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Local Sampling with Momentum Accounts for Human Random Sequence
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1University of Warwick, United Kingdom
2Warwick Business School, United Kingdom

Abstract

Many models of cognition assume that people can generate
independent samples, yet people fail to do so in random gen-
eration tasks. One prominent explanation for this behavior is
that people use learned schemas. Instead, we propose that de-
viations from randomness arise from people sampling locally
rather than independently. To test these explanations, we teach
people one- and two-dimensional arrangements of syllables
and ask them to generate random sequences from them. Al-
though our results reproduce characteristic features of human
random generation, such as a preference for adjacent items and
an avoidance of repetitions, we also find an effect of dimen-
sionality on the patterns people produce. Furthermore, model
comparisons revealed that local sampling accounted better for
participants’ sequences than a schema account. Finally, eval-
uating the importance of each models’ constituents, we show
that the local sampling model proposed new states based on its
current trajectory, rather than an inhibition-of-return-like prin-
ciple.
Keywords: sampling for inference; random generation; repre-
sentation learning

Introduction
People’s behavior is often inconsistent, and at times irra-
tional. Consider probability matching, the phenomenon by
which if someone believes a particular option to be success-
ful 90% of the time, they pick that option 90% of the time,
despite rationality dictating they choose it always (Vulkan,
2000). This behavior has been explained by sampling: that
people mentally sample one option according to the proba-
bility that it will be successful (Vul, Goodman, Griffiths, &
Tenenbaum, 2014). This assumption that responses are in-
dependently sampled is pervasive across models of cognition
(e.g. Nosofsky, 1984) and independent and identically dis-
tributed (iid) samples are accumulated in sequential sampling
models of decision-making (e.g. Ratcliff, 1978).

While many models assume that what people see and how
they respond is driven by samples that are independent of
one another, studies of random generation repeatedly show
that people produce highly predictable sequences. When
asked to generate random numbers, for example, people pro-
duce adjacent numbers disproportionately often, change di-
rection (from ascending to descending, or vice versa) too
rarely, and seldom repeat the number they have just produced
(Wagenaar, 1972). These effects do not seem to be the re-
sult of thinking too hard about generating random numbers:
the predictability of random sequences is exacerbated by ask-
ing participants to perform concurrent tasks or increasing the
rates at which sequences have to be generated (Cooper, 2016;

Towse, 1998). These two perspectives stand in apparent con-
tradiction. Why can people produce iid samples when cat-
egorizing or making decisions, but struggle when explicitly
asked to do so?

Schemas Versus Local Sampling
One prominent explanation of people’s systematic deviations
from randomness is that they engage in a different process al-
together: Instead of sampling, they generate sequences based
on learned schemas, such as counting up or down. According
to this account, these sequences are monitored by the cen-
tral executive, which switches schemas when randomness is
perceived to decline (Baddeley, Emslie, Kolodny, & Duncan,
1998; Cooper, 2016).

Here we propose an alternative explanation to account for
these stereotypical patterns: when people generate random
sequences, they are tapping into a general cognitive abil-
ity to produce samples for inference – a sophisticated men-
tal algorithm that does not sample independently, but locally
(Sanborn & Chater, 2016; Chater et al., 2020). Local sam-
pling has been used to explain other deviations from norma-
tivity, such as the anchoring effect (Lieder, Griffiths, Huys, &
Goodman, 2018) or the ’unpacking’ effect (Dasgupta, Schulz,
& Gershman, 2017); and other human deviations from iid
sampling, such as the long-ranging autocorrelations in the
temporal structure of many cognitive activities (Zhu, San-
born, & Chater, 2018).

A popular family of local sampling algorithms is Markov
Chain Monte Carlo (MCMC). MCMC algorithms produce a
series of states by randomly proposing changes to the cur-
rent state, and then transitioning depending on the relative
probability of the current state versus the proposed new state.
Random-Walk Metropolis-Hastings (RW-MCMC), an algo-
rithm from this family, already presents some of the features
found in human random sequences: When sampling from a
uniform distribution, such as a limited range of numbers, it
can favor close items, since proposals are commonly small,
local, perturbations of the most recent sample. Furthermore,
most RW-MCMC algorithms will rarely repeat the current
state when sampling from a uniform distribution, since the
proposed state, by definition, will be as likely as the last-
visited state. A preference to maintain direction between
samples could also be incorporated in a sampling model, for
example, in a Langevin-MCMC sampler where momentum is
maintained between samples (Horowitz, 1991).
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Contrasting Schema and Sampling Accounts

In the standard random number generation task, disentangling
schema accounts from local sampling is difficult for two rea-
sons: First, participants’ associations between numbers exist
prior to the task and are unknown to the experimenter. Sec-
ond, the items that participants have to randomize already en-
code a one-dimensional spatial arrangement (the number line)
and learned sequences (counting up or down).

