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Plant synthetic biology as a tool to help eliminate hidden 
hunger 
Ryan A Edwards1,2, Xiao Y Ng1,2, Matthew R Tucker1,2 and  
Jenny C Mortimer1,2,3   

Agricultural systems are under increasing pressure from 
declining environmental conditions, a growing population, and 
changes in consumer preferences, resulting in widespread 
malnutrition-related illnesses. Improving plant nutritional 
content through biotechnology techniques such as synthetic 
biology is a promising strategy to help combat hidden hunger 
caused by the lack of affordable and healthy foods in human 
diets. Production of compounds usually found in animal-rich 
diets, such as vitamin D or omega-3 fatty acids, has been 
recently demonstrated in planta. Here, we review recent 
biotechnological approaches to biofortifying plants with 
vitamins, minerals, and other metabolites, and summarise 
synthetic biology advances that offer the opportunity to build on 
these early biofortification efforts. 
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Introduction 
Hidden hunger, or micronutrient deficiency, can be 
defined as a state in which a person’s diet is calorically 
fulfilled, but nutritionally deficient. This definition 
covers a range of conditions, from minor deficiencies 
with few symptoms to extreme deficiencies resulting in 

mortality. Hidden hunger is a global phenomenon, with 
the latest global analysis estimating that half of pre-
school-aged children are affected [1]. Without innova-
tions in crop yield, nutritional quality, and climate 
resilience, we may fail to meet the nutritional needs of 
the future population [2]. A recent factor contributing to 
this issue is the rise in popularity of plant-based diets, 
which typically do not provide some essential nutrients 
such as vitamin B12, omega-3 fatty acids (ω3 FA), or vi-
tamin D, and contain lower concentrations of iron and 
protein [3]. 

The major strategies currently employed to combat mi-
cronutrient deficiency include supplementation, for-
tification, and increasing dietary diversity, though these 
solutions are not universally implementable due to, for 
example, a lack of resources or the capacity to imple-
ment them [4]. Another solution in the toolbox is bio-
fortification, the practice of increasing micronutrient 
content in plants before they are processed into food, 
chiefly by soil supplementation or through the use of 
gene technology (e.g. selective breeding, genetic mod-
ification, or gene editing [GE]; Table 1). This solution is 
not without flaws, though it may help to address the 
issue of malnutrition in situations where the other so-
lutions fail, for example, in remote or developing regions 
without regular access to supplements, fortified foods, or 
the climate to grow a varied diet. In these cases, a ge-
netically modified (GM) crop that targets one or two of 
the most prevalent micronutrient deficiencies could be 
distributed to eliminate potentially devastating states of 
malnutrition. 

Adoption of GM crops has not been easy, however, as 
exemplified by the struggles described in this opinion 
piece [5]. Some of these struggles may be overcome 
through the development of genetic tools such as Clus-
tered Regularly Interspaced Short Palindromic Repeats 
(CRISPR)/Cas9-mediated gene GE, which are considered 
more akin to traditional selective breeding rather than GM 
in many countries. Indeed, greater advances and avail-
ability of synthetic biology (SB) tools over the past decade, 
especially in GE and plant transformation technology, have 
made it far easier to create engineered plants. As a result, 
there has been a dramatic increase in literature describing 
the creation of GM plants that aim to tackle malnutrition- 
related illnesses. Regulation seems to be catching up with 
technology; however, plans for the European Parliament to 
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vote on the deregulation of some genetic technologies 
used in crops later this year [6] may be delayed due to 
elections and important amendments and debates sur-
rounding patent usage. 

In this review, we describe a selection of recent GM 
approaches to the biofortification of vitamins, minerals, 
and other metabolites in plants, in addition to summar-
ising key developments in plant SB techniques that 
allow for more advanced approaches to plant biofortifi-
cation. 

Vitamins 
At the turn of the century, ‘Golden Rice’ was developed 
with the goal of preventing blindness and mortality as-
sociated with vitamin A deficiency, particularly in 
countries where staple foods did not provide adequate 
amounts, and supplementation by nutraceuticals was 
rare. The initial iteration of the crop was created in 2001 
and was one of the first examples of a GM plant that 
aimed to provide major nutritional benefits. It was 
achieved simply by introducing two genes that were 
missing from the ß-carotene biosynthesis pathway in rice  
[7]. The overproduction of vitamins in plants has now 
been widely explored using a variety of approaches and 
has helped develop SB principles and technologies to 
open a world of possibilities. 

