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1 Introdu
tionMany problems in applied mathemati
s involve the Gauss transformGÆf(x) = Z� e�jx�yj2=Æf(y) dy (Æ > 0)(1)of a fun
tion f de�ned on � � Rd. The simplest example is the heat equation.The solution of the pure initial value problemut(x; t) = �u(x; t) for t > 0u(x; 0) = f(x) for x 2 Rdis given by u(x; t) = (4�t)�d=2G4tf(x) ;with � equal to the whole spa
e. A similar transform, with � a lower-dimensional subset of Rd, o

urs when one solves any initial/boundary valueproblem for the heat equation by means of potential theory [1, 6, 9, 13, 14℄.Other examples o

ur in vortex methods [3℄, tomography [11℄, and nonpara-metri
 statisti
s [7, 15℄. Finally, a 
ommon analyti
al tool is molli�
ation;one approximates an arbitrary fun
tion f by the family of smooth rapidlyde
reasing fun
tions fÆ(x) = (�Æ)�d=2GÆf(x)whi
h 
onverge to f as Æ ! 0.For numeri
al purposes, one must dis
retize GÆf . Given the values of fat a set of points sj 2 Rd, one 
an approximate the integral (1) by means ofa quadrature formula. A reasonable approximation to GÆf might then takethe form of a dis
rete Gauss transformG(x) = NXj=1 qj e�jx�sjj2=Æ ;(2)where the 
oeÆ
ients qj depend on the values f(sj) and the weights of the
hosen quadrature formula. This paper will fo
us on the problem of eval-uating the sum of Gaussians (2) as eÆ
iently as possible. It will often be1




onvenient to speak of (2) as the Gaussian \�eld" due to sour
es of strengthsqj at the points sj, evaluated at the \target" x.Suppose now that we want to evaluate (2) dire
tly from the de�nition atM targets x = ti. In other words, we want to apply the re
tangular matrixwith entries Gij = e�jti�sj j2=Æto the ve
tor q = (q1; : : : ; qN )T . This requires O(NM) work, whi
h growsrapidly asM and N in
rease, and makes large s
ale 
al
ulations prohibitivelyexpensive.In this paper, we present an algorithm for evaluating (2) at M points inO(N +M) work. The 
onstant in O(N +M) depends only on the dimen-sion d and the desired pre
ision. The amount of memory required is alsoproportional to N +M , so that the algorithm is asymptoti
ally optimal interms of both work and storage. Furthermore, the sour
es and the targets
an be pla
ed anywhere; they need not be restri
ted to a regular grid. Evenif the fun
tion f were given at N equispa
ed points and GÆf evaluated at Nequispa
ed points, fast 
onvolution by means of the Fast Fourier transform(FFT) would require O(N logN) operations, whereas our algorithm requiresonly O(N).2 Hermite expansionsThis se
tion des
ribes the properties of the Gaussian kernel and Hermiteexpansions whi
h we will need. Good referen
es for this material are [4, 5, 8℄and parti
ularly Hille's paper [10℄.The Hermite polynomials Hn(t) may be de�ned by the Rodrigues formulaHn(t) = (�1)net2Dne�t2 t 2 Rwhere D = d=dt. We will make use of this de�nition as well as the generatingfun
tion for Hermite polynomialse2ts�s2 = 1Xn=0 snn!Hn(t) :2



