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1 IntrodutionMany problems in applied mathematis involve the Gauss transformGÆf(x) = Z� e�jx�yj2=Æf(y) dy (Æ > 0)(1)of a funtion f de�ned on � � Rd. The simplest example is the heat equation.The solution of the pure initial value problemut(x; t) = �u(x; t) for t > 0u(x; 0) = f(x) for x 2 Rdis given by u(x; t) = (4�t)�d=2G4tf(x) ;with � equal to the whole spae. A similar transform, with � a lower-dimensional subset of Rd, ours when one solves any initial/boundary valueproblem for the heat equation by means of potential theory [1, 6, 9, 13, 14℄.Other examples our in vortex methods [3℄, tomography [11℄, and nonpara-metri statistis [7, 15℄. Finally, a ommon analytial tool is molli�ation;one approximates an arbitrary funtion f by the family of smooth rapidlydereasing funtions fÆ(x) = (�Æ)�d=2GÆf(x)whih onverge to f as Æ ! 0.For numerial purposes, one must disretize GÆf . Given the values of fat a set of points sj 2 Rd, one an approximate the integral (1) by means ofa quadrature formula. A reasonable approximation to GÆf might then takethe form of a disrete Gauss transformG(x) = NXj=1 qj e�jx�sjj2=Æ ;(2)where the oeÆients qj depend on the values f(sj) and the weights of thehosen quadrature formula. This paper will fous on the problem of eval-uating the sum of Gaussians (2) as eÆiently as possible. It will often be1



onvenient to speak of (2) as the Gaussian \�eld" due to soures of strengthsqj at the points sj, evaluated at the \target" x.Suppose now that we want to evaluate (2) diretly from the de�nition atM targets x = ti. In other words, we want to apply the retangular matrixwith entries Gij = e�jti�sj j2=Æto the vetor q = (q1; : : : ; qN )T . This requires O(NM) work, whih growsrapidly asM and N inrease, and makes large sale alulations prohibitivelyexpensive.In this paper, we present an algorithm for evaluating (2) at M points inO(N +M) work. The onstant in O(N +M) depends only on the dimen-sion d and the desired preision. The amount of memory required is alsoproportional to N +M , so that the algorithm is asymptotially optimal interms of both work and storage. Furthermore, the soures and the targetsan be plaed anywhere; they need not be restrited to a regular grid. Evenif the funtion f were given at N equispaed points and GÆf evaluated at Nequispaed points, fast onvolution by means of the Fast Fourier transform(FFT) would require O(N logN) operations, whereas our algorithm requiresonly O(N).2 Hermite expansionsThis setion desribes the properties of the Gaussian kernel and Hermiteexpansions whih we will need. Good referenes for this material are [4, 5, 8℄and partiularly Hille's paper [10℄.The Hermite polynomials Hn(t) may be de�ned by the Rodrigues formulaHn(t) = (�1)net2Dne�t2 t 2 Rwhere D = d=dt. We will make use of this de�nition as well as the generatingfuntion for Hermite polynomialse2ts�s2 = 1Xn=0 snn!Hn(t) :2



Multipliation of eah side of the preeding expression by e�t2 yieldse�(t�s)2 = 1Xn=0 snn!hn(t);where the Hermite funtions hn(t) are de�ned byhn(t) = e�t2Hn(t):(3)(Note that these are not the usual orthonormal Hermite funtions; the def-inition here is the right one for this situation.) In pratie, we will use ashifted and saled version of this formula: for s0 2 R and Æ > 0, we havee�(t�s)2=Æ = e�(t�s0�(s�s0))2=Æ= 1Xn=0 1n!  s� s0pÆ !n hn  t� s0pÆ != e�(t�s0)2=Æ 1Xn=0 1n!  s� s0pÆ !nHn  t� s0pÆ ! :This formula tells us how to evaluate the Gaussian �eld e�(t�s)2=Æ at thetarget t due to the soure at s, as an Hermite expansion entered at s0. Thuswe are shifting a Gaussian at s to a sum of Hermite polynomials times aGaussian, all entered at s0.We an also interhange t and s to writee�(t�s)2=Æ = 1Xn=0 1n!hn  s� t0pÆ ! t� t0pÆ !n :(4)Looked at this way, the expansion expresses a Gaussian with target t as aTaylor series about a nearby target t0; the oeÆients of the Taylor seriesare the Hermite funtions evaluated at t0. Thus the same expansion servesas both a near-�eld (Taylor) and a far-�eld (Hermite) expansion. The �nalone-dimensional results we will need are the reurrene relationhn+1(t) = 2t hn(t)� 2nhn�1(t) t 2 R;3



