
UCLA
UCLA Electronic Theses and Dissertations

Title
Efficient Learning of Continuous-Time Hidden Markov Models with Discrete-Time Irregular 
Observations for Healthcare Intervention Planning

Permalink
https://escholarship.org/uc/item/3gz0c7qx

Author
Ghodsi, Saeed

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3gz0c7qx
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

Efficient Learning of

Continuous-Time Hidden Markov Models

with Discrete-Time Irregular Observations

for Healthcare Intervention Planning

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Statistics

by

Saeed Ghodsi

2022



© Copyright by

Saeed Ghodsi

2022



ABSTRACT OF THE THESIS

Efficient Learning of

Continuous-Time Hidden Markov Models

with Discrete-Time Irregular Observations

for Healthcare Intervention Planning

by

Saeed Ghodsi

Master of Science in Statistics

University of California, Los Angeles, 2022

Professor Yingnian Wu, Chair

The availability of vast amounts of electronic medical records data has inspired an increasing

interest in data-driven healthcare intervention planning methods. Disease progression models

provide a mechanism for understanding and predicting the impact of interventions on the

health state of patients. Most traditional Markovian state-transition models perform poorly

on real-world data since they are incapable of capturing complexities such as unobservability

of the underlying health state and irregularity of visit times. Moreover, most of the existing

frameworks are unable to explicitly model the effect of interventions on disease progression.

CT-HMMs have recently attracted attention, as they are able to handle these complexities.

Our main contribution is to propose a CT-HMM disease progression model, which incorporates

the effect of interventions, and to present an efficient approach for learning the parameters of

this model based on the EM algorithm. We demonstrate the effectiveness of our algorithm by

performing experiments on synthetic data.
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CHAPTER 1

Introduction

Disease progression modeling has been a hot research topic among the healthcare management,

operations research, computer science, and statistics communities during the past couple of

decades. The availability of vast amounts of healthcare data, such as Electronic Medical

Records (EMR), enables data-driven modeling of disease progression over time and quantitative

assessment of the impact of healthcare interventions on disease progression, which are

key components of modern healthcare intervention planning systems. In particular, we’re

interested in developing mathematical models for studying the effect of healthcare interventions

on medium-term and long-term progression of diseases. Such models would enable further

development of decision-making frameworks for providing healthcare managers and physicians

with guidelines regarding the population-level allocation of healthcare resources in order

for improving the overall health state of patients and minimizing healthcare costs as a

consequence. Even though the analytical framework that we present here is pretty general,

our research was initially motivated by studying the case of behavioral healthcare systems, in

which usually multiple intervention choices (e.g. group therapy, case management, medication

prescription, etc.) are available for each patient.

Accurate modeling of disease progression is, though, difficult in its nature, as there are

a variety of factors that need to be considered. In the following, we briefly discuss a few

relevant aspects of the problem that make model development challenging [WSW14]:

• Unobserved health condition: The true underlying health state of patients is often

unobserved and physicians only have access to a set of noisy signals that are correlated
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with the patients’ health condition. The model must be able to learn the progression of

patients’ health state based on the observed signals.

• Discrete and irregularly-spaced observation times: Although the true underlying

progression of disease happens continuously over time, physicians observe the noisy

signals only at certain discrete points in time. Moreover, the observations times are often

irregularly spaced. In other words, physicians may have only a few observations over a

certain period of time and more frequent observations during another period. Learning

a continuous-time model based on these irregularly-spaced discrete-time observations is

challenging in general.

• The effect of interventions and covariates: After each visit, the physician may prescribe

medications or other interventions for the patient based on the clinical observations.

Appropriate modeling of the effect of these interventions on disease progression is a key

aspect of our work. Furthermore, there may be some covariates (e.g. age, gender, etc.)

that affect the progression of disease.

Among all the approaches that have been proposed for modeling disease progression,

State-Transition Models (STMs) that mostly impose Markovian assumptions on the structure

of the time-series data are the most commonly used option. Earlier works often used Discrete-

Time Markov Chains (DTMCs) and Continuous-Time Markov Chains (CTMCs). However,

a recent trend in the research community is to consider the fact that the true underlying

health state of patients is often unobserved by physicians. Therefore, latent-variable models

have been suggested in the literature to account for the distinction between the physician

observations and the true health states. Specifically, Hidden Markov Models (HMMs) as well

as Partially-Observed Markov Decision Processes (POMDPs) are now preferred over fully-

observed Markov chains. As we mentioned above, another important aspect of the problem

that classical models usually do not consider is that in many cases visits happen irregularly

over time, i.e. the time between consecutive visits can generally vary. Discrete-Time HMMs
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(DT-HMMs) are inherently unable to capture this property, and traditional Continuous-Time

HMMs (CT-HMMs) are often assumed to be observed continuously over time. Finally, most

models assume no medical intervention can affect the course of disease progression. Although

this assumption might be reasonable in certain cases in which there is no widely-approved

treatment for the disease, it is restrictive for modeling more general situations. Therefore, our

aim in this research project is to design a disease progression model that is able to capture

the aforementioned complexities of the problem, and allows for designing a data-driven

intervention planning strategy. In particular, we propose a CT-HMM model that is capable

of handling unobserved health states and irregular visit times, and incorporates the effect

of interventions into the model as well. Our main contribution is to propose an efficient

approach for learning the parameters of this model based on the Expectation-Maximization

(EM) algorithm. We demonstrate the effectiveness of our algorithm by performing simulation

on synthetic data. We also present a Linear Programming (LP) formulation for a single-period

intervention planning problem using our model.

In the next chapters, we first briefly review the recent disease progression modeling

literature. Afterward, we will discuss recent developments for efficient parameter learning of

CT-HMMs with discrete, irregular observations, that are appropriate for disease progression

modeling due to their capability to model the complexities of real-world data. Our focus

will be on computational challenges of learning CT-HMMs for real-world disease progression

modeling applications that have discrete irregular observations, as explained. In particular,

will go over an algorithm presented in [LLL15], that is based on the matrix exponential

approach suggested by [HJ11] for evaluating a certain form of integrals. Then, we provide an

extension of the model to incorporate the effect of interventions and covariates on disease

progression by parameterizing the generator matrix of the CT-HMM. As part of the learning

procedure, we present a forward-backward algorithm for efficient calculation of the posterior

probabilities as well as an efficient method for calculating end-state conditioned expectations.

Finally, we present an intervention planning framework based on the learned model.
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CHAPTER 2

Literature Review

In this chapter, we first discuss about the application of state-transition models for disease

progression modeling, and introduce some relevant recently developed Markovian models.

Afterward, we briefly discuss about the intervention planning problem and go over some

alternative Reinforcement Learning (RL) approaches as well. We refer the readers to [PFU18]

for a review of the patient flow modeling approaches that we are not going to cover, such as

queueing models which are commonly used in analyzing hospital operations.

2.1 State-Transition Models for Disease Progression

Linear regression models are among the simplest approaches that have been proposed for

disease progression modeling. This approach is often suggested for situations in which

the disease state is assumed to be directly related to certain biological indicators (e.g.

pharmaceutical studies [CB16], [Mou12]). Multi-state models are more commonly used

for disease progression modeling in the medium-term and long-term. Cohort-based state

transition models take a closed group of individuals who share some specific characteristics

or experiences (e.g. same disease, same risk factors, etc.) and analyze their evolution over

time by running the cohort through a state-transition model. These models are attractive

due to their transparency, efficiency, and ease of debugging. However, they are suitable for

only situations in which a decision problem can be represented with a manageable number of

health states that incorporate all the relevant characteristics [CBS12].
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Among these models, DTMCs have been widely used for modeling behavioral conditions

such as depression [AKG12]. On the other hand, CTMCs add more flexibility to the DTMC

models by allowing transitions between states of disease to happen at arbitrary times [GLL94].

Each of these approaches have their own drawbacks and various extensions to these models

have been proposed for overcoming these issues [LM13]. As we discussed beforehand, the

true health state of patients may not necessarily be observable. Therefore, HMMs introduce

a set of latent variables that are supposed to capture the underlying disease dynamics.

The observations are then linked to these latent variables based on certain probability

distributions. Being capable of learning arbitrary state transition times from irregularly

observed discrete-time data is often mentioned as an advantage of CT-HMMs [LLL15].

Perhaps, one of the closest methods to our work that employs CT-HMMs for modeling

disease progression using discrete-time irregularly-spaced observations is [LM13]. Specifically,

the authors assume each physician observation can be mapped to a certain subset of the

underlying health states, and a panel data of observations is available. They also use the

Coxian proportional hazard approach for incorporating the effect of covariates on the disease

progression. Afterward, the authors formulate an EM algorithm for estimating the parameters

of their model. A key drawback of that approach is that it requires the generator matrix

of the CT-HMM to be diagonalizable during the learning process, which usually doesn’t

hold. A similar approach for modeling the progression of Huntington’s disease is presented in

[SGL19]. We would like to mention a closely related work by [WSW14] as well, which employs

CT-HMMs for modeling the time-series data of International Classification of Diseases -

Version 9 (ICD-9) codes that are used for describing the disease category.