In the current study, we introduce a novel experimental de-
sign that allows us to adjudicate between the predictions of
these two accounts. We ask participants to generate random
sequences after learning a display of syllables, thus weaken-
ing prior preferences for counting up or down. We experi-
mentally manipulate the dimension of the display, with par-
ticipants learning either one-dimensional or two-dimensional
arrangements. Finally, we control the domains’ local struc-
ture by randomizing the displays’ adjacencies.

This design allows us to investigate the effect of the dimen-
sionality of the domain on deviations from randomness often
found in human random generation. We examine three com-
mon features of human random generation: a tendency not to
repeat items, a tendency to transition to proximate locations
in the representation, and a tendency to make fewer changes
of direction. Given that random generation rests on a general
cognitive ability, we expect participants to deviate from ran-
domness in similar ways regardless of the dimension of the
domain.

We are also interested in evaluating the ability of schema
and sampling models to account for participants’ sequences
directly. Manipulating the global and local structure of the
domains allows us to dissociate the predictions of the two
model classes: If the stereotypical patterns of human ran-
dom generation are due to learned schemas, then the dis-
play arrangement will not affect the produced sequences. In-
stead, participants should be biased by syllable frequencies
in English (i.e. their associations prior to the task), possibly
weighted by the frequency of syllables in the experimental
training block.

Our manipulation can also inform details of the sampling
model: A preference for maintaining direction may result
from either a proposal mechanism whereby consecutive sam-
ples share a common direction (we call this momentum) or
from one where the last-visited sample is avoided (inhibition
of return, IOR; see Johnson et al., 2013). While in the one-
dimensional case both these proposal mechanisms suggest the
same result, the two-dimensional structure allows us to dis-
tinguish between the two: while IOR disfavors visiting the
previous location, momentum would avoid locations near the
previous one as well. As an illustration, consider a traveller
who first visits Paris and then London. If they follow IOR
they might go to Berlin next, since they only avoid Paris. In-
stead, if they follow their current direction, they will be more
likely to choose Dublin as their next destination.

We first evaluate the effect of our manipulation on indi-
cators of the randomness of a sequence that are common in

the psychological literature. We then contrast schema and
sampling models and explore the models’ ability to capture
qualitative features of human random samples.

Experiment
In our pre-registered experiment1, we first asked participants
to learn a one- or two-dimensional display of syllables. Then
participants had to produce random sequences of those sylla-
bles in two blocks.

Participants
42 participants took part in the experiment (Mage = 24.95, SD
= 9.67; 27 Female, 14 Male, 1 Non-Binary), and two were
excluded following pre-registered criteria (see Procedure and
Design). Participants were recruited from the university par-
ticipant pool and were required to have English as their first
language. They received a flat fee of £3.5, plus a bonus of
up to £1.8 depending on their performance in the learning
stage. The average payment was £4.64, and the experiment
took about 30 minutes to complete.

Materials
We generated seven 2-letter syllables ending in a to avoid
varying ease in transitions due to rhyming. In choosing sylla-
bles. we considered both the frequencies of syllables and the
frequencies of syllable pairs in the Brown corpus, aiming for
a homogeneous set. The selected syllables were: ca, ha, la,
ma, na, pa, ta.

Procedure and Design
The experiment was conducted online using Microsoft
Teams, which was also used to record participants. In the
experiment, participants first learned either a one- or two-
dimensional display of syllables (Learning stage), then ver-
bally produced these randomly at a constant pace (Random
Generation stage). Participants learned only one arrangement
of syllables, but produced random sequences in two blocks.
Participants were randomly allocated to one of five possi-
ble random arrangements, which determined the adjacency
of syllables in the display.

