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Abstract

In this work we develop a framework to detect structural variants (SVs)

in the genomes of related individuals. In particular, we consider low-coverage

regimes that are more inexpensive than in high-coverage settings but are more

susceptible to sequencing errors. To improve our ability to accurately predict

SVs, we incorporate statistical models with familial relationship constraints

and sparsity promoting penalties. We use simulated data to run experiments.

Previous detection methods have used Poisson statistical models. The main

contribution of this thesis is the use of the more general negative binomial dis-

tribution model in one-parent/one-child and two-parent/one-child frameworks.

We extend the existing SPIRAL algorithm, which uses a Poisson log-likelihood

objective function, and implement a negative binomial log-likelihood objective

function. The genomes tested are haploid, meaning there is only one copy of

each chromosome.
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Chapter 1

Introduction

1.1 Structural Variation in the Genome

The human genome is the complete DNA sequence which is formed by linear se-
quences of the amino acids A,C,G, or T. In multicellular organisms, each cell contains
a complete and nearly identical copy of an organism’s genome. When cells duplicate
each cell will have its own copy, however there is the potential for genomic variations
to occur during the process of mutation. Genomic variations can occur but lead to
potential problems such as susceptibility to getting cancer or other types of diseases
or conditions [1, 14–16]. A challenging scientific problem would be the detection of
these structural variants.

Detection methods come from sequencing DNA through fragmentation. We con-
sider a high-quality reference genome which is considered to be ground truth. We
then observe an unknown genome, fragment the genome, and then the ends of the
fragments are sequenced. Once the ends are sequenced, they are aligned with the ref-
erence genome and compared [2,17]. There are two types of schemes to consider when
going through this fragmentation process: high coverage and low coverage. Cover-
age describes the number of times the fragments are sequenced. In a high coverage
setup, we have sequenced the fragments many times and this is associated with more
accuracy. In a low coverage setup we have not sequenced the fragments very much.
While high coverage produces results with little error, it is very expensive. In this
work we consider a low coverage scheme; while the data is noisier, it is cheaper. We
consider a low coverage regime from related individuals in this work.

Previous methods for detecting structural variants (SVs) have used relatedness
through parents and a child. The SVs in the child come in two forms either inherited
(meaning the variant is also present in the parent’s genome) or novel (a variant
that is unique to the child’s genome). Poisson statiscal models have been used in
the detection of both novel and inherited SVs [18]. Negative binomial statistical
methods have been used to detect inherited SVs in previous work [8]. Relatedness
has been incorporated in one-parent/one-child frameworks and two-parent/one-child-
frameworks. For the one-parent/one-child framework Poisson statistical models have
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been used to detect both inherited and novel variants. We test our methods on
simulated data that is (i) data drawn from a negative binomial distribution and (ii)
data drawn from a Poisson distribution. For the two-parent/one-child framework the
Poisson statistical models and the negative binomial statistical models have been used
to detect inherited variants.

In this thesis, we build upon previous methods by using relatedness to detect
novel structural variants in both a one-parent/one-child and two-parent/one-child
framework using negative binomial optimization.

2



Chapter 2

Structural Variant Detection in a

One-Parent/One Child Model

Previous methods for detecting novel structural variants have utilized Poisson dis-
tributed data for detection methods. While the Poisson model yields good results on
simulated data, this is not always the case for human genetic data. We propose a
method which utilizes the more general negative binomial statistical model to detect
novel variants. Our reasoning for this proposal is the Poisson distribution is a spe-
cial case of the more general negative binomial distribution for which the mean and
variance are the same.

We consider relatedness in our problem by observing a one-parent/one-child scheme
for detection. For simplicity, we use haploid genomes (only one copy of each chro-
mosome). We define ~f = [~fi; ~fn; ~fp] 2 {0, 1}3m as the true signal. When observing
the jth location if there is a 0 this indicates no SV is present and if there is a 1 this
indicates a SV is present in the location. Therefore, ~fp 2 {0, 1}m represents the true

signal of the parent and ~fc 2 {0, 1}m represents the true signal of the child. However,
we split up the child’s signal into a vector of inherited variants and novel variants,
~fi, ~fn 2 {0, 1}m respectively. So, ~fc = ~fi + ~fn [3, 4, 6].

2.1 Problem Formulation

We now present a general framework for predicting structural variants (SVs)
within sequencing data from one parent (p) and one child (c). For simplicity, we
consider both individuals to be haploid.

Statistical model. Let the vectors ~yp and ~yc correspond to the parent and child
observed measurements, respectively, and be given by

~yp ⇠ NegBin(~µp,~�
2
p),

~yc ⇠ NegBin(~µc,~�
2
c ),
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where the mean µi and variance �2
i , with i 2 {p, c}, of depth of coverage are deter-

mined by the sequencing data of each respective individual. Consider the stacked
parent-child signal ~y = [ ~yp ; ~yc ] and corresponding mean and variance vectors, ~µ
and ~�2, where the notation ~�2 is to be understood component-wise. Specifically, we
have the following expressions for the components of ~µ and ~�2:

(µ)j = (A~f ⇤)j and (�)2j = (A~f ⇤)j +
1

r
(A~f ⇤)2j ,

where A 2 R2m⇥3m is the coverage matrix given by

A =


(�p � ✏)Im 0 0

0 (�c � ✏)Im (�c � ✏)Im

�
,

where Im 2 Rm⇥m is the m⇥m identity matrix, �p and �c are the sequencing coverage
of the parent and child, respectively, and ✏ > 0 is the measurement error corresponding
to the sequencing processing. Further, A is a mapping that linearly projects the true
signal ~f ⇤ onto the set of observations, and r is the dispersion parameter of the negative
binomial distribution. Under this model, the probability of observing ~y is given by
the following expression:

p(~y) =
2mY

j=1

✓
yj +

µ2
j

�2
j�µj

� 1

yj

◆✓
µj

�2
j

◆ µ2j

�2
j�µj

✓
1� µj

�2
j

◆yj

. (2.1)

To avoid using the gamma function, we assume that r 2 Z+. In addition, we know
�2
j = µj +

1
rµ

2
j , where �

2
j is maximized when r = 1. Ignoring constant terms, the

negative log-likelihood term, F (µ, �2), is given by

F (µ) ⌘
2mX

j=1

(yj + 1) log (1 + µj)� yj log (µj) .

However, knowing that the mean µj = eTi Af and adding the small parameter "
to represent sequencing or mapping error, we arrive at our negative log-likelihood
objective function:

F (f) ⌘
2mX

j=1

(yj + 1) log
�
1 + eTi Af + "

�
� yj log

�
eTi Af + "

�
,

where ei is the ith column of the n ⇥ n identity matrix. In previous work, it was
assumed that a child will have an SV at a certain location only if the parent also
has the SV at the same location [18]. In this work, although we assume that the
variants in the child primarily come from the parent (which we call inherited SVs),
the child may also have variants not present in the parent (which we call novel SVs).
To account for these two types of SVs, we decompose the SV signal for the child as
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0 0 0 00 1 0 0 0 1 0 0

0 0 0 00 1 0 0 0 0 0 0

1 0 0 00 0 0 0 0 0 0 0

=

+

�fp=

=

=

=

�fc

�fi

�fn

Figure 2.1: The parent SV signal ~fp and the child SV signal ~fc. The vector of child

SVs inherited from the parent is denoted by ~fi, and the vector of novel SVs is denoted
by ~fn. Note that ~fc = ~fi + ~fn.

~f ⇤
c = ~f ⇤

i + ~f ⇤
n, where ~f ⇤

i 2 {0, 1}m is the vector of SVs that are inherited from the

parent and ~f ⇤
n 2 {0, 1}m is the vector of SVs that are novel [18]. In particular, the

vector ~f ⇤
i has either a 1 at position j if an SV is inherited from the parent at position

j or a 0 otherwise. Similarly, the vector ~f ⇤
n has a 1 if there is an SV at position j that

is not inherited from the parent and 0 otherwise. (For an illustration, see Fig. 2.1.)
Note that for every location, ~fi and ~fn cannot be both 1 simulatenously since an SV
cannot be both inherited and novel.

Familial constraints. In this work, we use gradient-based optimization methods to
minimize F (f). As such, we allow f to take on real values instead of being binary
valued. Thus,

0  ~fc, ~fp  1

In addition, we formulate the biological constraints on the SV signals mathematically
and incorporate them within the optimization problem [18].

Since ~fi and ~fn cannot be both 1 simulatenously at each location, the following
must hold:

0  ~fi + ~fn  1,

where the inequalities are to be understood component-wise. Furthermore, an inher-
ited SV must come from the parent. Therefore, if (~fp)j = 0, then (~fi)j = 0. Similarly,

if (~fi)j = 1, then (~fp)j = 1. In other words, ~fp and ~fi must satisfy

0  ~fi  ~fp  1.

Moreover, if there is an SV in the parent at location j, then the child cannot have
a novel SV at that location. Similarly, if there is a novel SV present in the child at
location j, that SV cannot be present in the parent, i.e.,

0  ~fn  1� ~fp.
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Finally, since ~f should take on the values of either 0 or 1, we require that 0  ~f  1.
Combining all of these constraints, we define the set of all vectors satisfying these

constraints by S, given by

S =

8
>>>><

>>>>:

2

64
~fp
~fi
~fn

3

752R3m:

0  ~fi + ~fn  1,

0  ~fi  ~fp  1,

0  ~fn  1� ~fp,

0  ~fp, ~fi, ~fn  1

9
>>>>=

>>>>;

.

Parsimonious solutions. Genomes within the same species are highly similar.
Therefore, structural variants are very rare. We incorporate this biological phe-
nomenon in our mathematical model by imposing an `1-norm penalty term in our
problem formulation, which is a common technique found in statistical literature to
promote sparsity in the solution [11, 12, 21]. We further assume that novel SVs are
even rarer. Thus, we associate a di↵erent (larger) regularization parameter with the
novel SVs. Mathematically, we express this penalty term as

pen(~f) = (k~fpk1+k~fik1) + �k~fnk1,

where � � 1 is a penalty parameter that places greater weight on ~fn to promote
further sparsity.

Optimization approach. Assuming that these SVs are rare, we express the SV
prediction problem as the following sparse signal constrained optimization problem:

minimize
~f2R3m

 (~f) ⌘ F (~f) + ⌧pen(~f)

subject to ~f 2 S,
(2.2)

where ~f = [~fp; ~fi; ~fn] and ⌧ > 0 is a regularization parameter that balances the data-
fidelity F (f) term with the sparsity-promoting penalty term. We solve (3.2) using
the Sparse Poisson Intensity Reconstruction ALgorithm (SPIRAL) framework [13] by
minimizing a sequence of quadratic models to the function F (~f). First we first define
the second-order Taylor series approximation F k(f) to F (f) at the current iterate ~fk:

F k(~f) = F (~fk) + (~f � ~fk)>rF (~fk) + 1
2(
~f � ~fk)>r2F (~fk)(~f � ~fk) (2.3)

The gradient of F (~f) is given by

rF (f) =
2mX

j=1

yj + 1

1 + eTj Af + "
AT ej �

yj
eTj Af + "

AT ej, (2.4)
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To simplify our quadratic model, we approximate the second-derivative Hessian
matrix with a scalar multiple of the identity matrix ↵kI, where ↵k > 0 (see [9,10] for
details). We define the quadratic model

eF k(~f) ⌘ F (~fk) + (~f � ~fk)TrF (~fk) +
↵k

2
||~f � ~fk||22. (2.5)

Now, each quadratic subproblem will be of the form

~fk+1 = arg min
~f2R3m

F k(~f) + ⌧pen(~f)

subject to ~f 2 S.