Multipli
ation of ea
h side of the pre
eding expression by e�t2 yieldse�(t�s)2 = 1Xn=0 snn!hn(t);where the Hermite fun
tions hn(t) are de�ned byhn(t) = e�t2Hn(t):(3)(Note that these are not the usual orthonormal Hermite fun
tions; the def-inition here is the right one for this situation.) In pra
ti
e, we will use ashifted and s
aled version of this formula: for s0 2 R and Æ > 0, we havee�(t�s)2=Æ = e�(t�s0�(s�s0))2=Æ= 1Xn=0 1n!  s� s0pÆ !n hn  t� s0pÆ != e�(t�s0)2=Æ 1Xn=0 1n!  s� s0pÆ !nHn  t� s0pÆ ! :This formula tells us how to evaluate the Gaussian �eld e�(t�s)2=Æ at thetarget t due to the sour
e at s, as an Hermite expansion 
entered at s0. Thuswe are shifting a Gaussian at s to a sum of Hermite polynomials times aGaussian, all 
entered at s0.We 
an also inter
hange t and s to writee�(t�s)2=Æ = 1Xn=0 1n!hn  s� t0pÆ ! t� t0pÆ !n :(4)Looked at this way, the expansion expresses a Gaussian with target t as aTaylor series about a nearby target t0; the 
oeÆ
ients of the Taylor seriesare the Hermite fun
tions evaluated at t0. Thus the same expansion servesas both a near-�eld (Taylor) and a far-�eld (Hermite) expansion. The �nalone-dimensional results we will need are the re
urren
e relationhn+1(t) = 2t hn(t)� 2nhn�1(t) t 2 R;3



for Hermite fun
tions and Cramer's inequality for Hermite polynomials:jHn(t)j � K2n=2pn!et2=2where K is a numeri
al 
onstant less than 1.09 in value. Cramer's inequalityimmediately implies the following useful bound for Hermite fun
tions:1n! jhn(t)j � K2n=2 1pn!e�t2=2:We will also need the straightforward extensions of these fa
ts to higherdimensions. Thus, let t and s lie in d-dimensional Eu
lidean spa
e Rd, and
onsider the Gaussian e�jt�sj2 = e�(t1�s1)2�:::�(td�sd)2 :We will �nd it 
onvenient to adopt multiindex notation. A multiindex � =(�1; �2; : : : ; �d) is a d-tuple of nonnegative integers, playing the role of amultidimensional index. For any multiindex � and any t 2 Rd, we de�nej�j = �1 + �2 + : : :+ �d�! = �1!�2! : : : �d!t� = t�11 t�22 : : : t�ddD� = ��11 ��22 : : : ��ddwhere �i is di�erentiation with respe
t to the ith 
oordinate in Rd. If p is aninteger, we say � � p if �i � p for 1 � i � d.The multidimensional Hermite polynomials and Hermite fun
tions arethen de�ned by H�(t) = H�1(t1) : : :H�d(td)h�(t) = e�jtj2H�(t) = h�1(t1) : : : h�d(td)(5)where jtj2 = t21 + : : :+ t2d. 4



The Hermite expansion of a Gaussian in Rd is then simplye�jt�sj2 = X��0 (t� s0)��! h�(s� s0) :(6)Cramer's inequality generalizes to1�! jh�(t)j � K e�jtj2=2 2j�j=2 1p�! ;(7)where K is less than (1:09)d.Finally, our algorithm will require the Taylor expansion of the Hermitefun
tion h�(t) about an arbitrary point t0 2 Rd. Sin
e h� is de�ned byh�(t) = e�t2H�(t)(8) = (�1)j�jD� e�t2 ;applying D� gives immediatelyD�h�(t) = (�1)j�jh�+�(t) :(9)Thus the Taylor series of h� ish�(t) = X��0 (t� t0)��! (�1)j�jh�+�(t0) :(10)We now present the three lemmas on whi
h our algorithm relies. The�rst des
ribes how to transform the �eld due to all sour
es in a box into asingle rapidly 
onverging Hermite expansion about the 
enter of the box.Lemma 2.1 Let NB sour
es sj lie in a box B with 
enter sB and side lengthrp2Æ, with r < 1. Then the Gaussian �eld due to the sour
es in B,G(t) = NBXj=1 qj e�jt�sj j2=Æ;(11)is equal to a single Hermite expansion about sB:G(t) = X��0 A� h�  t� sBpÆ ! :5