for Hermite funtions and Cramer's inequality for Hermite polynomials:jHn(t)j � K2n=2pn!et2=2where K is a numerial onstant less than 1.09 in value. Cramer's inequalityimmediately implies the following useful bound for Hermite funtions:1n! jhn(t)j � K2n=2 1pn!e�t2=2:We will also need the straightforward extensions of these fats to higherdimensions. Thus, let t and s lie in d-dimensional Eulidean spae Rd, andonsider the Gaussian e�jt�sj2 = e�(t1�s1)2�:::�(td�sd)2 :We will �nd it onvenient to adopt multiindex notation. A multiindex � =(�1; �2; : : : ; �d) is a d-tuple of nonnegative integers, playing the role of amultidimensional index. For any multiindex � and any t 2 Rd, we de�nej�j = �1 + �2 + : : :+ �d�! = �1!�2! : : : �d!t� = t�11 t�22 : : : t�ddD� = ��11 ��22 : : : ��ddwhere �i is di�erentiation with respet to the ith oordinate in Rd. If p is aninteger, we say � � p if �i � p for 1 � i � d.The multidimensional Hermite polynomials and Hermite funtions arethen de�ned by H�(t) = H�1(t1) : : :H�d(td)h�(t) = e�jtj2H�(t) = h�1(t1) : : : h�d(td)(5)where jtj2 = t21 + : : :+ t2d. 4



The Hermite expansion of a Gaussian in Rd is then simplye�jt�sj2 = X��0 (t� s0)��! h�(s� s0) :(6)Cramer's inequality generalizes to1�! jh�(t)j � K e�jtj2=2 2j�j=2 1p�! ;(7)where K is less than (1:09)d.Finally, our algorithm will require the Taylor expansion of the Hermitefuntion h�(t) about an arbitrary point t0 2 Rd. Sine h� is de�ned byh�(t) = e�t2H�(t)(8) = (�1)j�jD� e�t2 ;applying D� gives immediatelyD�h�(t) = (�1)j�jh�+�(t) :(9)Thus the Taylor series of h� ish�(t) = X��0 (t� t0)��! (�1)j�jh�+�(t0) :(10)We now present the three lemmas on whih our algorithm relies. The�rst desribes how to transform the �eld due to all soures in a box into asingle rapidly onverging Hermite expansion about the enter of the box.Lemma 2.1 Let NB soures sj lie in a box B with enter sB and side lengthrp2Æ, with r < 1. Then the Gaussian �eld due to the soures in B,G(t) = NBXj=1 qj e�jt�sj j2=Æ;(11)is equal to a single Hermite expansion about sB:G(t) = X��0 A� h�  t� sBpÆ ! :5



The oeÆients A� are given byA� = 1�! NBXj=1 qj  sj � sBpÆ !� :(12)The error EH(p) due to trunating the series after pd terms satis�es thebound: jEH(p)j = jX��pA�h�  t� sBpÆ ! j � KQB  1p!!d=2  rp+11� r!dwhere QB = P jqjj and K = (1:09)d.Proof: Use (6) to expand eah Gaussian in the sum (11) into a Hermiteseries about sB and interhange the sums over � and j. The trunation errorbound follows from Cramer's inequality (7) and the formula for the tail of ageometri series. 2The seond lemma shows how to onvert an Hermite expansion about sBinto a Taylor expansion about tC . The Taylor series onverges rapidly in abox of side rp2Æ about tC , with r < 1.Lemma 2.2 The Hermite expansionG(t) = X��0 A� h�  t� sBpÆ !(13)has the following Taylor expansion, about an arbitrary point tC :G(t) = X��0 B�  t� tCpÆ !� :(14)The oeÆients B� are given byB� = (�1)j�j�! X��0 A� h�+�  tC � sBpÆ ! :(15)If the A� are given by (12) then the error ET (p) in trunating the Taylorseries after pd terms is bounded, in the box C with enter tC and side lengthrp2Æ, byjET (p)j = jX��p B�  t� tCpÆ !� j � KQB  1p!!d=2  rp+11� r!d ;if r < 1. 6



