UC Berkeley
UC Berkeley Previously Published Works

Title
The Fast Gauss Transform

Permalink
https://escholarship.org/uc/item/3gx790g4q

Journal
SIAM Journal on Scientific Computing, 12(1)

ISSN
1064-8275

Authors

Greengard, Leslie
Strain, John

Publication Date
1991

DOI
10.1137/0912004

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/3gx7q0g6
https://escholarship.org
http://www.cdlib.org/

1 Introduction

Many problems in applied mathematics involve the Gauss transform

1 Gsf(0) = [P fydy (6> 0)

of a function f defined on I' C R¢. The simplest example is the heat equation.

The solution of the pure initial value problem

w(z,t) = Au(z,t) fort >0
u(z,0) = f(x) for x € R?

is given by
uw,t) = (4mt) =2 Gy f (),

with I' equal to the whole space. A similar transform, with I' a lower-
dimensional subset of R%, occurs when one solves any initial/boundary value
problem for the heat equation by means of potential theory [1, 6, 9, 13, 14].
Other examples occur in vortex methods [3], tomography [11], and nonpara-
metric statistics [7, 15]. Finally, a common analytical tool is mollification;
one approximates an arbitrary function f by the family of smooth rapidly
decreasing functions
fs(x) = (w) 2G5 f (x)

which converge to f as 0 — 0.

For numerical purposes, one must discretize Gsf. Given the values of f
at a set of points s; € R, one can approximate the integral (1) by means of
a quadrature formula. A reasonable approximation to GG5f might then take

the form of a discrete Gauss transform
N 2
(2) Gx) =3 qre sl
j=1

where the coefficients ¢; depend on the values f(s;) and the weights of the
chosen quadrature formula. This paper will focus on the problem of eval-

uating the sum of Gaussians (2) as efficiently as possible. It will often be

1

convenient to speak of (2) as the Gaussian “field” due to sources of strengths
¢; at the points s;, evaluated at the “target” x.

Suppose now that we want to evaluate (2) directly from the definition at
M targets x = t;. In other words, we want to apply the rectangular matrix
with entries

Gy = o ti—s;1?/0
to the vector ¢ = (qi,...,qny)". This requires O(NM) work, which grows
rapidly as M and N increase, and makes large scale calculations prohibitively
expensive.

In this paper, we present an algorithm for evaluating (2) at M points in
O(N + M) work. The constant in O(N + M) depends only on the dimen-
sion d and the desired precision. The amount of memory required is also
proportional to N + M, so that the algorithm is asymptotically optimal in
terms of both work and storage. Furthermore, the sources and the targets
can be placed anywhere; they need not be restricted to a regular grid. Even
if the function f were given at N equispaced points and G f evaluated at N
equispaced points, fast convolution by means of the Fast Fourier transform

(FFT) would require O(N log N) operations, whereas our algorithm requires
only O(N).

2 Hermite expansions

This section describes the properties of the Gaussian kernel and Hermite
expansions which we will need. Good references for this material are [4, 5, 8]
and particularly Hille’s paper [10].

The Hermite polynomials H,(t) may be defined by the Rodrigues formula

H,(t) = (=1)""De " teR

where D = d/dt. We will make use of this definition as well as the generating

function for Hermite polynomials
o0 n

R Ay

n=0

2

t

Multiplication of each side of the preceding expression by e~ ’ yields

ARy oosn
e =3 —ha(t),

n=0 """

where the Hermite functions h,(t) are defined by
(3) ha(t) = e H, ().

(Note that these are not the usual orthonormal Hermite functions; the def-
inition here is the right one for this situation.) In practice, we will use a

shifted and scaled version of this formula: for s € R and § > 0, we have

e (=P[5 o~(t=so—(s=50))>/8

_ il(s—s())nh (t—sg>
© 1 (s—s0\" t—s
— p(t=s0)?/s =20} o120
= e .
nz::o nl (Vo) ! (NG)
This formula tells us how to evaluate the Gaussian field e~ (=)*/% at the
target ¢ due to the source at s, as an Hermite expansion centered at sy. Thus
we are shifting a Gaussian at s to a sum of Hermite polynomials times a

Gaussian, all centered at sg.