This constrained quadratic subproblem is equivalent to the following subproblem:

~fk+1 = arg min
~f2R3m

Q(~f) =
1

2
k~f � ~s kk22+

⌧

↵k
pen(~f)

subject to ~f 2 S,
(2.6)

where

~s k =

2

64
~s k
p

~s k
i

~s k
n

3

75 = ~fk � 1

↵k
rF (~fk)

(see [13] for details). Note that Q(~f) separates into the sum

Q(~f) =
mX

j=1

Qj((~fp)j, (~fi)j, (~fn)j),

where Qj:R3 ! R and

Qj((~fp)j, (~fi)j, (~fn)j)

=
1

2

⇢
((~fi � ~s k

i )j)
2 + ((~fn � ~s k

n )j)
2 + ((~fp � ~s k

p )j)
2

�
+

⌧

↵k

⇢
|(~fp)j|+|(~fi)j|+�|(~fn)j|

�
.

(2.7)
Note that the bounds for S are component-wise. Therefore, (3.6) separates into
subproblems of the form

minimize
fp,fi,fn2R

1

2
(fp � sp)

2 +
1

2
(fi � si)

2 +
1

2
(fn � sn)

2 +
⌧

↵k
|fp|+

⌧

↵k
|fi|+

�⌧

↵k
|fn|

subject to 0  fi + fn  1, 0  fi  fp  1,

0  fn  1� fp, 0  fi, fn, fp  1,
(2.8)

where {fp, fi, fn} and {sp, si, sn} are scalar components of the vectors {~fp, ~fi, ~fn} and
{~sp,~si,~sn}, respectively, at the same location. The constrained optimization problem
(3.6) can be solved analytically by compling the square in the ojbective function and
orthogonally projecting onto the feasible set (see [20] for details).
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2.2 Numerical Experiments

We implemented our method for variant detection using NEgative Binomial Op-
timization Using `1 Penalty Algorithms (NEBULA), which is the extension upon the
previously written SPIRAL algorithm that based in the negative binomial distribu-
tion [18]. We analyzed the results on simulated data and compared the results to
the Poisson based SPIRAL method. Similar to previously published methods, we
observed the variant predictions in a one-parent/one-child model [5,18]. Our method
contained a sparsity promoting regularization parameter⌧ . This method has a sec-
ond regularization parameter, �, which is chosen to promote more sparsity within
the novel variants, fn. In every case, the SPIRAL algorithm was run with the ter-
minating criteria, if the relative di↵erence between consecutive iterates converged to
||~fk+1 � ~fk||2/||~fk||2 10�8.

Simulated Data. Similar to previous approaches, the model was developed in the
form of a one-parent and one-child with a haploid genome assumption. Before ap-
plying it to real human data, with diploid genomes that violate our assumptions, we
studied the performance on data we simulated that matches our assumptions. We
simulated the true signal for the parent and child by creating the vector, ~f of size 106

and selecting 500 locations to be true variants for the parent and child. We control
the number of novel SVs in the child by by first selecting 500 locations at random to
be the true SVs in the parent. We construct the child signal by randomly selecting
b500pc (where p is the percentage of novel variants), of the parent variants to be
inherited and then choosing (500� b500pc) locations of the remaining (106 � 500)
locations to be novel [13].

AUC using NEBULA for child with 2% Novel Variants
⌧/� 2 10 20 50 100 200 500

0.01 0.904 0.905 0.905 0.905 0.905 0.905 0.905

0.1 0.905 0.905 0.905 0.905 0.905 0.905 0.905

1 0.905 0.905 0.905 0.905 0.905 0.571 0.571
10 0.891 0.795 0.795 0.905 0.905 0.905 0.905

100 0.894 0.894 0.894 0.894 0.894 0.894 0.894
1000 0.520 0.520 0.520 0.520 0.520 0.520 0.520

Table 2.1: The areas under the curve (AUCs) for the child with 2% novel variants
using the NEBULA algorithm. The reconstruction is based on data drawn from a
negative binomial distriubtion. The values along each column are �, while the values
along each row are ⌧ . The highest AUC is in boldface. We notice a robustness in the
values of ⌧ and � which achieve the highest AUC.
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AUC using SPIRAL for child with 2% Novel Variants
⌧/� 2 10 20 50 100 200 500

0.01 0.826 0.905 0.905 0.905 0.905 0.905 0.905

0.1 0.905 0.905 0.905 0.905 0.905 0.905 0.905

1 0.905 0.905 0.905 0.905 0.905 0.523 0.523
10 0.891 0.905 0.795 0.905 0.905 0.905 0.905

100 0.894 0.894 0.894 0.894 0.894 0.894 0.894
1000 0.520 0.520 0.520 0.520 0.520 0.520 0.520

Table 2.2: The AUCs for the child with 2% novel variants using the SPIRAL algo-
rithm. The reconstruction is based on data drawn from a negative binomial distri-
bution. We notice a less robustness, when compared to the NEBULA table, of the
highest AUC.

AUC using NEBULA for child with 2% Novel Variants
⌧/� 2 10 20 50 100 200 500

0.01 0.993 0.993 0.993 0.993 0.993 0.993 0.993

0.1 0.993 0.993 0.993 0.993 0.993 0.993 0.993

1 0.993 0.993 0.993 0.993 0.993 0.541 0.541
10 0.990 0.954 0.940 0.993 0.993 0.993 0.993

100 0.991 0.991 0.991 0.991 0.991 0.991 0.991
1000 0.500 0.500 0.500 0.500 0.500 0.500 0.500

Table 2.3: The areas under the curve (AUCs) for the child with 2% novel variants
using the NEBULA algorithm. The reconstruction is based on data drawn from a
Poisson distriubtion. The values along each column are �, while the values along each
row are ⌧ . The highest AUC is in boldface. We notice a robustness in the values of
⌧ and � which achieve the highest AUC.
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AUC using SPIRAL for child with 2% Novel Variants
⌧/� 2 10 20 50 100 200 500

0.01 0.993 0.993 0.993 0.993 0.993 0.993 0.993

0.1 0.993 0.993 0.993 0.993 0.993 0.993 0.993

1 0.993 0.985 0.993 0.993 0.993 0.500 0.500
10 0.990 0.993 0.954 0.993 0.993 0.993 0.993

100 0.991 0.991 0.991 0.991 0.991 0.991 0.991
1000 0.500 0.500 0.500 0.500 0.500 0.500 0.500

Table 2.4: The areas under the curve (AUCs) for the child with 2% novel variants
using the SPIRAL algorithm. The reconstruction is based on data drawn from a
Poisson distriubtion. The values along each column are �, while the values along
each row are ⌧ . The highest AUC is in boldface. We notice a robustness in the values
of ⌧ and � which achieve the highest AUC.

2.3 Analysis

We compared the performance of both NEBULA and SPIRAL when reconstruct-
ing data drawn from a negative binomial distribution and reconstructing data drawn
from a Poisson distribution. We observed data with 2%, 5%, and 20% novel vari-
ants and we varied values of ⌧ and �. We examine the area under the curve (AUC)
given the percentage of novel variants, ⌧ , and � to observe how percentage of variants
impacts the AUC and how the values of regularization parameters a↵ects the value
of the AUC. After finding the AUC, we note the highest AUC within the set of a
fixed percentage of novel variants. We also observed the change in the value of the
highest AUC as the percentage of novel variants increases. When finding reconstruc-
tions we considered the reconstruction of both the parent and child together and the
reconstructions of each individual. We found the following in our experiments:

• When observing data drawn from a negative binomial distribution and data
drawn from a Poisson distribution, we found NEBULA yields an AUC that is
greater than or equal to SPIRAL.

• For each data set NEBULA results in an area under the curve that is greater
than or equal to SPIRAL. For example, see Figures 2.2 and 2.3 for reconstruc-
tions with 5% novel variants..

• For the parent signal, we were able to find higher accuracy in the reconstruction
compared to the child from both algorithms.

• For the child reconstruction, we found many cases where both NEBULA and
SPIRAL yield the same AUC. However there were some occurences of NEBULA
having a higher AUC than SPIRAL, although the di↵erence was not significant.
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• For data drawn from a Poisson distribution both algorithms tended to yield
higher AUCs compared to data drawn from a negative binomial distribution.

• For both types of data we found the algorithms yield higher AUCs for lower
percentages of novel variants. When reconstructing data sets with 2% novel
variants we observed higher AUCs compared to data sets which have 20% novel
variants.

• We found a robust interval of ⌧ and � for the NEBULA algorithm for which
the highest AUC was achieved when compared to SPIRAL. (refer to Appendix
A for all results)

In a few cases we found that the AUC was di↵erent between both methods. Notice
in Table 2.1, the block of boldface AUCs which represent the highest AUCs for that
percentage and individual. When compared to Table 2.2, we see slightly more vari-
ance of AUCs and less robust intervals. We observed this mostly in cases where the
percentage of novel variants was small (< 10%).
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(a) Parent and Child ROC (b) Parent ROC

(c) Child ROC

Figure 2.2: ROC curves illustrating the true positive rate vs. false positive rate in
the 5% novel variant case where ⌧ = 0.1 and � = 50 where reconstructions are based
on data drawn from a negative binomial distribution. (a) The reconstruction of the
parent and child where for NEBULA the AUC is 0.9399 and for SPIRAL the AUC is
0.9297. (b) The reconstruction of the parent where for NEBULA the AUC is 0.9745
and for SPIRAL the AUC is 0.9649. (c) The reconstruction of the child where for
NEBULA the AUC is 0.9058 and for SPIRAL the AUC is 0.8947.
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(a) Parent and Child ROC (b) Parent ROC

(c) Child ROC

Figure 2.3: ROC curves illustrating the true positive rate vs. false positive rate in
the 5% novel variant case where ⌧ = 0.1 and � = 50 where reconstructions are based
on data drawn from a Poisson distribution. (a) The reconstruction of the parent and
child where for NEBULA the AUC is 0.9902 and for SPIRAL the AUC is 0.9784.
(b) The reconstruction of the parent where for NEBULA the AUC is 0.9968 and for
SPIRAL the AUC is 0.9901. (c) The reconstruction of the child where for NEBULA
the AUC is 0.9838 and for SPIRAL the AUC is 0.9670.

2.4 Conclusions

We propose the method, NEgative Binomial Optimization Using `1 Penalty Al-
gorithms (NEBULA), which builds on the previously developed SPIRAL method,
which reconstructs signals arising from data drawn from a negative binomial distri-
bution rather than data drawn from a Poisson distribution. This method detects
both inherited and novel variants within the child. Both relatedness and sparsity are
incorporated into our method. We observed in many numerical experiments instances
where NEBULA yields areas under the curve (AUC) that are greather than or equal
to those for the existing SPIRAL method. We observed higher reconstruction ac-
curacy for NEBULA in the parent compared to SPIRAL. For child reconstructions
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we found both algorithms generally perform at the same accuracy. We found a ro-
bustness of best results (highest AUC) by considering various factors, including the
percent of novel structural variants, penalty parameters ⌧ and �, and the comparison
of NEBULA versus SPIRAL.
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Chapter 3

Structural Variant Detection in a

Two-Parent/One-Child Model

In Chapter 2, we presented an approach for detecting novel structural variants
in a one-parent/one-child familial structure using negative binomial optimization. In
this chapter, we build upon that setup by now considering a two-parent/one-child
familial structure. We utilize the same setup as in Chapter 2, but now incorporate a
second parent. As before, we are considering haploid genomes.