Proof: Eah Hermite funtion in (13) an be expanded into a Taylor seriesby means of equation (10). The expansion (14) is then obtained by inter-hanging the order of summation. The trunation error bound is only a littlemore diÆult: By the formula (12) for A�, we haveB� = (�1)j�j�! X��0 A�h�+�  sB � tCpÆ != (�1)j�j�! X��0 1�! NBXj=1 qj  sj � sBpÆ !� h�+�  sB � tCpÆ != (�1)j�j�! NBXj=1 qj X��0 1�!  sj � sBpÆ !� h�+�  sB � tCpÆ ! :But by (10), the inner sum is the Taylor expansion of h�((sj�tC)=pÆ). ThusB� = (�1)j�j�! NBXj=1 qj h�  sj � tCpÆ ! ;(16)and Cramer's inequality impliesjB�j � 1�! KQB2j�j=2q�! � KQB 2j�j=2p�! :(17)The trunation error bound follows, as in Lemma 2.1, from summing the tailof a geometri series. 2For our algorithm, we will need a variant of Lemma 2.2 in whih theHermite series is trunated before onverting it to a Taylor series. This es-sentially means that in addition to trunating the Taylor series itself, we arealso trunating the in�nite sum expression (15) for the oeÆients. Fortu-nately, however, the error due this approximation of the oeÆients turnsout to be muh smaller than the trunation error of the Taylor series.Lemma 2.3 A trunated Hermite expansionG(t) = X��pA�h�  t� sBpÆ !
7



has the following Taylor expansion about an arbitrary point tC :G(t) = X��0 C�  t� tCpÆ !� :The oeÆients C� are given byC� = (�1)j�j�! X��p A� h�+�  sB � tCpÆ ! :(18)If the A� are given by (12) then the error ET (p) in trunating the Taylorseries after pd terms is bounded, in the box C with enter tC and side lengthrp2Æ, byjET (p)j = jX��p C�  t� tCpÆ !� j � K 0QB  1p!!d=2  rp+11� r!d ;where K 0 � K (1 + (p!)�d=2) � 2K if r � 1=2.Proof: The proof is an appliation of the triangle inequality. Write C� asthe oeÆient B� from Lemma 2.2 plus the tail of a seriesC� = (�1)j�j�! NBXj=1 qj X��p 1�!  sj � sBpÆ !� h�+�  sB � tCpÆ != (�1)j�j�! NBXj=1 qj 0�X��0 � X�>p1A 1�!  sj � sBpÆ !� h�+�  sB � tCpÆ != B� � (�1)j�j�! NBXj=1 qj X�>p 1�!  sj � sBpÆ !� h�+�  sB � tCpÆ != B� + (C� � B�) :Then jET (p)j � jX��p B�  t� tCpÆ !� j + jX��p (C� � B�)  t� tCpÆ !� j :(19)From Lemma 2.2, we know that the �rst sum is bounded byKQB  1p!!d=2  rp+11� r!d :8



Hene we need only bound the seond sum. For this, we havejX��p (C� �B�)  t� tCpÆ !� j� QB X�>p j t� tCpÆ !� j 1�! X�>p 1�! j sj � sBpÆ !� jjh�+�  sB � tCpÆ ! j� KQB X�>pX�>p rj�jp�!s(�+ �)!�!�! rj�jp�!But (� + �)!�!�! � 2j�+�j ;so the lemma follows immediately. 2Remark 2.1. The alternate expression (16) for B� whih appears in theproof of Lemma 2.2 has a simple meaning. Rather than using Lemma 2.1to aumulate all the Gaussians into a single Hermite expansion and thenshifting it to tC , we an use Lemma 2.3 to shift eah Gaussian individuallyto tC and add up the resulting Taylor oeÆients. (A Gaussian is a one-term Hermite series, after all, and an therefore be shifted just like any othertrunated Hermite series.) Thus, a GaussianG(t) = qe�jt�sj j2=Æhas the following Taylor expansion about tC ;G(t) = X��0 B�  t� tCpÆ !� :The oeÆients B� are given byB� = q (�1)j�j�! h�  sj � tCpÆ !(20)and the error in trunation after pd terms isjET (p)j = jX��pB�  t� tCpÆ !� j � K jqj  1p!!d=2  rp+11� r!dfor r < 1. 9