The 
oeÆ
ients A� are given byA� = 1�! NBXj=1 qj  sj � sBpÆ !� :(12)The error EH(p) due to trun
ating the series after pd terms satis�es thebound: jEH(p)j = jX��pA�h�  t� sBpÆ ! j � KQB  1p!!d=2  rp+11� r!dwhere QB = P jqjj and K = (1:09)d.Proof: Use (6) to expand ea
h Gaussian in the sum (11) into a Hermiteseries about sB and inter
hange the sums over � and j. The trun
ation errorbound follows from Cramer's inequality (7) and the formula for the tail of ageometri
 series. 2The se
ond lemma shows how to 
onvert an Hermite expansion about sBinto a Taylor expansion about tC . The Taylor series 
onverges rapidly in abox of side rp2Æ about tC , with r < 1.Lemma 2.2 The Hermite expansionG(t) = X��0 A� h�  t� sBpÆ !(13)has the following Taylor expansion, about an arbitrary point tC :G(t) = X��0 B�  t� tCpÆ !� :(14)The 
oeÆ
ients B� are given byB� = (�1)j�j�! X��0 A� h�+�  tC � sBpÆ ! :(15)If the A� are given by (12) then the error ET (p) in trun
ating the Taylorseries after pd terms is bounded, in the box C with 
enter tC and side lengthrp2Æ, byjET (p)j = jX��p B�  t� tCpÆ !� j � KQB  1p!!d=2  rp+11� r!d ;if r < 1. 6



Proof: Ea
h Hermite fun
tion in (13) 
an be expanded into a Taylor seriesby means of equation (10). The expansion (14) is then obtained by inter-
hanging the order of summation. The trun
ation error bound is only a littlemore diÆ
ult: By the formula (12) for A�, we haveB� = (�1)j�j�! X��0 A�h�+�  sB � tCpÆ != (�1)j�j�! X��0 1�! NBXj=1 qj  sj � sBpÆ !� h�+�  sB � tCpÆ != (�1)j�j�! NBXj=1 qj X��0 1�!  sj � sBpÆ !� h�+�  sB � tCpÆ ! :But by (10), the inner sum is the Taylor expansion of h�((sj�tC)=pÆ). ThusB� = (�1)j�j�! NBXj=1 qj h�  sj � tCpÆ ! ;(16)and Cramer's inequality impliesjB�j � 1�! KQB2j�j=2q�! � KQB 2j�j=2p�! :(17)The trun
ation error bound follows, as in Lemma 2.1, from summing the tailof a geometri
 series. 2For our algorithm, we will need a variant of Lemma 2.2 in whi
h theHermite series is trun
ated before 
onverting it to a Taylor series. This es-sentially means that in addition to trun
ating the Taylor series itself, we arealso trun
ating the in�nite sum expression (15) for the 
oeÆ
ients. Fortu-nately, however, the error due this approximation of the 
oeÆ
ients turnsout to be mu
h smaller than the trun
ation error of the Taylor series.Lemma 2.3 A trun
ated Hermite expansionG(t) = X��pA�h�  t� sBpÆ !
7



has the following Taylor expansion about an arbitrary point tC :G(t) = X��0 C�  t� tCpÆ !� :The 
oeÆ
ients C� are given byC� = (�1)j�j�! X��p A� h�+�  sB � tCpÆ ! :(18)If the A� are given by (12) then the error ET (p) in trun
ating the Taylorseries after pd terms is bounded, in the box C with 
enter tC and side lengthrp2Æ, byjET (p)j = jX��p C�  t� tCpÆ !� j � K 0QB  1p!!d=2  rp+11� r!d ;where K 0 � K (1 + (p!)�d=2) � 2K if r � 1=2.Proof: The proof is an appli
ation of the triangle inequality. Write C� asthe 
oeÆ
ient B� from Lemma 2.2 plus the tail of a seriesC� = (�1)j�j�! NBXj=1 qj X��p 1�!  sj � sBpÆ !� h�+�  sB � tCpÆ != (�1)j�j�! NBXj=1 qj 0�X��0 � X�>p1A 1�!  sj � sBpÆ !� h�+�  sB � tCpÆ != B� � (�1)j�j�! NBXj=1 qj X�>p 1�!  sj � sBpÆ !� h�+�  sB � tCpÆ != B� + (C� � B�) :Then jET (p)j � jX��p B�  t� tCpÆ !� j + jX��p (C� � B�)  t� tCpÆ !� j :(19)From Lemma 2.2, we know that the �rst sum is bounded byKQB  1p!!d=2  rp+11� r!d :8