3.1 Problem Formulation

We now present a general framework for predicting structural variants (SVs)
within sequencing data from two parents (p1 and p2) and one child (c). For sim-
plicity, we consider both individuals to be haploid.

Statistical model. We extend upon ideas in Chapter 2 where the true signal ~f ⇤ 2
{0, 1}4m for an individual be a binary-valued vector that indicates the presence of
a genetic variant, with ~f ⇤

j = 1 if a variant is present at location j and 0 otherwise
[3, 4, 6]. Furthermore, let the vectors ~yp1 , ~yp2 and ~yc correspond to the parent and
child observed measurements, respectively, and be given by

~yp1 ⇠ NegBin(~µp1 ,~�
2
p1),

~yp2 ⇠ NegBin(~µp2 ,~�
2
p2),

~yc ⇠ NegBin(~µc,~�
2
c ),

where the mean µi and variance �2
i , with i 2 {p1, p2, c}, of depth of coverage are de-

termined by the sequencing data of each respective individual. Consider the stacked
parent-child signal ~y = [ ~yp1 ; ~yp2 ; ~yc ] 2 R3m and corresponding mean and vari-
ance vectors, ~µ and ~�2, where the notation ~�2 is to be understood component-wise.
Specifically, we have the following expressions for the components of ~µ and ~�2:

(µ)j = (A~f ⇤)j and (�)2j = (A~f ⇤)j +
1

r
(A~f ⇤)2j ,
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where A 2 R3m⇥4m is the coverage matrix given by

A =

2

4
(�p1 � ✏)Im 0 0 0

0 (�p2 � ✏)Im 0 0
0 0 (�c � ✏)Im (�c � ✏)Im

3

5 ,

where Im 2 Rm⇥m is the m⇥m identity matrix, �p1 , �p2 , and �c are the sequencing
coverages of the parents and child, respectively, and ✏ > 0 is the measurement error
corresponding to the sequencing processing. Similar to Chapter 2, A is a mapping
which linearly projects the true signal ~f ⇤ onto the set of observations, and r is the
dispersion parameter of the negative binomial distribution. We present the probability
distribution and objective function again for clarity. In contrast to Chapter 2, where
~f 2 R3m and ~y 2 R2m, now we have ~f 2 R4m and ~y 2 R3m. Under this model, the
probability of observing ~y is given by the following expression:

p(~y) =
3mY

j=1

✓
yj +

µ2
j

�2
j�µj

� 1

yj

◆✓
µj

�2
j

◆ µ2j

�2
j�µj

✓
1� µj

�2
j

◆yj

. (3.1)

To avoid using the gamma function, we assume that r 2 Z+. In addition, we know
�2
j = µj +

1
rµ

2
j , where �

2
j is maximized when r = 1. Ignoring constant terms, the

negative log-likelihood term, F (µ, �2), becomes

F (µ) ⌘
3mX

j=1

(yj + 1) log (1 + µj)� yj log (µj) .

However, knowing that the mean µj = eTi Af and adding the small parameter "
to represent sequencing or mapping error, we arrive at our negative log-likelihood
objective function:

F (f) ⌘
3mX

j=1

(yj + 1) log
�
1 + eTi Af + "

�
� yj log

�
eTi Af + "

�
,

where ei is the ith column of the n ⇥ n identity matrix. In the previous chapter, we
assumed the variants in the child primarily come from the parent (which we called
inherited SVs), the child may also have variants not present in the parent (which we
called novel SVs) [18]. In this chapter, we extend upon those assumptions by assuming
variants come primarily from the parents and there are some novel variants in the
child. As before, we decompose the SV signal for the child as ~f ⇤

c = ~f ⇤
i + ~f ⇤

n, where
~f ⇤
i 2 {0, 1}m is the vector of SVs that are inherited from the parent and ~f ⇤

n 2 {0, 1}m
is the vector of SVs that are novel [18]. In particular, the vector ~f ⇤

i has either a 1
at position j if an SV is inherited from the parent at position j or a 0 otherwise.
Similarly, the vector ~f ⇤

n has a 1 if there is an SV at position j that is not inherited
from the parent and 0 otherwise. (For an illustration, see Fig. 3.1.) Note that for
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Figure 3.1: The SV signals of both parents ~fp1 and ~fp2 and the child SV signal ~fc.

Similar to before, the vector of SVs inherited from the parents is denoted by ~fi and
the vector of novel SVs is dentoted by ~fn. Note that if a SV is present in the same
location in both parents it will be inherited and notice ~fc = ~fi + ~fn.

every location, ~fi and ~fn cannot be both 1 simulatenously since an SV cannot be both
inherited and novel.

Familial constraints. We use same gradient-based optimization methods to mini-
mize F (f). As such, we allow f to take on real values instead of being binary valued.
In addition, we formulate the biological constraints on the SV signals mathematically
and incorporate them within the optimization problem [7,18].

Similar to Chapter 2, ~fi and ~fn cannot be both 1 simulatenously at each location,
the following must hold:

0  ~fi + ~fn  1,

where the inequalities are to be understood component-wise. Furthermore, an in-
herited SV must come from the parent. In other words, a variant is either novel or
inherited, but cannot be both.

Now that we are considering a two-parent/one-child framework, the constraint on
~fn and ~fp is extended to accomodate for two parents. Since novel variants cannot be
inherited by either parent, the following must be true.

0  ~fn  1� ~fp1 and 0  ~fn  1� ~fp2

Moreover, if both parents have a variant in the same location, the child will inherit
this variant. Similarly, if the neither parent has a variant present, the child will not
have an inherited variant. Which means, the following must be true.

~fp1 + ~fp2 � 1  ~fi  ~fp1 + ~fp2
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Finally, since ~f should take on the values of either 0 or 1, we require that 0  ~f  1
[19].

Combining all of these constraints, we define the set of all vectors satisfying these
constraints by S, given by

S =

8
>>>>>>><

>>>>>>>:

2

6664

~fp1
~fp2
~fi
~fn

3

7775
2R4m:

0  ~fi + ~fn  1,

0  ~fn  1� ~fp1 ,

0  ~fn  1� ~fp2 ,

~fp1 + ~fp2  ~fi  ~fp1 + ~fp2 � 1,

0  ~fp1 , ~fp2 , ~fi, ~fn  1

9
>>>>>>>=

>>>>>>>;

.

Parsimonious solutions. We keep the same assumptions about rarity from Chapter
2, however we extend our penalty function to accommodate the two-parent/one-child
setup. [11, 12, 21]. We express this penalty term as

pen(~f) = (k~fp1k1+k~fp2k1+k~fik1) + �k~fnk1,

where � � 1 is a penalty parameter that places greater weight on ~fn to promote
further sparsity.

Optimization approach. Assuming that these SVs are rare, we express the SV
prediction problem as the following sparse signal constrained optimization problem:

minimize
~f2R3n

 (~f) ⌘ F (~f) + ⌧pen(~f)

subject to ~f 2 S,
(3.2)

where ~f = [~fi; ~fn ~fp1 ; ~fp2 ; ] and ⌧ > 0 is a regularization parameter that balances the
data-fidelity F (f) term with the sparsity-promoting penalty term. We solve (3.2)
using the Sparse Poisson Intensity Reconstruction ALgorithm (SPIRAL) framework
[13] by minimizing a sequence of quadratic models to the function F (~f). First we
first define the second-order Taylor series approximation F k(f) to F (f) at the current
iterate ~fk:

F k(~f) = F (~fk) + (~f � ~fk)>rF (~fk) + 1
2(
~f � ~fk)>r2F (~fk)(~f � ~fk). (3.3)

The gradient of F (~f) is given by

rF (f) =
3mX

j=1

yj + 1

1 + eTj Af + "
AT ej �

yj
eTj Af + "

AT ej, (3.4)

As before, we simplify our quadratic model, we approximate the second-derivative
Hessian matrix with a scalar multiple of the identity matrix ↵kI, where ↵k > 0 [9,10].
We define the quadratic model

eF k(~f) ⌘ F (~fk) + (~f � ~fk)TrF (~fk) +
↵k

2
||~f � ~fk||22. (3.5)
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Now, each quadratic subproblem will be of the form

~fk+1 = arg min
~f2R4m

F k(~f) + ⌧pen(~f)

subject to ~f 2 S.

This constrained quadratic subproblem is equivalent to the following subproblem:

~fk+1 = arg min
~f2R3m

Q(~f) =
1

2
k~f � ~s kk22+

⌧

↵k
pen(~f)

subject to ~f 2 S,
(3.6)

where

~s k =

2

6664

~s k
p1

~s k
p2

~s k
i

~s k
n

3

7775
= ~fk � 1

↵k
rF (~fk)

(see [13] for details). Note that Q(~f) separates into the sum

Q(~f) =
mX

j=1

Qj((~fp1)j, (~fp2)j, (~fi)j, (~fn)j),

where Qj:R4 ! R and

Qj((~fp1)j, (~fp2)j, (~fi)j, (~fn)j)

=
1

2

⇢
((~fi�~s k

i )j)
2+((~fn�~s k

n )j)
2+((~fp1�~s k

p1)j)
2+((~fp2�~s k

p2)j)
2

�

+
⌧

↵k

⇢
|(~fp1)j|+|(~fp2)j|+|(~fi)j|+�|(~fn)j|

�
.

Note that the bounds for S are component-wise. Therefore, (3.6) separates into
subproblems of the form

minimize
fp1 ,fp2 ,fi,fn2R

1

2
(fp1 � sp1)

2 +
1

2
(fp2 � sp2)

2 +
1

2
(fi � si)

2 +
1

2
(fn � sn)

2

+
⌧

↵k
|fp1 |+

⌧

↵k
|fp2 |+

⌧

↵k
|fi|+

�⌧

↵k
|fn|

subject to 0  fi + fn  1, 0  fn  1� fp1 ,

0  fn  1� fp2 , fp1 + fp2  fi  fp1 + fp2 � 1,

0  fp1 , fp2 , fi, fn  1

(3.7)

where {fp1 , fp2 , fi, fn} and {sp1 , sp2 , si, sn} are scalar components of the vectors {~fp1 ,
~fp2 , ~fi, ~fn} and {~sp1 ,~sp2 ,~si,~sn}, respectively, at the same location. The constrained
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optimization problem (3.6) can be solved analytically by completing the square in
the objective function and orthogonally projecting onto the feasible set (see [20] for
details).

Similar to previously done methods, we use an alternating block-coordinate de-
scent approach to solve (3.7) which alternates between child and parent variables [19].
We start by fixing the parent signals fp1 and fp2 , and solve the resulting minimization
problem for the child signal, fi and fn. Next, we fix the child signal and minimize
over the parent variables. We continue this method until the subsequent iterates falls
below a specified threshold. The steps are as follows.

Step 0: Initially, we fix the values for the parent variables by setting f (0)
p1 = f (0)

p2 =
0.5 for each candidate SV location.

Step 1: Suppose we have obtained ~fp1
(j�1)

and ~fp2
(j�1)

from the previous iteration.