3 The fast Gauss transformWe now have the tools neessary to onstrut and analyze a fast algorithmfor evaluating the disrete Gauss transformG(ti) = NXj=1 qje�jti�sj j2=Æ(21)for 1 � i � M in O(M + N) work. By shifting the origin and resaling Æif neessary, we an assume (as a onvenient normalization) that the souressj and targets ti all lie in the unit box B0 = [0; 1℄d.The algorithm is based on subdividing B0 into smaller boxes with sidesof length rp2Æ parallel to the axes, with a �xed r � 1=2. We an then assigneah soure sj to the box B in whih it lies and eah target ti to the boxC where it lies. For the sake of larity, we maintain a notational distintionbetween soure boxes B and target boxes C even though they may be thesame.For eah target box C, we need to evaluate the total �eld due to soures inall boxes B, at eah target in C. Beause the range of the Gaussian e�jt�sj2=Æis O(pÆ) and the boxes have side lengths rp2Æ, only a �xed number of soureboxes B an ontribute more than Q� to the �eld in a given target box C,where Q = PNj=1 jqjj and � is a spei�ed preision. Indeed, if we ut o� thesum over all B after inluding the (2n + 1)d nearest boxes to C, we inuran error bounded by Qe�2r2n2 . We an always hoose n depending only onr and � to make this less than Q�. For example, if r = 1=2 we get singlepreision auray relative to Q with n = 6 and double preision with n = 8.Suppose now that we want to evaluate the �eld due to a box B withNB soures at MC targets in a box C. There are two ways in whih B antransmit its inuene, and two ways in whih C an handle the informationit reeives. B an diretly send out the strengths and enters of all NBGaussians loated in B, or it an use Lemma 2.1 to ollet them into a10



single trunated Hermite expansion. C an then diretly evaluate all �elds(Gaussians or Hermite expansions) sent to it, at the MC target loationsin C, or it an use Lemma 2.3 to onvert the �elds sent to it into a singletrunated Taylor expansion about the enter tC of C. Evaluation of thisTaylor series then yields the total �eld at eah target loation.Thus, there are four possible ways in whih B an inuene C.1. NB Gaussians ! diretly evaluated2. NB Gaussians ! aumulated in Taylor series via (20)3. Hermite series ! diretly evaluated4. Hermite series ! aumulated in Taylor series via (18)A fast algorithm an be based on any one of the seond through fourthalternatives, beause they all deouple the number of soures from the num-ber of targets. Methods 1 through 4 require the following work to evaluateG(t) at M targets ti.1. The ost of evaluating N Gaussians atM points is of the order O(NM).2. Consider a �xed soure box B. For eah target box C within range, wemust ompute pd Taylor series oeÆientsC�(B) = (�1)j�j�! Xsj2B qjh�  sj � tCpÆ ! :(22)Eah oeÆient requires O(NB) work to evaluate, resulting in a netost of the order O(pdNB). Sine there are at most (2n + 1)d boxeswithin range, the total work for forming all Taylor series is of the orderO((2n + 1)dpdN). Now, for eah target ti, one must evaluate the pdterm Taylor series orresponding to the box C in whih ti lies. Thetotal ost of this algorithm is, therefore,O((2n+ 1)dpdN) +O(pdM) :11



3. In the third approah, we form a Hermite series for eah box B andevaluate it at all targets. First, using Lemma 2.1, we writeG(t) = XB Xsj2B qje�jt�sj j2=Æ= XB X��0A�(B) h�  t� sBpÆ !+ EH(p)where jEH(p)j � Q� andA�(B) = 1�! Xsj2B qj  sj � sBpÆ !� :(23)To ompute eah A�(B) osts O(NB) work, so forming all the Hermiteexpansions requires O(pdN) work. Evaluating at most (2n + 1)d ex-pansions at eah target ti osts O((2n+1)dpd) work per target, so thisapproah results in a total workO(pdN) +O((2n+ 1)dpdM) :4. Finally, suppose we aumulate all soures into trunated Hermite ex-pansions and transform all Hermite expansions into Taylor expansionsvia Lemma 2.3. Thus, we approximate G(t) in C byG(t) = XB Xsj2B qje�jt�sj j2=Æ= X��pC�  t� tCpÆ !� + ET (p) + EH(p)where jEH(p)j+ jET (p)j � Q�,C� = (�1)j�j�! XB X��pA�(B) h�+�  sB � tCpÆ ! ;(24)and the oeÆients A�(B) are given by (23). As we saw under the thirdapproah, it osts O(pdN) work to form all the Hermite expansions, i.e.12