Some recent papers also consider relaxation of certain assumptions. For example, [AHS17]

considers a situation in which the observation times are not random (aka informative sampling)

and the physician decides the follow-up time based on the observations that s/he makes. On

the other hand, STMs often assume that disease progression satisfies the Markov property,

i.e. the future dynamics of the true underlying health state depends only on the current
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value of the health state. However, in many situations, the duration of staying in a health

state actually affects the probability of transitioning into a new health state in a given

time period. Although there are some classical techniques for adapting Markovian STMs to

modeling non-Markovian processes [SCS14], employing novel machine learning concepts, such

as the attention mechanism, for handling non-Markovian cases is a hot research topic [AS19].

Semi-Markovian models have also been explored in the literature for handling violations of

this assumption [AV18].

As we explained, most of the aforementioned papers ignore the effect of interventions on

disease progression. The work by [SCS20] is an example of approaches that incorporate the

effect of intervention into the model as well. In particular, the authors design a DT-HMM with

a discrete set of possible hidden state and Normally distributed continuous observations. The

effect of intervention is then modeled as linear shifts in the mean of the observation distribution.

Thus, the actual disease progression is assumed to be independent of the intervention, and

only the physician observation might be altered when the intervention changes. An advantage

of their modeling framework is that it is also capable of accommodating heterogeneous effects

via defining a patient-specific latent variable that is added to the observation model.

2.2 Healthcare Intervention Planning

The STM framework has been used in the past by healthcare management and operations

research communities for modeling patients’ disease progression, which is a crucial part of the

intervention planning and resource allocation procedure. The model developed by [DIJ13]

for capacity allocation in community-based healthcare delivery for chronic diseases is an

example of such models. More specifically, the authors consider a homogeneous population of

patients and define a representative patient whose disease progression is governed by a Markov

process. Then they formulate a stochastic dynamic programming problem that is supposed

to maximize the aggregate Quality-Adjusted Life-Years (QALYs) for the whole population
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over the entire planning horizon. Similarly, [LLV19] developed an optimal screening model

for Hepatocellular Carcinoma in which the disease progression is modeled at the individual

level using a partially observable Markov decision process. A methodological framework for

assessing the impact of system-level policy interventions on a set of health outcomes defined

for certain chronic diseases is proposed in [KVM11]. Specifically, the authors adopted a

Markovian STM for describing the pattern of visiting providers by patients over time.

Since most of the papers that incorporate the intervention effect into the model use

Markov Decision Processes (MDPs) instead of HMMs, we provide a brief review of the

relevant approaches in the following and discuss their drawbacks. Reinforcement learning

has traditionally been used in healthcare management research for a variety of applications,

including intervention planning. For example, many RL techniques have been developed in

the past few years for intervention planning in critical care settings for hypotension treatment

[FMD20], [ZWD21] and sepsis treatment [RKA17], [GJM18], [KCB18], [PDW18], [LSS20].

The Dynamic Treatment Regimes (DTR) framework is also known to be one of the traditional

approaches for representing healthcare intervention planning as a sequential decision-making

problem that aims to determine the optimal course of treatment actions [CM14]. We refer

the readers to [SLL11], [GJM18], [YLN21] for more detailed discussions on applications of

RL in healthcare management.

One of the most relevant RL papers to our work is [FHD20]. In that paper, the authors

employ a discrete-time POMDP model with a finite number of underlying health states

and Normally-distributed continuous physician observations. Assuming access to a set of

trajectories of patient observations, they suggest using an EM algorithm for learning the

parameters of the POMDP model similar to an Input-Output HMM [BF94]. A main advantage

of their approach is that the effect of intervention is naturally incorporated into the model.

The Point-Based Value Iteration (PBVI) algorithm is then used for planning based on beliefs

over the latent state distribution.

Most of the traditional RL algorithms and framework have been designed for online
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settings in which the agent (planner) is able to interact with the environment and explore

the responses of the environment to different actions (interventions). Hence, a fundamental

challenge of the so-called offline RL approaches that aim to plan using a fixed dataset without

further exploration is that the distribution of the observational data might be different from

the distribution induced by the actor during the exploration phase [LKT20]. In other words,

the planner may explore regions of the action-state space for which sufficient data is not

available in the data set. Therefore, a recent trend in the RL research community is to design

algorithms that avoid exploring unseen regions. In particular, this issue is very serious in

domains such as healthcare, in which minor inaccuracies in planning can potentially results

in significant damages to patients. A parallel research track that studies safety in RL for

healthcare applications is also closely related to the distribution shift and dataset coverage

considerations that we discussed [FKS21].

Despite all the advantages that the aforementioned RL approaches offer, such as being

able to naturally incorporate the effect of intervention on disease progression into the model,

we decided not to use this framework for certain reasons. Specifically, most RL algorithms

have been developed for discrete-time settings, while the focus of our work is on modeling a

continuous-time process with discrete, irregularly-spaced observations. Even though some

developments have been made in the recent years on analyzing continuous-time POMDPs

[ASK20] and there are also some tricks that might help in representing our problem using

discrete-time POMDPs, we’ve chosen to use CT-HMMs as they are more convenient to work

with, and they have been explored for disease progression modeling applications in the past

as well.
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CHAPTER 3

Methodology

3.1 Efficient Learning of CT-HMM Parameters

In this section, we will first present a basic model setup for CT-HMMs with discrete-time and

irregularly-spaced observations in the context of disease progression modeling. Afterward, we

will go over the traditional learning approaches and discuss about their shortcomings. Finally,

we briefly explain the idea presented in [LLL15] for efficiently learning the model parameters.

3.1.1 Model Setup

Assume that there are N patients in the healthcare system, indexed by n = 1, · · · , N .

Furthermore, suppose there are J possible values for the observations and I possible values for

the unobserved underlying health state. Denote by yτns
n ∈ {0, · · · , J − 1} (for s = 1, · · · , Tn)

and zτn ∈ {1, · · · , I} (for the time index τ ∈ R+), respectively, the observed value and the

true disease state corresponding to patient n. In this notation, Tn number of observations

are assumed to be available for patient n and τn1, · · · , τnTn denote the discrete time points

corresponding to these observations. Notice that we are assuming the underlying disease state

zn is a continuous-time random processes, and observations are made only at irregular discrete

points in time (physicians are unable to observe zn directly). Furthermore, we’re assuming

that the underlying disease progression models for all the patients have the same number of

health states, which is equal to I. Define the I× I matrices Q and P(∆τ), respectively, as the

generator matrix and the transition probability function of the CT-HMM. Moreover, denote
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by E the emission model, i.e. E(i, j) = P{yτns
n = j|zτns

n = i} (for any s = 1, · · · , Tn). For

example, we can suppose the emission model associated with health state i is binomial with

probability µi, which implies that E(i, j) =
(
J−1
j

)
µji (1−µi)

J−1−j for 1 ≤ i ≤ I, 0 ≤ j ≤ J − 1.

Under the time-homogeneity assumption, we can then express the transition probability

functions as P(∆τ) = exp(∆τQ) =
∑∞

l=0(∆τ)
l Ql

l!
, where the matrix exponential is defined

based on power series.

3.1.2 Parameter Learning Using the Expectation Maximization Algorithm

The EM algorithm has traditionally been used for learning the parameters of HMMs from

panel data based on the Maximum Likelihood Estimation (MLE) approach [Jac11]. The

work by [MHS07] is one of the earliest successful attempts for designing an efficient learning

procedure for CTMCs with discrete irregular observations. Their methodology was then

extended to CT-HMMs by [LLL15]. In the following, we will briefly explain their formulation

for the problem in the context of our model.

Assuming that the samples corresponding to different individuals are Independent and

Identically Distributed (IID), consider the n-th patient (1 ≤ n ≤ N). Let the random

variables τ̃ ns (for 1 ≤ s ≤ T̃n) indicate the points in time at which the true underlying state

of the patient’s disease (i.e. variable zτn) changes. In this notation, T̃n is a random variable

which determines the number of times that the patient’s true health state has changed.

