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Abstract

An orthonormal frame (f1, f2, f3) is rotation–minimizing with respect
to fi if its angular velocity ω satisfies ω · fi ≡ 0 — or, equivalently,
the derivatives of fj and fk are both parallel to fi. The Frenet frame
(t,p,b) along a space curve is rotation–minimizing with respect to
the principal normal p, and in recent years adapted frames that are
rotation–minimizing with respect to the tangent t have attracted much
interest. This study is concerned with rotation–minimizing osculating

frames (f ,g,b) incorporating the binormal b, and osculating–plane
vectors f ,g that have no rotation about b. These frame vectors may
be defined through a rotation of t,p by an angle equal to minus the
integral of curvature with respect to arc length. In aeronautical terms,



the rotation–minimizing osculating frame (RMOF) specifies yaw–free

rigid–body motion along a curved path. For polynomial space curves
possessing rational Frenet frames, the existence of rational RMOFs is
investigated, and it is found that they must be of degree 7 at least.
The RMOF is also employed to construct a novel type of ruled surface,
with the property that its tangent planes coincide with the osculating
planes of a given space curve, and its rulings exhibit the least possible
rate of rotation consistent with this constraint.

Keywords: rotation–minimizing frames; Pythagorean–hodograph curves;
quaternions; angular velocity; rigid body motion; ruled surfaces.
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1 Introduction

A general spatial motion of a rigid body is specified by describing its position
and orientation as functions of time. A particular point of the body (e.g., the
center of mass) is usually chosen to describe position. To describe orientation,
the variation of an orthonormal frame (e1, e2, e3) embedded within the body
may be specified. In general, position and orientation vary independently, but
in certain motion problems they may be correlated. This study is concerned
with constrained spatial motions, in which the instantaneous angular velocity
of a rigid body is related to the geometry of its center–of–mass path.

The Frenet frame is the most familiar orthonormal frame on a space curve,
comprising the tangent t, principal normal p, and binormal b = t×p. When
the Frenet frame is used to orient a body along a path, its angular velocity
ω satisfies ω · p ≡ 0 — i.e., it has no component in the principal normal
direction. This means that the body exhibits no instantaneous rotation about
the principal normal vector p from point to point along the path.

In aerodynamics, an embedded frame is used [8] to characterize variations
in the attitude of an aircraft, in terms of roll, pitch, and yaw axes through its
center of mass — the roll (or longitudinal) axis is aligned with the fuselage;
the pitch (or lateral) axis is orthogonal to it, within the plane of the fuselage
and wings; and the yaw (or vertical) axis is orthogonal to that plane. Hence,
pitch and yaw correspond to up/down and left/right motions of the aircraft
nose, while roll corresponds to a rotation about the fuselage.

A rigid body that maintains alignment with the Frenet frame on a given
spatial path exhibits a pitch–free motion — it has no instantaneous rotation
about the principal normal p. For a given (smooth) path, it is also possible
to construct roll–free and yaw–free rigid–body motions, characterized by no
instantaneous rotation about the tangent t and binormal b, respectively.

Roll–free motion, with angular velocity satisfying ω · t ≡ 0, has recently
enjoyed considerable attention. In this case, the body has no instantaneous
rotation about the tangent t from point to point along the path. Bishop [5]
first studied adapted orthonormal frames (t,u,v) comprising the tangent t

and normal–plane vectors u,v that have no instantaneous rotation about t,
in lieu of p,b. Klok [24] described the vectors u,v as solutions to differential
equations, and Guggenheimer [20] subsequently showed that these solutions
amount to defining u,v by a normal–plane rotation of p,b through an angle
equal to minus the integral of the torsion with respect to arc length.

For polynomial or rational curves, this rotation–minimizing adapted frame
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(RMAF) is not, in general, a rational locus, and this fact has prompted many
approximation schemes [14, 23, 33]. More recently, interest has emerged in
identifying curves with rational rotation–minimizing frames (RRMF curves),
which must be Pythagorean–hodograph (PH) curves [9], since only PH curves
possess rational unit tangents. The Euler–Rodrigues frame (ERF), a rational
adapted frame defined on any PH curve, is a useful intermediary in identifying
RRMF curves [6, 21]. The simplest non–planar RRMF curves form a subset
of the PH quintics [11], characterized by the satisfaction of simple constraints
on the curve coefficients [10]. Further details on the basic theory, properties,
and applications of RRMF curves can be found in [1, 12, 17, 18].

Among the spatial motions mentioned above, in which angular velocity is
correlated with local path geometry, the least–studied is the case of yaw–free
motion satisfying ω ·b ≡ 0. In yaw–free motion, the orientation of the body
is specified by a frame (f , g,b) that retains the binormal b, but the tangent
and principal normal t,p are replaced by osculating–plane vectors f , g that
have no instantaneous rotation about b. It is shown below that the vectors
f , g can be defined through an osculating–plane rotation of t,p by an angle
equal to minus the integral of the curvature with respect to arc length. We
call the frame (f , g,b) a rotation–minimizing osculating frame (RMOF).

The plan for the remainder of this paper is as follows. Section 2 describes
the concept of rotation–minimizing frames on curves, and briefly mentions
how it can also be used to identify certain special curves on a smooth surface
(geodesics, lines of curvature, and asymptotic lines). Section 3 addresses the
problem of rational rotation–minimizing frames — after briefly reviewing
rational RMAFs, a detailed analysis of rational RMOFs on cubic and quintic
space curves with rational Frenet frames is presented. Section 4 employs the
RMOF to construct ruled surfaces interpolating a space curve, with tangent
planes matching the osculating planes of that curve, and derives some useful
properties of such surfaces. Finally, Section 5 summarizes the key results of
this study, and identifies some open problems.

2 Rotation–minimizing frames on curves

The parametric speed of a differentiable space curve r(ξ) is defined by

σ(ξ) = |r′(ξ)| = ds/dξ ,
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where s is the cumulative arc length of r(ξ), measured from some fixed point.
The curve r(ξ) is regular if its parametric speed satisfies σ(ξ) 6= 0 for all ξ.
The variation of an orthonormal frame (e1(ξ), e2(ξ), e3(ξ)) defined along r(ξ)
may be specified by its angular velocity ω(ξ) through the relations

e′

1 = σω × e1 , e′

2 = σω × e2 , e′

3 = σω × e3 . (1)

Since (e1, e2, e3) comprise a basis for R
3 we can write

ω = ω1e1 + ω2e2 + ω3e3 , (2)

and hence the relations (1) become

e′

1 = σ(ω3e2 − ω2e3) , e′

2 = σ(ω1e3 −ω3e1) , e′

3 = σ(ω2e1 − ω1e2) . (3)

For a given reference direction, specified by a unit vector field c(ξ) along r(ξ),
one may characterize frames (e1(ξ), e2(ξ), e3(ξ)) that are rotation–minimizing

with respect to c(ξ) as follows.

Definition 1. The frame (e1, e2, e3) is rotation–minimizing with respect to c

if its angular velocity ω has no component in the direction of c, i.e., ω ·c ≡ 0.

Now if the frame vector e1(ξ) is chosen as the reference direction, the rotation–
minimizing frame (RMF) satisfies ω1 ≡ 0 in (2). Equations (3) then yield an
alternative characterization, in terms of the derivatives of e2(ξ) and e3(ξ).