We can also interchange ¢ and s to write

o i) ()

Looked at this way, the expansion expresses a Gaussian with target ¢ as a

Taylor series about a nearby target ty; the coefficients of the Taylor series
are the Hermite functions evaluated at ¢5. Thus the same expansion serves
as both a near-field (Taylor) and a far-field (Hermite) expansion. The final

one-dimensional results we will need are the recurrence relation

Bt () = 2t h(t) — 20 oy (£) teR,

for Hermite functions and Cramer’s inequality for Hermite polynomials:
|H,,(t)] < K2"%/nle!"/?

where K is a numerical constant less than 1.09 in value. Cramer’s inequality

immediately implies the following useful bound for Hermite functions:

1 1 .
—|h,(t)] < K22 ——e 1/,
n!| (1) <K \/He

We will also need the straightforward extensions of these facts to higher
dimensions. Thus, let ¢ and s lie in d-dimensional Euclidean space R?, and

consider the Gaussian

e—|t—s\2 _ e—(t1—51)2—...—(td—sd)2‘

We will find it convenient to adopt multiindex notation. A multiindex o =
(o, g, ...,) is a d-tuple of nonnegative integers, playing the role of a

multidimensional index. For any multiindex a and any ¢t € R?, we define
|O(|:Oél+042+...+04d

al = aqlas! .. ay!
o o4 Qg
£ =097 Lt
a __ Qa1 Qe d
D® = 00952 ... 05

where 9; is differentiation with respect to the ith coordinate in R%. If p is an
integer, we say a > pif a; > p for 1 <i <d.
The multidimensional Hermite polynomials and Hermite functions are
then defined by
H,(t) = H,, (t1)...Ha,(ta)

(5) ho(t) = e " HL () = ho, (t1) . . . hay (td)

where [t|> =t +... + 2.

The Hermite expansion of a Gaussian in R? is then simply

(6) el = %37 (t = 50)" ha(s — s0) -

!
aso o

Cramer’s inequality generalizes to

1) 1
- 2 ha(B)] < K e 1P/2 glalz
(7) —lha(t)] < Ke Nk

where K is less than (1.09)%.
Finally, our algorithm will require the Taylor expansion of the Hermite

function h(t) about an arbitrary point to € R?. Since h, is defined by
(8) halt) = e " Ha(t)
— ()Pl
applying D? gives immediately
(9) Dho(t) = (=) hass(t)
Thus the Taylor series of h, is

_ B
(10) hatt) = 3 00

7 (=1)"hass(to) -
(R

We now present the three lemmas on which our algorithm relies. The
first describes how to transform the field due to all sources in a box into a

single rapidly converging Hermite expansion about the center of the box.

Lemma 2.1 Let Ny sources s; lie in a box B with center sp and side length

rvV260, with r < 1. Then the Gaussian field due to the sources in B,
Ng ,

(11) G(t) = qye =0,
7=1

1s equal to a single Hermite expansion about sp:

Git)= S Aahe (%) .

a>0

The coefficients A, are given by

1 Xz si— s\
12 A, =— 2By
12 ax (25

The error Ey(p) due to truncating the series after p® terms satisfies the

s () = () ()

azp

bound:

where Qp = Y |qj| and K = (1.09)7.

Proof: Use (6) to expand each Gaussian in the sum (11) into a Hermite
series about sp and interchange the sums over a and j. The truncation error
bound follows from Cramer’s inequality (7) and the formula for the tail of a
geometric series. O

The second lemma shows how to convert an Hermite expansion about spg
into a Taylor expansion about t». The Taylor series converges rapidly in a
box of side 7v/26 about t¢, with r < 1.