Given realizations of yτns
n (1 ≤ s ≤ Tn) and zτn (τn1 ≤ τ ≤ τnTn), we can represent the

continuous-time complete-data likelihood function for the n-th patient as a function of y
τn 1:Tn
n ,

zτn, and the corresponding variables T̃n and τ̃ns (1 ≤ s ≤ T̃n) in the following form:

Ln(Q, E|yτn 1:Tn
n , zτn) ≜ P{yτn 1:Tn

n , zτn|Q, E}

=
T̃n−1∏
s̃=1

[
Q[zτ̃ns̃

n , z
τ̃n s̃+1
n ]

−Q[zτ̃ns̃
n , zτ̃ns̃

n ]
× (−Q[zτ̃ns̃

n , zτ̃ns̃
n ]) eQ[z

τ̃ns̃
n ,z

τ̃ns̃
n ] (τ̃n s̃+1−τ̃n s̃)

]
×

Tn∏
s=1

E(zτns
n , yτns

n )
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=
T̃n−1∏
s̃=1

[
Q[zτ̃ns̃

n , zτ̃n s̃+1
n ] × eQ[z

τ̃ns̃
n ,z

τ̃ns̃
n ] (τ̃n s̃+1−τ̃n s̃)

]
×

Tn∏
s=1

E(zτns
n , yτns

n )

The term Q[z
τ̃ns̃
n ,z

τ̃n s̃+1
n ]

−Q[z
τ̃ns̃
n ,z

τ̃ns̃
n ]

is the probability that the embedded DTMC transitions from zτ̃ns̃
n to

z
τ̃n s̃+1
n and the term −Q[zτ̃ns̃

n , zτ̃ns̃
n ] eQ[z

τ̃ns̃
n ,z

τ̃ns̃
n ] (τ̃n s̃+1−τ̃n s̃) indicates the PDF of the exponential

distribution of the sojourn time corresponding to state zτ̃ns̃
n . Notice that the parameters Q

and E are assumed to be homogeneous across the patients. Now, let’s define the random

variables χn ik (1 ≤ i, k ≤ I, k ̸= i) and ψn i (1 ≤ i ≤ I), respectively, as the total number

of transitions from state i to state k and the total amount of time spent in state i during

the entire observation time. Then for realizations of y and z, the likelihood function can be

represented in the following way:

Ln(Q, E|yτn 1:Tn
n , zτn) =

I∏
i=1

I∏
k=1,k ̸=i

Q[i, k]χn ik ×
I∏
i=1

eQ[i,i]ψn i ×
Tn∏
s=1

E(zτns
n , yτns

n )

The likelihood for all the patients can be calculated as L = ΠN
n=1 Ln. The function L

can not be maximized since the true underlying health state random processes zn are

not observable. Therefore, EM-based procedures have been proposed for estimation of the

parameters. The EM algorithm determines the optimum parameters by iteratively maximizing

EQ̃,Ẽ [logL(Q, E|y
τn 1:Tn
n )] at each step, where Q̃, Ẽ are the parameter values determined at the

previous iteration and Q, E are the decision variables at the current step. In other words, the

expected log-likelihood in the E-step takes the following form:

EQ̃,Ẽ [logL(Q, E|y
τn 1:Tn
n ] = EQ̃,Ẽ

[ N∑
n=1

I∑
i=1

I∑
k=1,k ̸=i

χn ik log(Q[i, k])

∣∣∣∣ yτn 1:Tn
n

]

+ EQ̃,Ẽ

[ N∑
n=1

I∑
i=1

Q[i, i]ψn i

∣∣∣∣ yτn 1:Tn
n

]
+ EQ̃,Ẽ

[ N∑
n=1

Tn∑
s=1

log(E(zτns
n , yτns))

∣∣∣∣ yτn 1:Tn
n

]

=
N∑
n=1

I∑
i=1

I∑
k=1,k ̸=i

(
log(Q[i, k])× EQ̃,Ẽ

[
χn ik | yτn 1:Tn

n

])

11



+
N∑
n=1

I∑
i=1

(
Q[i, i]× EQ̃,Ẽ

[
ψn i | yτn 1:Tn

n

])
+

N∑
n=1

Tn∑
s=1

(
EQ̃,Ẽ

[
log(E(zτns

n , yτns
n )) | yτn 1:Tn

n

])

This function will be maximized over Q and the parameters of E in the M-step and the

following optimum parameters will be chosen (notice that Q[i, i] = −
∑I

k=1,k ̸=iQ[i, k] holds

for 1 ≤ i ≤ I):

Q̂[i, k] =

∑N
n=1 EQ̃,Ẽ

[
χn ik | y

τn 1:Tn
n

]∑N
n=1 EQ̃,Ẽ

[
ψn i | y

τn 1:Tn
n

] ; (k ̸= i) Q̂[i, i] = −
I∑

k=1,k ̸=i

Q̂[i, k]

Hence, the M-step requires computing the values of EQ̃,Ẽ
[
χn ik | y

τn 1:Tn
n

]
and EQ̃,Ẽ

[
ψn i | y

τn 1:Tn
n

]
.

At this stage, computational complexity of traditional model learning approaches makes them

inappropriate for real-world applications. In particular, the Monte Carlo Expectation-

Maximization (MCEM) algorithm approximates these expectations by sampling from the

posterior distribution of P{z|y} using the current parameter estimates Q̃, Ẽ [LC01]. However,

this approach is computationally expensive for real-world applications. In the case that

performing eigendecomposition on the generator matrix is possible, the expectations can

be calculated efficiently [MHS07, WSW14]. However, during the learning procedure, the

generator matrix is often not diagonalizable. Hence, we need an alternative efficient approach

for calculating these expectations for general cases. In the next section, we’ll discuss about

recent developments that have made this possible.

3.1.3 Efficient Calculation of the Expectations

An efficient mechanism for computing these quantities has recently been proposed by [LLL15].

More specifically, the authors expand the expectations in the following way:

EQ̃,Ẽ
[
χn ik | yτn 1:Tn

n

]
=

Tn−1∑
s=1

I∑
ĩ=1

I∑
k̃=1

P{zτn s
n = ĩ, zτn s+1

n = k̃ | yτn 1:Tn
n }

×EQ̃,Ẽ
[
χ
τn (s)

n ik |zτn s
n = ĩ, zτn s+1

n = k̃
]

12



EQ̃,Ẽ
[
ψn i | yτn 1:Tn

n

]
=

Tn−1∑
s=1

I∑
ĩ=1

I∑
k̃=1

P{zτn s
n = ĩ, zτn s+1

n = k̃ | yτn 1:Tn
n }

×EQ̃,Ẽ
[
ψ
τn (s)

n i |zτn s
n = ĩ, zτn s+1

n = k̃
]

where χ
τn (s)

n ik and ψ
τn (s)

n i are the number of transitions and the total time spent in different

states by variable z during the period τn (s) = (τns, τn s+1]. Then they suggest efficient

procedures for calculating P{zτn s
n = ĩ, zτn s+1

n = k̃ | yτn 1:Tn
n }, EQ̃,Ẽ

[
χ
τn (s)

n ik |zτn s
n = ĩ, zτn s+1

n = k̃
]
,

and EQ̃,Ẽ
[
ψ
τn (s)

n i |zτn s
n = ĩ, zτn s+1

n = k̃
]
. For calculating the probability, they construct an

inhomogeneous DT-HMM for which the transition matrix is constant between any two

consecutive observations, but may vary after an observation has been made. In mathematical

terms, the transition matrix associated with time period [τs, τs+1) is defined as P(τs+1 − τs) =

exp((τs+1 − τs)Q̃). The problem of finding the probability P{zτn s
n = ĩ, zτn s+1

n = k̃ | yτn 1:Tn
n } can

then be re-represented as the problem of finding the underlying state sequence of a DT-HMM

given a set of observations, which can be solved using the forward-backward algorithm.

For calculating the end-state conditioned expectations, the authors suggest to use a

method called ”Expm”, which performs matrix exponential on a double-sized auxiliary matrix.

The integral form of the expectations have been derived by [HJ05], [HJ11] as:

EQ̃,Ẽ
[
χ
τn (s)

n ik |zτs = ĩ, zτs+1 = k̃
]
=

Q̃ik

(e(τs+1−τs)Q̃)ĩk̃

∫ (τs+1−τs)

0

(exQ̃)ĩi(e
(τs+1−τs−x)Q̃)kk̃ dx (3.1)

EQ̃,Ẽ
[
ψ
τn (s)

n i |zτs = ĩ, zτs+1 = k̃
]
=

1

(e(τs+1−τs)Q̃)ĩk̃

∫ (τs+1−τs)

0

(exQ̃)ĩi(e
(τs+1−τs−x)Q̃)ik̃ dx (3.2)

Therefore, the problem reduces to efficient calculation of the above integral. Consider the

general problem of evaluating an integral of the form
∫ t
0
exQ̃ B e(t−x)Q̃ dx, where B is a matrix

of the same dimensions as Q̃. It is known that the result of this integral is equal to the

upper-right corner of the matrix exponential etA, where A =

Q̃ B

0 Q̃

 [Van78]. Setting the

elements of B equal to zero everywhere except for Bik = 1, the integral will result in a matrix

13



Figure 3.1: CT-HMM model with interventions at the discrete and irregular observation
times. The main difference between this model and the original model is that we have an
additional layer for intervention variables. The intervention decision at visit s affects the
disease progression between visits s and s+ 1 (i.e. the generator matrix is not constant).

with elements (̃i, k̃) corresponding to the values of indices in the original integral.

3.2 Incorporating the Effect of Intervention

In this section, we reformulate the model to incorporating the effect of interventions and

covariates on disease progression. We first suggest a parameterization of the generator matrix

that allows for making the transition rates a function of intervention variables and covariates.