Genetic approaches to increase the content of vitamins 
or other valuable products in plants fall under four major 
categories: ‘push’ or ‘pull’ strategies, which aim to in-
crease the amount of upstream precursors and the target 
molecule; ‘block’ strategies, which prevent the forma-
tion of downstream products; strategies that increase the 
bioaccessibility or stability of the target molecule; and 
finally, strategies that increase the metabolic sink of the 
product [8]. The latter strategies supplement the first 
two strategies, which often run into inhibitory road-
blocks that decrease the capacity fro product accumula-
tion and utilisation; however, they often require a much 
deeper knowledge of the metabolic pathways involved. 

These generalised strategies have been supplemented 
by a wide variety of technologies that exploit biology in 
creative ways, as can be seen in Figure 1. Modifications 
to nontranscribed regions of the DNA, such as promoters 
that are more efficient, signal-activated, or tissue-spe-
cific, have been characterised, as well as modifications 
within the transcribed regions that result in improved 
translation rates. Base-editing or mutation-inducing 
systems have allowed for the efficient modification or 
knockout of native genes, with some popularised 
methods like the CRISPR-Cas9 system being con-
sidered for non-GM regulation status by governments. 
Tools that avoid the introduction of DNA to the germ-
line for temporary or permanent changes, such as the 
direct delivery of editing complexes, grafting with 
transgenic donors, or viral-induced expression, are now 
being developed to overcome the original concerns that 
regulation was imposed for. These technologies are ex-
plored in greater detail in the following reviews [9–13]. 

Vitamin C 
Whilst vitamin C is not scarce in diets due to its ubiquity 
in plants and animals, deficiency is still prevalent 
worldwide [14]. Many genetic approaches for the over-
production of vitamin C have been trialled, with the 
major approach being ME by ubiquitous overexpression 
of vitamin C biosynthesis genes. The most targeted 
genes for this approach have been GDP-D-MANNOSE 
PYROPHOSPHORYLASE (GMP), GDP-D-MANNOSE- 
3,5-EPIMERASE (GME), GDP-L-GALACTOSE PHOS-
PHORYLASE (GGP), and L-GALACTONO-1,4-LAC-
TONE DEHYDROGENASE (GLDH) in the L-Galactose 
pathway [15,16]. Results from this approach can be 
found in Figure 2, showing significant variation, from 
sevenfold increases in ascorbate concentration to none at 
all, indicating that our understanding of vitamin C bio-
synthesis regulation in plants may be lacking [16]. 

In a recent gene-pyramiding study, combinations of four 
key pathway genes, L-GALACTOSE-1-P PHOSPHAT-
ASE (GPP), GME, GMP, and GGP, were expressed 
constitutively, with results ranging from some constructs 

Table 1 

A glossary of terms used in this review to describe different types of genetic technologies and practices used to achieve biofortification.    

Term Definition  

Genetic modification/genetically 
modified (GM) 

A broad term that describes the modification of an organism’s genome (distinct from natural 
processes such as sexual recombination and selective breeding) through the use of genetic 
technologies such as the insertion of cisgenic or transgenic DNA into a genome by transformation or 
small insertions, deletions, or base edits. 

Synthetic biology (SB) The creation and use of cisgenic, transgenic, or synthetic standardised biological parts to modify 
biological systems to our advantage, especially in the context of utilising the engineering principles of 
the design-build-test-learn cycle. 

Metabolic engineering (ME) A method of genetic modification that involves the overexpression, knock-down, or knockout of one or 
many genes in a metabolic pathway to modify the outputs of that pathway in a predictable manner. 

Gene editing (GE) Precise modification of an organism’s genome, using biological machinery such as site-directed 
nucleases with or without the use of a guide to repair the DNA cleavage site in a specific manner. 