Lemma 2.2 The Hermite expansion

t—SB
13 G(t)= Aghy | —=—
(13) 0= Ao ()

a>0

has the following Taylor expansion, about an arbitrary point to:

(14) Gty = Y By (t;gc)ﬂ -

5>0

The coefficients Bg are given by

(—1)"8‘ <t0—83>
Aq e .

g & Ahers (T

If the A, are given by (12) then the error Ep(p) in truncating the Taylor

(15) Bz =

series after p? terms is bounded, in the box C' with center to and side length

/26, by

E(p)] = | S B (t;gc)ﬂ < KQ, (;)/ (1_)

B>p

if r < 1.

Proof: Each Hermite function in (13) can be expanded into a Taylor series
by means of equation (10). The expansion (14) is then obtained by inter-
changing the order of summation. The truncation error bound is only a little

more difficult: By the formula (12) for A,, we have

_1)lel sp—
- ()

a>0

(—1)"8‘ 1 N <8j—83>a <8B_tC>
= _— — q e ha
8! ZO a! Z "G RANRY
(P & 1 <3j_SB>a <SB_tC>
_ M hoss | 2—=C1 .
5’ Z::l J ;) ol \/3 +p \/S
But by (10), the inner sum is the Taylor expansion of hs((s; —t¢)/V/). Thus

_1)l8l Np s to
(16 Bo= S (220,

S

and Cramer’s inequality implies
9lB1/2

A

The truncation error bound follows, as in Lemma 2.1, from summing the tail

(17) 1Bl < %K Q5272 \J31 < K Qp

of a geometric series. a

For our algorithm, we will need a variant of Lemma 2.2 in which the
Hermite series is truncated before converting it to a Taylor series. This es-
sentially means that in addition to truncating the Taylor series itself, we are
also truncating the infinite sum expression (15) for the coefficients. Fortu-
nately, however, the error due this approximation of the coefficients turns

out to be much smaller than the truncation error of the Taylor series.

Lemma 2.3 A truncated Hermite expansion

G(t) =Y Auha (%)

a<p

has the following Taylor expansion about an arbitrary point to:

-ne ()

The coefficients C'z are given by

_1)Wl R
(18) cy = 51,) > Aaha+ﬁ< ﬁt) .

a<p

If the A, are given by (12) then the error Er(p) in truncating the Taylor

series after p? terms is bounded, in the box C with center to and side length

r\/%, by

B t—te\’ 1\ [\
|ET<p>|—|ﬂgpcﬁ() r=ran (3) (1)

where K' < K (1+ (p!)~%?) < 2K if r <1/2.

Proof: ~ The proof is an application of the triangle inequality. Write C3 as

the coefficient B from Lemma 2.2 plus the tail of a series
Cs = = ‘5| % qj a%] <%>aha+ﬁ (%)
Np , a _
- ;.”' Er (Eo a%) 1 (57) 2o (2]
R (o ()

= Bﬁ"‘(cﬁ_Bﬁ)-
Then
t t—to\"
(19 |ET<p>|s|ﬂZ>pBﬁ(f) +1E (ﬁ) }

From Lemma 2.2, we know that the first sum is bounded by

a2 , o d
koo () (=)
p! 1—r

8

Hence we need only bound the second sum. For this, we have
B
t—1c¢
> (Cs— Bs) () |
B>p \/3

< ozl)10 A () s ()

rlet [(a +) rlfl
< Fen e Ve
But
(O‘%B'W < glatdl
so the lemma follows immediately. a

Remark 2.1. The alternate expression (16) for Bz which appears in the
proof of Lemma 2.2 has a simple meaning. Rather than using Lemma 2.1
to accumulate all the Gaussians into a single Hermite expansion and then
shifting it to ¢, we can use Lemma 2.3 to shift each Gaussian individually
to tc and add up the resulting Taylor coefficients. (A Gaussian is a one-
term Hermite series, after all, and can therefore be shifted just like any other

truncated Hermite series.) Thus, a Gaussian
has the following Taylor expansion about t¢;

-5 (%)

The coefficients B are given by

—1)18l sj—tc
(20) Bﬁ:q(ﬁ!) hﬁ(\/S >

and the error in truncation after p? terms is
| 1 d/2 Tp+1 d
1 p! 1—r

L\ 8
|Er(p)| =1 By (t\/gtc> | <K

B>p

for r < 1.

