPRI organizers [ref: CASP14-CAPRI50 

paper]. On average, the assembly prediction community calculated 110 models per target, 

where the number of models submitted inversely correlated with the target difficulty (Figure 

S2C). Five groups (BAKER-experimental, Venclovas, Takeda-Shitaka-Lab, Bates_BMM, 

Risoluto) submitted a qualified prediction for all targets, 18 groups more than 20 targets, and 

25 groups more than ten targets (Table S1–2).

Overall Evaluation

For scoring the CASP14 assembly models, we used a function made by the equal 

contributions of the Z-scores of ICS, IPS, lDDT, and TM metrics (Methods, Eq. 3). 

According to this function, BAKER-Experimental is the top-performing group, followed 

by Venclovas, Takeda-Shitaka, and Seok groups (Figure 1). The ranking remains the 

same irrespectively of whether we considered the best or the first submitted model. This 

ranking was also preserved when CASP/CAPRI targets were taken into account. According 

to CAPRI criteria (Lensink et al., 2007; Méndez et al., 2005), BAKER-experimental, 

Venclovas, and Seok performed equally well as the top predictors [ref: CASP14-CAPRI50 

paper]. Our ranking difference stems from different approaches used by both communities; 

CASP ranking uses a combined Z-score-based function, while CAPRI measures the 

accuracy with a star-based system. Following the criteria of the previous rounds, the 

assembly targets were assessed separately in three difficulty categories: easy, medium, 

and difficult (see Methods). CASP14 target set contained two easy, 20 medium, and 

seven difficult cases (Figure S2A, Table 1). The BAKER-experimental method performed 

distinctively well in the medium category.

CASP14 Assembly Scoring

Like in CASP13, we considered a model to be successful if it scored above 0.5 according 

to all scoring measures (Guzenko et al., 2019). The community managed to submit at 

least one successful model for nine out of 29 targets, constituting the ~31% success rate. 

Among these, one is easy (T1052), one is difficult (H1065), and the rest (T1084o, H1045, 

H1036, T1083o, T1048o, H1081v0, H1060v5) are medium targets (Figure S3). The top five 

successfully predicted targets were T1084o (symmetric homodimer), H1045 (heterodimer), 

H1081v0 (heteropentamer), H1036 (heterononamer), and H1060v5 (symmetric hexamer) 

(Figure 2). To understand the impact of the scoring terms used, we plotted the distributions 

of ICS, IPS, lDDT, TM for each target, calculated over the submitted models (Figure 3). 

This analysis revealed that the least strict scoring metric is TM, while the strictest one is 

ICS. According to TM, 24 targets had a score greater than 0.5 (~80% success rate), whereas 
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this number dropped to 10 for ICS (~34% success rate). So, given the stoichiometry, the 

community performs very well in predicting the assembly topology. On the other hand, the 

prediction of interacting residue pairs remains to be a challenge. The pairwise correlations 

of ICS, IPS, lDDT, TM scores for the best models illustrated that the shape-related terms 

(lDDT, TM) are almost always of higher values compared to the interface-related terms 

(ICS, IPS) (Figure 4). These metrics generally follow ICS < IPS < lDDT < TM order, which 

breaks for T1032o. The best model of T1032o has a higher ICS than lDDT. For this case, the 

experimentally determined structure covers 60% of the sequence provided to the predictors, 

which could be the reason for the unusual lDDT behavior (Figure S4A).

CASP14 in Comparison with the Previous Assembly Rounds

In CASP14, there were fewer assembly targets than in previous rounds of CASP (22 in 

CASP14, 42 in CASP13, and 30 in CASP12). Even so, the technological advancements in 

the EM field were reflected in this assembly round. In the previous editions, up to 15% 

of the assembly targets were resolved by EM, whereas this number increased to 32% in 

CASP14 (calculated over the original 22 target set, Table 1). Accordingly, the complexity 

of assembly stoichiometries increased as well. In CASP13, the largest two assemblies 

were composed of 18 and 10 subunits, whereas in CASP14, four targets had more than 