We then assume that at the training time, we have access to the observation and intervention

variables. In the context of disease progression modeling, observations can be the results of a

set of diagnostic questions that the physician asks from their patients, and interventions can

be the drugs that are prescribe based on the patient’s answers and symptoms. Specifically, we

consider the model structure presented in figure 3.1, and develop an expectation maximization

algorithm, based on the techniques we discussed earlier, for learning the model parameters.

3.2.1 Model Setup

Suppose we have N patients in the system. We consider a modified version of the model for

patient 1 ≤ n ≤ N that is described in the following. There is an underlying true health state

14



variable denoted by zτn that is continuous-time. We denote by zτns
n the value of zτn at time

τns and by the continuous-time variable z
τn (s)
n the values of zτn between times (τns, τn s+1]. A

physician observes a noisy version of this variable at discrete points in time that are denoted

by yτns
n , where s = 1, · · · , Tn, and Tn indicates the number of observations for patient n.

A treatment option uτns
n is then assigned to patient based on the observation. We assume

that in the parameter estimation phase, variables z are hidden and we only have access to

historical recordings of y and u. Suppose the variables z, y, and u are all discrete-valued

and take one of the values {1, · · · , I}, {0, · · · , J − 1}, and {0, · · · , L− 1} respectively. The

generator matrix of the underlying CTMC that governs the dynamics of process z is denoted

by Q ∈ RI×I . The emission distribution E(i, j) = P(yτns
n = j | zτns

n = i) and intervention

distribution G(j, l) = P(uτns
n = l | yτns

n = j) (1 ≤ s ≤ Tn) are assumed to be binomial with

parameters µi (1 ≤ i ≤ I) and ηj (0 ≤ j ≤ J − 1), respectively. Finally, we denote by π ∈ RI

the vector of initial probabilities of z.

3.2.2 Parameterizing the Generator Matrix

In practice, many covariates (e.g. age, sex, etc.) may affect the patients’ disease progression.

In the disease progression modeling literature, these covariates are either ignored or modeled

in an explicit manner. The most common approach for incorporating covariates into the

model is to define parameters according to the Cox proportional hazards function [Cox72].

[KL85] formulated the problem of learning CTMCs using irregularly observed panel data for

the first time. In their model, the authors defined the elements of the generator matrix as

exponential functions of linear transformations of the vector of covariates. The same approach

has been widely adopted by others as well. Despite the prevalence of this modeling approach,

we have not found any clinical evidence that justifies the suitability of this functional form.

We consider the Cox’s proportional hazards model for incorporating the effects of covariates
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and treatment on the progression of disease:

[Q]ikl = δikl exp(ρ
′

iklwn); 1 ≤ i, k ≤ I, k ̸= i, 0 ≤ l ≤ L− 1 (3.3)

[Q]iil = −
I∑

k=1,k ̸=i

[Q]ikl; 1 ≤ i ≤ I, 0 ≤ l ≤ L− 1 (3.4)

where wn ∈ RD is the vector of covariates associated with patient n, and l is the intervention

variable. Specifically, assume that in each period (s) (i.e., between (τs, τs+1] for a fixed

1 ≤ s ≤ Tn) the generator matrix is constant and denoted by Qn (s) for patient n. By setting

l = uτns
n , the off-diagonal (i, k)’th element of Qn (s) can be modeled as δik uτns

n
exp(ρ

′

ik uτns
n
wn).

3.2.3 Learning the Model Parameters via the EM Algorithm

Define Θ ≜ (π, ρ, δ, µ, η). In this section, we provide the basic formulation for estimating Θ

based on the EM algorithm. A detailed description of the algorithm will be later presented

in the appendix. The complete-data likelihood for patient n can be written as:

Ln(Θ) = P(uτn 1:Tn
n , yτn 1:Tn

n , zτnn |Θ) = P(uτnTn
n |yτnTn

n , η)P(yτnTn
n |zτnTn

n , µ)

×
Tn−1∏
s=1

[
P(zτn (s)

n |zτns
n ,uτns

n , ρ, δ)P(uτns
n |yτns

n , η)P(yτns
n |zτns

n , µ)

]
× P(zτn1

n )

The complete-data log-likelihood will then be:

log Ln(Θ) = logP(zτn1
n ) +

Tn−1∑
s=1

[
logP(zτn (s)

n |zτns
n ,uτns

n , ρ, δ)
]

+
Tn∑
s=1

[
logP(uτns

n |yτns
n , η) + logP(yτns

n |zτns
n , µ)

]
However, we cannot calculate the value of log Ln(Θ) since the z variables are not observed.

Therefore, we start with a set of initial parameters denoted by Θ̃ ≜ (π̃, ρ̃, δ̃, µ̃, η̃) and find

the posterior distribution of z. Then we calculate the expected value of log Ln(Θ) (i.e.
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E[log Ln(Θ)|uτn 1:Tn
n , y

τn 1:Tn
n , Θ̃] over the conditional distribution of z) and find the value of

Θ that maximize this expectation. This procedure is repeated iteratively until convergence.

For a given realization of z, the function log Ln(Θ) can be simplified as we’ll discuss in the

following.

Define χ
τn (s)

n ik as the total number of transition from state i to state k during the time

period (τns, τn s+1]. Moreover, define ψ
τn (s)

n i as the total amount of time that z has spent

in state i during this period. Remember that ([Qn (s)]ik |uτns
n , ρ, δ) = δik uτns

n
exp(ρ

′

ik uτns
n
wn)

for k ̸= i. So given uτns
n , ρ, and δ, the generator matrix Qn (s) is known deterministically.

Therefore:

P(zτn (s)
n |zτns

n ,uτns
n , ρ, δ) =

I∏
i=1

I∏
k=1
k ̸=i

[
Qn (s)

]χτn (s)
n ik

ik
×

I∏
i=1

exp
(
[Qn (s)]ii ψ

τn (s)

n i

)

logP(zτn (s)
n |zτns

n ,uτns
n , ρ, δ) =

I∑
i=1

I∑
k=1
k ̸=i

(
χ
τn (s)

n ik log([Qn (s)]ik)− ψ
τn (s)

n i [Qn (s)]ik

)

where we used the fact that [Qn (s)]ii = −
∑I

k=1k ̸=i[Qn (s)]ik. Furthermore, we have:

logP(yτns
n |zτns

n , µ) =
I∑
i=1

[
log

(
J − 1

yτns
n

)
+ yτns

n log µi + (J − 1− yτns
n ) log(1− µi)

]
I{zτns

n = i}

logP(uτns
n |yτns

n , η) =
J−1∑
j=0

[
log

(
L− 1

uτns
n

)
+ uτns

n log ηj + (L− 1− uτns
n ) log(1− ηj)

]
I{yτns

n = j}

where I is the indicator function. Finally, notice that logP(zτn1
n ) =

∑I
i=1 log πi I{zτn1

n = i}.

The complete-data log-likelihood for all the patients will then be:

logL(Θ) =
N∑
n=1

log Ln(Θ) =
N∑
n=1

I∑
i=1

log(πi) I{zτn1
n = i}

+
N∑
n=1

Tn−1∑
s=1

I∑
i=1

I∑
k=1
k ̸=i

[
χ
τn (s)

n ik

(
log(δik uτns

n
) + ρ

′

ik uτns
n
wn

)
− ψ

τn (s)

n i δik uτns
n

exp(ρ
′

ik uτns
n
wn)

]
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+
N∑
n=1

Tn∑
s=1

I∑
i=1

[
log

(
J − 1

yτns
n

)
+ yτns

n log(µi) + (J − 1− yτns
n ) log(1− µi)

]
I{zτns

n = i}

+
N∑
n=1

Tn∑
s=1

J−1∑
j=0

[
log

(
L− 1

uτns
n

)
+ uτns

n log(ηj) + (L− 1− uτns
n ) log(1− ηj)

]
I{yτns

n = j}

The above expression cannot be calculated due to the uncertainty of z, as explained.

Therefore, our strategy is to find the expected value of log L over the conditional distribution

of z (i.e., zτn|u
τn 1:Tn
n , y

τn 1:Tn
n , Θ̃).