Corollary 1. The frame (e1, e2, e3) is rotation–minimizing with respect to
e1 when e′

2 or e′

3 is always parallel to e1 along the curve r(ξ). An analogous
characterization holds when e2 or e3 is chosen as the reference direction.

For a frame that is rotation–minimizing with respect to e1, the vectors e2, e3

exhibit no instantaneous rotation about e1. They vary only because e1 varies
along r(ξ), and they must remain orthogonal to it. This is equivalent to the
observation in Corollary 1 that the derivatives of e2, e3 are parallel to e1.

The Frenet frame (t,p,b) on a space curve r(ξ) is defined [25] by

t =
r′

| r′ | , p =
r′ × r′′

| r′ × r′′ | × t , b =
r′ × r′′

| r′ × r′′ | . (4)

The tangent t is the instantaneous direction of motion along the curve, the
principal normal p points to the center of curvature, and the binormal b =
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t× p completes the frame. The orthogonal planes spanned by (t,p), (p,b),
and (b, t) are the osculating, normal, and rectifying planes, respectively.

The angular velocity of the frame (4) is given [25] by the Darboux vector

ω = κb + τ t , (5)

where the curvature κ(ξ) and torsion τ(ξ) of r(ξ) are defined by

κ =
p · t′
σ

=
| r′ × r′′ |
| r′ |3 and τ = − p · b′

σ
=

(r′ × r′′) · r′′′
| r′ × r′′ |2 .

When (e1, e2, e3) = (t,p,b) and ω is specified by (5), the relations (1)
are equivalent [25] to the well–known Frenet–Serret equations





t′

p′

b′



 = σ





0 κ 0
−κ 0 τ
0 −τ 0









t

p

b



 . (6)

Remark 1. From Definition 1, we observe that the Frenet frame is rotation–
minimizing with respect to the principal normal p, but not with respect to
the tangent t or binormal b. For a plane curve, it is also rotation–minimizing
with respect to the tangent t.

Although the Frenet frame is not rotation–minimizing with respect to t,
one can easily derive such a rotation–minimizing frame from it. New normal–
plane vectors (u,v) are specified through a rotation of (p,b) according to

u = cos θ p + sin θ b , v = − sin θ p + cos θ b , (7)

where [20] we define

θ(ξ) = θ0 −
∫ ξ

0

τ σ dξ , (8)

θ0 being an integration constant — note that the minus sign is missing from
(8) in [20]. It is assumed in (7) that r(ξ) is free of inflections, so p and b are
defined at each point. The frame (t,u,v) has angular velocity

ω = κb = κ (sin θ u + cos θ v) , (9)

satisfying ω ·t ≡ 0. A frame incorporating the tangent t is an adapted frame,
and when it is rotation–minimizing with respect to t it is called a rotation–

minimizing adapted frame (RMAF). Such frames describe natural spatial
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motions of a rigid body that maintains one principal axis aligned with the
path tangent, while the other principal axes have no instantaneous rotation
about the tangent. These motions are useful in computer animation, the use
of sweep operations in geometric design, robot path planning, programming
of CNC machines with rotary axes, and related applications.

By modification of the Frenet frame, one can also define a frame that is
rotation–minimizing with respect to the binormal b. New osculating–plane
vectors (f , g) are specified through a rotation of (t,p) according to

f = cos θ t + sin θ p , g = − sin θ t + cos θ p , (10)

where, in this case, we define

θ(ξ) = θ0 −
∫ ξ

0

κ σ dξ . (11)

Using θ′ = −σκ and (6), the variation of (f , g,b) is described by f ′ = σω×f ,
g′ = σω × g, b′ = σω × b, where the frame angular velocity is

ω = τ t = τ (cos θ f − sin θ g) . (12)

Evidently ω ·b ≡ 0, and this frame is rotation–minimizing with respect to b.
Since the vectors f , g span the osculating plane, and exhibit no instantaneous
rotation about the normal b to that plane along the curve r(ξ), we say that
(f , g,b) is a rotation–minimizing osculating frame (RMOF).

Example 1. For the circular helix defined by

r(φ) = (R cos φ,R sinφ, kφ) (13)

the Frenet frame can be specified in terms of the parameters a = R/
√
R2 + k2

and b = k/
√
R2 + k2 as

t = (−a sin φ, a cosφ, b) , p = (− cos φ,− sinφ, 0) , b = (b sinφ,− b cosφ, a)

and the parametric speed, curvature, and torsion are σ =
√
R2 + k2, κ = a/σ,

τ = b/σ. The angular deviation (8) of the RMAF normal–plane vectors (u,v)
from the Frenet frame vectors (p,b) is thus θ = θ0 − b φ. Hence, for θ0 = 0,
the RMAF basis vectors (7) are

u = (− cosφ cos bφ− b sinφ sin bφ,− sinφ cos bφ+ b cosφ sin bφ,−a sin bφ) ,

v = (− cosφ sin bφ+ b sin φ cos bφ,− sin φ sin bφ− b cos φ cos bφ, a cos bφ) .
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Figure 1 compares the Frenet frame and RMAF normal–plane vectors along
the helix (13) with R = 2.5 and k = 0.6. The angular deviation (11) of the
RMOF osculating–plane vectors (f , g) from the Frenet frame vectors (t,p)
is θ = θ0 − a φ, and hence for θ0 = 0 the RMOF basis vectors (10) are

f = (−a sin φ cos aφ+ cosφ sin aφ, a cosφ cos aφ+ sin φ sin aφ, b cos aφ) ,

g = (−a sin φ sin aφ− cosφ cos aφ, a cosφ sin aφ− sinφ cos aφ, b sin aφ) .

Figure 2 compares the Frenet frame and RMOF osculating–plane vectors.

Figure 1: Comparison of (left) the Frenet frame vectors p,b and (right) the
rotation–minimizing adapted frame vectors u,v on the circular helix (13).

Figure 2: Comparison of (left) the Frenet frame vectors t,p and (right) the
rotation–minimizing osculating frame vectors f , g on the circular helix (13).

For the Frenet frame (t,p,b) we have (ω1, ω2, ω3) = (τ, 0, κ) from (5), so a
body aligned with this frame along the path r(ξ) exhibits pitch–free motion.
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For the rotation–minimizing adapted frame (t,u,v) we have (ω1, ω2, ω3) =
(0, κ sin θ, κ cos θ) from (9), so a body aligned with the RMAF exhibits roll–

free motion. Finally, for the rotation–minimizing osculating frame (f , g,b)
we have angular velocity components (ω1, ω2, ω3) = (τ cos θ,− τ sin θ, 0) from
(12), and hence a body aligned with the RMOF exhibits yaw–free motion.