15 monomers, i.e., H1060, H1081, T1099o, H1047 (Figure S5). The increase in subunit 

size not only impacted the prediction difficulty but also posed a significant challenge on 

the assessment due to the combinatorial chain mapping problem (which we overcame 

by dissecting these big complexes into their sub-complexes). To provide a quantitative 

comparison across all CASP assembly rounds, we gathered the best five models submitted 

for each case and plotted their mean score distribution (Figure 5). This depiction showed 

that CASP13 has more models in the high score bins (>0.8). On the other hand, when we 

calculated the percentage of the models having a mean score > 0.5, we observed that with 

44.2%, CASP14 has the highest success rate, followed by 32.3% in CASP13 and 30.6% in 

CASP12. So, even though the target difficulty increased in CASP14, the community posted 

a ~15% improvement in the assembly prediction.

A Close Look into the Target Characteristics

We investigated the CASP14 assembly targets under four assembly-based categories: 

homomers (48%), heteromers (21%), coiled-coils (17%), and assemblies having intertwined 

monomers (14%) (Table 1). For the assessment of homomeric targets, Seok-naïve-assembly 

predictions were used as a baseline indicator (Lensink et al., 2018). These predictions 

came from a classical template-based approach (established by the consecutive use of 

HHPred (Gabler et al., 2020; Söding et al., 2005) and Modeller (Webb & Sali, 2016)). The 

Seok-naïve-assembly predictions have been used as a reference to assess the homomeric 

predictions since the earlier CASP rounds (Guzenko et al., 2019). In CASP14, all the 

top-performing groups produced better quality models than the Seok-naïve-assembly (Figure 

S6).

Among the homomeric predictions, T1061o was particularly interesting. Being the only 

difficult homomeric target, T1061o forms a bacteriophage tail together with H1060. The 

best monomeric structure prediction for this target was modeled by AlphaFold2, with 61.78 
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GDT-TS. In this case, AlphaFold2 could not predict the fold of the final 220 residues. 

Even so, by using template-based modeling, the Baker group could obtain a T1061o model 

with an impressive TM score (0.70) but with a very low ICS (0.16) (Figure 6A). Another 

interesting homomer is 1099v0, for which we asked the predictors to submit a minimal sub-

complex, which would encompass the integral symmetry to construct the T=4 icosahedral 

viral capsid (Figure S1E). Here, we expected to receive at least a tetramer. Even though there 

was a template for 1099v0 with 19.5% sequence identity within 2 Å RMSD (pdb id:3j2v 

(Yu et al., 2013)), the best average score generated for this target remained low (0.29 ICS 

and 0.39 TM, as submitted by Seok). Our analysis showed that CAPRI-Shen utilized the 

available template the best in terms of the shape prediction with a TM-score of 0.65 (Figure 

6B).

Among the coiled-coil complexes, the most challenging target was the heteromeric H1072 

(Figure 6C). As there was no template for its interface, the best interface scores produced for 

H1072 were 0.22 ICS and 0.32 IPS (Takeda-Shitaka-Lab). For this one, the best TM got as 

high as 0.55 (UNRES-template). Under the category of heteromers, as indicated above, 

H1060 forms the bacteriophage tail subcomplex with T1061. This complex comprises 

five stacked rings made by four different monomers, where their rings were assessed 

as different evaluation units. Among these, the most interesting evaluation unit was the 

heteromeric H1060v1, the asymmetric vertical slice of H1060. None of the groups could 

predict H1060v1 successfully. The best score to note in this case was generated with 0.35 

TM by Risoluto (Figure 6D). Another noteworthy prediction came for H1047, which is 

a bacterial flagellar complex. H1047 is the only target for which we did not provide the 

stoichiometry information. Among all the groups, only Seok and KiharaLab could predict 

the H1047 complex stoichiometry correctly. Although the interface predictions for these 

targets were off, E2E and Baker could produce models with 0.48 and 0.45 TM scores, 

respectively (Figure S4B).

From the intertwined cases, T1070o and T1080o involved a high degree of domain swap. 