E[log L(Θ)|uτn 1:Tn
n , yτn 1:Tn

n , Θ̃]

=
N∑
n=1

I∑
i=1

log(πi)P(zτn1
n = i | uτn 1:Tn

n , yτn 1:Tn
n , Θ̃)

+
N∑
n=1

Tn−1∑
s=1

I∑
i=1

I∑
k=1
k ̸=i

L−1∑
l=0

[
E
[
χ
τn (s)

n ik |uτn 1:Tn
n , yτn 1:Tn

n , Θ̃
](

log(δikl) + ρ
′

iklwn
)

− E[ψτn (s)

n i |uτn 1:Tn
n , yτn 1:Tn

n , Θ̃] δikl exp(ρ
′

iklwn)

]
I{uτns

n = l}

+
N∑
n=1

Tn∑
s=1

I∑
i=1

[
log

(
J − 1

yτns
n

)
+ yτns

n log(µi) + (J − 1− yτns
n ) log(1− µi)

]
× P(zτns

n = i |uτn 1:Tn
n , yτn 1:Tn

n , Θ̃)

+
N∑
n=1

Tn∑
s=1

J−1∑
j=0

[
log

(
L− 1

uτns
n

)
+ uτns

n log(ηj) + (L− 1− uτns
n ) log(1− ηj)

]
I{yτns

n = j}

For the moment, assume we have calculated the above conditional expectations and

probabilities. We will then be able to update the π, ρ, δ, µ, η parameters by maximizing the

objective with respect to these parameters in the M-step. In particular, define γsn(i) = P(zτns
n =

i |uτn 1:Tn
n , y

τn 1:Tn
n , Θ̃) (for 1 ≤ s ≤ Tn) and ν

s
n(i, k) = P(zτns

n = i, zτn s+1
n = k |uτn 1:Tn

n , y
τn 1:Tn
n , Θ̃)

(for 1 ≤ s ≤ Tn− 1). Now, let’s assume we replace πI = 1−
∑I−1

i′=1 πi′ in the objective function
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and take the derivative with respect to some πi:

∂

∂πi
E
[
log L(Θ)|uτn 1:Tn

n , yτn 1:Tn
n , Θ̃

]
=

∂

∂πi

I−1∑
i′=1

log(πi′)

( N∑
n=1

γ1n(i
′)

)

+
∂

∂πi
log(1−

I−1∑
i′=1

πi′)

( N∑
n=1

γ1n(I)

)
=

1

πi

( N∑
n=1

γ1n(i)

)
− 1

πI

( N∑
n=1

γ1n(I)

)

By setting the derivative to zero, we get π̂i =
∑N

n=1 γ
1
n(i)∑N

n=1 γ
1
n(I)

π̂I (for 1 ≤ i ≤ I − 1). The constraint∑I
i=1 π̂i = 1 simplifies to π̂I =

∑N
n=1 γ

1
n(I)∑I

i′=1

∑N
n=1 γ

1
n(i

′)
, which implies π̂i =

∑N
n=1 γ

1
n(i)∑I

i′=1

∑N
n=1 γ

1
n(i

′)
. On the

other hand, taking the derivative with respect to µi gives us:

∂

∂µi
E
[
log L(Θ)|uτn 1:Tn

n , yτn 1:Tn
n , Θ̃

]
=

N∑
n=1

Tn∑
s=1

[
1

µi
yτns
n − 1

1− µi
(J − 1− yτns

n )

]
γsn(i)

=
1

µi

( N∑
n=1

Tn∑
s=1

yτns
n γsn(i)

)
− 1

1− µi

( N∑
n=1

Tn∑
s=1

(J − 1− yτns
n )γsn(i)

)

The optimal parameters will then µ̂i =
∑N

n=1

∑Tn
s=1 y

τns
n γsn(i)

(J−1)
∑N

n=1

∑Tn
s=1 γ

s
n(i)

(for 1 ≤ i ≤ I). Similarly, we can

set the derivative with respect to ηj equal to zero and obtain η̂j =
∑N

n=1

∑Tn
s=1 u

τns
n I{yτns

n =j}
(L−1)

∑N
n=1

∑Tn
s=1 I{yτns

n =j}

(for 0 ≤ j ≤ J − 1).

We can find the optimum parameters δ̂ and ρ̂ by applying the Newton’s method for

optimizing the objective function. Specifically, the derivative of the expected complete-data

log-likelihood with respect to δikl is:

∂

∂ δikl
E
[
log L(Θ)|uτn 1:Tn

n , yτn 1:Tn
n , Θ̃

]
=

1

δikl

N∑
n=1

Tn−1∑
s=1

E
[
χ
τn (s)

n ik |uτn 1:Tn
n , yτn 1:Tn

n , Θ̃
]
I{uτns

n = l}

−
N∑
n=1

Tn−1∑
s=1

E[ψτn (s)

n i |uτn 1:Tn
n , yτn 1:Tn

n , Θ̃] exp(ρ
′

ikl wn)I{uτns
n = l}
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Thus, having the optimal ρ̂ parameters, the solution will be:

δ̂ikl =

∑N
n=1

∑Tn−1
s=1 E

[
χ
τn (s)

n ik |uτn 1:Tn
n , y

τn 1:Tn
n , Θ̃

]
I{uτns

n = l}∑N
n=1

∑Tn−1
s=1 E[ψτn (s)

n i |uτn 1:Tn
n , y

τn 1:Tn
n , Θ̃] exp(ρ̂

′
ikl wn)I{uτns

n = l}
(3.5)

Let’s calculate the first and second derivatives of the objective function with respect to ρikl:

∂

∂ ρikl
E[log L(Θ)|uτn 1:Tn

n , yτn 1:Tn
n , Θ̃] =

N∑
n=1

Tn−1∑
s=1

I{uτns
n = l}(

E[χτn (s)

n ik |uτn 1:Tn
n , yτn 1:Tn

n , Θ̃)]− E[ψτn (s)

n i |uτn 1:Tn
n , yτn 1:Tn

n , Θ̃] δ̂ikl exp(ρ
′

iklwn)

)
wn (3.6)

∂2

∂ ρ2ikl
E[log L(Θ)|uτn 1:Tn

n , yτn 1:Tn
n , Θ̃] = −

N∑
n=1

Tn−1∑
s=1

I{uτns
n = l}(

E[ψτn (s)

n i |uτn 1:Tn
n , yτn 1:Tn

n , Θ̃] δ̂ikl exp(ρ
′

iklwn)

)
wnw

′

n (3.7)

We suggest iteratively updating δ̂ according to equation 3.5 and ρ̂ using the Newton’s method

based on equations 3.6 and 3.7. Therefore, the M-step can be completed efficiently if we

calculate the posterior probabilities γsn(·) and νsn(·, ·) along with the conditional expectations

E[χτn (s)

n ik |uτn 1:Tn
n , y

τn 1:Tn
n , Θ̃)] and E[ψτn (s)

n i |uτn 1:Tn
n , y

τn 1:Tn
n , Θ̃] in the E-step.

The expectations can be further expanded by conditioning on the true underlying health

states at the consecutive observation times:

E[χτn (s)

n ik |uτn 1:Tn
n , yτn 1:Tn

n , Θ̃)] =
I∑

i′=1

I∑
k′=1

E[χτn (s)

n ik |zτns
n = i

′
, zτn s+1
n = k

′
,uτn 1:Tn

n , yτn 1:Tn
n , Θ̃] νsn(i

′, k′)

E[ψτn (s)

n i |uτn 1:Tn
n , yτn 1:Tn

n , Θ̃] =
I∑

i′=1

I∑
k′=1

E[ψτn (s)

n i |zτns
n = i

′
, zτn s+1
n = k

′
,uτn 1:Tn

n , yτn 1:Tn
n , Θ̃] νsn(i

′, k′)

Now, the end state-conditioned expectations can be calculated by the method that [LLL15]

proposed according to equations 3.1 and 3.2, as we briefly discussed in the previous section.

The main difference here would be that we need to construct the generator matrix Q̃n (s),

associated with period (τns, τn s+1], based on equations 3.3 and 3.4 by setting l = uτns
n and
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using parameters δ̃, ρ̃. We’ll later provide the detailed formulas for evaluating the expectations

in the appendix.

3.2.4 The Forward-Backward Algorithm

At this point, the problem has been reduced to efficient calculation of γsn(i) = P(zτns
n =

i|uτn 1:Tn
n , y

τn 1:Tn
n , Θ̃) and νsn(i, k) = P(zτns

n = i, zτn s+1
n = k|uτn 1:Tn

n , y
τn 1:Tn
n , Θ̃). To calculate these

probabilities, we construct a time-inhomogeneous DT-HMM from our CT-HMM, by defining

the transition probability function of the DT-HMM to be equal to [P̃n (s)]ik = P(z̃s+1
n = k|z̃sn =

i,uτns
n , Θ̃) =

[
e(τn s+1−τns)Q̃n (s)

]
ik

where z̃ is the discrete-time latent variable of our DT-HMM

and Q̃n (s) is the generator matrix, associated with interval (τns, τn s+1], as we explained above.