Rotation–minimizing frames can also offer intuitive characterizations for
certain special curves on smooth surfaces. The Darboux frame (n, t,h) along
a surface curve comprises the surface normal n, the curve tangent t, and
the tangent normal h = n × t — i.e., a unit vector in the surface tangent
plane, orthogonal to the curve tangent. The variation of the Darboux frame
is specified [25, 32] in terms of its angular velocity

Ω = κg n − τg t − κn h

by the relations n′ = σΩ × n, t′ = σΩ × t, h′ = σΩ × h, where

κg =
h · t′
σ

, τg =
h · n′

σ
, κn =

n · t′
σ

,

are the geodesic curvature, geodesic torsion, and normal curvature along the
surface curve. In terms of these quantities, the geodesics, line of curvatures,
and asymptotic lines on a smooth surface may be characterized [25, 32] as loci
along which κg ≡ 0, τg ≡ 0, and κn ≡ 0, respectively. From Definition 1, we
obtain the following alternative succinct characterizations, which are useful
in the construction of surface patches bounded by geodesics [19, 29, 31]; lines
of curvature [4, 26, 27]; and asymptotic lines [2].

Proposition 1. A surface curve is (i) a geodesic; (ii) a line of curvature; or

(iii) an asymptotic line, if and only if the Darboux frame (n, t,h) is rotation–

minimizing with respect to (i) the surface normal n; (ii) the curve tangent t;

or (iii) the tangent normal h.

3 Rational rotation–minimizing frames

Exact rational frames are preferable to approximations when possible, since
they provide a precise and efficient means of orienting a rigid body along a
given path. After briefly reviewing the theory of rational RMAFs below, we
consider its adaptation to the problem of identifying rational RMOFs.
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3.1 Rational RMAF on PH curves

The existence of rational RMAFs on polynomial space curves has recently
been studied [10]. A polynomial space curve with a rational RMAF must be
a Pythagorean–hodograph (PH) curve, since only the PH curves have rational
unit tangents [9]. The distinctive property of a polynomial PH curve r(ξ) =
(x(ξ), y(ξ), z(ξ)) is that its derivative components satisfy [9] the condition

|r′(ξ)|2 = x′2(ξ) + y′2(ξ) + z′2(ξ) = σ2(ξ) (14)

for some polynomial σ(ξ). A spatial PH curve may be generated [7] from a
quaternion polynomial

A(ξ) = u(ξ) + v(ξ) i + p(ξ) j + q(ξ)k (15)

and its conjugate A∗(ξ) = u(ξ)− v(ξ) i− p(ξ) j− q(ξ)k through the product

r′(ξ) = A(ξ) iA∗(ξ) = [ u2(ξ) + v2(ξ) − p2(ξ) − q2(ξ) ] i

+ 2 [ u(ξ)q(ξ) + v(ξ)p(ξ) ] j + 2 [ v(ξ)q(ξ)− u(ξ)p(ξ) ]k . (16)

Alternatively, one may use complex polynomials

α(ξ) = u(ξ) + i v(ξ) , β(ξ) = q(ξ) + i p(ξ) , (17)

in the Hopf map expression

r′(ξ) = (|α(ξ)|2 − |β(ξ)|2, 2 Re(α(ξ)β(ξ)), 2 Im(α(ξ)β(ξ))) . (18)

Lemma 1. If the complex polynomials in (18) are of the form α(ξ) = f(ξ),
β(ξ) = eiψg(ξ) for real f(ξ), g(ξ) the curve defined by integrating (18) is

planar. Furthermore, if g(ξ) = kf(ξ) for real k, it is just a straight line.

Proof : When α(ξ) = f(ξ) and β(ξ) = eiψg(ξ) for constant ψ, we have

x′(ξ) = f 2(ξ) − g2(ξ) , y′(ξ) = 2 f(ξ)g(ξ) cosψ , z′(ξ) = − 2 f(ξ)g(ξ) sinψ .

Since sinψ y′(ξ) + cosψ z′(ξ) = 0, we have sinψ y′′(ξ) + cosψ z′′(ξ) = 0 and
sinψ y′′′(ξ)+cosψ z′′′(ξ) = 0. Hence, the last two columns of the determinant

(r′(ξ) × r′′(ξ)) · r′′′(ξ) =

∣

∣

∣

∣

∣

∣

x′(ξ) y′(ξ) z′(ξ)
x′′(ξ) y′′(ξ) z′′(ξ)
x′′′(ξ) y′′′(ξ) z′′′(ξ)

∣

∣

∣

∣

∣

∣
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are linearly dependent, so the torsion vanishes and the curve is planar. Also,
note that expression (18) reduces to r′(ξ) = f 2(ξ) (1−k2, 2 k cosψ,− 2 k sinψ)
if g(ξ) = kf(ξ), which defines a straight line. Lemma 1 also holds in the case
α(ξ) = eiψf(ξ), β(ξ) = g(ξ).

On the PH curve defined by (15) and (16), a rational orthonormal adapted
frame — the Euler–Rodrigues frame (ERF) — is defined [6] by

e1(ξ) =
A(ξ) iA∗(ξ)

|A(ξ)|2 , e2(ξ) =
A(ξ) jA∗(ξ)

|A(ξ)|2 , e3(ξ) =
A(ξ)kA∗(ξ)

|A(ξ)|2 .

Here e1 is the curve tangent while e2, e3 span the normal plane. The variation
of the ERF is characterized by its angular velocity ω through (1), where

σ(ξ) = |r′(ξ)| = u2(ξ) + v2(ξ) + p2(ξ) + q2(ξ)

is the parametric speed of the PH curve r(ξ). Han [21] showed that the PH
curve defined by (15)–(16) possesses a rational RMAF if and only if relatively
prime polynomials a(ξ), b(ξ) exist, such that u(ξ), v(ξ), p(ξ), q(ξ) satisfy

uv′ − u′v − pq′ + p′q

u2 + v2 + p2 + q2
=

ab′ − a′b

a2 + b2
. (19)

This is equivalent to the existence of a rational normal–plane rotation that
maps the ERF vectors e2(ξ), e3(ξ) onto the RMAF vectors u(ξ),v(ξ) so the
ERF angular velocity component in the e1 direction is exactly cancelled. For
PH quintics, specified by quadratic quaternion polynomials with Bernstein
coefficients A0, A1, A2, the condition for a rational RMAF may be expressed
[10] as a single constraint on these coefficients, namely

A2 iA∗

0 + A0 iA∗

2 = 2A1 iA∗

1 .

In the Hopf map model, this is equivalent [10] to the constraints

Re(α0α2 − β0β2) = |α1|2 − |β1|2 , α0β2 + α2β0 = 2 α1β1

on the Bernstein coefficients α0, α1, α2 and β0, β1, β2 of α(t) and β(t).