As a result, none of the groups could predict these targets successfully. The monomeric 

AlphaFold2 predictions for these targets had 43.12 GDT-TS for T1070o and 82.3 GDT-TS 

for T1080o. The challenge in the monomer modeling was reflected in the assembly category 

with very low ICS and IPS scores. Even so, for T1070o, CAPRI-Shen and DATE could 

produce models with 0.48 and 0.46 TM scores, respectively (Figure 6E). In the case of 

T1080o, Risoluto and Baker generated good TM scores at the extent of 0.60 (Figure 6F).

How do the interface characteristics impact the prediction difficulty?

We calculated the biophysical characteristics of the interface for each target, i.e., the 

percentage of hydrophobic, charged, and polar interface residues (Methods). Here, we 

examined the relationship between these interface properties and the best ICS and IPS 

scores produced for the targets. As a result, we observed that if the interface is deprived 

of charged contacts or dominated by hydrophobic interactions, its prediction becomes more 

challenging (Figure 7A). Five targets with the least charged interfaces are H1047, T1078o, 

T1080o, T1038o, H1036v0 (Figure 7B). Their best ICS scores are 0.07, 0.26, 0.13, 0.00, and 

0.40, and their best IPS scores are 0.20, 0.38, 0.38, 0.31, and 0.45, respectively. It is also 
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interesting to see that three targets among the five least-charged ones fall into the difficult 

category. Alongside, five targets with the most hydrophobic interfaces are T1080o, H1072, 

T1070o, T1034o, and T1078o (Figure 7B). Their best ICS scores are 0.13, 0.22, 0.07, 0.10, 

and 0.26, and their best IPS scores are 0.38, 0.39, 0.28, 0.19 and 0.38, respectively (Figure 

7A, middle). Here, three of the five most hydrophobic interfaces came from the intertwined 

targets (T1080o, T1070o, T1034o). When we ranked the targets according to their best ICS 

scores in descending order, seven of them had either a charged-depleted interaction or a 

hydrophobically-dominating one. We should note that the correlation between ICS/IPS and 

the charge/hydrophobicity characteristics percentages of the interface is not high (R~0.5), 

but still significant (p-value<0.05, Figure 7A). Such a correlation was not observed for the 

ICS/IPS vs. polarity relationship.

The impact of using contact predictions on the prediction performance

The distribution of the assembly scoring metrics, as presented in Figure 3, showed that there 

is no group performing distinctively better than the rest of the community. When we counted 

the occurrence of the top-raking groups over the best three models, BAKER-experimental 

came up 14, Venclovas 16, Takeda-Shitaka-Lab seven, and Seok four times. This observation 

indicated that Venclovas produced consistently good models for multiple targets, whereas 

BAKER-experimental performed significantly better for specific targets. For the assembly 

prediction, Venclovas, Takeda-Shitaka-Lab, and Seok followed a classical approach: they 

used template-based modeling or protein-protein docking, where relevant. The leading group 

BAKER-experimental, besides these approaches, utilized contact predictions, together with 

a fold-and-dock approach for ten targets (H1047, H1060v5, H1065, H1072, H1097, T1048o, 

T1080o, T1083o, T1084o, T1087o [Baker’s Team CASP paper]. Here, we investigated the 

contribution of BAKER-experimental-specific approaches to Baker Group’s success. For 

this, we studied the relationship between TM and ICS of the best models submitted by 

BAKER-experimental and Venclovas. As presented in Figure 8, the BAKER-experimental 

models had a slightly better TM and ICS correlation than the Venclovas models (0.78 

vs. 0.64). So, BAKER-experimental performed slightly better in predicting the correct 

interfacial contacts. BAKER-experimental submitted a top-ranking model for nine targets 

(H1036, H1060v1, H1060v5, H1097, 1048o, T1061o, T1080o, T1084o, T1087o). Here, 

only T1048o and T1084o submissions were successful. These targets were modeled with a 

contact incorporated fold-and-dock approach. For T1048o, BAKER-experimental produced 

a top model with an ICS of 0.58, where the second-ranking group, Risoluto, had an ICS 

of 0.17. For T1084o, BAKER-experimental produced a 0.83 ICS, followed by Kiharalab 

with 0.69 ICS. Both of these targets were homomeric coiled coil assemblies, indicating 

that BAKER-experimental’s fold-and-dock worked distinctively well on them. Finally, as 

introduced above, even though BAKER-experimental could not produce a successful model 

for the intertwined T1080o, together with Risoluto, they submitted models with good TM 

scores (Figure 6F).