We start by calculating γsn(i) = P(z̃sn = i|uτn 1:Tn
n , y

τn 1:Tn
n , Θ̃). The forward and backward

probabilities will be αsn(i) = P(z̃sn = i,uτn 1:s
n , yτn 1:s

n |Θ̃) and βsn(i) = P(uτn s+1:Tn
n , y

τn s+1:Tn
n |z̃sn =

i, uτns
n , Θ̃), respectively. The dynamic programming equations for calculating the forward and

backward variables are:

αsn(i) =
I∑

k=1

P(z̃sn = i, z̃s−1
n = k, uτn 1:s

n , yτn 1:s
n |Θ̃)

=
I∑

k=1

P(uτns
n |yτns

n , Θ̃)P(yτns
n |z̃sn = i, Θ̃)P(z̃sn = i|z̃s−1

n = k,uτn s−1
n , Θ̃)

P(z̃s−1
n = k,uτn 1:s−1

n , yτn 1:s−1
n |Θ̃)

=
I∑

k=1

G̃(yτns
n , uτns

n ) Ẽ(i, yτns
n )

[
P̃n (s−1)

]
ki
αs−1
n (k) (3.8)

βsn(i) =
I∑

k=1

P(z̃s+1
n = k, uτn s+1:Tn

n , yτn s+1:Tn
n |z̃sn = i, uτns

n , Θ̃)

=
I∑

k=1

P(uτn s+2:Tn
n , yτn s+2:Tn

n |z̃s+1
n = k,uτn s+1

n , Θ̃)P(uτn s+1
n |yτn s+1

n , Θ̃)

P(yτn s+1
n |z̃s+1

n = k, Θ̃)P(z̃s+1
n = k|z̃sn = i,uτns

n , Θ̃)
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=
I∑

k=1

G̃(yτn s+1
n , uτn s+1

n ) Ẽ(k, yτn s+1
n )

[
P̃n (s)

]
ik
βs+1
n (k) (3.9)

where Ẽ(·, ·) and G̃(·, ·) are the emission and intervention probabilities using the µ̃ and η̃

parameters, respectively. Notice that P̃n (s−1) = e(τns−τn s−1)Q̃n (s−1) and P̃n (s) = e(τn s+1−τns)Q̃n (s)

depend on matrices Q̃n (s) and Q̃n (s−1) that are known as δ̃, ρ̃, uτns
n , and uτn s−1

n are given. The

boundary cases for the forward and backward equations are:

α1
n(i) = G̃(yτn1

n ,uτn1
n ) Ẽ(i, yτn1

n )π̃i (3.10)

βTn−1
n (i) =

I∑
k=1

G̃(yτnTn
n , uτnTn

n ) Ẽ(k, yτnTn
n )

[
P̃n (Tn−1)

]
ik

(3.11)

The posterior probability of z̃sn can then be written as γsn(i) =
αs
n(i)β

s
n(i)∑I

i′=1 α
s
n(i

′)βs
n(i

′)
. To calculate

νsn(·, ·), we need to first calculate P(z̃sn = i, z̃s+1
n = k,u

τn 1:Tn
n , y

τn 1:Tn
n |Θ̃):

P(z̃sn = i, z̃s+1
n = k,uτn 1:Tn

n , yτn 1:Tn
n |Θ̃) = P(uτn s+2:Tn

n , yτn s+2:Tn
n |z̃s+1

n = k,uτn s+1
n , Θ̃)×

P(uτn s+1
n |yτn s+1

n , Θ̃)P(yτn s+1
n |z̃s+1

n = k, Θ̃)P(z̃s+1
n = k|z̃sn = i, uτn s

n , Θ̃)P(z̃sn = i,uτn 1:s
n , yτn 1:s

n , Θ̃)

= βs+1
n (k)G̃(yτn s+1

n ,uτn s+1
n ) Ẽ(k, yτn s+1

n )
[
P̃n (s)

]
ik
αsn(i)

The boundary case will be:

P(z̃Tn−1
n = i, z̃Tnn = k, uτn 1:Tn

n , yτn 1:Tn
n |Θ̃) = G̃(yτnTn

n ,uτnTn
n ) Ẽ(k, yτnTn

n )
[
P̃n (Tn−1)

]
ik
αTn−1
n (i)

The posterior probability P(z̃sn = i, z̃s+1
n = k|uτn 1:Tn

n , y
τn 1:Tn
n , Θ̃) will then be:

νsn(i, k) =
G̃(yτn s+1

n ,uτn s+1
n ) Ẽ(k, yτn s+1

n )
[
P̃n (s)

]
ik
αsn(i) β

s+1
n (k)∑I

i′=1

∑I
k′=1 G̃(y

τn s+1
n ,u

τn s+1
n ) Ẽ(k′, yτn s+1

n )
[
P̃n (s)

]
i′ k′

αsn(i
′) βs+1

n (k′)
(3.12)

The boundary case can be calculated similarly. Hence, all the probabilities that we need in

the E-step can be computed efficiently.
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3.2.5 Intervention Planning

Now, suppose we have a population of patients under support (e.g. through the capitation

healthcare payment system) and we would like to come up with a strategy for intervention

planning using the learned disease progression model from the historical data. In particular,

define Ω as a measure of disutility that depends on the patient’s underlying unobserved health

state z. We would like to choose an intervention planning policy G that provides a guideline

for selecting an appropriate intervention option based on physician observation in a way that

E[Ω] for the entire population is minimized. We are considering a probabilistic policy model

P(u | y), since observing y does not contain all the information about the exact value of the

underlying state z. Furthermore, a stochastic policy is more appropriate from a practical

perspective as it accounts for variations in intervention selection based on physician’s opinion.

In an ideal world that there are no resource constraints, the optimization problem can be

solved for each patient independently. However, in practice each intervention requires a

certain amount of resources, and the total available resources are often limited by external

factors. Hence, we present an optimization problem that minimizes the expected disutility

while incorporating the resource constraints. In the following, we consider the simplest

version of the intervention planning problem, that is a single-period optimization problem.

Specifically, we assume to have a planning period of fixed length ∆τ and try to minimize the

expected disutility at the end of the planning period.

Suppose P(y, w) indicates the joint probability of having observation y and covariates

w for an arbitrary patient selected from the population of patients under support. From

an intuitive perspective, this probability measures the joint distribution of covariates (e.g.

age) and healthcare observations (e.g. severely sick) in the population. Notice that this

probability depends indirectly on the current health state of the population. The single-period

intervention planning problem is equivalent to finding the optimal policy matrix G, that

indicates the probability of assigning each treatment option u given the observed value of y.
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Figure 3.2: Given an observation y, the policy matrix G determines intervention u, which
affects the generator matrix Q̂(u). The disutility Ω is modeled as a function of the patient’s
underlying health state at the end of the planning period, denoted by z̃.

Following the law of iterated expectations, we can represent the expected cost as:

E[Ω] = E
[
E[Ω|y, w]

]
=

∑
w

J−1∑
j=0

E[Ω|y = j, w]P(y = j, w)

where the inner expectation is the expected cost for a patient with observation y = j and

covariates w and the outer expectation corresponds to the entire population. Assuming that

the distribution P(y, w) is known or can be approximated reasonably accurately, one can

observe that the population expected cost is essentially a deterministic linear function of the

conditional expected cost E[Ω|y, w]. Therefore, we focus on evaluating this expectation for

given values of y and w.

We can apply law of iterated expectations one more time to further simplify the conditional

expectation as E[Ω|y = j, w] = E
[
E[Ω|z,u] | y = j, w

]
, where the outer expectation is

calculated over the conditional distribution of P(z,u|y = j). We assume that, given y, there

is no other factor that affects both the physician’s intervention decision and the underlying

health state. Therefore, z ⊥ u | y, which implies that P(z,u|y) = P(z|y) × P(u|y). Clearly,

we have P(u = l|y = j) = G(j, l). The posterior probability of the underlying health state z
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given observation y is equal to:

P(z = i|y = j) =
P(y = j|z = i)P(z = i)∑I

i′=1 P(y = j|z = i′)P(z = i′)
=

Ê(i, j)× π̂i∑I
i′=1 Ê(i′, j)× π̂i′

Hence, the expected disutility can be expanded as:

E[Ω|y = j, w] =
I∑
i=1

L−1∑
l=0

E[Ω|z = i,u = l, w]P(z = i, u = l|y = j)

=
I∑
i=1

L−1∑
l=0

E[Ω|z = i,u = l, w]
Ê(i, j)× π̂i∑I

i′=1 Ê(i′, j)× π̂i′
G(j, l) (3.13)

Suppose we have estimated the parameter set Θ̂ = (π̂, ρ̂, δ̂, µ̂, η̂). The generator matrix

for applying intervention u = l on a given patient with covariates w can be expressed as

[Q(l)]ik = δ̂ikl exp(ρ̂
′

iklw). Given u = l and w, the estimated generator matrix can be used for

estimating the transition probability function as Pl(∆τ) = exp(∆τQ(l)) =
∑∞

m=0(∆τ)
m Q(l)m

m!
.