The child variables ~fi
(j)

and ~fn
(j)

are obtained by solving the following:

minimize
fi,fn2R

1

2
(fi � ci)

2 +
1

2
(fn � cn)

2

subject to 0  fi + fn  1,

0  fn  min
⇣
1� ~fp1

(j�1)
, 1� ~fp2

(j�1)
⌘
,

max
⇣
0, ~fp1

(j�1)
+ ~fp2

(j�1)
� 1

⌘
 fi  min

⇣
1, ~fp1

(j�1)
+ ~fp2

(j�1)
⌘
,

where ci = si � ⌧
↵j

and cn = sn � �⌧
↵j
.

Step 2: Suppose we have obtained ~fi
(j)

and ~fn
(j)

from the previous step. We

obtain the solution for the current iteration ~fp1
(j)

and ~fp2
(j)

are obtained by solving
the following:

minimize
fp1 ,fp22R

1

2
(fp1 � cp1)

2 +
1

2
(fp2 � cp2)

2

subject to 0  fp1  min
⇣
1, 1� ~fn

(j)
⌘
,

0  fp2  min
⇣
1, 1� ~fn

(j)
⌘
,

fp1 + fp2 � 1  ~fi
(j)

 fp1 + fp2 ,

where cp1 = sp1 � ⌧
↵j

and cp2 = sp2 � ⌧
↵j
.

3.2 Numerical Experiments

We implemented our method for variant detection using the NEgative Binomial
Optimization Using `1 Penalty Algorithms (NEBULA), which is the SPIRAL algo-
rithm re-written with the negative binomial statistical method. [18]. We analyzed
the results on simulated data and compared the results to the SPIRAL method.
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Similar to previously published methods, we observed the variant predictions in a
two-parent/one-child model [5, 18]. Our method contained a sparsity promoting pa-
rameter ⌧ . This method has a second regularization parameter, �, which is chosen
to promote more sparsity within the novel variants, fn. In every case, the SPIRAL
algorithm was run with the terminating criteria, if the relative di↵erence between
consecutive iterates converged to ||~fk+1 � ~fk||2/||~fk||2 10�8.

Simulated Data. To build upon our previous approach our model was developed
in the form of a two-parent and one-child with a haploid genome assumption. Before
applying it to real human data, with diploid genomes which violate our assumptions,
we studied the performance on data we simulated that matches our assumptions. We
simulated the true signal for the parent and child by creating the vector, ~f of size 106

and selecting 500 locations to be true variants for the parent and child. We control
the number of novel SVs in the child by by first selecting 500 locations at random
to be the true SVs in the parent. For the child signal, we made the assumption that
if both parents have a SV at a particular location, the child does as well. However,
if only one parent has a SV at a particular location, the child has a 50% chance of
inherting that SV [7, 19]. The novel variants in the child are chosen randomly from
locations where the parents do not have a SV. We created our observed signals by
sampling from the negative binomial distribution based upon a given coverage and
error.

AUC using NEBULA for Child with 2% Novel Variants
⌧/� 2 10 15 20 50

0.01 0.8874 0.8874 0.8874 0.8874 0.8874

0.1 0.8874 0.8874 0.8874 0.8874 0.8878

1 0.8874 0.8877 0.8877 0.8877 0.6895
10 0.8876 0.6895 0.5926 0.5926 0.8874

Table 3.1: The areas under the curve (AUCs) for child with 2% novel variants. The
reconstruction is based on data drawn from a negative binomial distribution using
the NEBULA algorithm. The values along each column are �, while the values along
each row are ⌧ . The highest AUC is in boldface. We notice a robustness in the values
of ⌧ and � which achieve the highest AUC.
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AUC using SPIRAL for Child with 2% Novel Variants
⌧/� 2 10 15 20 50

0.01 0.8874 0.8874 0.8874 0.8874 0.8874

0.1 0.8874 0.8874 0.8874 0.8874 0.8874

1 0.8874 0.8874 0.8873 0.8874 0.8874

10 0.8874 0.7595 0.7807 0.6676 0.8874

Table 3.2: The AUCs for the child with 2% novel variants. The reconstruction is based
on data drawn from a negative binomial distribution using the SPIRAL algorithm.
The values along each column are �, while the values along each row are ⌧ . The highest
AUC is in boldface. We notice a robustness in the values of ⌧ and � which achieve
the highest AUC, however these results are not the best in terms of reconstruction
accuracy.

AUC using NEBULA for Child with 2% Novel Variants
⌧/� 2 10 15 20 50

0.01 0.9909 0.9909 0.9909 0.9909 0.9909

0.1 0.9909 0.9909 0.9909 0.9909 0.9906
1 0.9909 0.9912 0.9911 0.9910 0.9910

10 0.9709 0.9909 0.8071 0.8071 0.9909

Table 3.3: The AUCs for the child with 2% novel variants. The reconstruction is
based on data drawn from a Poisson distribution using the NEBULA algorithm. The
values along each column are �, while the values along each row are ⌧ . The highest
AUC is in boldface. We notice a robustness in the values of ⌧ and � which achieve
the highest AUC.

AUC using SPIRAL for Child with 2% Novel Variants
⌧/� 2 10 15 20 50

0.01 0.9909 0.9909 0.9909 0.9909 0.9909

0.1 0.9909 0.9909 0.9909 0.9909 0.9909

1 0.9909 0.9912 0.9911 0.9910 0.9910

10 0.9909 0.9586 0.9586 0.9909 0.9909

Table 3.4: The AUCs for the child with 2% novel variants. The reconstruction is
based on data drawn from a Poisson distribution using the SPIRAL algorithm. The
values along each column are �, while the values along each row are ⌧ . The highest
AUC is in boldface. We notice a robustness in the values of ⌧ and � which achieve
the highest AUC, however in terms of reconstruction these are poor results.
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3.3 Analysis

We compared the performance of both NEBULA and SPIRAL when reconstruct-
ing negative binomial distributed data and Poisson distributed data. For consistency
to our Chapter 2 experiments, we observed 2%, 5%, and 20% percentages of novel
variants. We varied the values of ⌧ and �. When conducting experiments, we note
the highest AUC within the set of a fixed percentage of novel variants. We also ob-
served the change in the value of the highest AUC as the percentage of novel variants
increases. We considered reconstructions of all the individuals together and recon-
structions of each individual. We found the following results from our experiments:

• Compared to our work in the one-parent/one-child model, we noticed a sig-
nificant improvement with the AUCs for NEBULA over those for SPIRAL.
Specifically, for varying ⌧ and �, NEBULA achieved a higher AUC when com-
pared to SPIRAL as shown in Tables 3.1 -3.4 (for tables from all experiments
please refer to Appendix C and D).

• Both NEBULA and SPIRAL produced higher AUCs when the data are drawn
from a Poisson distribution than those drawn from a negative binomial distri-
bution.

• When considering the algorithms and the individuals we found both parents
will have relatively the same level of reconstruction accuracy (i.e,̇ Parent 1
and Parent 2 will have a similar value of the AUC given the method). The
AUC values for the parents found with NEBULA were higher than those from
SPIRAL. We note that the di↵erence in accuracy for the parents depends on
the amount of inherited SVs that come from either parent.

• We found that for the Parent 1 and Parent 2, the AUCs for NEBULA where
higher than those from the existing SPIRAL method.

• The AUCs for the child for both NEBULA and SPIRAL were approximately
the same in each experiment (when there are 2%, 5%, and 20% novel variants).
This finding is illustrated in Figure 3.2(d) and Figure 3.3(d).

• We noticed that as the percentage of novel variants increased, the highest AUC
given a percent novel decreased (i.e. 2% novel variants had a higher AUC than
20% novel variants).

• We note a robust interval of ⌧ and � for which the highest AUC was achieved
in a given set.

In summary, we observed results from NEBULA and SPIRAL which provide in-
formation about reconstruction accuracy between the two algorithms, di↵erences in
reconstruction accuracy depending on if data is drawn from a negative binomial dis-
tribution or a Poisson distribution, di↵erences in accuracy for the individuals, and
di↵erences in accuracy depending on the value of ⌧ and �.
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(a) Parent 1, Parent 2, and Child ROC (b) Parent 1 ROC

(c) Parent 2 ROC (d) Child ROC

Figure 3.2: ROC curves illustrating the true positive rate vs. false positive rate in the
5% novel variant case where ⌧ = 0.1 and � = 15 and reconstructions are based on data
drawn from a negative binomial distribution. (a) The reconstruction of the parents
and child where for NEBULA the AUC is 0.9236 and for SPIRAL the AUC is 0.8382.
(b) The reconstruction of Parent 1 where for NEBULA the AUC is 0.9341 and for
SPIRAL the AUC is 0.7993. (c) The reconstruction of Parent 2 where for NEBULA
the AUC is 0.9263 and for SPIRAL the AUC is 0.8037. (d) The reconstruction of the
child where for NEBULA the AUC is 0.9107 and for SPIRAL the AUC is the same.
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(a) Parent 1, Parent 2, and Child ROC (b) Parent 1 ROC

(c) Parent 2 ROC (d) Child ROC

Figure 3.3: ROC curves illustrating the true positive rate vs. false positive rate in
the 5% novel variant case where ⌧ = 0.1 and � = 15 and reconstructions are based
on data drawn from a Poisson distribution. (a) The reconstruction of the parents
and child where for NEBULA the AUC is 0.9886 and for SPIRAL the AUC is 0.9046.
(b) The reconstruction of Parent 1 where for NEBULA the AUC is 0.9904 and for
SPIRAL the AUC is 0.8708. (c) The reconstruction of Parent 2 where for NEBULA
the AUC is 0.9903 and for SPIRAL the AUC is 0.8571. (d) The reconstruction of the
child where for NEBULA the AUC is 0.9852 and for SPIRAL the AUC is 0.9848.
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3.4 Conclusions

We propose a method, NEBULA, which builds on the previously developed SPI-
RAL method, which reconstructs signals arising from data drawn from a negative
binomial distribution rather than data drawn from a Poisson distribution. We extend
NEBULA to reconstruct ~f 2 R4m. This method detects both inherited and novel
variants within the child. Both relatedness and sparsity are incorporated into our
method. We found a significant di↵erence in reconstruction accuracy, where NEB-
ULA yields a higher AUC than SPIRAL. In data drawn from a Poisson distribution
we observed higher AUCs than data drawn from a negative binomial distribution.
For each individual we found higher accuracy in the reconstructions of each parent
from NEBULA compared to SPIRAL. In the child reconstructions we observed the
same level of accuracy from both algorithms. We found a robustness of best results
(highest AUC) by considering various factors, including the percent of novel struc-
tural variants, penalty parameters ⌧ and �, and the comparison of NEBULA versus
SPIRAL.
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Chapter 4

Conclusions

The overall goal of this work was to extend upon a previous method for SV
detection which was based on the assumption that the observed data are drawn from
a Poisson distribution. Specifically, we proposed the NEgative Binomial Optimization
Using `1 Penalty Algorithms (NEBULA), which is based on the more general negative
binomial distribution model (for which the Poisson distribution is a special case). The
main components of the work are the following:

1. In Chapter 2, we formulated a framework for novel SV detection in a one-
parent/one-child setup using negative binomial optimization.