3 The fast Gauss transform

We now have the tools necessary to construct and analyze a fast algorithm

for evaluating the discrete Gauss transform

N
(21) Gt:) = 3 qgeT o0
j=1

for 1 <i < M in O(M + N) work. By shifting the origin and rescaling ¢
if necessary, we can assume (as a convenient normalization) that the sources
s; and targets t; all lie in the unit box By = [0, 1]%.

The algorithm is based on subdividing By into smaller boxes with sides
of length /26 parallel to the axes, with a fixed r < 1/2. We can then assign
each source s; to the box B in which it lies and each target ¢; to the box
C where it lies. For the sake of clarity, we maintain a notational distinction
between source boxes B and target boxes C' even though they may be the
same.

For each target box C', we need to evaluate the total field due to sources in
all boxes B, at each target in C'. Because the range of the Gaussian e~lt=5*/9
is O(v/8) and the boxes have side lengths /26, only a fixed number of source
boxes B can contribute more than Qe to the field in a given target box C,
where () = E;V:l lg;| and € is a specified precision. Indeed, if we cut off the
sum over all B after including the (2n + 1)¢ nearest boxes to C', we incur
an error bounded by Qe 2", We can always choose n depending only on
r and € to make this less than Qe. For example, if r = 1/2 we get single
precision accuracy relative to () with n = 6 and double precision with n = 8.

Suppose now that we want to evaluate the field due to a box B with
Np sources at M targets in a box C'. There are two ways in which B can
transmit its influence, and two ways in which C' can handle the information
it receives. B can directly send out the strengths and centers of all Np

Gaussians located in B, or it can use Lemma 2.1 to collect them into a

10

single truncated Hermite expansion. C' can then directly evaluate all fields
(Gaussians or Hermite expansions) sent to it, at the My target locations
in C, or it can use Lemma 2.3 to convert the fields sent to it into a single
truncated Taylor expansion about the center to of C'. Evaluation of this
Taylor series then yields the total field at each target location.

Thus, there are four possible ways in which B can influence C'.

1. Np Gaussians — directly evaluated
2. Ny Gaussians — accumulated in Taylor series via (20)
3. Hermite series — directly evaluated

4. Hermite series — accumulated in Taylor series via (18)

A fast algorithm can be based on any one of the second through fourth
alternatives, because they all decouple the number of sources from the num-
ber of targets. Methods 1 through 4 require the following work to evaluate
G(t) at M targets t;.

1. The cost of evaluating N Gaussians at M points is of the order O(N M).

2. Consider a fixed source box B. For each target box C' within range, we

must compute p? Taylor series coefficients

_1)8l s te
(22) R WL

Each coefficient requires O(Npg) work to evaluate, resulting in a net

cost of the order O(p?Np). Since there are at most (2n + 1)? boxes
within range, the total work for forming all Taylor series is of the order
O((2n + 1)%p?N). Now, for each target ¢;, one must evaluate the p?
term Taylor series corresponding to the box C' in which ¢; lies. The

total cost of this algorithm is, therefore,
O((2n + 1) N) + O(p*M) .

11

3. In the third approach, we form a Hermite series for each box B and

evaluate it at all targets. First, using Lemma 2.1, we write

Gt = S % qje—lt—8jl2/5

_ égBAa(B) ha (t T/SSB> + Ex(p)

where |Ey(p)| < Qe and

(23) AdB) = Y g (‘Sj;gsB)a -

" s;€EB

To compute each A, (B) costs O(Ng) work, so forming all the Hermite
expansions requires O(p?N) work. Evaluating at most (2n + 1)¢ ex-
pansions at each target ¢; costs O((2n + 1)%p?) work per target, so this

approach results in a total work

O(p*N) +0((2n + 1) M) .