Starting from state z = i, the probability distribution of the underlying health state at the

end of planning period will then be P(z̃ = ĩ | z = i, u = l) =
[
Pl(∆τ)

]
ĩi
. For any given value

of the underlying health state z̃ = ĩ, it seems reasonable to approximate Ω with a known

constant Ωĩ = E[Ω|z̃ = ĩ]. Hence, the above expectation can be expressed as:

E[Ω|z = i, u = l, w] =
I∑
ĩ=1

Ωĩ P( ˜z | z = i, u = l = ĩ) =
I∑
ĩ=1

Ωĩ

[
Pl(∆τ)

]
ĩi

(3.14)

where w implicitly affects Pl(∆τ). Replacing equation 3.14 back in equation 3.13 will give us

a simplification of the expected disutility given y and w:

E[Ω|y = j, w] =
L−1∑
l=0

[ I∑
i=1

I∑
ĩ=1

Ωĩ

[
Pl(∆τ)

]
ĩi

Ê(i, j)× π̂i∑I
i′=1 Ê(i′, j)× π̂i′

]
G(j, l) (3.15)
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Finally, the expected disutility for the entire population under support will be:

E[Ω] =
J−1∑
j=0

L−1∑
l=0

[∑
w

I∑
i=1

I∑
ĩ=1

Ωĩ

[
Pl(∆τ)

]
ĩi

Ê(i, j)× π̂i∑I
i′=1 Ê(i′, j)× π̂i′

P(y = j, w)

]
G(j, l) (3.16)

For any given pair of indices (j, l) the expression inside the brackets is deterministically

known. Therefore, the expected disutility is essentially a linear function of the decision

variables G(j, l) (1 ≤ j ≤ J , 1 ≤ l ≤ L). It seems reasonable to model resource consumption

as a linear function of the intervention variables as well. In particular, let Crjl ∈ R denote the

amount of resource r (1 ≤ r ≤ R) required for providing intervention u = l to a patient with

clinical observation y = j. Moreover, define Br ∈ R as the total amount of available resource

r. The planning problem can now be formulated based on equation 3.16 as an LP problem:

min
G≥0

E[Ω] =
J−1∑
j=0

L−1∑
l=0

[∑
w

I∑
i=1

I∑
ĩ=1

Ωĩ

[
Pl(∆τ)

]
ĩi

Ê(i, j)× π̂i∑I
i′=1 Ê(i′, j)× π̂i′

P(y = j, w)

]
G(j, l)

s.t.
J−1∑
j=0

L−1∑
l=0

Crjl G(j, l) ≤ Br; (0 ≤ j ≤ J − 1, 0 ≤ l ≤ L− 1, 1 ≤ r ≤ R)

L−1∑
l=0

G(j, l) = 1; (0 ≤ j ≤ J − 1, 0 ≤ l ≤ L− 1)

which is solvable using off-the-shelf solvers in polynomial time.
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CHAPTER 4

Experimental Results

In this section, we first describe the data that we used in our experiments. Afterward, we

present the results of our analysis and provide interpretations. We’ve implemented our

simulations using R, and performed the visualizations using Python. All the codes, along

with comments, are publicly available on GitHub1.

4.1 Synthetic Data Generation

We use synthetic data in our simulations. In the following, we’ll describe the data generation

process and present some relevant figures. More details on implementation will be later

provided in the appendix.

Specifically, we generate N IID samples from the graphical model presented in figure

3.1. For each sample, we simulate the number of visits according to a rounded Normal

distribution Tn ∼ round(N (µT , σ
2
T )). We assume that we have at least two visits per

patient, and eliminate samples with less than two visits. The time between consecutive

visits is also assumed to be distributed as (τn s+1 − τn s) ∼ N (µτ , σ
2
τ ) for 1 ≤ s ≤ Tn.

Moreover, we generate an age variable for each patient that will be used in our analysis as

the covariate. The age distribution is assumed to be a mixture of two Normal distributions as

an ∼ paN (µa,y, σ
2
a,y)+ (1− pa)N (µa,o, σ

2
a,o) that has one peak for young patients and another

peak for old patients.

1Refer to the CT-HMM directory in https://github.com/saeedghodsi93/Disease Progression Modeling HMM
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Figure 4.1: An example of the generated synthetic data. The dashed vertical lines indicate
visit times. As the figure demonstrates, the underlying health state variable z may change
between the visits, and the physician only observes a noisy signal of the snapshots of the
underlying process at the visit times.

We assume to have I = 3 underlying health states, J = 10 possible values for the

observation, and L = 3 different intervention options. We will later provide details regarding

the choice of the true parameters and initial parameters of the EM algorithm in the appendix.

Without loss of generality, we assume τn1 = 0 for all the patients. The initial underlying

health state node is generated as zτn1
n ∼ Cat(π∗). The first physician observation variable

will then be generated according to yτn1
n ∼ Cat(E∗(zτn1

n , ·)). Similarly, we generate the first

intervention variable as uτn1
n ∼ Cat(G∗(yτn1

n , ·)).

Denote the transition probability matrix of the embedded DTMC and the mean sojourn

times by ζ∗ and ι∗, respectively. Between two consecutive visits in any given period s ∈
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{1, · · · , Tn − 1}, the generator matrix Q∗
·,·,uτns

n
is known, and the parameters ζ∗·,·,uτns

n
and ι∗·,uτns

n

can be extracted from it. Therefore, we iterate over index s̃, while first generating a sojourn

time variable according to (τ̃n s̃+1−τ̃ns̃) ∼ Exp(ι∗
z
τ̃ns̃
n ,uτns

n

) and then generating the corresponding

next state as z
τ̃n s̃+1
n ∼ Cat(ζ∗

z
τ̃ns̃
n ,·,uτns

n

) each time. This iterative procedure continues until

τ̃n s̃+1 ≥ τns for some s̃. At this point, we sample the next physician observation variable

according to yτn s+1
n ∼ Cat(E∗(zτn s+1

n , ·)), and then generate the corresponding intervention

variable as uτn s+1
n ∼ Cat(G∗(yτn s+1

n , ·)). Figure 4.1 presents an example of the samples that

we’ve generated following this procedure.

4.2 Results

In this section, we report the results of our experiments on a synthetic dataset that we

generated using the above approach. We’ll later present a detailed version of the estimation

algorithm as well as the true and initial model parameters in the appendix.

To measure the performance of our algorithm, we take the estimated parameters in each

iteration and calculate the Root Mean Squared Error (RMSE) for each parameter based on

the distance between the estimated parameter and the true parameter value. We plot RMSE

for different sample sizes as a function of the EM iteration in figure 4.2. Although there is an

initial jump in the error terms associated with some of the parameters, we observe that all

the estimation errors would eventually converge to zero if the sample size and the number

of iterations are large enough. Notice that the scale of the errors vary due to the difference

between the scale of the parameters and the difference between the quality of the initial

points that we’ve chosen.

As the results indicate, π̂ and µ̂ converge to their true values even for relatively small

sample sizes. For the intervention model, we estimate its parameter values as η̂j =∑N
n=1

∑Tn
s=1 u

τns
n I{yτns

n =j}
(L−1)

∑N
n=1

∑Tn
s=1 I{y

τns
n =j}

, which only depends on variables y and u that are both observed. In

other words, we practically don’t update this parameter in the EM iterations and just use the
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Figure 4.2: Convergence of the EM estimated parameters to their true values for different
sample sizes.

standard mean estimator for any given j. Hence, we observe that the η̂j errors are constant

as we make more iterations and the quality of the model fit depends only on the number

of samples. For the generator matrix parameters, the algorithm seems not to be initially

converging to the true values when the sample size is too small. However, having a large

dataset, the parameter values converge to the true values after enough number of iterations

have been passed. Needless to explain, there are many different methods for improving the

convergence rates of the EM algorithm that we’ve not discussed here [VR08].
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CHAPTER 5

Conclusion

In this thesis, we provided a model for disease progression that incorporates the effect of

interventions, and presented an efficient approach for learning its parameters. In particular,

we first introduced the disease progression modeling and data-driven intervention planning

problems and discussed the motivations behind our research study in Chapter 1. We then

explained the challenges and complexities of disease progression modeling as well as different

model classes that have been proposed for this purpose in the past, including DTMCs,

CTMCs, HMMs, and POMDPs. We claimed that CT-HMMs are a good choice for disease

progression modeling, due to their capability of handling discrete-time irregularly-spaced

observations and modeling latent state spaces. Afterward, we briefly reviewed the relevant

literature and justified our choice of modeling framework in Chapter 2. In Chapter 3, we first

provided a basic version of the CT-HMM model and discussed a recently proposed approach

for estimating the parameters. We then modified the model in order to incorporate the effect

of interventions and presented our estimation algorithm. Finally, we explained our synthetic

data generation approach and presented the experimental results in Chapter 4.

Parameter estimation for CT-HMMs with discrete-time and irregular observations is

computationally challenging, even when potential interventions do not affect the generator

matrix. As a baseline approach, the MCEM algorithm can be used for estimating the model

parameters. More specifically, we need to generate a set of samples from the joint distribution

of our graphical model (e.g. using the Gibbs sampling algorithm), and then we can approximate

the expected number of transitions and expected sojourn times that we need in the E-step by
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their sample averages. However, this approach is computationally challenging as the number

of Monte Carlo samples that we need to generate in order to have an approximation with small

variance is usually very large in this case. As we explained, evaluation of the aforementioned

expectations can be performed by applying eigendecomposition on the generator matrix.

However, the generator matrix is often not diagonalizable during the learning procedure.

Therefore, we decided to build our algorithm based on the Expm method that [LLL15] has

recently proposed.