2 Plant Biotechnology  
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Figure 1  

Current Opinion in Biotechnology

An oviewview of some approaches available to produce valuable products in plants (a) A schematic diagram showcasing some of the features of a gene that 
can be modified for optimal expression in plants. Promoter and 5’UTR sequences that are optimised for the target species can increase transcription by 
enhancing the recruitment of the required proteins for these processes. Polycistronic peptide genes allow for a single promoter to drive the expression of 
multiple genes, reducing construct size. Codon optimisation increases the translation rate of proteins by removing ‘rare’ codons that delay or even abort the 
translation process. The 3’UTR can be modified to include motifs that recruit proteins to increase or decrease the stability of the mRNA. Matrix attachment 
regions provide an anchor point to the nuclear matrix at each end of the construct, which helps to minimise chromatin silencing. (b) A diagram showcasing a 
selection of technologies that can be used to regulate gene expression and product accumulation. The use of signal peptides can direct proteins to 
designated cellular compartments, where, for example, the substrate they interact with exists. RNA interference can decrease or modulate the level of 
mRNA translation. Small molecules, specific light wavelengths, and other signals can be used to drive synthetic promoters to control gene expression on 
demand. Tissue-specific promoters found in nature allow for spatial, and also often temporal, control of gene expression. Transient changes in gene 
expression can be induced by infection of plants by viruses that have had their harmful properties removed. DNA-free editing techniques, in which the 
editing effectors are not expressed by the target plant, can be achieved by the uptake of site-directed nucleases and guide RNAs. This is not an exhaustive 
list of genetic technologies used in plant biofortification, and it is important to note that due to the complexity of biological systems, the application of such 
technologies can result in unexpected outcomes. Abbreviations: C, Chloroplast; CDS, Coding sequence; M, Mitochondria; MAR, Matrix attachment regions; 
N, Nucleus; RISC, RNA-induced silencing complex; UTR, Untranslated region; V, Vacuole. 
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showing no improvements in total ascorbate in fruits to 
the doubling of total ascorbate in leaves [17]. The study 
found that there was a limit to the amount of vitamin C 
able to be accumulated in each tissue type, and this limit 
was reached when overexpressing just two of the four 
genes, indicating that feedback inhibition loops or other 
regulatory methods were creating a ‘ceiling’ for vitamin 
C accumulation [17]. Moving forward, the transcriptome 

and metabolome of cells must be better understood to 
be able to bypass these regulatory hurdles. 

It is important to note that whilst these strategies may be 
successful in modifying the nutritional content of the 
plant, they may not contribute to realised nutritional 
benefits in the consumer. These can be defined as 
measurable advantages directly derived from a food’s 

Figure 2  

Current Opinion in Biotechnology

Summary of single-gene overexpression lines in the L-Galactose pathway of vitamin C synthesis as reviewed in reference [16], illustrating how the 
choice of plant species or step in the pathway can shape the outcome. Each icon describes a single study, and the legend indicates which plant 
species was transformed in that study, with the success measured by maximum fold change in total ascorbate below it. ns = no statistically significant 
difference compared to wild-type control. Abbreviations: PGI: PHOSPHOGLUCOSE ISOMERASE, PMI: PHOSPHOMANNOSE ISOMERASE, PMM: 
PHOSPHOMANNOSE MUTASE, GMP: GDP-D-MANNOSE PYROPHOSPHORYLASE, GME: GDP-D-MANNOSE-3,5-EPIMERASE, GGP1/GGP2: 
GDP-L-GALACTOSE PHOSPHORYLASE 1/2, GPP: L-GALACTOSE-1-P PHOSPHATASE, GDH: L-GALACTOSE DEHYDROGENASE, GLDH: 
L-GALACTONO-1,4-LACTONE DEHYDROGENASE, MDAR: MONODEHYDROASCORBIC ACID REDUCTASE, DHAR: DEHYDROASCORBIC ACID 
REDUCTASE.   
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nutritional content, such as the reversal of symptoms 
caused by deficiency or the improvement of traits such 
as bone density or immune system strength. Benefits 
like these must be ascertained through dietary studies in 
animals and humans [18], an expensive and time-con-
suming process, although it has been reported for a small 
but growing number of GM crop examples [19–21]. 