4. Finally, suppose we accumulate all sources into truncated Hermite ex-
pansions and transform all Hermite expansions into Taylor expansions

via Lemma 2.3. Thus, we approximate G(t) in C' by

G(t) = Z Z qjef\t*s]ﬂ/é

jEB ;
— ﬁ%oﬂ (t ?/;C> + Er(p) + En(p)

where |Ey(p)| + [Er(p)| < Qe,

T N
@) = T A e ()

B a<p

and the coefficients A, (B) are given by (23). As we saw under the third

approach, it costs O(p?IN) work to form all the Hermite expansions, i.e.

12

to compute the coefficients A,(B) for a < p and all source boxes B.
Because of the product form (5) of h,yp, the computation of the p?
coefficients C involves only O(dp®t!) operations for each box B in
range. Therefore, a total of O((2n + 1)?dp®*™) work per target box C
is required. Finally, evaluating the appropriate Taylor series for each
target t; requires O(p?M) work. Hence this algorithm has net CPU

requirements of the order
O((2n + 1)*dp™* Nyow) + O(p"N) + O(p*M)

where the number of boxes Ny, is bounded by min((rv/26)~%2, M).
Note that the factor (2n + 1)¢ no longer multiplies either the O(N)
or O(M) terms. The work is now decoupled into three parts; O(p?N)
to form Hermite expansions, O(p?M) to evaluate Taylor series, and a
constant term depending on the number of box-box interactions and

the cost of transforming a Hermite expansion into a Taylor series.

Thus, we really have four algorithms for evaluating G(t), three of which
are asymptotically optimal. We can try to minimize the constants in the
work estimate by varying the choice of algorithm from box to box. Clearly
an optimal strategy for this choice is global, but a reasonable strategy can
be constructed in which each box decides independently what action to take.
For this purpose, let Ng sources in a box B be within range of M targets

in a box C'. Choose cutoff parameters Nr and M. Then
1. if Ng < Nr then B sends out Ng Gaussians.
2. if Ng > Np then B sends out a Hermite expansion.
3. if Me < My, then C evaluates all fields sent to it immediately.

4. if M > My, then C transforms all fields sent to it into Taylor series,

accumulates the coefficients, and only then evaluates the Taylor series.

13

The work in this algorithm can be broken down as follows:
1.

> O(p'Np)
Np>Np

to evaluate Hermite expansions,

+ > X O(NpMc)

MC’<ML NB<NF

to evaluate Gaussians,

+ > > O('Mc)

Mc<Mp Ng>Np

to evaluate Hermite expansions,

+ > > O(@'Np)

Mc>Mp Np<Np

to transform Gaussians into Taylor series,

4 Z Z O(dpd-i-l)

Mc>Mp Ng>Np

to transform Hermite series into Taylor series,

+ > O0('Me)

Mc>Mry,

to evaluate Taylor series.

Clearly we can achieve a rough balance of work by taking Np = O(p?~!) and
My = O(p?~'). The total work then has the form O(p?N) + O(d p™*'(2n +
D)% min((rv/20)~4%, M)) + O(p?M). This is linear in N and M, with a con-
stant depending only on the precision. The complexity estimate is similar to
the fourth algorithm above, but the advantage here is that when there are
only a few particles in a box, the overhead associated with transformation of

Hermite series to Taylor series is avoided.

14

4 Formal Description of the Algorithm

In this section, we describe the fast Gauss transform in a more procedural

form.

Algorithm

Comment [Choose the largest < 1/2 such that 1/rv/2§ is an integer Nyjge.
Subdivide the unit box into Ngide boxes. Choose the number n of boxes to go
out in each direction based on r and the desired precision €. Each source sends to
(2n + 1)¢ boxes. Choose the number of terms p? based on r and e. Choose the
cutoffs Np and M.

Step 1.