Hen
e we need only bound the se
ond sum. For this, we havejX��p (C� �B�)  t� tCpÆ !� j� QB X�>p j t� tCpÆ !� j 1�! X�>p 1�! j sj � sBpÆ !� jjh�+�  sB � tCpÆ ! j� KQB X�>pX�>p rj�jp�!s(�+ �)!�!�! rj�jp�!But (� + �)!�!�! � 2j�+�j ;so the lemma follows immediately. 2Remark 2.1. The alternate expression (16) for B� whi
h appears in theproof of Lemma 2.2 has a simple meaning. Rather than using Lemma 2.1to a

umulate all the Gaussians into a single Hermite expansion and thenshifting it to tC , we 
an use Lemma 2.3 to shift ea
h Gaussian individuallyto tC and add up the resulting Taylor 
oeÆ
ients. (A Gaussian is a one-term Hermite series, after all, and 
an therefore be shifted just like any othertrun
ated Hermite series.) Thus, a GaussianG(t) = qe�jt�sj j2=Æhas the following Taylor expansion about tC ;G(t) = X��0 B�  t� tCpÆ !� :The 
oeÆ
ients B� are given byB� = q (�1)j�j�! h�  sj � tCpÆ !(20)and the error in trun
ation after pd terms isjET (p)j = jX��pB�  t� tCpÆ !� j � K jqj  1p!!d=2  rp+11� r!dfor r < 1. 9



3 The fast Gauss transformWe now have the tools ne
essary to 
onstru
t and analyze a fast algorithmfor evaluating the dis
rete Gauss transformG(ti) = NXj=1 qje�jti�sj j2=Æ(21)for 1 � i � M in O(M + N) work. By shifting the origin and res
aling Æif ne
essary, we 
an assume (as a 
onvenient normalization) that the sour
essj and targets ti all lie in the unit box B0 = [0; 1℄d.The algorithm is based on subdividing B0 into smaller boxes with sidesof length rp2Æ parallel to the axes, with a �xed r � 1=2. We 
an then assignea
h sour
e sj to the box B in whi
h it lies and ea
h target ti to the boxC where it lies. For the sake of 
larity, we maintain a notational distin
tionbetween sour
e boxes B and target boxes C even though they may be thesame.For ea
h target box C, we need to evaluate the total �eld due to sour
es inall boxes B, at ea
h target in C. Be
ause the range of the Gaussian e�jt�sj2=Æis O(pÆ) and the boxes have side lengths rp2Æ, only a �xed number of sour
eboxes B 
an 
ontribute more than Q� to the �eld in a given target box C,where Q = PNj=1 jqjj and � is a spe
i�ed pre
ision. Indeed, if we 
ut o� thesum over all B after in
luding the (2n + 1)d nearest boxes to C, we in
uran error bounded by Qe�2r2n2 . We 
an always 
hoose n depending only onr and � to make this less than Q�. For example, if r = 1=2 we get singlepre
ision a

ura
y relative to Q with n = 6 and double pre
ision with n = 8.Suppose now that we want to evaluate the �eld due to a box B withNB sour
es at MC targets in a box C. There are two ways in whi
h B 
antransmit its in
uen
e, and two ways in whi
h C 
an handle the informationit re
eives. B 
an dire
tly send out the strengths and 
enters of all NBGaussians lo
ated in B, or it 
an use Lemma 2.1 to 
olle
t them into a10



single trun
ated Hermite expansion. C 
an then dire
tly evaluate all �elds(Gaussians or Hermite expansions) sent to it, at the MC target lo
ationsin C, or it 
an use Lemma 2.3 to 
onvert the �elds sent to it into a singletrun
ated Taylor expansion about the 
enter tC of C. Evaluation of thisTaylor series then yields the total �eld at ea
h target lo
ation.Thus, there are four possible ways in whi
h B 
an in
uen
e C.1. NB Gaussians ! dire
tly evaluated2. NB Gaussians ! a