Vitamin D 
Vitamin D3 is an important prehormone for the muscu-
loskeletal and immune systems and is produced as a 
byproduct of the cholesterol synthesis pathway in skin 
cells exposed to the UV-B fraction of sunlight. Because 
of this reliance on sunlight, its biosynthesis is affected by 
uncontrollable factors such as a person’s skin tone or the 
latitude at which they live. Vitamin D is also scarce in 
diets, typically found in animal products, such as fish, 
egg yolk, and red meat [22], which makes it an ideal 
target for biofortification in plants. 

Recently, vitamin D3 was successfully produced in to-
mato (Solanum lycopersicum) using a simple genetic 
knockout. The method by Li et al. [23] aimed to accu-
mulate the precursor to both vitamin D3 and cholesterol, 
7-dehydrocholesterol (7-DHC), and then expose the 
plant to UV-B light to convert it into vitamin D3. This 
was achieved by knocking out 7-DEHYDROCHOLES-
TEROL REDUCTASE 2, the gene responsible for con-
verting 7-DHC into cholesterol. After exposing the 
gene-edited line to UV-B light, ∼200 and ∼0.25 µg g-1 

dry weight of vitamin D3 was produced in the leaves and 
fruit, respectively [23]. Although the amounts produced 
in fruit are relatively low compared to daily sufficiency 
requirements of 20 µg [24], this is a positive example of 
how GE crops can potentially assist with nutritional 
deficiencies of those with restricted diets. Future pro-
spects in this area could include modification of the 
cholesterol pathway to further increase the amount of 7- 
DHC available for vitamin D3 conversion. This could 
include the upregulation of cholesterol synthesis genes 
or knockout of branching pathways, both of which have 
been shown to increase cholesterol concentration in 
plants [25,26]. 

Minerals 
Minerals are essential in human health and must be 
sourced from diet. Mineral malnutrition is a global issue, 
with the most prevalent deficiency, iron, affecting nearly 
one-third of women globally [27]. This problem is ex-
acerbated by reductions in world soil quality and how 
that affects plant yield and nutritional quality [28]. 
Concurrently, plant uptake of toxic minerals in soil is 
also a major issue, though, with GM solutions being 
explored [29,30]. To help address mineral nutrition, fu-
ture crops will need to be increasingly efficient at pro-
viding beneficial minerals through improvements in 

both concentration and bioaccessibility while avoiding 
toxicity concerns. 

Traditionally, mineral fortification has been achieved 
through soil supplementation with mineral-rich fertili-
sers or by ‘spiking’ downstream food products with mi-
nerals [31]. Both strategies, however, require additional 
investment by food producers at the farm or factory. 
Whilst this is achievable, and perhaps favourable as 
companies are able to advertise a healthier product with 
a better value proposition, this kind of investment is 
unlikely to occur in developing regions. A biotechnolo-
gical approach may be more attractive, whereby recently 
developed GM plants with improved bioaccessibility 
and concentration of a range of minerals are produced 
instead. 

Iron and zinc 
A range of strategies to increase the iron and zinc con-
centration in cereal crops have been tested, with many 
focusing on modifying the expression of mineral uptake, 
storage, and trafficking proteins. A recent strategy in 
bread wheat (Triticum aestivum) examined the effect of 
overexpressing two key genes. One, NICOTIANAMINE 
SYNTHASE 2 (NAS2), encodes a metal-chelating pep-
tide capable of binding iron and zinc, and this was 
coupled with endosperm-specific expression of VACU-
OLAR IRON TRANSPORTER 2 (VIT2), which encodes a 
peptide responsible for iron transport into the more 
commonly consumed starchy endosperm fraction [32]. 
This resulted in a twofold increase in grain zinc con-
centration, and similar increases in flour concentrations 
of iron and zinc [32]. Whilst these results are promising, 
future attempts could stack these approaches with stra-
tegies that address the issues presented by plant anti-
nutritive chelating compounds that effectively ‘lock’ 
minerals in a conformation that is inaccessible to our 
digestive system. 