Assign sources and targets to boxes. Determine number of boxes containing more
than My targets. For each such box, allocate storage for a Taylor series
with p¢ terms and initialize to zero.

Step 2.

Comment [Loop through boxes, computing interactions between sources in box
and targets within range n. For each pair of source and target boxes, one of the
four options summarized on p. 10 is used.]
doi=1,..,N2%,
Np = number of sources in i* box B.
Form the interaction list of (2n + 1) target boxes C' within range of B.
if NB S NF then
doj=1,..,(2n+1)¢
M¢ = number of targets in j* box C' in interaction list.
if Mc < My then
Compute source/target interactions by direct evaluation of Gaussians.
else
Convert each of the Np sources into a Taylor series about the center of
box C' via equation (20) and add to Taylor series for box C'.
end if
end do
else (Np > Np)
Form Hermite expansion about center of box B due to Np sources via equation (20).
doj=1,..(2n+1)¢
M¢c = number of targets in j** box C.
if MC S ML then

15

Evaluate Hermite expansion at each target location and add to accumulated
potential.

else
Convert Hermite expansion into a Taylor series about the center of box C'
by means of equation (12) and add to Taylor series for box C.

end if

end do
end if
end do

Step 3.

Comment [Loop through boxes evaluating Taylor series for boxes with more than
My, targets.]

doi=1,.. N¢

stde
M = number of targets in i"* box C.
if M > My, then
Evaluate Taylor series for box C' at each of the M target positions
to obtain the desired potential.
end if
end do

5 Numerical Experiments

In this section, we present the results of numerical experiments with the
fast Gauss transform and demonstrate dramatic speedups over the direct
calculation for realistic problems. A two-dimensional version of the algorithm
was programmed in Fortran and run on a Sun-4 workstation, using up to
100,000 sources and targets and ¢ lying in the range .0001 to 1.0.

We examined the cost of the fast algorithm as compared to the direct
evaluation of all the Gaussians, as N and M increased. Two distributions
of targets and sources were tried, uniformly distributed in the unit box and
equally spaced on a circle, and several values of ¢ were used. For the uniform
distribution, strengths were uniformly distributed between —1 and 1. For

the circle, the strengths were specified to be cos(f), where 6 is the angle. We

16

asked for an error relative to the total charge @ of ¢ = 107°, which required
p? = 82 terms in the Hermite and Taylor expansions. The results are given
in Tables 1-4.

Table 1: Table of cost and errors for § = 1.0, with targets and sources
distributed uniformly in the unit box. CPU times are given in seconds for
the fast and direct algorithms. Times for the direct algorithm were estimated
by evaluating G(t) at 100 targets and extrapolating.

Case | N = M | Fast | Direct | Error/Q
1 100 0.42 | 0.59 | .627E-08
2 200 0.62 2.3 .306E-08
3 400 1.1 9.7 175E-08
4 800 1.8 38 A57E-08
5) 1600 3.4 150 .126E-08
6 3200 6.5 601 .135E-08
7 6400 12.8 | 2407 | .114E-08
8 12800 | 26.0 | 9702 | .563E-09
9 25600 | 51.9 | 38790 | .563E-09
10 51200 | 103 | 155550 | .337E-09
11 102400 | 205 | 622780 | .237E-09

With 102,400 sources and targets equispaced on a circle and § = .01, the
fast algorithm is more than 3000 times faster than the direct calculation.
Typically the performance of the fast algorithm improves when the source
distribution is spatially non-uniform, as it is in many practical problems.
There are then more particles in each of a smaller number of occupied boxes,
reducing overhead costs.

Storage requirements for the fast algorithm are reasonable as long as N
and M are large and ¢ is not too small. For extremely small §, one should
modify the algorithm to make use of just those boxes containing targets or
sources. The interaction list for each source box can then be formed by
means of an adaptive tree structure, as is done in the fast multipole method
[2]. This would avoid having to loop through N&, = (2r25)~%? (largely

empty) boxes.