Learning stage Participants were presented with a dis-
play composed of seven hexagons arranged in either a two-
dimensional grid or a single row, depending on the exper-
imental condition (see Figure 1 for an example). Each
hexagon contained a syllable, and participants had to learn
the location of the syllables. Because only one syllable was
visible at a time, participants had to select which syllable
they wanted to see next, and they could only choose among
hexagons that were adjacent to the currently visible hexagon.
There was a one-second delay between the presentation of
syllables during which participants were instructed to antici-
pate the next syllable.

Once participants expressed that they had learned the dis-
play, they were tested on all seven cells in random order. To

1https://osf.io/q3yrj
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continue to the main experiment, they had to answer two con-
secutive tests without errors. In case of error, participants
continued to learn the display and could get re-tested. If par-
ticipants failed the test four times or exceeded the maximum
learning time of 10 minutes, the experiment was terminated,
and the participant was excluded. Participants spent an aver-
age of 5.71 minutes (SD = 2.38) learning the syllables, with
no participant exceeding the ten-minute limit. Two partici-
pants were excluded for failing the test four times (average
failed attempts = 0.65, SD = 0.86; excluded participants’ av-
erage duration = 9m 54s).

...HA PA PA CA NA LA PA...

CA NA

MA PA

HA TA

LA

Figure 1: Syllable repetition (blue), adjacency (yellow) and
turning point (red) for the example sequence ha pa pa ca na
la pa. Turning points occur whenever a change in direction
between two successive moves exceeds 90°.

Random generation stage In the random generation stage,
participants had to produce the learned syllables as unpre-
dictably as possible for five minutes (M = 303 s, SD = 4.45).
They were instructed to do so as if “drawing a syllable out
from a hat, saying it out loud, putting it back, shuffling, then
repeating the process”, following the instructions in Baddeley
(1966). Participants did not see the display of syllables during
the random generation stage and instead saw a flashing dot on
their screen, appearing at a pace of 80 times per minute. Par-
ticipants were instructed to produce syllables every time the
dot appeared, but produced a slightly lower rate than targeted
(400), with an average of 356.04 syllables (SD = 71.71) after
five minutes. The median gap between each syllable a partici-
pant uttered was 843ms, and the median standard deviation in
these utterances was 190ms. Despite not seeing the display,
all participants named each syllable at least once in each se-
quence.

At the end of this stage, there was a small break to allow
participants to rest. Then, both learning and generation stages
were repeated: participants saw the same display of syllables
and were tested, and once two blocks were recalled correctly,
they produced random syllables for another five minutes (M =
303s, SD = 3.06). Participants spent an average of one minute
and 44 seconds re-learning and re-testing the display (SD =
47s), and the average number of failed attempts in this second
test was low (M = 0.18, SD = .38).

M F(1,39) p BF10
Repeats -1.76 30.63 <.001 744
Adjacency +.30 38.58 <.001 > 1000
Turning Point -.08 9.91 .003 6
Phase Length1 -.07 10.47 .002 9
Phase Length2 -.04 .59 .45 1/13
Phase Length3 -.12 2.71 .11 1/7

Table 1: Mean values of the difference score d for six descrip-
tive measures of randomness. Values other than 0 represent
deviations from the theoretical value expected from iid.

Results
Descriptive Measures
We calculated the following measures from the transcribed
sequences, adapting previous indices (see Towse & Neil,
1998) to two-dimensional domains where applicable:

• The proportion of repeated syllables (R).

• The proportion of adjacent syllables in the display (A).

• The proportion of turning points (TP). A TP is a transition
for which the absolute difference between the current and
previous direction is larger than 90°.

• Phase lengths (PL): A phase is the number of syllables be-
fore each turning point. We obtained the proportions of
phases of lengths 1, 2, and 3 relative to all phases.