to ompute the oeÆients A�(B) for � � p and all soure boxes B.Beause of the produt form (5) of h�+�, the omputation of the pdoeÆients C� involves only O( d pd+1) operations for eah box B inrange. Therefore, a total of O((2n+ 1)d d pd+1) work per target box Cis required. Finally, evaluating the appropriate Taylor series for eahtarget ti requires O(pdM) work. Hene this algorithm has net CPUrequirements of the orderO((2n+ 1)d d pd+1Nbox) +O(pdN) +O(pdM) ;where the number of boxes Nbox is bounded by min((rp2Æ)�d=2;M).Note that the fator (2n + 1)d no longer multiplies either the O(N)or O(M) terms. The work is now deoupled into three parts; O(pdN)to form Hermite expansions, O(pdM) to evaluate Taylor series, and aonstant term depending on the number of box-box interations andthe ost of transforming a Hermite expansion into a Taylor series.Thus, we really have four algorithms for evaluating G(t), three of whihare asymptotially optimal. We an try to minimize the onstants in thework estimate by varying the hoie of algorithm from box to box. Clearlyan optimal strategy for this hoie is global, but a reasonable strategy anbe onstruted in whih eah box deides independently what ation to take.For this purpose, let NB soures in a box B be within range of MC targetsin a box C. Choose uto� parameters NF and ML. Then1. if NB < NF then B sends out NB Gaussians.2. if NB � NF then B sends out a Hermite expansion.3. if MC < ML then C evaluates all �elds sent to it immediately.4. if MC � ML then C transforms all �elds sent to it into Taylor series,aumulates the oeÆients, and only then evaluates the Taylor series.13



The work in this algorithm an be broken down as follows:1. XNB�NF O(pdNB)to evaluate Hermite expansions,2. + XMC<ML XNB<NF O(NBMC)to evaluate Gaussians,3. + XMC<ML XNB�NF O(pdMC)to evaluate Hermite expansions,4. + XMC�ML XNB<NF O(pdNB)to transform Gaussians into Taylor series,5. + XMC�ML XNB�NF O(d pd+1)to transform Hermite series into Taylor series,6. + XMC�MLO(pdMC)to evaluate Taylor series.Clearly we an ahieve a rough balane of work by taking NF = O(pd�1) andML = O(pd�1). The total work then has the form O(pdN) + O(d pd+1(2n +1)dmin((rp2Æ)�d=2;M)) +O(pdM). This is linear in N and M , with a on-stant depending only on the preision. The omplexity estimate is similar tothe fourth algorithm above, but the advantage here is that when there areonly a few partiles in a box, the overhead assoiated with transformation ofHermite series to Taylor series is avoided.14



4 Formal Desription of the AlgorithmIn this setion, we desribe the fast Gauss transform in a more proeduralform. AlgorithmComment [Choose the largest r � 1=2 suh that 1=rp2Æ is an integer Nside.Subdivide the unit box into Ndside boxes. Choose the number n of boxes to goout in eah diretion based on r and the desired preision �. Eah soure sends to(2n + 1)d boxes. Choose the number of terms pd based on r and �. Choose theuto�s NF and ML.℄ Step 1.Assign soures and targets to boxes. Determine number of boxes ontaining morethan ML targets. For eah suh box, alloate storage for a Taylor serieswith pd terms and initialize to zero. Step 2.Comment [Loop through boxes, omputing interations between soures in boxand targets within range n. For eah pair of soure and target boxes, one of thefour options summarized on p. 10 is used.℄do i = 1; :::; NdsideNB = number of soures in ith box B.Form the interation list of (2n+ 1)d target boxes C within range of B.if NB � NF thendo j = 1; :::; (2n + 1)dMC = number of targets in jth box C in interation list.if MC �ML thenCompute soure/target interations by diret evaluation of Gaussians.elseConvert eah of the NB soures into a Taylor series about the enter ofbox C via equation (20) and add to Taylor series for box C.end ifend doelse (NB > NF )Form Hermite expansion about enter of box B due to NB soures via equation (20).do j = 1; :::; (2n + 1)dMC = number of targets in jth box C.if MC �ML then 15