17

Table 2: Table of cost and errors for ¢ = 0.01, with targets and sources
distributed uniformly in the unit box.

Case | N =M | Fast | Direct | Error/Q
1 100 0.65 0.70 | .115E-08
2 200 1.840 | 2.76 | .616E-09
3 400 5.8 10.9 | .478E-09
4 800 20.6 43.6 | .291E-08
5t 1600 115 174 274E-08
6 3200 349 697 A443E-08
7 6400 344 2792 | .249E-08
8 12800 353 | 11173 | .177E-08
9 25600 383 | 44650 | .144E-08
10 51200 431 | 179120 | .120E-08
11 102400 | 538 | 716760 | .501E-09

Table 3: Table of cost and errors for
spaced uniformly on a circle.

0 = 0.01, with targets and sources

Case | N = M | Fast | Direct | Error/Q
1 100 3.25 | 0.67 | .479E-09
2 200 4.93 | 2.70 | .489E-09
3 400 10.9 10.8 | .182E-06
4 800 12.7 | 42.8 .191E-06
5 1600 14.5 172 .203E-06
6 3200 18.5 684 .204E-06
7 6400 26.4 | 2749 | .201E-06
8 12800 | 38.7 | 11003 | .177E-06
9 25600 | 65.1 | 43955 | .172E-06
10 51200 | 116 | 176300 | .170E-06
11 102400 | 219 | 705650 | .170E-06

18

Table 4: Table of cost and errors for 6 = 0.0001, with targets and sources
spaced uniformly on a circle.

Case || N = M | Fast | Direct | Error/Q
1 100 4.61 | 0.68 | .539E-10
2 200 5.31 2.72 | .270E-10
3 400 6.24 | 10.9 | .140E-10
4 800 8.71 | 429 | .834E-11
5 1600 19.6 172 .298E-10
6 3200 | 63.9 690 .7T99E-08
7 6400 | 79.0 | 2785 | .469E-08
8 12800 | 96.9 | 11132 | .217E-09
9 25600 | 127 | 44375 | .757E-10
10 51200 | 179 | 178120 | .417E-10
11 102400 | 287 | 713830 | .385E-10

6 Generalizations

The fast Gauss transform generalizes immediately to sums of the form

(25) (-1 |’Y|D’YG Z q;h-),

convolutions with a fixed Hermite function. One need only apply D7 to all
the formulas presented above and use the formula (9) relating derivatives
of Hermite functions. An arbitrary multivariable polynomial P(s) can be
expressed as a sum of Hermite polynomials, so we can use our algorithm to

evaluate sums of the form

far ()

in optimal time. As an extension of this remark, we can evaluate any convo-

lution sum

(26) K f(t Zf sj) K (t — s;)

for which the kernel K has a rap1dly converging Hermite series. We approxi-

mate K to within € by a ¢?-term truncated Hermite expansion and apply the

19

fast algorithm of this paper to carry out each convolution with an Hermite
function. This would cost O((pq)?(N + M)) to evaluate (26) at M points. A
better approach, however, would be to modify the algorithm so as to create,
for each box, a single (p + ¢)%term far-field expansion which includes the
effect of Hermite functions of indices up to ¢. The modified algorithm would
evaluate (26) at M points in O((p + ¢)*(N + M)) work; the constant p + ¢
depends only on the precision required and the smoothness of K.

Examples of convolution kernels K with rapidly converging Hermite series
include any smooth function which decays at infinity faster than any power;
in particular, any smooth function with compact support.

One application of this generalization is to the problem of evaluating the
continuous Gauss transform (1), rather than the discrete sum of Gaussians.
Evaluation of the continuous Gauss transform with an order of accuracy
independent of ¢, as would be required to evaluate the mollification of a
nonsmooth function, seems to require the use of product integration. In
other words, one replaces the density f with a piecewise polynomial and
evaluates the resulting integrals exactly. This gives a weighted sum of values
f; which cannot be evaluated by the Gauss transform, because the integral
of a Gaussian over an element is no longer a Gaussian. However, the result
can be expanded in a rapidly converging Hermite series of the form (26), and
this sum can be evaluated by the generalized Gauss transform just described.