3.2 Rational RMOF on DPH curves

The existence of rational RMOFs (f , g,b) on polynomial space curves is a
more difficult problem. Whereas all PH curves have rational tangents t(ξ),
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their principal normals n(ξ) and binormals b(ξ) do not, in general, depend
rationally on the curve parameter, because of the | r′(ξ)× r′′(ξ) | term in (4).
To ensure a rational binormal vector, the expression

| r′ × r′′ |2 = (y′z′′ − y′′z′)2 + (z′x′′ − z′′x′)2 + (x′y′′ − x′′y′)2

must be the perfect square of a polynomial in ξ. Now it can be shown [13, 15]
that every PH curve satisfies the relation

| r′(ξ) × r′′(ξ) |2 = 4 σ2(ξ) ρ(ξ) ,

where the polynomial ρ can be expressed in terms of u, v, p, q and u′, v′, p′, q′

in several different ways [9], the simplest being

ρ = (up′ − u′p+ vq′ − v′q)2 + (uq′ − u′q − vp′ + v′p)2 . (20)

Hence, the binormal vector is rational if and only if we have

ρ(ξ) = γ2(ξ) (21)

for some polynomial γ(ξ), i.e.,

| r′×r′′ |2 = (y′z′′−y′′z′)2 + (z′x′′−z′′x′)2 + (x′y′′−x′′y′)2 = 4(σγ)2 . (22)

Polynomial curves satisfying (14) and (22) are double PH (DPH) curves

[3, 13]. They have rational Frenet frames, curvature, and torsion, defined by

t =
r′

σ
, p =

σr′′ − σ′r′

2 σγ
, b =

r′ × r′′

2 σγ
, κ =

2 γ

σ2
, τ =

(r′ × r′′) · r′′′
4 σ2γ2

. (23)

Remark 2. Because of their rational Frenet frames, curvature, and torsion,
we shall focus here on rational RMOFs on DPH curves, and do not address
at present the existence of non–DPH curves that possess rational binormals
and admit rational rotation–minimizing osculating–plane basis vectors f , g.

A (general) helix is characterized by the fact that its tangent t maintains
a constant inclination ψ (the pitch angle) with respect to a fixed direction a

(the axis of the helix) and the curvature/torsion ratio is constant [25, 32]. A
polynomial helix must be a PH curve [15] — in fact, a DPH curve [13]. All
PH cubics and all helical PH quintics are DPH curves, but non–helical DPH
curves of degree ≥ 7 exist. Complete details may be found in [3, 13, 28].
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Remark 3. For any DPH curve, the Frenet frame specifies a rational pitch–

free motion, since the Frenet frame is rotation–minimizing with respect to
the principal normal, and it is also rational for double PH curves.

The ERF is of no use in constructing a rational RMOF, since it does not
incorporate the binormal b and two rational vectors spanning the osculating
plane, to which a rotation can be applied to cancel the angular velocity
component in the direction of b. Instead, we use the rational Frenet frame
(23) for a DPH curve, and seek a rational osculating–plane rotation

[

f(ξ)
g(ξ)

]

=
1

a2(ξ) + b2(ξ)

[

a2(ξ) − b2(ξ) − 2 a(ξ)b(ξ)
2 a(ξ)b(ξ) a2(ξ) − b2(ξ)

] [

t(ξ)
p(ξ)

]

(24)

that maps the Frenet frame vectors t(ξ),p(ξ) to the RMOF vectors f(ξ), g(ξ)
and cancels the κb component of the Frenet frame angular velocity (5).

Now (10) and (24) give θ = − 2 tan−1 b/a and θ′ = 2(a′b− ab′)/(a2 + b2),
and if (24) defines an RMOF, we must have θ′ = −κ σ from (11). Thus, we
deduce from (23) that a DPH curve satisfying (14) and (22) has a rational
RMOF if and only if polynomials a(ξ), b(ξ) exist, such that

γ

u2 + v2 + p2 + q2
=

ab′ − a′b

a2 + b2
. (25)

3.3 Rational RMOF on DPH cubics

Every spatial PH cubic is a helical curve [16], and also a DPH curve [13].
Such curves admit a closed–form (but not rational) expression for the RMOF.
A cubic space curve with control points p0,p1,p2,p3 and control polygon leg
vectors L0 = p1 − p0, L1 = p2 − p1, L2 = p3 − p2 is a PH curve [16] if and
only if L0, L2 lie on a right–circular cone of half–angle ϑ ≤ 1

2
π about L1 as

axis, and their azimuthal separation ϕ on this cone is given by

cosϕ = 1 − 2L2
1

L0L2

, (26)

where Li = |Li|. Adopting suitable coordinates, one may assume that L1 =
L1(0, 0, 1), L0 = L0(sinϑ, 0, cosϑ), L2 = L2(sinϑ cosϕ sinϑ sinϕ, cosϑ), with
ϕ satisfying (26) and L1 ≤

√
L0L2. The parametric speed is then

σ(ξ) = |r′(ξ)| = 3 [L0(1 − ξ)2 + L1 cos ϑ 2(1 − ξ)ξ + L2ξ
2 ] , (27)
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where ∆ = L0L2 −L2
1 cos2 ϑ ≥ 0, so that σ(ξ) ≥ 0 for all ξ. Since |r′ × r′′| =

6L1 sinϑσ(ξ) and (r′×r′′) ·r′′′ = 108 (L0×L1) ·L2, the curvature and torsion
can be expressed [16] in terms of (27) as

κ(ξ) =
6L1 sin ϑ

σ2(ξ)
, τ(ξ) =

− 3L0L2 sinϕ

L1σ2(ξ)
. (28)

Hence, the angle function (11) that specifies that RMOF vectors f , g in terms
of the Frenet frame vectors t,p is given by

θ(ξ) = θ̂0 − 2L1 sinϑ√
∆

tan−1 (L1 cos ϑ− L0)(1 − ξ) + (L2 − L1 cos ϑ)ξ√
∆

,

where θ̂0 = θ0 + (2L1 sinϑ/
√

∆) tan−1((L1 cos ϑ− L0)/
√

∆).

Proposition 2. The condition (25) for a rational RMOF can be satisfied by

PH cubics only in the degenerate case of planar curves.

Proof : Since |r′ × r′′|2 = 4(σγ)2 and |r′ × r′′| = 6L1 sin ϑσ we see that
γ(ξ) = 3L1 sinϑ is a constant. Substituting this together with (27) for the
denominator on the left in (25), and assuming a(ξ) = a0(1− ξ) + a1ξ, b(ξ) =
b0(1 − ξ) + b1ξ on the right, satisfaction of (25) requires that

a0b1−a1b0 = 3L1 sin ϑ, a2
0+b20 = 3L0, a0a1+b0b1 = 3L1 cosϑ, a2

1+b21 = 3L2.

With c0 = a0+i b0, c1 = a1+i b1 these equations are equivalent to |c0|2 = 3L0,
c0c1 = 3L1e

iϑ, |c1|2 = 3L2, and we must have |c0| =
√

3L0, |c0| |c1| = 3L1,
|c1| =

√
3L2. From (26) these conditions imply that cosϕ = −1, sinϕ = 0.

It then follows from (28) that the torsion vanishes, so the curve is planar.

3.4 Rational RMOF on DPH quintics

One is thus led to consider satisfaction of (25) in the case of DPH quintics,
which are equivalent to the quintic helical polynomial space curves: for such
curves, γ(ξ) is a quadratic polynomial. The characterization of curves that
have rational RMOFs, as solutions to (25), is more difficult than the problem
of identifying curves with rational RMAFs, satisfying (19). Unlike (19), the
numerator polynomial on the left in (25) is not known explicitly in terms of
u, v, p, q — instead, γ must be determined from conditions (20)–(21).
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Now for the polynomials (17) defining the Hopf map form (18), we have

αβ′ − α′β = (uq′ − u′q − vp′ + v′p) + i (up′ − u′p+ vq′ − v′q) ,

and hence (20) can be written as ρ = |αβ′ − α′β|2. The condition (21) for
ρ to be a perfect square is thus equivalent [13, 28] to the requirement that

α(ξ)β′(ξ) − α′(ξ)β(ξ) = h(ξ)w2(ξ) (29)

for a real polynomial h(ξ) and complex polynomial w(ξ) = r(ξ)+ i s(ξ) with
gcd(r(ξ), s(ξ)) = 1, where deg(h) + 2 deg(w) = 2 max(deg(α), deg(β)) − 2.
The polynomial γ(ξ) defined by (21) is then given by γ(ξ) = h(ξ) |w(ξ)|2.