Evaluate Hermite expansion at eah target loation and add to aumulatedpotential.elseConvert Hermite expansion into a Taylor series about the enter of box Cby means of equation (12) and add to Taylor series for box C.end ifend doend ifend do Step 3.Comment [Loop through boxes evaluating Taylor series for boxes with more thanML targets.℄do i = 1; :::; NdsideMC = number of targets in ith box C.if MC > ML thenEvaluate Taylor series for box C at eah of the MC target positionsto obtain the desired potential.end ifend do5 Numerial ExperimentsIn this setion, we present the results of numerial experiments with thefast Gauss transform and demonstrate dramati speedups over the diretalulation for realisti problems. A two-dimensional version of the algorithmwas programmed in Fortran and run on a Sun-4 workstation, using up to100,000 soures and targets and Æ lying in the range .0001 to 1.0.We examined the ost of the fast algorithm as ompared to the diretevaluation of all the Gaussians, as N and M inreased. Two distributionsof targets and soures were tried, uniformly distributed in the unit box andequally spaed on a irle, and several values of Æ were used. For the uniformdistribution, strengths were uniformly distributed between �1 and 1. Forthe irle, the strengths were spei�ed to be os(�), where � is the angle. We16



asked for an error relative to the total harge Q of � = 10�6, whih requiredpd = 82 terms in the Hermite and Taylor expansions. The results are givenin Tables 1-4.Table 1: Table of ost and errors for Æ = 1:0, with targets and souresdistributed uniformly in the unit box. CPU times are given in seonds forthe fast and diret algorithms. Times for the diret algorithm were estimatedby evaluating G(t) at 100 targets and extrapolating.Case N =M Fast Diret Error/Q1 100 0.42 0.59 .627E-082 200 0.62 2.3 .306E-083 400 1.1 9.7 .175E-084 800 1.8 38 .157E-085 1600 3.4 150 .126E-086 3200 6.5 601 .135E-087 6400 12.8 2407 .114E-088 12800 26.0 9702 .563E-099 25600 51.9 38790 .563E-0910 51200 103 155550 .337E-0911 102400 205 622780 .237E-09With 102,400 soures and targets equispaed on a irle and Æ = :01, thefast algorithm is more than 3000 times faster than the diret alulation.Typially the performane of the fast algorithm improves when the souredistribution is spatially non-uniform, as it is in many pratial problems.There are then more partiles in eah of a smaller number of oupied boxes,reduing overhead osts.Storage requirements for the fast algorithm are reasonable as long as Nand M are large and Æ is not too small. For extremely small Æ, one shouldmodify the algorithm to make use of just those boxes ontaining targets orsoures. The interation list for eah soure box an then be formed bymeans of an adaptive tree struture, as is done in the fast multipole method[2℄. This would avoid having to loop through Ndside = (2r2Æ)�d=2 (largelyempty) boxes. 17



Table 2: Table of ost and errors for Æ = 0:01, with targets and souresdistributed uniformly in the unit box.Case N =M Fast Diret Error/Q1 100 0.65 0.70 .115E-082 200 1.840 2.76 .616E-093 400 5.8 10.9 .478E-094 800 20.6 43.6 .291E-085 1600 115 174 .274E-086 3200 349 697 .443E-087 6400 344 2792 .249E-088 12800 353 11173 .177E-089 25600 383 44650 .144E-0810 51200 431 179120 .120E-0811 102400 538 716760 .501E-09
Table 3: Table of ost and errors for Æ = 0:01, with targets and souresspaed uniformly on a irle.Case N =M Fast Diret Error/Q1 100 3.25 0.67 .479E-092 200 4.93 2.70 .489E-093 400 10.9 10.8 .182E-064 800 12.7 42.8 .191E-065 1600 14.5 172 .203E-066 3200 18.5 684 .204E-067 6400 26.4 2749 .201E-068 12800 38.7 11003 .177E-069 25600 65.1 43955 .172E-0610 51200 116 176300 .170E-0611 102400 219 705650 .170E-06