Antinutritive chelators 
The major antinutritive chelating compounds present in 
plants are oxalate, which binds calcium and can con-
tribute to kidney stone formation; phytate, which binds a 
range of divalent metal ions excluding them from diet; 
and glucosinolate, which binds iodine altering thyroid 
function [33]. Efforts to negate these effects in foods 
have focussed on preparation techniques such as 
soaking, boiling, germinating, and fermenting [34]; 
however, some of these techniques have their own 
drawbacks, such as the degradation or leaching of vi-
tamin content [35], leaving consumers to ‘pick their 
poison’ when preparing food. 

Attempts at reducing antinutrient chelator content by 
GM strategies have been made, but a lack of knowledge 
about the genetic pathways and regulation involved in 
their production has hindered their utilisation. As a 
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result of this deficit, most genetic technology strategies 
in crops have focussed on the overexpression of enzymes 
that degrade these chelators rather than preventing their 
biosynthesis [36,37]. A simple example of this strategy 
was the overexpression of a transgenic oxalate dec-
arboxylase in soybean (Glycine max), which resulted in 
the halving of oxalate concentrations in most transfor-
mants and twofold (or more) increases in calcium, mag-
nesium, iron, zinc, and manganese in the next 
generation seeds [38]. 

Future attempts to help alleviate mineral-related mal-
nutrition through SB should combine the discussed 
strategies of mineral concentration, localisation, and 
bioaccessibility. Other strategies to explore could in-
clude the modification of regulatory elements that affect 
mineral uptake, transit, and storage, though this will 
require a deeper understanding of the science. 

Macronutrients 
The importance of micronutrients to human health has 
been highlighted above, but plants can also be an out-
standing source of proteins, carbohydrates, and lipids. 
Because these three components cover a huge spectrum 
of independent biosynthetic pathways, progress in the 
modification of macronutrient profiles is scattered. Most 
studies focus on one macronutrient at a time with single 
gene overexpression or knockdown lines, and we have 
not been able to identify any comprehensive literature 
reviews that link their modification together. The scope 
of this paper does not allow for such a review; however, 
we will provide a brief overview of the main research 
foci, including how the nutritional quality of plant-based 
proteins and carbohydrates is being improved and how 
animal-based lipids are being introduced into plants. 

Proteins 
In the face of modern environmental challenges, plant- 
based alternatives to animal proteins are garnering in-
terest, and a great deal of research is being placed into 
improving their nutritional and sensory properties [39]. 
Crops such as legumes are a major source of plant-based 
protein in the market, but one drawback to their adop-
tion is that they typically fail to provide sufficient levels 
of sulphur-containing amino acids (SAA) methionine and 
cysteine [40]. Improving sulphate capture and enhancing 
SAA assimilation in proteins by genetic technology has 
been the primary approach to solve this issue [40]. For 
example, the overexpression of a modified ATP sulfur-
ylase 1 in soybean (Glycine max) effectively captured free 
sulphate in the cytoplasm and, as a result, increased the 
methionine and cysteine content of the cells by 15–19% 
and 37–52%, respectively [41]. These kinds of im-
provements in quality will be essential if the adoption of 
plant-based proteins continues to grow as expected. 

Carbohydrates 
The structure of carbohydrates is important to their 
function in plants and nutrition in humans. 
Carbohydrates like starch are digested promptly to pro-
vide energy, while dietary fibres or resistant starches 
(RS) are difficult to degrade due to their linear crystal-
line structures and are functionally important to human 
gut health [42]. Biofortification of these carbohydrates in 
staple crops like wheat has been used as a strategy to 
maximise the health benefits of derivative foods. The 
main approaches for RS accumulation have been to 
employ block strategies to suppress the branching of 
carbohydrates or push/pull strategies to increase the 
proportion of linear starch [43]. Recently, one study 
utilised the branching suppression strategy in cassava 
(Manihot esculenta) by RNAi knockdown of two 
branching enzymes, STARCH BRANCHING ENZYME 1 
& 2 (SBE1/SBE2) [44]. They showed that some double 
knockdown lines had both increased their apparent 
amylose content by over 100% and increased their RS 
content from ∼0.4% in wild type to 18.3–25.2% in those 
lines. 