However, if one really wants to evaluate (1) accurately, product integra-
tion followed by Hermite expansion is unnecessarily troublesome. A more
straightforward approach is to use the expansion on which our algorithm is
based to create a ”semi-continuous Gauss transform.” Rather than discretiz-
ing the integral and forming the discrete moments due to the sources in each
box, one simply forms the continuous moments due to the sources in each
box. This gives a far more accurate Hermite expansion which can then be

manipulated just as in the standard Gauss transform algorithm.

20

Consider, for example, the problem of evaluating

Gu(t) = [e p(s)ds

where I is a hypersurface in R?. The semi-continuous Gauss transform can

be described by the equation

o i - T (5

t

Here the moments M, can be very easily evaluated to high accuracy. We
then have the Hermite expansion of G (), and can manipulate it just as any
other Hermite expansion. The utility of this algorithm is obvious; we are

currently applying it to other problems of applied mathematics.

7 Conclusions

We have presented a “fast Gauss transform” algorithm for evaluating the

sums

N
(29) G(t;) = geltim=il’/? i=1,...,M
7=1

for 1 <i < M in O(M + N) work. Direct evaluation would require O(NM)
work in general, so this is a substantial improvement in computational com-
plexity. In order to evaluate the sum of 100,000 Gaussians at 100,000 points,
for example, the fast algorithm requires about four minutes of CPU time on
a Sun-4, while direct evaluation would take more than a week. There are
many fields of applied mathematics where such an algorithm will be a useful

tool.

21

References

1]

7]

8]

R. Brown, Layer Potentials and Boundary Value Problems for the Heat
Equation on Lipschitz Cylinders, Ph.D. Thesis, University of Minnesota,
1987.

J. Carrier, L. Greengard, and V. Rokhlin, A Fast Adaptive Multipole
Algorithm for Particle Simulations, Siam J. Sci. Stat. Comput., 9 (1988),
pp. 669-686.

G.H. Cottet, S. Mas-Gallic, and P.A. Raviart, Vortex Methods for the
Incompressible Euler and Navier-Stokes Equations, Proceedings of the
Workshop on Computational Fluid Dynamics and Reacting Gas Flows,
Institute for Mathematics and its Applications, Minneapolis, Minnesota,

September 1986.

H. Dym and H. P. McKean, Fourier Series and Integrals, Academic
Press, San Diego, 1972.

A. Erdelyi, et. al. Higher Transcendental Functions, vol. II, McGraw-
Hill, New York, 1953.

A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-
Hall, New Jersey, 1964.

S. Geman and C. Hwang, Nonparametric Maximum Likelihood Estima-

tion by the Method of Sieves, Ann. Statist., 10 (1982), pp. 401-414.

I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Prod-
ucts, Academic Press, New York, 1980.

L. Greengard and J. Strain, A Fast Algorithm for the Evaluation of Heat
Potentials, Yale University Department of Computer Science Research

Report YALEU/DCS/RR-700, May 1989.

22

[10] E. Hille, A Class of Reciprocal Functions, Ann. Math. 27(1926), pp.
427-464.

[11] N. Lerner, Wick-Wigner Functions and Tomographic Methods,
preprint,1989.

[12] A. McIntyre, Boundary Integral Solutions of the Heat Equation, Math.
Comp., 46 (1986), pp. 71-79.

[13] P. J. Noon, The Single Layer Heat Potential and Galerkin Boundary
Element Methods for the Heat Equation, Ph.D. Thesis, University of
Maryland, 1988 .

[14] W. Pogorzelski, Integral Equations and Their Applications, Pergamon
Press, Oxford, 1966.

[15] B. W. Silverman, Density Estimation for Statistics and Data Analysis,
Chapman and Hall, London, 1986.

23