2. In Chapter 3, we extended upon ideas from Chapter 2 by now considering a
two-parent/one-child setup.

For both frameworks, we generated synthetic data which were drawn from nega-
tive binomial distribution. We note that in this thesis we are generating a haploid
genome, for which there is only one copy of each chromosome. Using the same data
sets, we compared results from the algorithms NEBULA and SPIRAL. While running
experiments, we varied the regularization parameters ⌧ and �. In Chapter 2 we had
many more test values for ⌧ and �, but after eliminating extreme values in Chapter
2 we tested similar values in Chapter 3. Our optimization problem in Chapter 2
is a three-dimensional problem for which we orthogonally project solutions onto the
feasible set formed by our constraints. In Chapter 3, we now have a four-dimensional
problem for which we use an alternating projection method to minimize the subprob-
lems. In both frameworks, we observe the highest AUC achieved given a specified
percentage of novel variants and a range of regularization parameters, ⌧ , and �.

For the one-parent/one-child setup, we found that NEBULA achieved a level of
accuracy which is generally greater than or equal to SPIRAL. For the di↵erent data
types we found that data drawn from a Poisson distribution yields higher AUCs than
data drawn from a negative binomial distribution. For the individuals we observed
higher reconstruction accuracy in the parents as opposed to the child from both
algorithms. Finally, we found a robust interval of ⌧ and � for which the highest AUC
was achieved with the NEBULA algorithm.
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For the two-parent/one-child framework, we observed better reconstruction re-
sults in the child comapred to the parents when considering the AUC. We observed
a significant di↵erence in reconstruction accuracy between NEBULA and SPIRAL,
where NEBULA yields a higher AUC. Similar to the one-parent/one-child framework,
we found data drawn from a Poisson distribution yields higher AUCs that data drawn
from a negative binomial distribution. When oberserving each individual we found
higher reconstruction accuracy for NEBULA in both parents, however NEBULA and
SPIRAL yield the same level of reconstruction accuracy for the child. Finally, we also
found a robust interval of ⌧ and � for which the highest AUC is observed in both
NEBULA and SPIRAL.
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Appendix A: Tables of Area Under

the Curve for

One-Parent/One-Child Framework

with Data Drawn from a Negative

Binomial Distribution

Here we present the tables for the areas under the curve (AUCs) for various
values of ⌧ and � for di↵erent novel variant pecentages. We consider the following
reconstructions: parent and child, parent, and child. We include these results for
completeness.

⌧/� 2 10 20 50 100 200 500

0.01 0.906 0.906 0.906 0.906 0.906 0.910 0.941

0.1 0.906 0.906 0.908 0.941 0.941 0.941 0.941

1 0.906 0.941 0.941 0.941 0.941 0.737 0.737
10 0.923 0.875 0.875 0.941 0.941 0.941 0.941

100 0.900 0.930 0.930 0.930 0.930 0.930 0.930
1000 0.548 0.549 0.549 0.549 0.549 0.549 0.549

Table A1: AUCs for the parent and child reconstruction with 2% novel variants using
the NEBULA algorithm.

29



⌧/� 2 10 20 50 100 200 500

0.01 0.867 0.906 0.906 0.906 0.906 0.941 0.941

0.1 0.906 0.906 0.906 0.941 0.941 0.941 0.941

1 0.906 0.941 0.941 0.941 0.941 0.714 0.714
10 0.919 0.941 0.875 0.941 0.941 0.941 0.941

100 0.900 0.930 0.930 0.930 0.930 0.930 0.930
1000 0.548 0.549 0.549 0.549 0.549 0.549 0.549

Table A2: AUCs for the parent and child reconstruction with 2% novel variants using
the SPIRAL algorithm.

⌧/� 2 10 20 50 100 200 500

0.01 0.907 0.908 0.908 0.908 0.908 0.915 0.978

0.1 0.908 0.908 0.912 0.978 0.978 0.978 0.978

1 0.908 0.978 0.978 0.978 0.978 0.904 0.904
10 0.955 0.955 0.955 0.978 0.978 0.978 0.978

100 0.907 0.967 0.967 0.967 0.967 0.967 0.967
1000 0.576 0.577 0.577 0.577 0.577 0.577 0.577

Table A3: AUCs for the parent reconstruction with 2% novel variants using the
NEBULA algorithm.

⌧/� 2 10 20 50 100 200 500

0.01 0.907 0.908 0.908 0.908 0.908 0.915 0.978

0.1 0.907 0.908 0.908 0.978 0.978 0.978 0.978

1 0.908 0.978 0.978 0.978 0.978 0.904 0.904
10 0.948 0.977 0.955 0.978 0.978 0.978 0.978

100 0.907 0.967 0.967 0.967 0.967 0.967 0.967
1000 0.576 0.577 0.577 0.577 0.577 0.577 0.577

Table A4: AUCs for the parent reconstruction with 2% novel variants using the
SPIRAL algorithm.

⌧/� 2 10 20 50 100 200 500

0.01 0.904 0.905 0.905 0.905 0.905 0.905 0.905

0.1 0.905 0.905 0.905 0.905 0.905 0.905 0.905

1 0.905 0.905 0.905 0.905 0.905 0.571 0.571
10 0.891 0.795 0.795 0.905 0.905 0.905 0.905

100 0.894 0.894 0.894 0.894 0.894 0.894 0.894
1000 0.520 0.520 0.520 0.520 0.520 0.520 0.520

Table A5: AUCs for the child reconstruction with 2% novel variants using the NEB-
ULA algorithm.
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⌧/� 2 10 20 50 100 200 500

0.01 0.826 0.905 0.905 0.905 0.905 0.905 0.905

0.1 0.905 0.905 0.905 0.905 0.905 0.905 0.905

1 0.905 0.905 0.905 0.905 0.905 0.523 0.523
10 0.891 0.905 0.795 0.905 0.905 0.905 0.905

100 0.894 0.894 0.894 0.894 0.894 0.894 0.894
1000 0.520 0.520 0.520 0.520 0.520 0.520 0.520

Table A6: AUCs for the child reconstruction with 2% novel variants using the SPIRAL
algorithm.

⌧/� 2 10 20 50 100 200 500

0.01 0.897 0.897 0.897 0.897 0.897 0.903 0.940

0.1 0.897 0.897 0.901 0.940 0.940 0.940 0.940

1 0.897 0.940 0.940 0.940 0.940 0.730 0.730
10 0.921 0.872 0.821 0.940 0.940 0.940 0.940

100 0.884 0.917 0.917 0.917 0.917 0.917 0.917
1000 0.539 0.544 0.544 0.544 0.544 0.544 0.544

Table A7: AUCs for the parent and child reconstruction with 5% novel variants using
the NEBULA alogrithm.

⌧/� 2 10 20 50 100 200 500

0.01 0.897 0.897 0.881 0.883 0.897 0.897 0.940

0.1 0.897 0.897 0.897 0.930 0.940 0.940 0.940

1 0.897 0.940 0.940 0.940 0.940 0.703 0.703
10 0.897 0.940 0.872 0.940 0.940 0.940 0.940

100 0.884 0.917 0.917 0.917 0.917 0.917 0.917
1000 0.539 0.544 0.544 0.544 0.544 0.544 0.544

Table A8: AUCs for the parent and child reconstruction with 5% novel variants using
the SPIRAL algorithm.

⌧/� 2 10 20 50 100 200 500

0.01 0.888 0.889 0.889 0.889 0.889 0.901 0.975

0.1 0.889 0.889 0.896 0.975 0.975 0.975 0.975

1 0.889 0.975 0.975 0.975 0.975 0.885 0.885
10 0.947 0.947 0.883 0.975 0.975 0.975 0.975

100 0.888 0.955 0.955 0.955 0.955 0.955 0.955
1000 0.564 0.570 0.570 0.570 0.570 0.570 0.570

Table A9: AUCs for the parent reconstruction with 5% novel variants using the
NEBULA algorithm.
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⌧/� 2 10 20 50 100 200 500

0.01 0.888 0.889 0.889 0.889 0.889 0.901 0.975

0.1 0.888 0.889 0.896 0.965 0.975 0.975 0.975

1 0.889 0.975 0.975 0.975 0.975 0.885 0.885
10 0.889 0.975 0.883 0.947 0.975 0.975 0.975

100 0.888 0.955 0.955 0.955 0.955 0.955 0.955
1000 0.569 0.570 0.570 0.570 0.570 0.570 0.570

Table A10: AUCs for the parent reconstruction with 5% novel variants using the
SPIRAL algorithm.

⌧/� 2 10 20 50 100 200 500

0.01 0.905 0.906 0.906 0.906 0.906 0.906 0.906

0.1 0.906 0.906 0.906 0.906 0.906 0.906 0.906

1 0.906 0.906 0.906 0.906 0.906 0.575 0.575
10 0.895 0.797 0.758 0.906 0.906 0.906 0.906

100 0.880 0.880 0.880 0.880 0.880 0.880 0.880
1000 0.513 0.517 0.517 0.517 0.517 0.517 0.517

Table A11: AUCs for the child reconstruction with 5% novel variants using the NEB-
ULA algorithm.

⌧/� 2 10 20 50 100 200 500

0.01 0.905 0.905 0.874 0.876 0.906 0.906 0.895
0.1 0.906 0.906 0.906 0.895 0.906 0.906 0.906

1 0.906 0.906 0.906 0.906 0.906 0.522 0.522
10 0.906 0.906 0.797 0.906 0.906 0.906 0.906

100 0.880 0.880 0.880 0.880 0.880 0.880 0.880
1000 0.517 0.517 0.517 0.517 0.517 0.517 0.517

Table A12: AUCs for the child reconstruction with 5% novel variants using the SPI-
RAL algorithm.

⌧/� 2 10 20 50 100 200 500

0.01 0.893 0.894 0.894 0.894 0.894 0.897 0.923

0.1 0.894 0.894 0.896 0.923 0.923 0.923 0.923

1 0.894 0.923 0.923 0.923 0.923 0.729 0.729
10 0.894 0.861 0.814 0.923 0.923 0.923 0.923

100 0.877 0.899 0.899 0.899 0.899 0.899 0.899
1000 0.547 0.548 0.548 0.548 0.548 0.548 0.548

Table A13: AUCs for the parent and child reconstruction with 20% novel variants
using the NEBULA algorithm.
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⌧/� 2 10 20 50 100 200 500

0.01 0.893 0.893 0.858 0.894 0.894 0.894 0.923

0.1 0.893 0.894 0.894 0.923 0.923 0.923 0.923

1 0.894 0.923 0.923 0.923 0.923 0.712 0.712
10 0.901 0.923 0.861 0.923 0.923 0.923 0.923

100 0.877 0.899 0.899 0.899 0.899 0.899 0.899
1000 0.547 0.548 0.548 0.548 0.548 0.548 0.548

Table A14: AUCs for the parent and child reconstruction with 20% novel variants
using the SPIRAL algorithm.

⌧/� 2 10 20 50 100 200 500

0.01 0.893 0.894 0.894 0.894 0.894 0.901 0.952

0.1 0.894 0.894 0.899 0.952 0.952 0.952 0.952

1 0.894 0.952 0.952 0.952 0.952 0.890 0.890
10 0.894 0.932 0.877 0.952 0.952 0.952 0.952

100 0.893 0.936 0.936 0.936 0.936 0.936 0.936
1000 0.572 0.574 0.574 0.574 0.574 0.574 0.574

Table A15: AUCs for the parent reconstruction with 20% novel variants using the
NEBULA algorithm.