umulated in Taylor series via (20)3. Hermite series ! dire
tly evaluated4. Hermite series ! a

umulated in Taylor series via (18)A fast algorithm 
an be based on any one of the se
ond through fourthalternatives, be
ause they all de
ouple the number of sour
es from the num-ber of targets. Methods 1 through 4 require the following work to evaluateG(t) at M targets ti.1. The 
ost of evaluating N Gaussians atM points is of the order O(NM).2. Consider a �xed sour
e box B. For ea
h target box C within range, wemust 
ompute pd Taylor series 
oeÆ
ientsC�(B) = (�1)j�j�! Xsj2B qjh�  sj � tCpÆ ! :(22)Ea
h 
oeÆ
ient requires O(NB) work to evaluate, resulting in a net
ost of the order O(pdNB). Sin
e there are at most (2n + 1)d boxeswithin range, the total work for forming all Taylor series is of the orderO((2n + 1)dpdN). Now, for ea
h target ti, one must evaluate the pdterm Taylor series 
orresponding to the box C in whi
h ti lies. Thetotal 
ost of this algorithm is, therefore,O((2n+ 1)dpdN) +O(pdM) :11



3. In the third approa
h, we form a Hermite series for ea
h box B andevaluate it at all targets. First, using Lemma 2.1, we writeG(t) = XB Xsj2B qje�jt�sj j2=Æ= XB X��0A�(B) h�  t� sBpÆ !+ EH(p)where jEH(p)j � Q� andA�(B) = 1�! Xsj2B qj  sj � sBpÆ !� :(23)To 
ompute ea
h A�(B) 
osts O(NB) work, so forming all the Hermiteexpansions requires O(pdN) work. Evaluating at most (2n + 1)d ex-pansions at ea
h target ti 
osts O((2n+1)dpd) work per target, so thisapproa
h results in a total workO(pdN) +O((2n+ 1)dpdM) :4. Finally, suppose we a

umulate all sour
es into trun
ated Hermite ex-pansions and transform all Hermite expansions into Taylor expansionsvia Lemma 2.3. Thus, we approximate G(t) in C byG(t) = XB Xsj2B qje�jt�sj j2=Æ= X��pC�  t� tCpÆ !� + ET (p) + EH(p)where jEH(p)j+ jET (p)j � Q�,C� = (�1)j�j�! XB X��pA�(B) h�+�  sB � tCpÆ ! ;(24)and the 
oeÆ
ients A�(B) are given by (23). As we saw under the thirdapproa
h, it 
osts O(pdN) work to form all the Hermite expansions, i.e.12



to 
ompute the 
oeÆ
ients A�(B) for � � p and all sour
e boxes B.Be
ause of the produ
t form (5) of h�+�, the 
omputation of the pd
oeÆ
ients C� involves only O( d pd+1) operations for ea
h box B inrange. Therefore, a total of O((2n+ 1)d d pd+1) work per target box Cis required. Finally, evaluating the appropriate Taylor series for ea
htarget ti requires O(pdM) work. Hen
e this algorithm has net CPUrequirements of the orderO((2n+ 1)d d pd+1Nbox) +O(pdN) +O(pdM) ;where the number of boxes Nbox is bounded by min((rp2Æ)�d=2;M).Note that the fa
tor (2n + 1)d no longer multiplies either the O(N)or O(M) terms. The work is now de
oupled into three parts; O(pdN)to form Hermite expansions, O(pdM) to evaluate Taylor series, and a
onstant term depending on the number of box-box intera
tions andthe 
ost of transforming a Hermite expansion into a Taylor series.Thus, we really have four algorithms for evaluating G(t), three of whi
hare asymptoti
ally optimal. We 
an try to minimize the 
onstants in thework estimate by varying the 
hoi
e of algorithm from box to box. Clearlyan optimal strategy for this 
hoi
e is global, but a reasonable strategy 
anbe 
onstru
ted in whi
h ea
h box de
ides independently what a
tion to take.For this purpose, let NB sour
es in a box B be within range of MC targetsin a box C. Choose 
uto� parameters NF and ML. Then1. if NB < NF then B sends out NB Gaussians.2. if NB � NF then B sends out a Hermite expansion.3. if MC < ML then C evaluates all �elds sent to it immediately.4. if MC � ML then C transforms all �elds sent to it into Taylor series,a