For an illustration of these indices, see Figure 1. Because
these measures are dependent on the display’s dimension,
we normalized them by obtaining a difference score d for
each descriptive measure, which equalled the log of the ob-
served proportion minus the log of the proportion expected
from independent and identically distributed random sam-
ples (iid hereafter). We tested people’s random generation in
two Bayesian linear mixed-effects models that included a ran-
dom intercept u0 per participant, using the rstanarm R pack-
age with default priors (Goodrich, Gabry, Ali, & Brilleman,
2020)2. The first:

d̂ = β0 +u0× participant (1)

tested whether people’s descriptive measures significantly de-
viated from iid (i.e. whether β0 6= 0). We expected the differ-
ence scores for Repeats and Turning Points to be lower than
0, and the one for Adjacency to be higher than 0, consistent
with previous literature. The second model:

d̂ = β0 +β1×Dimension+β2×Block+

β3×Dimension×Block+u0× participant (2)

2For all models we fit both Bayesian and frequentist equivalents.
The Bayes Factors (BF10: evidence for the alternative hypothesis
relative to the null) are interpreted as suggested by Jeffreys (1961).
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tested whether these deviations were influenced by the global
arrangement of the display participants learned (i.e. whether
β1 6= 0). Consistent with the idea that random generation rests
on a general cognitive ability, we expected no effects on these
scores due to Dimension.

Because each participant produced two sequences, we in-
cluded Block as a predictor as well as its interaction with Di-
mension, to check that any possible effects were not driven
by fatigue. Because there were no credible differences due
to Block or to the Block×Dimension interaction, we relegate
those statistical analyses to Table 2, and only discuss the ef-
fects of Dimension in the main text.

Factor ∆ F(1,38) p BF10

Rep
Dim +.13 .04 .85 1/19
Blk +.67 1.67 .20 1/11
Dim×Blk +.32 0.09 .76 1/23

Adj
Dim +.37 22.49 <.001 261
Blk +.01 .16 .69 1/50
Dim×Blk −.06 1.23 .27 1/30

Turn Pt
Dim −.13 8.63 .006 3
Blk −.004 0.06 .81 1/39
Dim×Blk +.05 1.27 .27 1/22

Ph Len1

Dim −.18 38.80 <.001 >1000
Blk −.01 0.35 .55 1/34
Dim×Blk +.07 3.82 .06 1/7

Ph Len2

Dim +.13 1.92 .17 1/7
Blk +.02 .10 .75 1/33
Dim×Blk −.10 1.08 .31 1/19

Ph Len3

Dim +.56 18.95 <.001 22
Blk +.25 3.60 .07 1/4
Dim×Blk +.04 0.2 .88 1/26

Table 2: Effects of Dimension and Block order on d. Differ-
ences expressed as ∆. ∆Dim = 1D− 2D; ∆Blk = 1st− 2nd;
∆Interaction = ∆BlkDim=1−∆BlkDim=2.

The local arrangement of the syllables had no significant
effect on any of the four measures of randomness (all ps >
.50; all BF10 < 1/5), and so we aggregate data across ar-
rangements in our subsequent analysis. Consistent with our
hypotheses and previous literature, participants deviated from
iid randomness in multiple ways (see Table 1). They repeated
(R) syllables far less than expected from iid, and transitioned
to adjacent syllables (A) more often than iid. They also made
significantly fewer changes in direction than iid (TP), with
fewer runs of one item (PL1) than expected but no credible
difference from randomness in runs of two items (PL2) or
three items (PL3).

These behaviors, however, depended on the display partic-
ipants learned (see Table 2 and Figure 2), which we did not
expect. Participants in the one-dimensional condition transi-
tioned to adjacent syllables more often, making changes in
direction less frequently, and having fewer runs of length
one and more runs of length three. Interestingly, an ex-

ploratory post-hoc analysis revealed that participants in the
two-dimensional condition did not make fewer changes of di-
rection than expected by chance (F(1,19) = .22, p = .64, BF10
= 1/11).

−4

−2

0

1 2
Dimension

Repetition

***

0

1

2

1 2
Dimension

Adjacency

***

−0.75

−0.25

0.25

1 2
Dimension

Turning Point

***

−0.25

0.25

1 2
Dimension

Phase Length 1

−1.00

−0.25

0.50

1 2
Dimension

Phase Length 2

***

−3.0

−0.5

2.0

1 2
Dimension

Phase Length 3

Figure 2: Deviations from the expected value (red dashed
line) for six descriptive measures of random generation, ac-
cording to the dimensionality of the learned representation.
Participants in the 1D condition transitioned to adjacent syl-
lables more frequently, and engaged in longer runs without
turning, than participants who learned a two-dimensional rep-
resentation