For DPH quintics with max(deg(α), deg(β)) = 2, the solutions to (29)
may be categorized according to whether (a) deg(h) = 0 and deg(w) = 1;
or (b) deg(h) = 2 and deg(w) = 0. These correspond [3, 13, 15, 28] to the
monotone helical and general helical PH quintics, respectively — the former
maintain a fixed sense of rotation of the tangent t about the axis a, while
the latter may exhibit a reversal of the sense of rotation.

In case (a) we may set h(ξ) = 1 and w(ξ) = w0(1− ξ)+w1ξ without loss
of generality. Satisfaction of (29) by quadratic polynomials α(t) and β(t)
with Bernstein coefficients α0, α1, α2 and β0, β1, β2 then implies that

(α0β1 − α1β0,α0β2 − α2β0,α1β2 − α2β1) = (1

2
w2

0,w0w1,
1

2
w2

1) (30)

which is equivalent to (α0β1 − α1β0) (α1β2 − α2β1) = 1
4
(α0β2 − α2β0)

2.
If this constraint is satisfied and w0,w1 are complex values determined from
(30), the polynomial γ(ξ) in the rational RMOF condition (25) has the form

γ(ξ) = |w0|2(1 − ξ)2 + Re(w0w1) 2(1 − ξ)ξ + |w1|2ξ2 .

In case (b) we set h(ξ) = h0(1 − ξ)2 + h12(1 − ξ)ξ + h2ξ
2 and w(ξ) = eiζ

without loss of generality. Then satisfaction of (29) implies that

(α0β1 −α1β0,α0β2 −α2β0,α1β2 −α2β1) = (1
2
h0e

i2ζ , h1e
i2ζ , 1

2
h2e

iζ) (31)

i.e., α0β1 −α1β0, α0β2 −α2β0, α1β2 −α2β1 are just real multiples of each
other. In this case, with the coefficients of α(t) and β(t) satisfying (31), the
polynomial γ(ξ) in (25) has the form γ(ξ) = h0(1− ξ)2 + h12(1− ξ)ξ+ h2ξ

2.
Equations (30) and (31) differ only in the complex values on the right.

We now consider their solutions for general values (z0, z1, z2) 6= (0, 0, 0) on
the right, focusing on the “generic” case with z1 6= 0 and z0α2 + z2α0 6= 0
(the cases z1 = 0 or z0α2 + z2α0 = 0 also yield only linear or planar curves:
since the arguments for these cases are rather technical, we omit them).
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Remark 4. If (z0, z1, z2) = (0, 0, 0) the left–hand side of (25) vanishes, and
it is satisfied with a(ξ), b(ξ) constant, i.e., the Frenet frame is an RMOF. But
this occurs only if the curvature vanishes, so the curve is just a straight line.

Proposition 3. For z1 6= 0, the solutions to the system of equations

α0β1 − α1β0 = z0 , α0β2 − α2β0 = z1 , α1β2 − α2β1 = z2 , (32)

where z0α2 + z2α0 6= 0 may be defined be expressing α1,β0,β2 in terms of

α0,α2,β1 as

α1 =
z0α2 + z2α0

z1

, β0 =
(α0β1 − z0)z1

z0α2 + z2α0

, β2 =
(α2β1 + z2)z1

z0α2 + z2α0

. (33)

Proof : Writing (32) as a linear system for β0,β1,β2 in the form





−α1 α0 0
−α2 0 α0

0 −α2 α1









β0

β1

β2



 =





z0

z1

z2



 , (34)

the matrix on the left is seen to be of rank 2. Solutions exist if and only if
the 3 × 4 augmented matrix, defined by appending the vector on the right
in (34) as a fourth column to the matrix on the left, is also of rank 2. The
determinants of the three 3×3 matrices defined by combining two of the first
three columns of the augmented matrix with the last column are

α2(z0α2+z2α0−z1α1) , −α1(z0α2+z2α0−z1α1) , α0(z0α2+z2α0−z1α1) .

Now (α0,α1,α2) = (0, 0, 0) cannot satisfy (32) if z1 6= 0, so we must have

z0α2 + z2α0 − z1α1 = 0 .

This condition yields the expression for α1 in (33) and if it holds, equations
(34) admit solutions in which one of β0,β1,β2 may be treated as a parameter.
Choosing β1 as the free parameter, and substituting for α1 into the first and
third of equations (32), we obtain the expressions for β0,β2 in (33).

Hence, when equations (32) are satisfied with z1 6= 0 and z0α2+z2α0 6= 0,
we can express α(t), β(t) in terms of α0,α2,β1 and z0, z1, z2 as

α(ξ) = α0 (1 − ξ)2 +
z0α2 + z2α0

z1

2(1 − ξ)ξ + α2 ξ
2 ,
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β(ξ) =
(α0β1 − z0)z1

z0α2 + z2α0

(1 − ξ)2 + β1 2(1 − ξ)ξ +
(α2β1 + z2)z1

z0α2 + z2α0

ξ2 .

Considerable simplification is achieved by considering canonical form curves,
with (α0,β0) = (1, 0). Since canonical form is achieved by a scaling/rotation,
that maps r′(0) to the unit vector i, it does not alter the PH or DPH nature
of a curve, or the existence of rational rotation–minimizing frames on it [10].

Setting α0 = 1 and β1 = z0 gives the canonical–form polynomials

α(ξ) = (1 − ξ)2 +
z0α2 + z2

z1

2(1 − ξ)ξ + α2 ξ
2 ,

β(ξ) = z0 2(1 − ξ)ξ + z1 ξ
2 .

(35)

These polynomials define a monotone or general helical DPH quintic, when
(z0, z1, z2) are of the form (1

2
w2

0,w0w1,
1
2
w2

1) or ei2ζ(1
2
h0, h1,

1
2
h2).

Now suppose that condition (25) is satisfied with quadratic polynomials
a(ξ), b(ξ). Combining them into a complex polynomial c(ξ) = a(ξ) + i b(ξ)
with Bernstein coefficients c0, c1, c2, we see that the right–hand side of (25)
is equal to Im(cc′)/|c|2. Since this expression is unchanged on dividing c(ξ)
by any complex constant, we may choose c0 = 1 without loss of generality.

With c0 = 1, if γ0, γ1, γ2 are the Bernstein coefficients of γ(ξ), satisfaction
of (25) means that for some real number ℓ 6= 0 we must have

γ0 = 2 ℓ Im(c1) , γ1 = ℓ Im(c2) , γ2 = 2 ℓ Im(c1c2) , (36)

|α0|2 + |β0|2 = ℓ ,

Re(α0α1 + β0β1) = ℓRe(c1) ,

Re(α0α2 + β0β2) + 2 (|α1|2 + |β1|2) = ℓ (Re(c2) + 2 |c1|2) ,
Re(α1α2 + β1β2) = ℓRe(c1c2) ,

|α2|2 + |β2|2 = ℓ |c2|2 .