umulates the 
oeÆ
ients, and only then evaluates the Taylor series.13



The work in this algorithm 
an be broken down as follows:1. XNB�NF O(pdNB)to evaluate Hermite expansions,2. + XMC<ML XNB<NF O(NBMC)to evaluate Gaussians,3. + XMC<ML XNB�NF O(pdMC)to evaluate Hermite expansions,4. + XMC�ML XNB<NF O(pdNB)to transform Gaussians into Taylor series,5. + XMC�ML XNB�NF O(d pd+1)to transform Hermite series into Taylor series,6. + XMC�MLO(pdMC)to evaluate Taylor series.Clearly we 
an a
hieve a rough balan
e of work by taking NF = O(pd�1) andML = O(pd�1). The total work then has the form O(pdN) + O(d pd+1(2n +1)dmin((rp2Æ)�d=2;M)) +O(pdM). This is linear in N and M , with a 
on-stant depending only on the pre
ision. The 
omplexity estimate is similar tothe fourth algorithm above, but the advantage here is that when there areonly a few parti
les in a box, the overhead asso
iated with transformation ofHermite series to Taylor series is avoided.14



4 Formal Des
ription of the AlgorithmIn this se
tion, we des
ribe the fast Gauss transform in a more pro
eduralform. AlgorithmComment [Choose the largest r � 1=2 su
h that 1=rp2Æ is an integer Nside.Subdivide the unit box into Ndside boxes. Choose the number n of boxes to goout in ea
h dire
tion based on r and the desired pre
ision �. Ea
h sour
e sends to(2n + 1)d boxes. Choose the number of terms pd based on r and �. Choose the
uto�s NF and ML.℄ Step 1.Assign sour
es and targets to boxes. Determine number of boxes 
ontaining morethan ML targets. For ea
h su
h box, allo
ate storage for a Taylor serieswith pd terms and initialize to zero. Step 2.Comment [Loop through boxes, 
omputing intera
tions between sour
es in boxand targets within range n. For ea
h pair of sour
e and target boxes, one of thefour options summarized on p. 10 is used.℄do i = 1; :::; NdsideNB = number of sour
es in ith box B.Form the intera
tion list of (2n+ 1)d target boxes C within range of B.if NB � NF thendo j = 1; :::; (2n + 1)dMC = number of targets in jth box C in intera
tion list.if MC �ML thenCompute sour
e/target intera
tions by dire
t evaluation of Gaussians.elseConvert ea
h of the NB sour
es into a Taylor series about the 
enter ofbox C via equation (20) and add to Taylor series for box C.end ifend doelse (NB > NF )Form Hermite expansion about 
enter of box B due to NB sour
es via equation (20).do j = 1; :::; (2n + 1)dMC = number of targets in jth box C.if MC �ML then 15



Evaluate Hermite expansion at ea
h target lo
ation and add to a

umulatedpotential.elseConvert Hermite expansion into a Taylor series about the 
enter of box Cby means of equation (12) and add to Taylor series for box C.end ifend doend ifend do Step 3.Comment [Loop through boxes evaluating Taylor series for boxes with more thanML targets.℄do i = 1; :::; NdsideMC = number of targets in ith box C.if MC > ML thenEvaluate Taylor series for box C at ea
h of the MC target positionsto obtain the desired potential.end ifend do5 Numeri
al ExperimentsIn this se
tion, we present the results of numeri
al experiments with thefast Gauss transform and demonstrate dramati
 speedups over the dire
t
al
ulation for realisti
 problems. A two-dimensional version of the algorithmwas programmed in Fortran and run on a Sun-4 workstation, using up to100,000 sour
es and targets and Æ lying in the range .0001 to 1.0.We examined the 
ost of the fast algorithm as 
ompared to the dire
tevaluation of all the Gaussians, as N and M in
reased. Two distributionsof targets and sour
es were tried, uniformly distributed in the unit box andequally spa
ed on a 
ir
le, and several values of Æ were used. For the uniformdistribution, strengths were uniformly distributed between �1 and 1. Forthe 
ir
le, the strengths were spe
i�ed to be 
os(�), where � is the angle. We16