Model Fits
To test whether a sampling account could predict participants’
sequences better than a schema account, we compared two
models embodying the principles that each account would
use. Each model was the weighted sum of four ‘model parts’
(described below). The likelihood of a syllable i was calcu-
lated as:

Li =
4

∑
n=1

wn× so f tmax(βn×mpn) (3)

where each model part mp was the vector of weights for each
syllable, scaled by β (bounded to be ≥ 0 to avoid the model
parts to express the inverse prediction), and w was the model
part weight (0≥ w≥ 1 and ∑w = 1). The values of β and w
were fit to each random sequence (i.e. two per participant).

Because a schema account would expect participants to ut-
ter syllables proportional to their relative frequency in the
English language, possibly weighted by their frequency dur-
ing the learning stage, we composed the schema model of
two Corpus and two Learning Sequence parts. These parts
weighted each syllable by considering the relative frequen-
cies of syllables (Unigram) or pairs of syllables (Bigram), in
the Brown English Corpus and in each participants’ learning
stage, respectively.

Instead, a sampling account would expect participants to
explore locally and avoid repetitions. Thus, the sampling
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CA NA

MA LA PA

HA TA

Proximity

CA NA

MA LA PA

HA TA

IOR

CA NA

MA LA PA

HA TA

No Repeat

CA NA

MA LA PA

HA TA

Momentum

CA NA

MA LA PA

HA TA

Corpus U.

CA NA

MA LA PA

HA TA

Corpus B.

CA NA

MA LA PA

HA TA

LS U.

CA NA

MA LA PA

HA TA

LS B.

Probability
0.2 0.3

Figure 3: Probabilities assigned by each model part for the
example participant in Figure 1. The last uttered syllables
were na, la, and the learning sequence was: ca, na, pa, la, ma,
ha, ta, la, na, ca. The figure presents the base probabilities of
each model, which were scaled by β (see text).

model consisted of a Proximity part that weighted each sylla-
ble based on the Euclidean distance from the last uttered syl-
lable and a No Repeat part that weighted syllables based on
whether a syllable was repeated. To account for people’s ten-
dency not to make turns, we postulated two additional model
parts: a tendency to maintain direction (Momentum), and an
avoidance for the last-visited syllable (inhibition of return,
IOR; see Johnson et al., 2013). IOR weighted syllables based
on whether a syllable was the same as the penultimate uttered
one; and Momentum weighted based on whether a syllable
would deviate from the trajectory drawn in the display be-
tween the penultimate and the last syllable uttered (see Fig-
ure 3 for example probabilities). This ‘model part’ approach
allowed us to measure the contribution of each principle in
predicting participants’ sequences.

As a baseline, we also compared the models with an iid
sampling model, which predicted the same probability for
each syllable. We compared model fits by calculating BIC
scores and relative BIC weights.

Most participants were consistent across the two random
generation stages: 27/40 participants had the same model
achieve the lowest BIC scores in their two sequences (see Fig-
ure 4). The local sampling model best explained the perfor-
mance of participants in 49/80 sequences (significantly more
than expected by chance, one-tailed binomial test p < .001),
while the schema and iid models best explained 16 (p =
.99) and 10 (p = 1) sequences, respectively. The schema
model performed best in the one-dimensional domain (12 se-
quences; 4 in the two-dimensional domain), whereas the local
sampling (23; 26) and the iid models (4; 6) had similar per-
formance in both domains.

To compare the relative contribution of the models’ con-
stituent parts, we fitted every possible model within the

schema and local sampling families consisting of 1-4 parts
and computed their BIC weights. We used the model BIC
weights as an approximation to the probability of the model
given the data (see Neath & Cavanaugh, 2012), which al-
lowed us to compute the probability of each model part within
each class of models (as the sum of the BIC weights of the
models that included it). This resulted in the Learning Se-
quence (Bigram) model achieving the best fit for the family of
schema models, with an advantage over the next best model
of 374 in BIC and a BIC weight of 1. For local sampling mod-
els, the best model was the No Repeat + Momentum model,
with an advantage over the next best model of 306 in BIC and
a BIC weight of 1.