⌧/� 2 10 20 50 100 200 500

0.01 0.893 0.894 0.893 0.894 0.894 0.894 0.952

0.1 0.893 0.894 0.894 0.952 0.952 0.952 0.952

1 0.894 0.952 0.952 0.952 0.952 0.890 0.890
10 0.923 0.952 0.932 0.952 0.952 0.952 0.952

100 0.893 0.936 0.936 0.936 0.936 0.936 0.936
1000 0.572 0.574 0.574 0.574 0.574 0.574 0.574

Table A16: AUCs for the parent reconstruction with 20% novel variants using the
SPIRAL algorithm.

⌧/� 2 10 20 50 100 200 500

0.01 0.893 0.894 0.894 0.894 0.894 0.894 0.894

0.1 0.894 0.894 0.894 0.894 0.894 0.894 0.894

1 0.894 0.894 0.894 0.894 0.894 0.567 0.567
10 0.894 0.790 0.750 0.894 0.894 0.894 0.894

100 0.862 0.862 0.862 0.862 0.862 0.862 0.862
1000 0.521 0.521 0.521 0.521 0.521 0.521 0.521

Table A17: AUCs for the child reconstruction with 20% novel variants using the
NEBULA algorithm.
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⌧/� 2 10 20 50 100 200 500

0.01 0.893 0.893 0.823 0.894 0.894 0.894 0.894
0.1 0.894 0.894 0.894 0.894 0.894 0.894 0.894

1 0.894 0.894 0.894 0.894 0.894 0.534 0.534
10 0.879 0.894 0.790 0.894 0.894 0.894 0.894

100 0.862 0.862 0.862 0.862 0.862 0.862 0.862
1000 0.521 0.521 0.521 0.521 0.521 0.521 0.521

Table A18: AUCs for the child reconstruction with 20% novel variants using the
SPIRAL algorithm.
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Appendix B: Tables of Area Under

the Curve for

One-Parent/One-Child Framework

with Data Drawn from a Poisson

Distribution

Here we present the tables for the areas under the curve (AUCs) for various
values of ⌧ and � for di↵erent novel variant pecentages. We consider the following
reconstructions: parent and child, Parent, and Child. We include these results for
completeness.

⌧/� 2 10 20 50 100 200 500

0.01 0.992 0.992 0.992 0.992 0.992 0.992 0.996

0.1 0.992 0.992 0.992 0.996 0.996 0.996 0.996

1 0.992 0.996 0.996 0.996 0.996 0.766 0.763
10 0.993 0.975 0.961 0.996 0.996 0.996 0.996

100 0.991 0.994 0.994 0.994 0.994 0.994 0.994
1000 0.504 0.504 0.504 0.504 0.504 0.504 0.504

Table B1: AUCs for the parent and child reconstruction with 2% novel variants using
the NEBULA algorithm.
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⌧/� 2 10 20 50 100 200 500

0.01 0.992 0.992 0.992 0.992 0.992 0.992 0.996

0.1 0.992 0.992 0.992 0.996 0.996 0.996 0.996

1 0.992 0.990 0.996 0.996 0.996 0.744 0.744
10 0.993 0.996 0.975 0.996 0.996 0.996 0.996

100 0.991 0.994 0.994 0.994 0.994 0.994 0.994
1000 0.504 0.504 0.504 0.504 0.504 0.504 0.504

Table B2: AUCs for the parent and child reconstruction with 2% novel variants using
the SPIRAL algorithm.

⌧/� 2 10 20 50 100 200 500

0.01 0.992 0.9992 0.992 0.992 0.992 0.992 0.999

0.1 0.992 0.992 0.992 0.999 0.999 0.999 0.999

1 0.992 0.999 0.999 0.999 0.999 0.985 0.985
10 0.997 0.997 0.982 0.999 0.999 0.999 0.999

100 0.992 0.998 0.998 0.998 0.998 0.998 0.998
1000 0.507 0.507 0.507 0.507 0.507 0.507 0.507

Table B3: AUCs for the parent reconstruction with 2% novel variants using the
NEBULA algorithm.

⌧/� 2 10 20 50 100 200 500

0.01 0.992 0.992 0.992 0.992 0.992 0.999 0.978
0.1 0.992 0.992 0.992 0.999 0.999 0.999 0.999

1 0.992 0.995 0.999 0.999 0.999 0.999 0.999

10 0.997 0.999 0.997 0.999 0.999 0.999 0.999

100 0.992 0.998 0.998 0.998 0.998 0.998 0.998
1000 0.507 0.507 0.507 0.507 0.507 0.507 0.507

Table B4: AUCs for the parent reconstruction with 2% novel variants using the
SPIRAL algorithm.

⌧/� 2 10 20 50 100 200 500

0.01 0.993 0.993 0.993 0.993 0.993 0.993 0.993

0.1 0.993 0.993 0.993 0.993 0.993 0.993 0.993

1 0.993 0.993 0.993 0.993 0.993 0.541 0.541
10 0.990 0.954 0.940 0.993 0.993 0.993 0.993

100 0.991 0.991 0.991 0.991 0.991 0.991 0.991
1000 0.500 0.500 0.500 0.500 0.500 0.500 0.500

Table B5: AUCs for the child reconstruction 2% novel variants using the NEBULA
algorithm.
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⌧/� 2 10 20 50 100 200 500

0.01 0.993 0.993 0.993 0.993 0.993 0.993 0.993

0.1 0.993 0.993 0.993 0.993 0.993 0.993 0.993

1 0.993 0.985 0.993 0.993 0.993 0.500 0.500
10 0.990 0.993 0.954 0.993 0.993 0.993 0.993

100 0.991 0.991 0.991 0.991 0.991 0.991 0.991
1000 0.500 0.500 0.500 0.500 0.500 0.500 0.500

Table B6: AUCs for the child reconstruction 2% novel variants using the SPIRAL
algorithm.

⌧/� 2 10 20 50 100 200 500

0.01 0.984 0.984 0.984 0.984 0.984 0.984 0.990

0.1 0.984 0.984 0.984 0.990 0.990 0.990 0.990

1 0.984 0.990 0.990 0.990 0.990 0.764 0.764
10 0.984 0.964 0.964 0.990 0.990 0.990 0.990

100 0.983 0.988 0.988 0.988 0.988 0.988 0.988
1000 0.504 0.504 0.504 0.504 0.504 0.504 0.504

Table B7: AUCs for the parent and child reconstruction with 5% novel variants using
the NEBULA alogrithm.

⌧/� 2 10 20 50 100 200 500

0.01 0.984 0.984 0.984 0.974 0.984 0.984 0.990

0.1 0.984 0.984 0.984 0.990 0.990 0.990 0.990

1 0.965 0.978 0.990 0.990 0.990 0.740 0.740
10 0.984 0.990 0.964 0.990 0.990 0.990 0.990

100 0.983 0.988 0.988 0.988 0.988 0.988 0.988
1000 0.503 0.503 0.503 0.503 0.503 0.503 0.503

Table B8: AUCs for the parent and child reconstruction with 5% novel variants using
the SPIRAL algorithm.

⌧/� 2 10 20 50 100 200 500

0.01 0.985 0.985 0.985 0.985 0.985 0.985 0.997

0.1 0.985 0.985 0.985 0.997 0.997 0.997 0.997

1 0.985 0.997 0.997 0.997 0.997 0.978 0.978
10 0.991 0.993 0.993 0.997 0.997 0.997 0.997

100 0.984 0.995 0.995 0.995 0.995 0.995 0.995
1000 0.507 0.507 0.507 0.507 0.507 0.507 0.507

Table B9: AUCs for the parent reconstruction with 5% novel variants using the
NEBULA algorithm.
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⌧/� 2 10 20 50 100 200 500

0.01 0.985 0.985 0.985 0.985 0.985 0.985 0.997

0.1 0.985 0.985 0.985 0.997 0.997 0.997 0.997

1 0.985 0.990 0.997 0.997 0.997 0.980 0.980
10 0.985 0.997 0.993 0.997 0.997 0.997 0.997

100 0.984 0.995 0.995 0.995 0.995 0.995 0.995
1000 0.507 0.507 0.507 0.507 0.507 0.507 0.507

Table B10: AUCs for the parent reconstruction with 5% novel variants using the
SPIRAL algorithm.

⌧/� 2 10 20 50 100 200 500

0.01 0.983 0.984 0.984 0.984 0.984 0.984 0.984

0.1 0.984 0.984 0.984 0.984 0.984 0.984 0.984

1 0.984 0.984 0.984 0.984 0.984 0.550 0.550
10 0.976 0.935 0.935 0.984 0.984 0.984 0.984

100 0.982 0.982 0.982 0.982 0.982 0.982 0.982
1000 0.500 0.500 0.500 0.500 0.500 0.500 0.500

Table B11: AUCs for the child reconstruction with 5% novel variants using the NEB-
ULA algorithm.

⌧/� 2 10 20 50 100 200 500

0.01 0.983 0.983 0.984 0.964 0.984 0.984 0.984

0.1 0.984 0.984 0.984 0.984 0.984 0.984 0.984

1 0.945 0.967 0.984 0.984 0.984 0.500 0.500
10 0.984 0.984 0.935 0.984 0.984 0.984 0.984

100 0.982 0.982 0.982 0.982 0.982 0.982 0.982
1000 0.500 0.500 0.500 0.500 0.500 0.500 0.500

Table B12: AUCs for the child reconstruction with 5% novel variants using the SPI-
RAL algorithm.

⌧/� 2 10 20 50 100 200 500

0.01 0.991 0.991 0.991 0.991 0.991 0.991 0.994

0.1 0.991 0.991 0.991 0.994 0.994 0.994 0.994

1 0.991 0.994 0.994 0.994 0.994 0.768 0.768
10 0.985 0.968 0.968 0.994 0.994 0.994 0.994

100 0.986 0.988 0.988 0.988 0.988 0.988 0.988
1000 0.501 0.501 0.501 0.501 0.501 0.501 0.501

Table B13: AUCs for the parent and child reconstruction with 20% novel variants
using the NEBULA algorithm.
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⌧/� 2 10 20 50 100 200 500

0.01 0.991 0.991 0.991 0.968 0.991 0.991 0.994

0.1 0.991 0.991 0.991 0.994 0.994 0.994 0.994

1 0.991 0.985 0.994 0.994 0.994 0.743 0.743
10 0.985 0.994 0.968 0.994 0.994 0.994 0.994

100 0.986 0.989 0.989 0.989 0.989 0.989 0.989
1000 0.501 0.501 0.501 0.501 0.501 0.501 0.501

Table B14: AUCs for the parent and child reconstruction with 20% novel variants
using the SPIRAL algorithm.

⌧/� 2 10 20 50 100 200 500

0.01 0.991 0.991 0.991 0.991 0.991 0.991 0.997

0.1 0.991 0.991 0.991 0.997 0.997 0.997 0.997

1 0.991 0.997 0.997 0.997 0.997 0.984 0.984
10 0.994 0.996 0.996 0.997 0.997 0.997 0.997

100 0.991 0.996 0.996 0.996 0.996 0.996 0.996
1000 0.501 0.501 0.501 0.501 0.501 0.501 0.501

Table B15: AUCs for the parent reconstruction with 20% novel variants using the
NEBULA algorithm.