asked for an error relative to the total 
harge Q of � = 10�6, whi
h requiredpd = 82 terms in the Hermite and Taylor expansions. The results are givenin Tables 1-4.Table 1: Table of 
ost and errors for Æ = 1:0, with targets and sour
esdistributed uniformly in the unit box. CPU times are given in se
onds forthe fast and dire
t algorithms. Times for the dire
t algorithm were estimatedby evaluating G(t) at 100 targets and extrapolating.Case N =M Fast Dire
t Error/Q1 100 0.42 0.59 .627E-082 200 0.62 2.3 .306E-083 400 1.1 9.7 .175E-084 800 1.8 38 .157E-085 1600 3.4 150 .126E-086 3200 6.5 601 .135E-087 6400 12.8 2407 .114E-088 12800 26.0 9702 .563E-099 25600 51.9 38790 .563E-0910 51200 103 155550 .337E-0911 102400 205 622780 .237E-09With 102,400 sour
es and targets equispa
ed on a 
ir
le and Æ = :01, thefast algorithm is more than 3000 times faster than the dire
t 
al
ulation.Typi
ally the performan
e of the fast algorithm improves when the sour
edistribution is spatially non-uniform, as it is in many pra
ti
al problems.There are then more parti
les in ea
h of a smaller number of o

upied boxes,redu
ing overhead 
osts.Storage requirements for the fast algorithm are reasonable as long as Nand M are large and Æ is not too small. For extremely small Æ, one shouldmodify the algorithm to make use of just those boxes 
ontaining targets orsour
es. The intera
tion list for ea
h sour
e box 
an then be formed bymeans of an adaptive tree stru
ture, as is done in the fast multipole method[2℄. This would avoid having to loop through Ndside = (2r2Æ)�d=2 (largelyempty) boxes. 17



Table 2: Table of 
ost and errors for Æ = 0:01, with targets and sour
esdistributed uniformly in the unit box.Case N =M Fast Dire
t Error/Q1 100 0.65 0.70 .115E-082 200 1.840 2.76 .616E-093 400 5.8 10.9 .478E-094 800 20.6 43.6 .291E-085 1600 115 174 .274E-086 3200 349 697 .443E-087 6400 344 2792 .249E-088 12800 353 11173 .177E-089 25600 383 44650 .144E-0810 51200 431 179120 .120E-0811 102400 538 716760 .501E-09
Table 3: Table of 
ost and errors for Æ = 0:01, with targets and sour
esspa
ed uniformly on a 
ir
le.Case N =M Fast Dire
t Error/Q1 100 3.25 0.67 .479E-092 200 4.93 2.70 .489E-093 400 10.9 10.8 .182E-064 800 12.7 42.8 .191E-065 1600 14.5 172 .203E-066 3200 18.5 684 .204E-067 6400 26.4 2749 .201E-068 12800 38.7 11003 .177E-069 25600 65.1 43955 .172E-0610 51200 116 176300 .170E-0611 102400 219 705650 .170E-06
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Table 4: Table of 
ost and errors for Æ = 0:0001, with targets and sour
esspa
ed uniformly on a 
ir
le.Case N =M Fast Dire
t Error/Q1 100 4.61 0.68 .539E-102 200 5.31 2.72 .270E-103 400 6.24 10.9 .140E-104 800 8.71 42.9 .834E-115 1600 19.6 172 .298E-106 3200 63.9 690 .799E-087 6400 79.0 2785 .469E-088 12800 96.9 11132 .217E-099 25600 127 44375 .757E-1010 51200 179 178120 .417E-1011 102400 287 713830 .385E-106 GeneralizationsThe fast Gauss transform generalizes immediately to sums of the form(�1)j
jD
G(t) = NXj=1 qjh
(t� sj);(25)
onvolutions with a �xed Hermite fun
tion. One need only apply D
 to allthe formulas presented above and use the formula (9) relating derivativesof Hermite fun
tions. An arbitrary multivariable polynomial P (s) 
an beexpressed as a sum of Hermite polynomials, so we 
an use our algorithm toevaluate sums of the formNXj=1 qjP  t� sjpÆ ! e�jt�sj j2=Æin optimal time. As an extension of this remark, we 
an evaluate any 
onvo-lution sum K � f (t) = NXj=1 f(sj)K(t� sj)(26)for whi
h the kernel K has a rapidly 
onverging Hermite series. We approxi-mate K to within � by a qd-term trun
ated Hermite expansion and apply the19