Finally, we compared the full seven-parameter local sam-
pling model to a model with only Learning Sequence (Bi-
gram) as a predictor. We expected that the learning sequence
model would perform better since it can encompass both how
people learn the task and the spatial structure in the display
(since participants had to learn the display by spatially navi-
gating it) despite having only one parameter. However, the
performance of both models was roughly equal, with the
learning sequence best predicting 31 sequences, and 34 se-
quences best predicted by the local sampling model.

Discussion
Using a novel experimental design, we investigated how
people generated random sequences after learning one- or
two-dimensional displays of syllables. Overall, participants
avoided repetitions, preferred adjacent items, and turned
fewer times than expected, consistent with previous experi-
ments in random generation (Cooper, 2016; Towse, 1998).
However, contrary to our original hypothesis, we also found
a significant effect of dimensionality on adjacency, turning
point indices, and phase lengths: While participants across
both one- and two-dimensional conditions preferred adja-
cent syllables, this preference was much higher for one-
dimensional displays. Moreover, in one-dimensional struc-
tures participants produced ascending or descending runs fre-
quently, resulting in lower than chance turning points and
phase lengths. In contrast, in two-dimensional displays, par-
ticipants produced turning points and phase lengths as ex-
pected by iid samples.

These results are important for understanding human ran-
dom generation, as they highlight that the sample domain can
influence the ability to produce random sequences. One pos-
sible explanation for this difference is that people adopt dif-
ferent cognitive mechanisms when producing samples from
one- and two-dimensional domains. Alternatively, both do-
mains might use the same mechanism but differ in the fea-
tures of these mechanisms, or the same mechanism could
produce different behavior by adapting to the sampling en-
vironment. For example, from a sampling perspective, it may
be that the sampling adopts different parameters in one- and
two-dimensional settings, or that more efficient algorithms
are adopted in higher-dimensional domains. From a schema
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Figure 4: Distribution of BIC weights across the iid, local sampling and schema models. Each column represents one partici-
pant. Top and bottom rows are the first and second sequences a participant produced.

perspective, it is plausible that schemas are domain specific,
or that monitoring processes are more constrained in higher
dimensions.

In addition to finding an effect of global structure on peo-
ples’ random sequences, our model comparisons highlighted
that, especially in two-dimensional domains, frequency-
based models performed much worse than local sampling
models. This result was especially striking given that the
training participants received captured aspects of local sam-
pling: Participants had to learn syllables adjacent to one
another, and they naturally followed the previous direction
when learning them, preferring to continue forwards rather
than backward. A comparison of the contributions of each
model part suggested that avoiding repetition and momentum
were key features of the random generation process. Both
features are important for sampling efficiently, local samplers
without them are bound to produce frequent turns, only rarely
reaching the edges of the domain.

Our results are consistent with recent models of human
causal learning (Bramley, Dayan, Griffiths, & Lagnado,
2017), human exploration (Collignon & Lucas, 2019), cate-
gory learning (Markant, Settles, & Gureckis, 2016), and even
perception of ambiguous images (Gershman, Vul, & Tenen-
baum, 2012), characterizing human cognition as an incre-
mental process, anchored on the last, local, state.

Future Directions
Our experiment instructed participants to produce syllables at
a constant rate, but participants did not always follow that rate
exactly, exhibiting moderate deviations throughout the exper-
iment. Following previous work that highlighted the close
relationship between random generation and cognitive load
or time constraints (Cooper, 2016; Towse, 1998), this sug-
gests that these delays can be predictive of the participants’
behavior. Future work should examine if the temporal struc-
ture of participants’ sequences can inform patterns in their

generation of random items. Furthermore, these changes in
production rates might also reflect fatigue, with participants
re-using samples to reduce cognitive load, making fatigue a
potentially useful predictor of increased stereotypical behav-
ior.

Previous accounts of random generation emphasized the
role of the central executive in monitoring the randomness
of sequences (Baddeley et al., 1998; Cooper, 2016). Future
work should explore extending our local sampling approach
to include similar mechanisms, for example, by adapting the
sampling process and monitoring measures of randomness of
the sequences (for a review on such approaches, see Andrieu
& Thoms, 2008). Combining these ideas into a unified the-
oretical model would give a new perspective on the role of
randomness in human inference, and insight into human cog-
nition more generally.
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