According to CASP abstracts, except BAKER-experimental, ten groups used a contact-

based approach for at least one target: Huang, Elofsson, Risoluto, LamoureuxLab, Ailon, 

Zhang-assembly, edmc-pf, UNRES-contact, DellaCorteLab, bioinsilico-sbi (Figure S7). Two 

of these methods performed very well for H1047 (medium) and H1065 (difficult). In the 
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case of H1047, even though the interface prediction was off, H1047 topology could still 

be modeled by E2E with a TM score of 0.5. E2E’s approach is based on TrRosetta 

(Yang et al., 2020) (Figure S4B). For H1065, Elofsson generated a 0.5 ICS score. For 

this target, Elofsson used trRosetta, as well as template-based docking. Strikingly, their 

best H1065 model emanated from using the CASP server models as an input to TMdock 

(Anishchenko et al., 2017; Pozzati et al., 2021), personal communication). So, although the 

contact-based sophisticated algorithms make a difference for specific targets, the classical 

assembly methods still prevail for most of the cases.

How much could the use of AlphaFold2 tertiary structure predictions improve the 
assembly predictions?

In CASP14, the AlphaFold2 team provided impressive predictions for the monomeric 

protein targets. During CASP14, AlphaFold2 did not participate in the assembly round 

and their predictions were not made available to the community. Therefore, we analyzed 

how much the use of AlphaFold2 tertiary structure predictions could have improved the 

assembly predictions. For this, we measured the r.m.s. difference between the interfaces 

of the assembly monomers and the AlphaFold2 models (i-RMSD, Methods). This i-

RMSD calculation could be performed over 16 complexes, for which there was a readily 

AlphaFold2 tertiary structure prediction available (either on the whole complex or on one of 

the subunits) (Table 2). As a result, except for T1061o and T1070o (both difficult targets), 

all the i-RMSDs values were turned out to be smaller than 2.5–3.0 Å (a threshold to 

categorize an interfacial change as small-to-medium (Karaca & Bonvin, 2013)). Though, 

only five of these rather small i-RMSD cases could be successfully modeled in the assembly 

round (H1045, H1065, T1052o, T1083o, and T1084o). These small(er) i-RMSD values 

indicate that these targets are mainly obligate and for them, if AlphaFold2 predictions were 

at hand, the prediction of the conformational changes upon binding would not pose a barrier 

during the assembly prediction. This assumption is only challenged by a small i-RMSD 

case, T1054o (its monomers are of 1.5 Å i-RMSD), where the presence of AlphaFold2 

model would not ease the prediction difficulty. In this case, the 1.5 Å change emanates 

from the conformational difference of the first twenty amino acids, which directly blocks 

the dimerization interface (Figure S4C). All in all, if AlphaFold2 predictions were available, 

the interface prediction challenge could be alleviated for most of the “unsuccessful” targets, 

even for the challenging intertwined T1080o (as discussed above).

CONCLUSIONS and PERSPECTIVES

The accurate prediction of protein-protein interactions is of vital importance to understand 

protein function. To this end, many algorithms have been deployed to accurately model 

protein assemblies. To contribute to the development of the assembly prediction field, here, 

we portrayed the state of the CASP14 assembly prediction round. Given the stoichiometry 

of the complex, for 80% of the cases, the community could predict the topology of the 

assembly. Though, the accurate prediction of inter-chain contacts remained an issue (for 

70% of the cases). Strikingly, this was even the case for contact-based approaches, which 

helped to predict a better interface only for a few cases.
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When compared to CASP13, we observed a 15% improvement in the quality of the models 

submitted. However, by analyzing the available CASP14 tertiary structure models, we 

showed that most of the CASP14 assembly targets were obligate. So, the assessed methods 

are yet to be probed with more “flexible” cases. Upon examining the CASP14 target 

interfaces, we presented that the interfaces deprived of charge or extremely hydrophobic 

were the most difficult ones to predict. By using this observation as a clue, we speculate that 

it might be possible to predict the limits of the available methods, for example, by analyzing 

the solvent-accessible residues of the tertiary structure predictions.