(37)

3.4.1 Monotone helical quintics

For the DPH quintic specified by (35) with (z0, z1, z2) = (1

2
w2

0,w0w1,
1

2
w2

1)
and (γ0, γ1, γ2) = (|w0|2,Re(w0w1), |w1|2), we obtain ℓ = 1 from the first
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equation in (37). Equations (36) and the other equations in (37) are then

|w0|2 = 2 Im(c1) , Re(w0w1) = Im(c2) , |w1|2 = 2 Im(c1c2) ,

Re(α1) = Re(c1) ,

Re(α2) + 2 |α1|2 + 1
2
|w0|4 = Re(c2) + 2 |c1|2 ,

Re(α1α2 + 1
2
|w0|2w0w1) = Re(c1c2) ,

|α2|2 + |w0|2|w1|2 = |c2|2 ,

where α1 = 1
2
(w1/w0)+

1
2
(w0/w1)α2, α2 is free, and β1 = 1

2
w2

0, β2 = w0w1.
Setting c1 = a1 +i b1, c2 = a2 +i b2, w0 = w0e

iφ0, w1 = w1e
iφ1 , α2 = u2 +i v2,

c = cos(φ1 − φ0), s = sin(φ1 − φ0) then gives

w2
0 = 2 b1 , w0w1c = b2 , w2

1 = 2 (a1b2 − a2b1) , (38)

w0

w1

(cu2 + sv2) +
w1

w0

c = 2a1 ,

4c(cu2 + sv2) +
w2

0

w2
1

(u2
2 + v2

2) +
w2

1

w2
0

+ w4
0 = 2a2 + 4(a2

1 + b21) ,

w1

w0

(cu2 + sv2) +
w0

w1

c(u2
2 + v2

2) + w3
0w1c = 2(a1a2 + b1b2) ,

u2
2 + v2

2 + w2
0w

2
1 = a2

2 + b22 .

(39)

Lemma 2. The solutions to (38)–(39) generate straight lines if b1 = 0, and

planar curves if v2 = 0 and φ1 = φ0 + kπ for integer k, i.e., (c, s) = (±1, 0).

Proof : If b1 = 0, equations (38) imply that w0 = w1 = 0, and thus w(ξ) ≡ 0.
Consequently, from (29) we have α(ξ)β′(ξ) − α′(ξ)β(ξ) ≡ 0, and since the
curvature of r(ξ) can be expressed [13] as

κ(ξ) = 2
|α(ξ)β′(ξ) − α′(ξ)β(ξ) |

(|α(ξ) |2 + |β(ξ) |2)2
,

this implies that κ(ξ) ≡ 0 — i.e., the curve degenerates to a straight line. If
φ1 = φ0 + kπ and v2 = 0 (i.e., α2 is real), we have

(α0,α1,α2) = (1,±1
2
[ (w1/w0) + (w0/w1)u2 ], u2) ,
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(β0,β1,β2) = ei 2φ0 (0, 1
2
w2

0,±w0w1) ,

and α(ξ), β(ξ) are thus of the form stated in Lemma 1 for a planar curve.

Proposition 4. Monotone helical DPH quintics admit rational RMOFs only

in the degenerate cases of straight lines or planar curves.

Proof : For equations (38) to define real w0, w1 values we must have b1 > 0
and a1b2 − a2b1 ≥ 0, where we invoke Lemma 2 to discount the case b1 = 0.
Moreover, consistency of these equations implies that

c2 =
b22

4 (a1b2 − a2b1)b1
, (40)

and hence we must also have 4 (a1b2−a2b1)b1 ≥ b22. Assuming these conditions
hold, substituting (38) and (40) into (39) gives

4
b1
b2
c(cu2 + sv2) +

b2
b1

= 4a1 ,

4c(cu2 + sv2) +
b1

a1b2 − a2b1
(u2

2 + v2
2) +

a1b2 − a2b1
b1

= 2a2 + 4a2
1 ,

4
a1b2 − a2b1

b2
c(cu2 + sv2) +

b2
a1b2 − a2b1

(u2
2 + v2

2) = 4a1a2 ,

u2
2 + v2

2 + 4(a1b2 − a2b1)b1 = a2
2 + b22 .

From the first and fourth of these equations we obtain

c(cu2 +sv2) =
b2
b1

(

a1 −
b2
4b1

)

, u2
2 +v2

2 = a2
2 + b22−4(a1b2−a2b1)b1 , (41)

and thus, to ensure that α2 = u2 + i v2 exists, we have the further inequality
a2

2 + b22 ≥ 4(a1b2 − a2b1)b1. On substituting (41) into the second and third
equations, we arrive at two conditions involving only a1, b1, a2, b2 — namely

[

a2
1 + b21

a1b2 − a2b1
− 1

b1

] [

b22
b1

− 4(a1b2 − a2b1)

]

= 0 , (42)
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[

a1a2 + b1b2
a1b2 − a2b1

− a1

b1

] [

b22
b1

− 4(a1b2 − a2b1)

]

= 0 . (43)

Consider first the case where the common second factor in (42)–(43) vanishes.
Then (c, s) = (±1, 0) from (40), and equations (41) reduce to

u2 =
b2
b1

(

a1 −
b2
4b1

)

, u2
2 + v2

2 = a2
2 .

Substituting the former into the latter gives

v2
2 =

[ b22 − 4(a1b2 − a2b1)b1 ][ 4(a1b2 + a2b1)b1 − b22 ]

16 b41
,

and since b22 − 4(a1b2 − a2b1)b1 = 0, we obtain v2 = 0. The conditions v2 = 0
and (c, s) = (±1, 0) of Lemma 2 for a planar curve are thus satisfied.

Now consider that case where the first factors in equations (42)–(43) vanish
simultaneously. This occurs (provided that a2

1 ≥ a2) when

b1 = ±
√

a2
1 − a2 and b2 = ± 2 a1

√

a2
1 − a2 . (44)

From (40) we then have c2 = a2
1/(2 a

2
1 − a2), and using this together with

s2 = 1− c2 in (41) gives v2
2 = a2

1(2 a
2
1 − a2 −u2)

2/(a2
1 − a2). Substituting into

the second of equations (41) and simplifying yields the quadratic equation

u2
2 − 2 a2

1 u2 + 4 a4
1 − 6 a2

1a2 + 3 a2
2 = 0

in u2. Since this has discriminant − 12(a2
1 − a2)

2, there are no real solutions
for u2 unless a2

1 = a2, in which case we have b1 = 0 from (44) and Lemma 2
implies that the curve degenerates into a straight line.