Another type of carbohydrate product that has been as-
sociated with several health benefits, such as lower 
cholesterol, cardiovascular, and diabetic risk, is mixed 
linkage (1,3;1,4)-β-glucan (MLG) [45]. Classed as a 
dietary fibre, it is a polysaccharide formed from D-glu-
cose subunits and is present in the cell walls of cereals 
such as barley (Hordeum vulgare) and oat (Avena sativa). 
Biofortification of MLG has been achieved mainly by 
overexpression of cellulose synthase-like (CSL) genes. 
The endosperm-specific overexpression of HvCSLF6 in 
barley, for example, more than doubled MLG content 
paired with decreased starch content [46]. The optimi-
sation and application of these approaches to carbohy-
drate-rich diet staples could assist in cases of energy-rich 
nutrient-poor diets. 

Lipids 
Genetic modification of lipids in plants is not a recent 
endeavour; however, efforts have chiefly focused on in-
creasing the amount of lipid-biofuels rather than nu-
tritionally beneficial lipids [47]. Much of the work has 
been concentrated in oilseed crops, though there are 
successful examples of lipid modification outside of this 
group [48]. Nutritionally beneficial lipids such as ω3 FA 
eicosapentaenoic acid (EPA) and docosahexaenoic acid 
(DHA) are vital for health and development; however, 
deficiency is common, fish sources are constrained by 
overfishing, and plant-based diets lack EPA and DHA, 
providing an opportunity for plant SB to contribute [49]. 
Significant efforts have been made to address this and 
improve the quality of plant-based oils, mainly through 
altering seed oil profile and introducing non-native fatty 
acid biosynthesis pathways [50]. 
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A study by Han et al. [51], in which the SB design-build- 
test-learn cycle was followed, has built on previous 
success in engineering the pathway for EPA and DHA in 
camelina (Camelina sativa) [52]. The study carried out 
systematic step omissions, additions, and ortholog sub-
stitutions in order to test which parts of their construct 
design could be improved upon. Both indoor controlled 
environment and outdoor field trials of their transgenic 
lines revealed that constructs made with transgenes from 
a mix of species showed greater accumulation of the 
health-promoting ω3 FAs [51]. The work reported in this 
study and subsequent animal and human dietary studies  
[21,53] is a good example of what is required to translate 
a GM plant into a product with real-world value. It is also 
exemplary of the promise that following SB principles 
holds for the development of other biofortified crops. 

Future perspectives 
Although solutions such as micronutrient supplements 
or fortified foods are readily available in the market, 
hidden hunger persists. Affordability, accessibility, and 
education regarding healthy foods must improve. 
Advances in SB continue to enable the improvement of 
plant-derived nutrition, but there are several factors to 
consider for future research to be more effective. The 
first is to better understand the regulation and responses 
of target pathways to develop creative and efficient 
strategies of biofortification. Second, further investiga-
tion into improving both the bioaccessibility of targets 
and their localisation to the edible portions of the plant 
is vital to ensure that any nutritional changes achieved 
are passed onto the consumer. Finally, dietary studies 
and field trials must be utilised to assess the nutritional 
benefits and real-world value that GM crops can provide. 
Without clear value propositions, the justification to 
expand the regulatory boundaries of our gene tech-
nology toolkits into SB and beyond will be challenged. 
In the future, assessment of risk should be based on both 
the extent of the modification, with higher regulatory 
hurdles reserved for the insertion of synthetic and 
transgenic DNA, and the risk profile of the introduced 
modification. As standardised SB parts become more 
prevalent, as understanding of plant metabolism im-
proves, and with the cost of ‘omic technologies to 
monitor changes continuing to decline, it is hoped that 
the better predictability of these engineering approaches 
will reduce the cost and time to market new crops. This 
in turn will enable a wider range of companies to utilise 
the technology and engage the SB sector. 

The encouraging progress of SB in plant-derived nutri-
tion is evidence for the need to expand this science into 
areas other than those highlighted here. Other emerging 
use cases in plants include the production of pharma-
ceutical products, robust materials, and energy-dense 
biofuels [54]. With a snowballing global population and 

depleting natural resources, applications like these will 
become increasingly vital. Plant SB is still in its infancy 
and will not be the magic bullet to meet all such needs, 
but its promise to provide renewable and sustainable 
alternatives is reason enough to watch on with ex-
citement. 
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