
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
POTSHARDS: Secure Long-Term Storage Without Encryption

Permalink
https://escholarship.org/uc/item/3gz1t07k

Journal
2007 USENIX Annual Technical Conference, n/a

Authors
Storer, Mark W.
Greenan, Kevin M.
Miller, Ethan L
et al.

Publication Date
2008-06-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3gz1t07k
https://escholarship.org/uc/item/3gz1t07k#author
https://escholarship.org
http://www.cdlib.org/

POTSHARDS: Secure Long-Term Storage Without Encryption

Mark W. Storer Kevin M. Greenan
University of California, Santa Cruz

Ethan L. Miller

Kaladhar Voruganti
Network Appliance†

Abstract
Users are storing ever-increasing amounts of infor-

mation digitally, driven by many factors including gov-
ernment regulations and the public’s desire to digitally
record their personal histories. Unfortunately, many of
the security mechanisms that modern systems rely upon,
such as encryption, are poorly suited for storing data
for indefinitely long periods of time—it is very diffi-
cult to manage keys and update cryptosystems to pro-
vide secrecy through encryption over periods of decades.
Worse, an adversary who can compromise an archive
need only wait for cryptanalysis techniques to catch up
to the encryption algorithm used at the time of the com-
promise in order to obtain “secure” data.

To address these concerns, we have developed POT-
SHARDS, an archival storage system that provides long-
term security for data with very long lifetimes without
using encryption. Secrecy is achieved by using prov-
ably secure secret splitting and spreading the resulting
shares across separately-managed archives. Providing
availability and data recovery in such a system can be dif-
ficult; thus, we use a new technique, approximate point-
ers, in conjunction with secure distributed RAID tech-
niques to provide availability and reliability across in-
dependent archives. To validate our design, we devel-
oped a prototype POTSHARDS implementation, which
has demonstrated “normal” storage and retrieval of user
data using indexes, the recovery of user data using only
the pieces a user has stored across the archives and the
reconstruction of an entire failed archive.

1 Introduction

Many factors motivate the need for secure long-term
archives, ranging from the relatively short-term (for
archival purposes) requirements on preservation, re-
trieval and security properties demanded by recent leg-

†Work performed while a member of IBM Almaden Research

islation [1, 20] to the indefinite lifetimes of cultural and
family heritage data. As users increasingly create and
store images, video, family documents, medical records
and legal records digitally, the need to securely preserve
this data for future generations grows correspondingly.
This information often needs to be stored securely; data
such as medical records and legal documents that could
be important to future generations must be kept indefi-
nitely but must not be publicly accessible.

The goal of a secure, long-term archive is to provide
security for relatively static data with an indefinite life-
time. There are three primary security properties that
such archives aim to provide. First, the data stored must
only be viewable by authorized readers. Second, the
data must be available and accessible to authorized users
within a reasonable amount of time, even to those who
might lack a specific key. Third, there must be a way to
confirm the integrity of the data so that a reader can be
reasonably assured that the data that is read is the same
as the data that was written.

The usage model of secure, long-term archival stor-
age is write-once, read-maybe, and thus stresses through-
put over low-latency performance. This is quite different
from the top storage tier of a hierarchical storage solu-
tion that stresses low-latency access or even bottom-tier
backup storage. The usage model of long-term archives
also has the unique property that the reader may have
little knowledge of the system’s contents and no contact
with the original writer; while file lifetimes may be in-
definite, user lifetimes certainly are not. For digital “time
capsules” that must last for decades or even centuries, the
writer is assumed to be gone soon after the data has been
written.

There are many novel storage problems [3, 32] that re-
sult from the potentially indefinite data lifetimes found
in long-term storage. This is partially due to mecha-
nisms such as cryptography that work well in the short-
term but are less effective in the long-term. In long-term
applications, encryption introduces the problems of lost

2007 USENIX Annual Technical ConferenceUSENIX Association 143

keys, compromised keys and even compromised cryp-
tosystems. Additionally, the management of keys be-
comes difficult because data will experience many key
rotations and cryptosystem migrations over the course of
several decades; this must all be done without user in-
tervention because the user who stored the data may be
unavailable. Thus, security for archival storage must be
designed explicitly for the unique demands of long-term
storage.