fast algorithm of this paper to 
arry out ea
h 
onvolution with an Hermitefun
tion. This would 
ost O((pq)d(N +M)) to evaluate (26) at M points. Abetter approa
h, however, would be to modify the algorithm so as to 
reate,for ea
h box, a single (p + q)d-term far-�eld expansion whi
h in
ludes thee�e
t of Hermite fun
tions of indi
es up to q. The modi�ed algorithm wouldevaluate (26) at M points in O((p + q)d(N +M)) work; the 
onstant p + qdepends only on the pre
ision required and the smoothness of K.Examples of 
onvolution kernels K with rapidly 
onverging Hermite seriesin
lude any smooth fun
tion whi
h de
ays at in�nity faster than any power;in parti
ular, any smooth fun
tion with 
ompa
t support.One appli
ation of this generalization is to the problem of evaluating the
ontinuous Gauss transform (1), rather than the dis
rete sum of Gaussians.Evaluation of the 
ontinuous Gauss transform with an order of a

ura
yindependent of Æ, as would be required to evaluate the molli�
ation of anonsmooth fun
tion, seems to require the use of produ
t integration. Inother words, one repla
es the density f with a pie
ewise polynomial andevaluates the resulting integrals exa
tly. This gives a weighted sum of valuesfj whi
h 
annot be evaluated by the Gauss transform, be
ause the integralof a Gaussian over an element is no longer a Gaussian. However, the result
an be expanded in a rapidly 
onverging Hermite series of the form (26), andthis sum 
an be evaluated by the generalized Gauss transform just des
ribed.However, if one really wants to evaluate (1) a

urately, produ
t integra-tion followed by Hermite expansion is unne
essarily troublesome. A morestraightforward approa
h is to use the expansion on whi
h our algorithm isbased to 
reate a "semi-
ontinuous Gauss transform." Rather than dis
retiz-ing the integral and forming the dis
rete moments due to the sour
es in ea
hbox, one simply forms the 
ontinuous moments due to the sour
es in ea
hbox. This gives a far more a

urate Hermite expansion whi
h 
an then bemanipulated just as in the standard Gauss transform algorithm.20



Consider, for example, the problem of evaluatingG�(t) = Z� e�jt�sj2�(s)dswhere � is a hypersurfa
e in Rd. The semi-
ontinuous Gauss transform 
anbe des
ribed by the equationG�(t) = XB Z�\BX� 1�!  s� sBpÆ !� h�  t� sBpÆ !�(s)ds(27) = XB X� h�  t� sBpÆ !M�:(28)Here the moments M� 
an be very easily evaluated to high a

ura
y. Wethen have the Hermite expansion of G�(t), and 
an manipulate it just as anyother Hermite expansion. The utility of this algorithm is obvious; we are
urrently applying it to other problems of applied mathemati
s.7 Con
lusionsWe have presented a \fast Gauss transform" algorithm for evaluating thesums G(ti) = NXj=1 qje�jti�sj j2=Æ i = 1; : : : ;M(29)for 1 � i �M in O(M +N) work. Dire
t evaluation would require O(NM)work in general, so this is a substantial improvement in 
omputational 
om-plexity. In order to evaluate the sum of 100,000 Gaussians at 100,000 points,for example, the fast algorithm requires about four minutes of CPU time ona Sun-4, while dire
t evaluation would take more than a week. There aremany �elds of applied mathemati
s where su
h an algorithm will be a usefultool.
21
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