Thanks to the technological advancements in the EM field, in this round, we could offer 

intricate protein complexes as targets. To assess such difficult cases with the standard CASP 

metrics, we had to dissect them into sub-targets. For larger and more intricate complexes, 

new methodologies, expanding on the available ones should be developed (Lafita, 2017). A 

way to incorporate the resolution of EM map into the assessment strategy should also be 

considered within this context.

All in all, while assessing the assembly prediction community, we outlay that new 

approaches are needed for the accurate prediction of assembly interfaces, especially for 

utilizing MSA-based distance/contact predictions. Towards addressing this need, we are sure 

that the significant improvements in tertiary structure prediction field will pave the way for 

the community.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The ranking of the CASP14 Assembly Groups according to the Z-score-based ranking (Eq. 

3).
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Figure 2. 
The top five successfully predicted targets and their best predicted models. (A) T1084o, (B) 
H1036, (C) H1045, (D) H1081v0, (E) H1060v5, where each monomer is represented with a 

different color.
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Figure 3. 
The per-target distribution of each scoring term (ICS, IPS, lDDT, TM). The successful 

model criterion 0.5 is marked with a solid gray line.
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Figure 4. 
The pairwise relationship of each scoring term belonging to the best model (of each target). 

The scattered data points are colored according to their mean scores in all plots. The 

mean score is defined by the average of the four assessment metrics as given in mean-

score=(ICS+IPS+TM+lDDT)/4). For only one target, T1032o, shape-related metric lDDT 

has a worse score than the interface-related ICS (encircled in red in middle-left figure).

Ozden et al. Page 17

Proteins. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
The mean-score distributions of CASP12, CASP13 and CASP14 assembly models, when the 

top five models of each target were considered.
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Figure 6. 
The target and prediction highlights of the CASP14 assembly round. (A) T1061o, (B) 
T1099o (also with the template (pdb id:3j2v(Yu et al., 2013))), (C) H1072, (D) H1060v1, 

(E) T1070o, (F) T1080o, where each monomer is represented with a different color.
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Figure 7. 
(A) The relationship between the interface characteristics and the interface-related scores 

(ICS and IPS): the charged interface percent vs. ICS/IPS score (left), the hydrophobic 

interface percent vs. ICS/IPS score (middle), and the polar interface percent vs ICS/IPS 

score (right). Each data point was colored according to its target difficulty (easy: green, 

medium: orange and difficult: red). The fitting was performed with the least square fitting 

option of Matlab (MATLAB and Statistics Toolbox Release 2020b). (B) The biophysical 

interface characteristics of each target. The charged interface percent was marked with 
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circles, hydrophobicity with triangles and polarity with diamonds. Each data point was 

colored according to its target difficulty as in panel A of this figure.
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Figure 8. 
The ICS vs. TM score correlations for the best models submitted by BAKER-experimental 

(left) and Venclovas groups (right). Each data point was labeled with its corresponding target 

id. The fitting was performed with the least square fitting option of Matlab (MATLAB and 

Statistics Toolbox Release 2020b).
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Table 1.

The CASP14 assembly target list, involving each target’s stoichiometry, symmetry definition, assembly 

classification, prediction difficulty, taxonomy, the experimental technique used to resolve its structure, and 

the best predictor for that target ranked according to Eq. 3.

Target ID PDB ID Stoichiometry Symmetry Assembly 
Classification Difficulty Taxonomy Exp. 