⌧/� 2 10 20 50 100 200 500

0.01 0.991 0.991 0.991 0.991 0.991 0.991 0.997

0.1 0.991 0.991 0.991 0.997 0.997 0.997 0.997

1 0.991 0.995 0.997 0.997 0.997 0.986 0.986
10 0.994 0.997 0.996 0.997 0.997 0.997 0.997

100 0.991 0.996 0.996 0.996 0.996 0.996 0.996
1000 0.501 0.501 0.501 0.501 0.501 0.501 0.501

Table B16: AUCs for the parent reconstruction with 20% novel variants using the
SPIRAL algorithm.

⌧/� 2 10 20 50 100 200 500

0.01 0.991 0.991 0.991 0.991 0.991 0.991 0.991

0.1 0.991 0.991 0.991 0.991 0.991 0.991 0.991

1 0.991 0.991 0.991 0.991 0.991 0.551 0.551
10 0.975 0.940 0.940 0.991 0.991 0.991 0.991

100 0.982 0.982 0.982 0.982 0.982 0.982 0.982
1000 0.500 0.500 0.500 0.500 0.500 0.500 0.500

Table B17: AUCs for the parent reconstruction with 20% novel variants using the
NEBULA algorithm.
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⌧/� 2 10 20 50 100 200 500

0.01 0.991 0.991 0.991 0.944 0.991 0.991 0.991

0.1 0.991 0.991 0.991 0.991 0.991 0.991 0.991

1 0.991 0.976 0.991 0.991 0.991 0.500 0.500
10 0.976 0.991 0.940 0.991 0.991 0.991 0.991

100 0.982 0.982 0.982 0.982 0.982 0.982 0.982
1000 0.500 0.500 0.500 0.500 0.500 0.500 0.500

Table B18: AUCs for the parent reconstruction with 20% novel variants using the
SPIRAL algorithm.
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Appendix C: Table of Area Under

the Curve for

Two-Parent/One-Child Framework

with Data Drawn from a Negtive

Binomial Distribution

Here we present the tables for the areas under the curve (AUCs) for various
values of ⌧ and � for di↵erent novel variant pecentages. We consider the following
reconstructions: parents and child, Parent 1, Parent 2, and Child. Note the size of
the tables are smaller than the one-parent/one-child framework due to eliminating
values for ⌧ and � which yielded poor results in that framework. We include these
results for completeness.

⌧/� 2 10 15 20 50

0.01 0.9204 0.9204 0.9204 0.9204 0.9204
0.1 0.9204 0.9204 0.9204 0.9204 0.9156
1 0.9204 0.9200 0.9220 0.9219 0.8378
10 0.9206 0.7411 0.6352 0.6352 0.9190

Table C1: AUCs for the parents and child reconstruction with 2% novel variants using
the NEBULA algorithm.

⌧/� 2 10 15 20 50

0.01 0.8120 0.8120 0.8120 0.8120 0.8120

0.1 0.8120 0.8118 0.8115 0.8119 0.8115

1 0.8117 0.8114 0.8115 0.8114 0.8114
10 0.8118 0.7121 0.7225 0.6364 0.8114

Table C2: AUCs for the parents and child reconstruction with 2% novel variants using
the SPIRAL algorithm.
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⌧/� 2 10 15 20 50

0.01 0.9452 0.9452 0.9452 0.9452 0.9452
0.1 0.9452 0.9452 0.9452 0.9452 0.9406
1 0.9452 0.9439 0.9449 0.9449 0.9216
10 0.9449 0.7572 0.6466 0.6466 0.9464

Table C3: AUCs for the Parent 1 reconstruction with 2% novel variants using the
NEBULA algorithm.

⌧/� 2 10 15 20 50

0.01 0.7788 0.7788 0.7788 0.7788 0.7788

0.1 0.7788 0.7788 0.7788 0.7788 0.7788

1 0.7788 0.7788 0.7788 0.7788 0.7788

10 0.7788 0.6904 0.7000 0.6173 0.7788

Table C4: AUCs for the Parent 1 reconstruction with 2% novel variants using the
SPIRAL algorithm.

⌧/� 2 10 15 20 50

0.01 0.9305 0.9305 0.9305 0.9305 0.9305
0.1 0.9305 0.9305 0.9305 0.9305 0.9173
1 0.9305 0.9266 0.9314 0.9315 0.8958
10 0.9276 0.7740 0.6643 0.6643 0.9218

Table C5: AUCs for the Parent 2 reconstruction with 2% novel variants using the
NEBULA algorithm.

⌧/� 2 10 15 20 50

0.01 0.7716 0.7716 0.7716 0.7716 0.7716

0.1 0.7716 0.7716 0.7716 0.7716 0.7715

1 0.7716 0.7716 0.7716 0.7716 0.7716

10 0.7715 0.6887 0.6895 0.6247 0.7715

Table C6: AUCs for the Parent 2 reconstruction with 2% novel variants using the
SPIRAL algorithm.

⌧/� 2 10 15 20 50

0.01 0.8874 0.8874 0.8874 0.8874 0.8874

0.1 0.8874 0.8874 0.8874 0.8874 0.8878
1 0.8874 0.8877 0.8877 0.8877 0.6895
10 0.8876 0.6895 0.5926 0.5926 0.8874

Table C7: AUCs for the child reconstruction with 2% novel variants using the NEB-
ULA algorithm.
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⌧/� 2 10 15 20 50

0.01 0.8874 0.8874 0.8874 0.8874 0.8874

0.1 0.8874 0.8874 0.8874 0.8874 0.8874

1 0.8874 0.8874 0.8873 0.8874 0.8874

10 0.8874 0.7595 0.7807 0.6676 0.8874

Table C8: AUCs for the child reconstruction with 2% novel variants using the SPIRAL
algorithm.

⌧/� 2 10 15 20 50

0.01 0.9264 0.9264 0.9264 0.9264 0.9264
0.1 0.9264 0.9264 0.9264 0.9264 0.9236
1 0.9264 0.9260 0.9270 0.8932 0.8373
10 0.9266 0.7432 0.6362 0.6362 0.9262

Table C9: AUCs for the parents and child reconstruction with 5% novel variants using
the NEBULA algorithm.

⌧/� 2 10 15 20 50

0.01 0.8391 0.8391 0.8391 0.8391 0.8391

0.1 0.8391 0.8389 0.8389 0.8388 0.8382
1 0.8386 0.8384 0.8382 0.8382 0.8382
10 0.8382 0.7584 0.7243 0.7243 0.5724

Table C10: AUCs for the parents and child reconstruction with 5% novel variants
using the SPIRAL algorithm.

⌧/� 2 10 15 20 50

0.01 0.9376 0.9376 0.9376 0.9376 0.9376

0.1 0.9376 0.9376 0.9376 0.9376 0.9341
1 0.9376 0.9364 0.9373 0.9211 0.9083
10 0.9371 0.7675 0.6589 0.6589 0.9374

Table C11: AUCs for the Parent 1 reconstruction with 5% novel variants using the
NEBULA algorithm.

⌧/� 2 10 15 20 50

0.01 0.8391 0.8391 0.8391 0.8391 0.8391

0.1 0.8391 0.8389 0.8389 0.8388 0.8382
1 0.8386 0.8384 0.8382 0.8382 0.8382
10 0.8382 0.7584 0.7243 0.7243 0.5724

Table C12: AUCs for the Parent 1 reconstruction with 5% novel variants using the
SPIRAL algorithm.
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⌧/� 2 10 15 20 50

0.01 0.9337 0.9338 0.9338 0.9338 0.9338

0.1 0.9338 0.9338 0.9338 0.9338 0.9263
1 0.9338 0.9308 0.9327 0.9148 0.9008
10 0.9326 0.7576 0.6490 0.6490 0.9309

Table C13: AUCs for the Parent 2 reconstruction with 5% novel variants using the
NEBULA algorithm.

⌧/� 2 10 15 20 50

0.01 0.8038 0.8038 0.8038 0.8038 0.8038

0.1 0.8038 0.8037 0.8037 0.8037 0.8037

1 0.8037 0.8037 0.8037 0.8037 0.8037

10 0.8036 0.7314 0.6957 0.6957 0.5617

Table C14: AUCs for the Parent 2 reconstruction with 5% novel variants using the
SPIRAL algorithm.

⌧/� 2 10 15 20 50

0.01 0.9107 0.9107 0.9107 0.9107 0.9107

0.1 0.9107 0.9107 0.9107 0.9107 0.9110

1 0.9107 0.9110 0.9110 0.8455 0.7050
10 0.9109 0.7050 0.6010 0.6010 0.9107

Table C15: AUCs for the child reconstruction with 5% novel variants using the NEB-
ULA algorithm.

⌧/� 2 10 15 20 50

0.01 0.9107 0.9107 0.9107 0.9107 0.9107

0.1 0.9107 0.9107 0.9107 0.9107 0.9107

1 0.9107 0.9107 0.9107 0.9107 0.9107

10 0.9107 0.8129 0.7735 0.7735 0.5875

Table C16: AUCs for the child reconstruction with 5% novel variants using the SPI-
RAL algorithm.

⌧/� 2 10 15 20 50

0.01 0.9130 0.9130 0.9130 0.9130 0.9130

0.1 0.9130 0.9130 0.9130 0.9130 0.9076
1 0.9130 0.9112 0.9113 0.8758 0.8315
10 0.9087 0.7426 0.6267 0.6267 0.9106

Table C17: AUCs for the parents and child reconstruction with 20% novel variants
using the NEBULA algorithm.
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⌧/� 2 10 15 20 50

0.01 0.8284 0.8284 0.8284 0.8284 0.8284

0.1 0.8284 0.8278 0.8276 0.8277 0.8274
1 0.8281 0.8271 0.7885 0.8270 0.8270
10 0.8277 0.7255 0.7308 0.7037 0.7644

Table C18: AUCs for the parents and child reconstruction with 20% novel variants
using the SPIRAL algorithm.

⌧/� 2 10 15 20 50

0.01 0.9145 0.9145 0.9145 0.9145 0.9145

0.1 0.9145 0.9145 0.9145 0.9145 0.9061
1 0.9145 0.9128 0.9126 0.8941 0.8865
10 0.9080 0.7510 0.6407 0.6407 0.9106

Table C19: AUCs for the Parent 1 reconstruction with 20% novel variants using the
NEBULA algorithm.

⌧/� 2 10 15 20 50

0.01 0.7908 0.7908 0.7908 0.7908 0.7908

0.1 0.7908 0.7908 0.7908 0.7908 0.7908

1 0.7909 0.7908 0.7328 0.7908 0.7908

10 0.7907 0.6987 0.7055 0.6811 0.7328

Table C20: AUCs for the Parent 1 reconstruction with 20% novel variants using the
SPIRAL algorithm.

⌧/� 2 10 15 20 50

0.01 0.9234 0.9234 0.9234 0.9234 0.9234

0.1 0.9234 0.9234 0.9234 0.9234 0.9234

1 0.9234 0.9170 0.9178 0.9061 0.8957
10 0.9141 0.7651 0.6429 0.6429 0.9180

Table C21: AUCs for the Parent 2 reconstruction with 20% novel variants using the
NEBULA algorithm.

⌧/� 2 10 15 20 50

0.01 0.7885 0.7885 0.7885 0.7885 0.7885

0.1 0.7885 0.7885 0.7885 0.7885 0.7885

1 0.7885 0.7885 0.7307 0.7885 0.7885

10 0.7883 0.6977 0.7025 0.6768 0.7307

Table C22: AUCs for the Parent 2 reconstruction with 20% novel variants using the
SPIRAL algorithm.
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⌧/� 2 10 15 20 50

0.01 0.9032 0.9032 0.9032 0.9032 0.9032

0.1 0.9032 0.9032 0.9032 0.9032 0.9035

1 0.9032 0.9035 0.9035 0.8274 0.7112
10 0.9034 0.7112 0.5959 0.5959 0.9032

Table C23: AUCs for the child reconstruction with 20% novel variants using the
NEBULA algorithm.