To address the many security requirements for long-
term archival storage, we designed and implemented
POTSHARDS (Protection Over Time, Securely Harbor-
ing And Reliably Distributing Stuff), which uses three
primary techniques to provide security for long-term
storage. The first technique is secret splitting [28], which
is used to provide secrecy for the system’s contents. Se-
cret splitting breaks a block into n pieces, m of which
must be obtained to reconstitute the block; it can be
proven that any set of fewer than m pieces contains no
information about the original block. As a result, se-
cret splitting does not require the same updating as en-
cryption, which is only computationally secure. By pro-
viding data secrecy without the use of encryption, POT-
SHARDS is able to move security from encryption to the
more flexible and secure authentication realm; unlike en-
cryption, authentication need not be done by computer,
and authentication schemes can be easily changed in re-
sponse to new vulnerabilities. Our second technique, ap-
proximate pointers, makes it possible to reconstitute the
data in a reasonable time even if all indices over a user’s
data have been lost. This is achieved without sacrificing
the secrecy property provided by the secret splitting. The
third technique is the use of secure, distributed RAID
techniques across multiple independent archives. In the
event that an archive fails, the data it stored can be recov-
ered without the need for other archives to reveal their
own data.

We implemented a prototype of POTSHARDS and
conducted several experiments to test its performance
and resistance to failure. The current, CPU-bound im-
plementation of POTSHARDS can read and write data
at 2.5–5 MB/s on commodity hardware but is highly par-
allelizable. It also survives the failure of an entire archive
with no data loss and little effect seen by users. In addi-
tion, we demonstrated the ability to rebuild a user’s data
from all of the user’s stored shares without the use of
a user index. These experiments demonstrate the sys-
tem’s suitability to the unique usage model of long-term
archival storage.

2 Background

Since POTSHARDS was designed specifically for se-
cure, long-term storage, we identified three basic design

tenets to help focus our efforts. First, we assumed that
encrypted data could be read by anyone given sufficient
CPU cycles and advances in cryptanalysis. This means
that, if all of an archives encrypted contents are obtained,
an attacker can recover the original information. Second,
data must be recoverable without any information from
outside the set of archives. Thus, fulfilling requests in a
reasonable time cannot require anything stored outside
the archives, including external indexes or encryption
keys. If this assumption is violated, there is a high risk
that data will be unrecoverable after sufficient time has
passed because the needed external information has been
lost. Third, we assume that individuals are more likely to
be malicious than an aggregate. In other words, our sys-
tem can trust a group of archives even though it may not
trust an individual archive. The chances of every archive
in the system colluding maliciously is small; thus, we de-
signed the system to allow rebuilding of stored data if all
archives cooperate.

In designing POTSHARDS to meet these goals, we
used concepts from various research projects and de-
veloped additional techniques. There are many existing
storage systems that satisfy some of the design tenets dis-
cussed above, ranging from general-purpose distributed
storage systems to distributed content delivery systems,
to archival systems designed for short-term storage and
archival systems designed for very specific uses such as
public content delivery. A representative sample of these
systems is summarized in Table 1. The remainder of this
section discusses each of these primary tenets within the
context of the related systems. Since these existing sys-
tems were not designed with secure, archival storage in
mind, none has the combination of long-term data secu-
rity and proof against obsolescence that POTSHARDS
provides.

2.1 Archival Storage Models

Storage systems such as Venti [23] and Elephant [26]
are concerned with archival storage, but tend to focus
on the near-term time scale. Both systems are based on
the philosophy that inexpensive storage makes it feasible
to store many versions of data. Other systems, such as
Glacier [13], are designed to take advantage of the under-
utilized client storage of a local network. These systems,
and others that employ “checkpoint-style” backups, ad-
dress neither the security concerns of the data content
nor the needs of long-term archival storage. Venti and
commercial systems such as the EMC Centera [12] use
content-based storage techniques to achieve their goals,
naming blocks based on a secure hash of their data. This
approach increases reliability by providing an easy way
to verify the content of a block against its name. As with
the short-term storage systems described above, security

2007 USENIX Annual Technical Conference USENIX Association144

System Secrecy Authorization Integrity Blocks for Compromise Migration

FreeNet encryption none hashing 1 access based
OceanStore encryption signatures versioning m (out of n) access based

FarSite encryption certificates Merkle trees 1 continuous relocation
Publius encryption password (delete) retrieval based m (out of n)

SNAD / Plutus encryption encryption hashing 1
GridSharing secret splitting replication 1

PASIS secret splitting repair agents, auditing m (out of n)
CleverSafe information dispersal unknown hashing m (out of n) none

Glacier user encryption node auth. signatures n/a
Venti none retrieval n/a

LOCKSS none vote based checking n/a site crawling
POTSHARDS secret splitting pluggable algebraic signatures O(Rm−1) device refresh

Table 1: Capability overview of the storage systems described in Section 2. “Blocks to compromise” lists the number of data blocks
needed to brute-force recover data given advanced cryptanalysis; for POTSHARDS, we assume that an approximate pointer points
to R shard identifiers. “Migration” is the mechanism for automatic replication or movement of data between nodes in the system.

is ensured by encrypting data using standard encryption
algorithms.