Tech.
1st ranking 

Group

H1036* 6vn1(Oliver et 
al., 2020) A3B3C3 C3 Heteromer Medium Virus EM BAKER-

experimental

H1036v0* 6vn1(Oliver et 
al., 2020) A1B1C1 - Heteromer Medium Virus EM htjcadd

H1045* A1B1 - Heteromer Medium Plant X-Ray Huang

H1047 A26B26 - Heteromer Difficult Bacteria EM E2E

H1060v1* 7CGO (Tan, et 
al.) A2B1C1D1 - Heteromer Medium Virus EM BAKER-

experimental

H1060v2* 7CGO (Tan, et 
al.) A3 C3 Homomer Medium Virus EM Venclovas

H1060v3* 7CGO (Tan, et 
al.) A3 C3 Homomer Medium Virus EM Venclovas

H1060v4* 7CGO (Tan, et 
al.) A12 C12 Homomer Medium Virus EM Takeda-

Shitaka-Lab

H1060v5* 7CGO (Tan, et 
al.) A6 C6 Homomer Medium Virus EM BAKER-

experimental

H1065 A1B1 - Heteromer Difficult Bacteria X-Ray AILON

H1072 6r17(Dunce et 
al., 2020) A2B2 C2 Coiled Coil Medium Mammalian X-Ray Bates

H1081v0* A5 - Homomer Medium Bacteria EM Zou

H1097 A1B1C1D1E1 - Intertwined Medium Bacteria EM BAKER-
experimental

T1032o* 6n64(Chen et 
al., 2020) A2 C2 Homomer Easy Mammalian X-Ray Zou

T1034o
6tmm 

(Chiarini, et 
al., 2021)

A4 D2 Intertwined Medium Extremophile 
bacteria X-Ray Ornate-Select

T1038o 6ya2(Bahat et 
al., 2020) A2 C2 Homomer Difficult Virus X-Ray Bates

T1048o
6un9 

(Vorobiev, et 
al., 2020)

A4 D2 Coiled Coil Medium Bacteria X-Ray BAKER-
experimental

T1052o* A3 C3 Homomer Easy Virus X-Ray Vakser

T1054o* A2 C2 Homomer Difficult Bacteria X-Ray Venclovas

T1061o A3 C3 Homomer Difficult Virus EM BAKER-
experimental

T1070o* A3 C3 Intertwined Difficult Virus X-Ray CAPRI-Shen

T1078o* A2 C2 Homomer Medium Fungi X-Ray Zou

T1080o A3 C3 Intertwined Difficult Bacteria X-Ray BAKER-
experimental

T1083o* A2 C2 Coiled Coil Medium Bacteria X-Ray Venclovas
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Target ID PDB ID Stoichiometry Symmetry Assembly 
Classification Difficulty Taxonomy Exp. 

Tech.
1st ranking 

Group

T1084o A2 C2 Coiled coil Medium Extremophile 
bacteria X-Ray BAKER-

experimental

T1087o* A2 C2 Coiled Coil Medium Extremophile 
bacteria X-Ray BAKER-

experimental

T1099ov0* 6ygh(Makbul 
et al., 2020) A4 - Homomer Medium Virus EM Seok

T1099ov1* 6ygh(Makbul 
et al., 2020) A2 C2 Homomer Medium Virus EM Seok

T1099ov2* 6ygh(Makbul 
et al., 2020) A2 - Homomer Medium Virus EM Zou

The CASP/CAPRI targets are indicated with *. The groups, which submitted a model having above 0.5 score for all the evaluation metrics are 
underscored.
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Table 2.

The interface RMSD (i-RMSD) values measured between the assembly monomer and its related best CASP14 

tertiary prediction. Target name and i-RMSD of subunits are tabulated, respectively. The cases experiencing a 

small or medium scale conformational changes are represented in bold. The cases, for which there was at least 

one successfully predicted assembly model, are underlined.

Target Name i-RMSD of subunit1 (Å) i-RMSD of subunit2 (Å) i-RMSD of subunit3 (Å) i-RMSD of subunit4 (Å)

H1045 0.7 0.5

H1047 1.4 0.4

H1060 2.0 (v1) 2.8 (v3) 2.6 (v1) 0.9 (v4)

H1065 0.7 0.9

T1034o 1.9

T1038o 1.9

T1052o 1.4

T1054o 1.5

T1061o 20.2 8.0

T1070o 10.6 6.0

T1078o 1.0 0.9

T1080o 1.4

T1083o 1.5

T1084o 1.3

T1087o 0.4

T1099o 1.2 1.6 1.5 2.1
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