3.4.2 General helical quintics

For a DPH quintic specified by (35) with (z0, z1, z2) = (1

2
h0e

i2ζ , h1e
i2ζ , 1

2
h2e

i2ζ)
and (γ0, γ1, γ2) = (h0, h1, h2), we have ℓ = 1 again from the first equation in
(37), so (36) and the other equations in (37) become

h0 = 2 Im(c1) , h1 = Im(c2) , h2 = 2 Im(c1c2) ,

Re(α1) = Re(c1) ,

Re(α2) + 2 (|α1|2 + |β1|2) = Re(c2) + 2 | bfc1|2 ,
Re(α1α2 + β1β2) = Re(c1c2) ,

|α2|2 + |β2|2 = |c2|2 ,
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with α1 = 1
2
(h0α2 + h2)/h1, α2 free, and β1 = 1

2
h0e

i2ζ , β2 = h1e
i2ζ . Setting

c1 = a1 + i b1, c2 = a2 + i b2, α2 = u2 + i v2 then gives

h0 = 2 b1 , h1 = b2 , h2 = 2 (a1b2 − a2b1) , (45)

h0u2 + h2 = 2h1a1 ,

2(h2
1 + h0h2)u2 + h2

0(u
2
2 + v2

2) + h2
0h

2
1 + h2

2 = 2h2
1[ a2 + 2(a2

1 + b21) ] ,

h0(u
2
2 + v2

2) + h2u2 + h0h
2
1 = 2h1(a1a2 + b1b2) ,

u2
2 + v2

2 + h2
1 = a2

2 + b22 .

(46)

Proposition 5. General helical DPH quintics admit rational RMOFs only

in the degenerate case of planar curves.

Proof : Substituting (45) into (46) and simplifying gives

u2 = a2 ,

(b22 + 4 (a1b2 − a2b1)b1)u2 + 2 b21(u
2
2 + v2

2) = 4 a1a2b1b2 + a2b
2
2 − 2 a2

2b
2
1 ,

b1(u
2
2 + v2

2) + (a1b2 − a2b1)u2 = a1a2b2 ,

u2
2 + v2

2 = a2
2 .

From the first and fourth equations we have (u2, v2) = (a2, 0) and these values
also satisfy the other equations. Hence, α2 = u2 and α1 = 1

2
(h0u2 + h2)/h1,

and α(ξ), β(ξ) have the form identified in Lemma 1 with planar curves, since
(α0,α1,α2) = (1, 1

2
(h0u2 + h2)/h1, u2) and (β0,β1,β2) = ei 2ψ(0, 1

2
h0, h1).

4 Ruled surfaces

Surfaces generated by the motion of a straight line through space are called
ruled surfaces. Each instance of the line is a ruling or generator of the surface.
A special class of ruled surfaces, the developable surfaces, is characterized by
a constant surface normal along each ruling. A surface is developable if and
only if it is the envelope of a one–parameter family of planes. A developable
surface, regarded as a thin material sheet, can be “flattened” (or developed)
onto a plane, without stretching or compressing it [22, 25, 32].

Several important ruled surfaces are associated with a space curve. The
surface generated by the curve tangent lines is a developable surface, known
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as the tangent developable — it can also be interpreted as the envelope of the
curve osculating planes. However, for space curves, the surfaces generated by
lines along the principal normal and binormal directions at each point are not
developable [25]. The envelopes of the normal planes and the rectifying planes
to a space curve are called the polar developable and rectifying developable.

If the tangent developable is developed onto a plane, the space curve maps
to a plane curve, the generators of the surface becoming its tangents. The two
curves have equal curvatures at corresponding points, and equal arc lengths
of corresponding segments [22]. When the rectifying developable is developed
onto a plane, the curve maps to a straight line, corresponding segments of
the curve and the line having equal lengths. The polar developable can be
regarded as the analog, for a space curve, of the evolute of a plane curve [32].

Consider the construction of a ruled surface from a space curve r(ξ), such
that the surface tangent plane is coincident with the curve osculating plane.
Expressing the surface in terms of a unit vector d(ξ) defined along r(ξ) as

s(ξ, λ) = r(ξ) + λd(ξ) , (47)

it has the desired property if d(ξ) is of the form

d(ξ) = cos Θ(ξ) t(ξ) + sin Θ(ξ)p(ξ) (48)

since we than have

sξ × sλ = sin Θ σ b + λ [ sinΘ στ (cos Θp− sin Θ t) − (Θ′ + σκ)b ] ,

and thus when λ = 0 — i.e., along the curve r(ξ) — the surface normal is

n =
sξ × sλ

| sξ × sλ |
= − sign(sin Θ)b . (49)

Coincidence of the osculating plane of r(ξ) with the tangent plane of s(ξ, λ)
identifies the curve as an asymptotic line of the surface (47).

The tangent developable and the principal normal surface correspond to
choosing t(ξ) and p(ξ) for d(ξ). The angular velocity describing the changing
orientation of the rulings in these cases is the Darboux vector, ω = κb+ τ t.
However, the component κb of this angular velocity defines an orientational
change within the osculating plane, that is “unnecessary” to satisfaction of
the constraints imposed on s(ξ, λ). A ruled surface satisfying the prescribed
interpolation conditions, with the least orientational variation of its rulings,
can be constructed by choosing one of the RMOF vectors f(ξ), g(ξ) defined
by (10)–(11) — or any vector fixed relative to them — for d(ξ).
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4.1 Tangent developable

The family of tangent lines to a curve r(ξ) define the ruled surface

s(ξ, λ) = r(ξ) + λ t(ξ) , (50)

with derivatives sξ = σ (t + λκp) and sλ = t satisfying sξ × sλ = −σλκb.
Thus, if r(ξ) is regular with non–vanishing curvature, the surface normal is

n =
sξ × sλ

| sξ × sλ |
= − sign(λ)b .

This is the singular case Θ(ξ) ≡ 0 of (49). The tangent developable consists
of two “sheets” corresponding to λ < 0 and λ > 0 that meet at λ = 0, i.e.,
along the curve r(ξ), where n is indeterminate (it is also indeterminate along
rulings corresponding to points at which κ = 0 — i.e., the inflections of r(ξ)).
Since n exhibits a sudden reversal on passing through λ = 0 along a ruling
of the surface (50), the curve r(ξ) is called [25] the cuspidal edge or edge of

regression of the tangent surface s(ξ, λ). It may also be regarded as the locus
of intersection points of neighboring generators, at parameter values ξ and
ξ + δξ, as δξ → 0. Since n is independent of λ (except at λ = 0), each sheet
of the surface (50) is developable, and can be generated by folding a piece of
paper. In applications, one considers portions of the surface (50) with λ < 0
or λ > 0, to avoid inclusion of the singular locus defined by λ = 0.

4.2 Principal normal surface

The principal normal surface has rulings along the principal normal vectors
to the curve r(ξ), and thus has the parameterization

s(ξ, λ) = r(ξ) + λp(ξ) . (51)

Since sξ = σ [ (1 − λκ) t + λτ b ] and sλ = p, the surface normal is as

n =
sξ × sλ

| sξ × sλ |
=

(1 − λκ)b− λτ t
√

(1 − λκ)2 + (λτ)2
=

b − λω

|b− λω | ,

where ω is the Darboux vector defined by (5). Note that n is non–singular at
λ = 0. Since n depends explicitly on λ, the surface (51) is not developable.

If the curve has vanishing torsion at ξ = ξ∗, the surface normal becomes
singular at the point λ = 1/κ(ξ∗) of the corresponding ruling — this identifies
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the center of curvature for the curve point r(ξ∗). If the curvature is finite,
the surface normal n is non–singular at each point of the curve r(ξ).