As we explained, our main contribution is to present a modified CT-HMM disease

progression model that naturally incorporates the effect of interventions and allows for

performing intervention planning using the learned model. Specifically, we parameterize the

elements of the generator matrix according to the Cox proportional hazards function to model

the impact of the intervention variables and covariates on them. We then derived an EM

algorithm for iteratively estimating the model parameters. In the E-step, we decompose the

complete-data log-likelihood and represent it in terms of a set of posterior probabilities and

end state conditioned expectations. The probabilities are then evaluated using a forward-

backward algorithm, and the expectations are calculated using the aforementioned approach.

We demonstrate the effectiveness of our algorithm by experimenting on a synthetically

generated dataset.

As the last part of our work, we developed an optimization problem for intervention

planning using our model. In particular, we assumed that the emission and transition models

are estimated using data, and try to find an intervention model that minimizes the overall

system costs subject to a set of resource constraints. We assume that the cost associated

with being in any certain underlying health state is fixed and known. Afterward, we calculate

the probability of each underlying health state as a function of model parameters and further

estimate the total cost. We then show that if the resource consumption functions are linear,

the optimization problem is an LP, which is solvable in polynomial time.
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Appendix A

Implementation Details

In this section, we present the details of our simulations as well as the algorithm for

estimating the model parameters, based on our discussions in the previous chapters. We

ran the experiments on a 2.2 GHz Intel Core-i7 8750H microprocessor with 6 cores, and the

computations were completed in less than one hour on our machine for the moderate sample

size of N = 1, 000. For the largest dataset that we used in our experiments (i.e. N = 10, 000),

the entire 100 iterations of the EM algorithm were finished in almost eight hours.

A.1 Model Parameters

First, we choose the mean and standard deviations of the number of visits per patient, and

the between visit times as µT = 10, σT = 3, µτ = 10, στ = 3. Similarly, we set the age

parameters to µa,y = 25, σa,y = 5, µa,o = 50, σa,o = 10, pa = 0.25. We then set the true initial

health state distribution parameter as π∗ = (0.25, 0.45, 0.30). To set the generator matrix, we

construct the transition probability matrix of the embedded DTMC in the following way:

ζ∗·,·,0 =


0.00 0.60 0.40

0.20 0.00 0.80

0.10 0.90 0.00

 , ζ∗·,·,1 =


0.00 0.80 0.20

0.60 0.00 0.40

0.30 0.70 0.00

 , ζ∗·,·,2 =


0.00 0.90 0.10

0.80 0.00 0.20

0.50 0.50 0.00


where the first two indices iterate over i ∈ {1, · · · , I}, k ∈ {1, · · · , I}, and the last index

iterates over the set of intervention options l ∈ {0, · · · , L− 1}. We also set the mean sojourn
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times associated with each of the states as:

ι∗·,0 =
[
4 6 20

]
, ι∗·,1 =

[
9 12 10

]
, ι∗·,2 =

[
11 10 7

]
where the first index iterates over i ∈ {1, · · · , I}. The true baseline generator matrix elements

can then be constructed as:

δ∗·,·,0 =


− 0.15 0.10

0.03 − 0.13

0.00 0.04 −

 , δ∗·,·,1 =


− 0.09 0.02

0.05 − 0.03

0.03 0.07 −

 , δ∗·,·,2 =


− 0.08 0.01

0.08 − 0.02

0.07 0.07 −


We set the true covariate coefficients in the following way:

ρ∗·,·,0 = ρ∗·,·,1 = ρ∗·,·,2 =


− 0.020 0.020

0.015 − 0.015

0.010 0.010 −


By choosing these parameters, we’re effectively making the sojourn times associated with

healthier states shorter as age increases, while keeping the sojourn times of the less healthy

states relatively constant. Although our formulation allows for modeling more complex

relationships, we decided to choose this certain functional form due to its practical relevance.

For example, for a 50-years old patient, the true generator matrix will be:

Q∗
·,·,0 =


− 0.68 0.41 0.27

0.07 −0.35 0.28

0.01 0.07 −0.08

 , Q∗
·,·,1 =


− 0.30 0.24 0.06

0.11 −0.18 0.07

0.05 0.12 −0.16



Q∗
·,·,2 =


− 0.25 0.22 0.02

0.17 −0.21 0.04

0.12 0.12 −0.24


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Furthermore, we set the emission probabilities as µ∗ = (0.1, 0.5, 0.9). Ultimately, the

intervention probabilities, associated with different observations will be set to:

η∗ = (0.04, 0.15, 0.26, 0.32, 0.43, 0.51, 0.62, 0.77, 0.81, 0.90)

As our initial parameters for the EM algorithm, we set π̃ = (0.33, 0.33, 0.33). Moreover,

we choose the transition probability matrix of the embedded DTMC as well as the mean

sojourn times in the following way:

ζ̃·,·,0 =


0.00 0.50 0.50

0.30 0.00 0.70

0.20 0.80 0.00

 , ζ̃·,·,1 =


0.00 0.60 0.40

0.40 0.00 0.60

0.40 0.60 0.00

 , ζ̃·,·,2 =


0.00 0.70 0.30

0.60 0.00 0.40

0.40 0.60 0.00



ι̃·,0 =
[
5 8 12

]
, ι̃·,1 =

[
6 10 10

]
, ι̃·,2 =

[
9 8 4

]
Hence, the corresponding baseline generator matrix elements will be:

δ̃·,·,0 =


− 0.10 0.10

0.04 − 0.09

0.02 0.07 −

 , δ̃·,·,1 =


− 0.10 0.07

0.04 − 0.06

0.04 0.06 −

 , δ̃·,·,2 =


− 0.08 0.03

0.07 − 0.05

0.10 0.15 −


Moreover, we start with the following covariate coefficient that are uninformative about the

difference between the health states:

ρ̃·,·,0 = ρ̃·,·,1 = ρ̃·,·,2 =


− 0.01 0.01

0.01 − 0.01

0.01 0.01 −


Finally, set µ̃ = (0.45, 0.65, 0.7) and η̃ = (0.01, 0.03, 0.06, 0.08, 0.45, 0.48, 0.51, 0.55, 0.91, 0.97).
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A.2 The Parameter Estimation Algorithm

In the following, we provide the sketch of the algorithm that we’ve implemented for estimating

the model parameters.

Algorithm 1: The EM algorithm for learning the CT-HMM parameters

Input: Initial parameters Θ̃ = (π̃, δ̃, ρ̃, µ̃, η̃)
Output: Estimated parameters Θ̂ = (π̂, δ̂, ρ̂, µ̂, η̂)
Data: A set of N IID samples, each including (yτns

n , uτns
n )

∣∣
1≤s≤Tn

for 1 ≤ n ≤ N

while not converged do
E-step: for 1 ≤ n ≤ N

• Calculate αsn(i) using equations 3.8, 3.10 and βsn(i) using equations 3.9, 3.11

• Calculate γsn(i) =
αs
n(i)β

s
n(i)∑I

i′=1 α
s
n(i

′)βs
n(i

′)
and νsn(i, k) based on equation 3.12

• Calculate E[χτn (s)

n ik |uτn 1:Tn
n , y

τn 1:Tn
n , Θ̃)] and E[ψτn (s)

n i |uτn 1:Tn
n , y

τn 1:Tn
n , Θ̃]

M-step:

• Set π̃i =
∑N

n=1 γ
1
n(i)∑I

i′=1

∑N
n=1 γ

1
n(i

′)
, µ̃i =

∑N
n=1

∑Tn
s=1 y

τns
n γsn(i)

(J−1)
∑N

n=1

∑Tn
s=1 γ

s
n(i)

, η̃j =
∑N

n=1

∑Tn
s=1 u

τns
n I{yτns

n =j}
(L−1)

∑N
n=1

∑Tn
s=1 I{yτns

n =j}

• Iteratively update δ̃ikl using equation 3.5 and ρ̃ikl using equations 3.6, 3.7

return π̂ = π̃, δ̂ = δ̃, ρ̂ = ρ̃, µ̂ = µ̃, η̂ = η̃

As part of the E-step, we need to calculate the end state-conditioned expectations, as we

discussed in the previous chapters. For a specific patient n and time period (τns, τn s+1], the

generator matrix Q̃n (s) can be constructed by setting l = uτns
n in equations 3.3, 3.4. Therefore,

for all the pairs (i, k), we evaluate the integral ξik =
∫ τn s+1−τns

0
exp

(
xQ̃n (s)

)
Bik exp

(
(τn s+1−

τns − x)Q̃n (s)

)
dx, where all the elements of Bik are zero except for the (i, k)-th element.

Specifically, we define a new 2I × 2I matrix as Aik =

Q̃n (s) Bik

0 Q̃n (s)

 and evaluate the

matrix exponential exp
(
(τn s+1 − τns)Aik

)
. The upper right I × I corner of this matrix will

be equal to the matrix ξik. Assuming the end states are ĩ and k̃, the (i, k)-th expectations in

equations 3.1, 3.2 can be determined by using the (̃i, k̃)-th element of the matrix ξik.
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