⌧/� 2 10 15 20 50

0.01 0.9032 0.9032 0.9032 0.9032 0.9032

0.1 0.9032 0.9032 0.9032 0.9032 0.9032

1 0.9032 0.9032 0.9029 0.9032 0.9032

10 0.9032 0.7810 0.7822 0.7508 0.8271

Table C24: AUCs for the child reconstruction with 20% novel variants using the
SPIRAL algorithm.
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Appendix D: Table of Area Under

the Curve for

Two-Parent/One-Child Framework

with Data Drawn from a Poisson

Distribution

Here we present the tables for the areas under the curve (AUCs) for various
values of ⌧ and � for di↵erent novel variant pecentages. We consider the following
reconstructions: parents and child, Parent 1, Parent 2, and Child. Note the size of
the tables are smaller than the one-parent/one-child framework due to eliminating
values for ⌧ and � which yielded poor results in that framework. We include these
results for completeness.

⌧/� 2 10 15 20 50

0.01 0.9913 0.9913 0.9913 0.9913 0.9913
0.1 0.9913 0.9913 0.9913 0.9913 0.9910
1 0.9913 0.9918 0.9921 0.9920 0.9920

10 0.9834 0.9916 0.8315 0.8315 0.9916

Table D1: AUCs for the parents and child reconstruction with 2% novel variants
using the NEBULA algorithm.

⌧/� 2 10 15 20 50

0.01 0.9105 0.9105 0.9108 0.9108 0.9108

0.1 0.9105 0.9108 0.9108 0.9108 0.9106

1 0.9102 0.9107 0.9107 0.9106 0.9106

10 0.9104 0.8852 0.8852 0.9106 0.9106

Table D2: AUCs for the parents and child reconstruction with 2% novel variants
using the SPIRAL algorithm.
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⌧/� 2 10 15 20 50

0.01 0.9914 0.9914 0.9914 0.9914 0.9914

0.1 0.9914 0.9914 0.9914 0.9914 0.9913

1 0.9914 0.9915 0.9915 0.9915 0.9915

10 0.9875 0.9915 0.8559 0.8559 0.9915

Table D3: AUCs for the Parent 1 reconstruction with 2% novel variants using the
NEBULA algorithm.

⌧/� 2 10 15 20 50

0.01 0.8699 0.8699 0.8699 0.8699 0.8698

0.1 0.8699 0.8699 0.8699 0.8699 0.8698

1 0.8699 0.8699 0.8699 0.8699 0.8698

10 0.8699 0.8473 0.8473 0.8699 0.8698

Table D4: AUCs for the Parent 1 reconstruction with 2% novel variants using the
SPIRAL algorithm.

⌧/� 2 10 15 20 50

0.01 0.9935 0.9935 0.9935 0.9935 0.9935

0.1 0.9935 0.9935 0.9935 0.9935 0.9912
1 0.9935 0.9924 0.9934 0.9934 0.9934

10 0.9875 0.9924 0.8319 0.8319 0.9924

Table D5: AUCs for the Parent 2 reconstruction with 2% novel variants using the
NEBULA algorithm.

⌧/� 2 10 15 20 50

0.01 0.8699 0.8699 0.8699 0.8698 0.8698

0.1 0.8698 0.8698 0.8698 0.8698 0.8698

1 0.8698 0.8699 0.8698 0.8698 0.8698

10 0.8698 0.8482 0.8482 0.8698 0.8698

Table D6: AUCs for the Parent 2 reconstruction with 2% novel variants using the
SPIRAL algorithm.

⌧/� 2 10 15 20 50

0.01 0.9909 0.9909 0.9909 0.9909 0.9909

0.1 0.9909 0.9909 0.9909 0.9909 0.9906
1 0.9909 0.9912 0.9911 0.9910 0.9910

10 0.9709 0.9909 0.8071 0.8071 0.9909

Table D7: AUCs for the child reconstruction with 2% novel variants using the NEB-
ULA algorithm.

48



⌧/� 2 10 15 20 50

0.01 0.9909 0.9909 0.9909 0.9909 0.9909

0.1 0.9909 0.9909 0.9909 0.9909 0.9909

1 0.9909 0.9912 0.9911 0.9910 0.9910

10 0.9909 0.9586 0.9586 0.9909 0.9909

Table D8: AUCs for the child reconstruction with 2% novel variants using the SPIRAL
algorithm.

⌧/� 2 10 15 20 50

0.01 0.9885 0.9885 0.9885 0.9885 0.9885

0.1 0.9885 0.9885 0.9885 0.9885 0.9880
1 0.9885 0.9887 0.9886 0.9886 0.9886

10 0.9827 0.9851 0.8243 0.8243 0.9885

Table D9: AUCs for the parents and child reconstruction with 5% novel variants
using the NEBULA algorithm.

⌧/� 2 10 15 20 50

0.01 0.9043 0.9043 0.9047 0.9047 0.9047

0.1 0.9043 0.9047 0.9047 0.9047 0.9046

1 0.9043 0.9046 0.9046 0.9046 0.9046

10 0.9043 0.8794 0.8796 0.9046 0.9046

Table D10: AUCs for the parents and child reconstruction with 5% novel variants
using the SPIRAL algorithm.

⌧/� 2 10 15 20 50

0.01 0.9914 0.9914 0.9914 0.9914 0.9914

0.1 0.9914 0.9914 0.9914 0.9914 0.9904
1 0.9914 0.9904 0.9904 0.9904 0.9904
10 0.9893 0.9899 0.8499 0.8499 0.9904

Table D11: AUCs for the Parent 1 reconstruction with 5% novel variants using the
NEBULA algorithm.

⌧/� 2 10 15 20 50

0.01 0.8709 0.8709 0.8709 0.8708 0.8708

0.1 0.8708 0.8708 0.8708 0.8708 0.8708

1 0.8708 0.8708 0.8708 0.8708 0.8708

10 0.8708 0.8499 0.8502 0.8708 0.8708

Table D12: AUCs for the Parent 1 reconstruction with 5% novel variants using the
SPIRAL algorithm.
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⌧/� 2 10 15 20 50

0.01 0.9913 0.9913 0.9913 0.9913 0.9913

0.1 0.9913 0.9913 0.9913 0.9913 0.9913

1 0.9913 0.9903 0.9903 0.9903 0.9903
10 0.9889 0.9896 0.8459 0.8459 0.9903

Table D13: AUCs for the Parent 2 reconstruction with 5% novel variants using the
NEBULA algorithm.

⌧/� 2 10 15 20 50

0.01 0.8572 0.8572 0.8572 0.8571 0.8571

0.1 0.8571 0.8571 0.8571 0.8571 0.8571

1 0.8571 0.8571 0.8571 0.8571 0.8571

10 0.8571 0.8319 0.8320 0.8571 0.8571

Table D14: AUCs for the Parent 2 reconstruction with 5% novel variants using the
SPIRAL algorithm.

⌧/� 2 10 15 20 50

0.01 0.9848 0.9848 0.9848 0.9848 0.9848

0.1 0.9848 0.9848 0.9848 0.9848 0.9844
1 0.9848 0.9851 0.9851 0.9850 0.9852

10 0.9690 0.9760 0.7777 0.7777 0.9848

Table D15: AUCs for the child reconstruction with 5% novel variants using the NEB-
ULA algorithm.

⌧/� 2 10 15 20 50

0.01 0.9848 0.9848 0.9848 0.9848 0.9848

0.1 0.9848 0.9848 0.9848 0.9848 0.9848

1 0.9848 0.9848 0.9848 0.9848 0.9848

10 0.9848 0.9551 0.9555 0.9848 0.9848

Table D16: AUCs for the child reconstruction with 5% novel variants using the SPI-
RAL algorithm.

⌧/� 2 10 15 20 50

0.01 0.9920 0.9920 0.9920 0.9920 0.9920

0.1 0.9920 0.9920 0.9920 0.9920 0.9883
1 0.9920 0.9918 0.9918 0.9918 0.9918

10 0.9789 0.9663 0.8305 0.8306 0.9918

Table D17: AUCs for the parents and child reconstruction with 20% novel variants
using the NEBULA algorithm.
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⌧/� 2 10 15 20 50

0.01 0.9165 0.9165 0.9165 0.9165 0.9168

0.1 0.9168 0.9168 0.9168 0.9168 0.9162
1 0.9168 0.9169 0.9166 0.9166 0.9166

10 0.9166 0.8584 0.6215 0.6719 0.5191

Table D18: AUCs for the parents and child reconstruction with 20% novel variants
using the SPIRAL algorithm.

⌧/� 2 10 15 20 50

0.01 0.9893 0.9893 0.9893 0.9893 0.9893

0.1 0.9893 0.9893 0.9893 0.9893 0.9885
1 0.9893 0.9891 0.9891 0.9891 0.9891

10 0.9842 0.9705 0.8415 0.8415 0.9890

Table D19: AUCs for the Parent 1 reconstruction with 20% novel variants using the
NEBULA algorithm.

⌧/� 2 10 15 20 50

0.01 0.8701 0.8701 0.8701 0.8701 0.8701

0.1 0.8701 0.8701 0.8701 0.8701 0.8701

1 0.8701 0.8701 0.8701 0.8701 0.8701

10 0.8701 0.8160 0.6132 0.6583 0.8700

Table D20: AUCs for the Parent 1 reconstruction with 20% novel variants using the
SPIRAL algorithm.

⌧/� 2 10 15 20 50

0.01 0.9933 0.9933 0.9933 0.9933 0.9933

0.1 0.9933 0.9933 0.9933 0.9933 0.9902
1 0.9933 0.9911 0.9911 0.9911 0.9933

10 0.9858 0.9675 0.8535 0.8535 0.9858

Table D21: AUCs for the Parent 2 reconstruction with 20% novel variants using the
NEBULA algorithm.

⌧/� 2 10 15 20 50

0.01 0.8826 0.8826 0.8826 0.8826 0.8826

0.1 0.8826 0.8826 0.8826 0.8826 0.8826

1 0.8826 0.8826 0.8825 0.8826 0.8826

10 0.8825 0.8310 0.6062 0.6533 0.5167

Table D22: AUCs for the Parent 2 reconstruction with 20% novel variants using the
SPIRAL algorithm.
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⌧/� 2 10 15 20 50

0.01 0.9949 0.9949 0.9949 0.9949 0.9949

0.1 0.9949 0.9949 0.9949 0.9949 0.9863
1 0.9949 0.9948 0.9948 0.9948 0.9948

10 0.9688 0.9611 0.7977 0.7977 0.9949

Table D23: AUCs for the child reconstruction with 20% novel variants using the
NEBULA algorithm.

⌧/� 2 10 15 20 50

0.01 0.9949 0.9949 0.9949 0.9949 0.9949

0.1 0.9949 0.9949 0.9949 0.9949 0.9949

1 0.9949 0.9949 0.9949 0.9949 0.9949

10 0.5218 0.9259 0.6444 0.7033 0.9949

Table D24: AUCs for the child reconstruction with 20% novel variants using the
SPIRAL algorithm.
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