18



Table 4: Table of ost and errors for Æ = 0:0001, with targets and souresspaed uniformly on a irle.Case N =M Fast Diret Error/Q1 100 4.61 0.68 .539E-102 200 5.31 2.72 .270E-103 400 6.24 10.9 .140E-104 800 8.71 42.9 .834E-115 1600 19.6 172 .298E-106 3200 63.9 690 .799E-087 6400 79.0 2785 .469E-088 12800 96.9 11132 .217E-099 25600 127 44375 .757E-1010 51200 179 178120 .417E-1011 102400 287 713830 .385E-106 GeneralizationsThe fast Gauss transform generalizes immediately to sums of the form(�1)jjDG(t) = NXj=1 qjh(t� sj);(25)onvolutions with a �xed Hermite funtion. One need only apply D to allthe formulas presented above and use the formula (9) relating derivativesof Hermite funtions. An arbitrary multivariable polynomial P (s) an beexpressed as a sum of Hermite polynomials, so we an use our algorithm toevaluate sums of the formNXj=1 qjP  t� sjpÆ ! e�jt�sj j2=Æin optimal time. As an extension of this remark, we an evaluate any onvo-lution sum K � f (t) = NXj=1 f(sj)K(t� sj)(26)for whih the kernel K has a rapidly onverging Hermite series. We approxi-mate K to within � by a qd-term trunated Hermite expansion and apply the19



fast algorithm of this paper to arry out eah onvolution with an Hermitefuntion. This would ost O((pq)d(N +M)) to evaluate (26) at M points. Abetter approah, however, would be to modify the algorithm so as to reate,for eah box, a single (p + q)d-term far-�eld expansion whih inludes thee�et of Hermite funtions of indies up to q. The modi�ed algorithm wouldevaluate (26) at M points in O((p + q)d(N +M)) work; the onstant p + qdepends only on the preision required and the smoothness of K.Examples of onvolution kernels K with rapidly onverging Hermite seriesinlude any smooth funtion whih deays at in�nity faster than any power;in partiular, any smooth funtion with ompat support.One appliation of this generalization is to the problem of evaluating theontinuous Gauss transform (1), rather than the disrete sum of Gaussians.Evaluation of the ontinuous Gauss transform with an order of aurayindependent of Æ, as would be required to evaluate the molli�ation of anonsmooth funtion, seems to require the use of produt integration. Inother words, one replaes the density f with a pieewise polynomial andevaluates the resulting integrals exatly. This gives a weighted sum of valuesfj whih annot be evaluated by the Gauss transform, beause the integralof a Gaussian over an element is no longer a Gaussian. However, the resultan be expanded in a rapidly onverging Hermite series of the form (26), andthis sum an be evaluated by the generalized Gauss transform just desribed.However, if one really wants to evaluate (1) aurately, produt integra-tion followed by Hermite expansion is unneessarily troublesome. A morestraightforward approah is to use the expansion on whih our algorithm isbased to reate a "semi-ontinuous Gauss transform." Rather than disretiz-ing the integral and forming the disrete moments due to the soures in eahbox, one simply forms the ontinuous moments due to the soures in eahbox. This gives a far more aurate Hermite expansion whih an then bemanipulated just as in the standard Gauss transform algorithm.20



Consider, for example, the problem of evaluatingG�(t) = Z� e�jt�sj2�(s)dswhere � is a hypersurfae in Rd. The semi-ontinuous Gauss transform anbe desribed by the equationG�(t) = XB Z�\BX� 1�!  s� sBpÆ !� h�  t� sBpÆ !�(s)ds(27) = XB X� h�  t� sBpÆ !M�:(28)Here the moments M� an be very easily evaluated to high auray. Wethen have the Hermite expansion of G�(t), and an manipulate it just as anyother Hermite expansion. The utility of this algorithm is obvious; we areurrently applying it to other problems of applied mathematis.7 ConlusionsWe have presented a \fast Gauss transform" algorithm for evaluating thesums G(ti) = NXj=1 qje�jti�sj j2=Æ i = 1; : : : ;M(29)for 1 � i �M in O(M +N) work. Diret evaluation would require O(NM)work in general, so this is a substantial improvement in omputational om-plexity. In order to evaluate the sum of 100,000 Gaussians at 100,000 points,for example, the fast algorithm requires about four minutes of CPU time ona Sun-4, while diret evaluation would take more than a week. There aremany �elds of applied mathematis where suh an algorithm will be a usefultool.
21
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