On non–developable ruled surfaces, neighboring generators at parameter
values ξ and ξ+δξ do not intersect as δξ → 0, so there is no edge of regression.
Instead, closest points on neighboring generators as δξ → 0 define a locus
called the line of striction. For the surface (47), it is defined [30, 32] by

q(ξ) = r(ξ) − r′(ξ) · d′(ξ)

|d′(ξ)|2 d(ξ) . (52)

For the tangent surface, choosing the tangent t(ξ) for d(ξ) gives q(ξ) = r(ξ)
— i.e., the line of striction is the edge of regression. However, for the principal
normal surface, choosing p(ξ) for d(ξ) gives the line of striction

q(ξ) = r(ξ) +
κ(ξ)

κ2(ξ) + τ 2(ξ)
p(ξ) .

The pitch of a non–developable ruled surface is a measure of the variation of
the surface tangent plane along each ruling. If δθ and δh are the angle and
distance between rulings at ξ and ξ + δξ, the pitch p(ξ) is [22] the limit of
the ratio δθ/δh, as δξ → 0. For the surface (47), it is specified [30] by

p(ξ) =
|d′(ξ)|2

r′(ξ) · [d(ξ) × d′(ξ) ]
. (53)

One can verify that, for the principal normal surface, p = (κ2 + τ 2)/τ .

4.3 Rotation–minimizing ruled surface

For the tangent surface (50) and principal normal surface (51), the angular
velocity ω of the rulings is defined by the Darboux vector (5), in which the
term κb specifies an “unnecessary” rotation in the osculating plane — i.e.,
it is not required for the tangent plane of s(ξ, λ) to be coincident with the
osculating plane of r(ξ) at each point. A rotation–minimizing ruled surface,
interpolating a given curve and its osculating planes, can be defined by using
one of the basis vectors (10)–(11) to specify the rulings, so as to eliminate
the term κb in the Darboux vector. For example, the rulings of the surface

s(ξ, λ) = r(ξ) + λ f(ξ) , (54)
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have the angular velocity (12). The surface derivatives are sξ = σ t + λ f ′

and sλ = f , where f = cos θ t + sin θ p and f ′ = στ sin θ b. Hence, we have
sξ × sλ = σ sin θ (b + λτ f), and the unit surface normal is defined by

n =
sξ × sλ

| sξ × sλ |
= sign(sin θ)

b + λτ g√
1 + λ2τ 2

. (55)

Because the surface normal varies with λ, the surface (54) is not developable.
The surface normal (55) is singular along each ruling at a parameter value

ξ for which the angle (11) is an integer multiple of π — i.e., at points where
the ruling direction f is parallel or anti–parallel to the tangent. Since the
curvature is non–negative, the angle (11) is monotone–increasing with ξ, and
such singular rulings occur at points on r(ξ) determined by its curvature. In
practice, one would restrict the surface (54) to intervals between such points:
the integration constant θ0 in (11) can be used to adjust such intervals.

Proposition 6. The line of striction on the ruled surface (54) coincides with

the curve r(ξ), as for the tangent surface. The pitch of this surface is equal to

the torsion of the curve r(ξ), and is the smallest possible for the ruled surfaces

defined by (47)–(48), whose tangent planes coincide with the osculating plane

of r(ξ). These results also hold if the frame vector f is replaced by g in (54).

Proof : Choosing d(ξ) = f(ξ) in (52), and recalling that f ′ = στ sin θb, we
obtain r′ · f ′ = σ2τ sin θ t · b = 0, and hence q(ξ) = r(ξ). Similarly, with
d(ξ) = f(ξ) in (53), we have |f ′|2 = σ2τ 2 sin2 θ, and

r′ · (f × f ′) = σ t · [ (cos θ t + sin θ p) × στ sin θ b ] = σ2τ sin2 θ ,

and hence p = τ . Moreover, substituting (48) into (53) and simplifying gives

p = τ +
(Θ′ + σκ)2

σ2τ sin2Θ
.

This expression is of least magnitude when Θ′ = −σ κ, i.e., Θ(ξ) coincides
with the angle θ(ξ) specified by (11), identifying the RMOF vector f(ξ).

Example 2. Figure 3 illustrates the three types of ruled surfaces discussed
above, in the case where the curve r(ξ) is a segment of the circular helix (13).
For all three ruled surfaces, the tangent plane coincides with the osculating
plane along the helix, but the rotation–minimizing ruled surface exhibits the
least possible angular velocity of its rulings consistent with this constraint.
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Figure 3: Comparison of tangent developable (left), principal normal surface
(center) and rotation–minimizing ruled surface (right) for the circular helix
(13) with R = 1

2
and k = 1

2
on the parameter domain φ ∈ [ 0, π ].

Remark 5. The pitch provides a convenient way of piecing together portions
of two non–developable ruled surfaces, with G1 continuity [22]. A generator is
chosen from each surface, having equal pitch values. Then, if these generators
are placed in coincidence, such that the points of striction are coincident, and
the surface tangent planes are in agreement at this point, the two surfaces will
possess a common tangent plane along the common generator. The rotation–
minimizing ruled surfaces (54) are particularly amenable to this construction,
because of the simple nature of their pitch and lines of striction.

Example 3. Consider the composite curve that consists of (i) the PH cubic
r(ξ) in Section 3.3 with p0 = (0, 0, 0), L0 = L2 = 2, ϑ = 1

2
π, and ϕ = 3

2
π for

ξ ∈ [ 0, 1

2
]; and (ii) the circular helix s(φ) = ∆p + f (− cos φ,− sinφ, φ) with

∆p = (17, 1,
√

2 (4− 3

4
π))/8 and f = 3

√
2/8 for φ ∈ [ 1

4
π, 3

4
π ]. These curves

have a common end–point r(1

2
) = s(1

4
π) = 1

4
(7,−1, 2

√
2) and a coincident

tangent t = 1

2
(1,−1,

√
2), curvature κ = 2

√
2/3, and torsion τ = 2

√
2/3

at this point, but the principal normal and binormal of s(φ) have opposite
sense to those of r(ξ). For this composite curve, Figure 4 compares the
principal normal surface, which is only G0 along the common ruling, and the
rotation–minimizing ruled surface, which is G1 along the common ruling.

5 Closure

The variation of the Frenet frame, comprising the tangent t, principal normal
p, and binormal b, characterizes the local geometry of a space curve. The
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Figure 4: The principal normal surface (left) and rotation–minimizing ruled
surface (right) for a composite curve, consisting of segments of a PH cubic
(red curve) and a circular helix (blue curve). The rotation–minimizing ruled
surface is tangent–plane continuous, but the principal normal surface is not.

Frenet frame is rotation–minimizing with respect to p — i.e., t and b have
no rotation about p. Rotation–minimizing adapted frames, characterized by
normal–plane vectors u and v with no rotation about t, are also well–known.
The focus of this study has been on rotation–minimizing osculating frames,
incorporating osculating–plane vectors f and g that have no rotation about
the binormal b. The vectors f , g can be defined by rotating t, p through an
angle equal to minus the integral of the curvature with respect to arc length.

A comprehensive study of the existence of rational RMOFs on low–degree
polynomial space curves indicates no cubic or quintic double PH curves with
this property. The existence of rational RMOFs on degree 7 or higher–order
curves remains an open problem. The use of RMOFs for the construction of
a novel type of ruled surface, interpolating a space curve with tangent planes
that are coincident with the osculating planes along the curve, and minimal
rotation of the rulings under this constraint, was also investigated.
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