Some systems, such as LOCKSS [18] and Intermem-
ory [10], are aimed at long-term storage of open content,
preserving digital data for libraries and archives where
file consistency and accessibility are paramount. These
systems are developed around the core idea of very long-
term access for public information; thus file secrecy is
explicitly not part of the design. Rather, the systems ex-
change information about their own copies of each docu-
ment to obtain consensus between archives, ensuring that
a rogue archive does not “alter history” by changing the
content of a document that it holds.

2.2 Storage Security

Many storage systems seek to enforce a policy of secrecy
for their contents. Two common mechanisms for enforc-
ing data secrecy are encryption and secret splitting.

2.2.1 Secrecy via Encryption

Many systems such as OceanStore [25], FARSITE [2],
SNAD [19], Plutus [16], and e-Vault [15] address file se-
crecy but rely on the explicit use of keyed encryption.
While this may work reasonably well for short-term se-
crecy needs, it is less than ideal for the very long-term
security problem that POTSHARDS is addressing. En-
cryption is only computationally secure and the struggle
between cryptography and cryptanalysis can be viewed
as an arms race. For example, a DES encrypted mes-
sage was considered secure in 1976; just 23 years later,
in 1999, the same DES message could be cracked in un-
der a day [29]; future advances in quantum computing
have the potential to make many modern cryptographic
algorithms obsolete.

The use of long-lived encryption implies that re-
encryption must occur to keep pace with advances in
cryptanalysis in order to ensure secrecy. To prevent a

single archive from obtaining the unencrypted data, re-
encryption must occur over the old encryption, resulting
in a long key history for each file. Since these keys are
all external data, a problem with any of the keys in the
key history can render the data inaccessible when it is
requested.

Keyed cryptography is only computationally secure,
so compromise of an archive of encrypted data is a poten-
tial problem regardless of the encryption algorithm that
is used. An adversary who compromises an encrypted
archive need only wait for cryptanalysis techniques to
catch up to the encryption used at the time of the com-
promise. If an insider at a given archive gains access
to all of its data, he can decrypt any desired informa-
tion even if the data is subsequently re-encrypted by the
archive, since the insider will have access to the new key
by virtue of his internal access. This is unacceptable,
since the data’s existence on a secure, long-term archive
suggests that data will still be valuable even if the mali-
cious user must wait several years to read it.

Some content publishing systems utilize encryption,
but its use is not motivated solely by secrecy. Pub-
lius [34] utilizes encryption for write-level access con-
trol. Freenet [6] is designed for anonymous publication
and encryption is used for plausible deniability over the
contents of a users local store. As with secrecy, the use
of encryption to enforce long-lived policy is problematic
due to the mechanism’s computationally secure nature.

2.2.2 Secrecy via Splitting

To address the issues resulting from the use of encryp-
tion, several recent systems including PASIS [11, 36] and
GridSharing [33] have used or suggested the use [31]
of secret splitting schemes [5, 22, 24, 28]; a related ap-
proach used by Mnemosyne [14] and CleverSafe [7] uses
encryption followed by information dispersal (IDA) to
attempt to gain the same security. In secret splitting, a
secret is distributed by splitting it into a set number n of

2007 USENIX Annual Technical ConferenceUSENIX Association 145

shares such that no group of k shares (k < m ≤ n) re-
veals any information about the secret; this approach is
called an (m,n) threshold scheme. In such a scheme,
any m of the n shares can be combined to reconsti-
tute the secret; combining fewer than m shares reveals
no information. A simple example of an (n,n) secret
splitting scheme for a block B is to randomly gener-
ate X0, . . . ,Xn−2, where |Xi| = |B|, and choose Xn−1 so
that X0 ⊕ ·· · ⊕Xn−2 ⊕ Xn−1 = B. Secret splitting satis-
fies the second of our three tenets—data can be rebuilt
without external information—but it can have the unde-
sirable side-effect of combining the secrecy and redun-
dancy aspects of the systems. Although related, these
two elements of security are, in many respects, orthogo-
nal to one another. Combining these elements also risks
introducing compromises into the system by restricting
the choices of secret splitting schemes.

To ensure that our third design tenet is satisfied, a se-
cure long-term storage system must ensure that an at-
tempt to breach security will be noticed by somebody,
ensuring that the trust placed in the collection of archives
can be upheld. Existing systems do not meet this goal
because the secret splitting and data layout schemes they
use are minimally effective against an inside attacker that
knows the location of each of the secret shares. None of
PASIS, CleverSafe, or GridSharing are designed to pre-
vent attacks by insiders at one or more sites who can
determine which pieces they need from other sites and
steal those specific blocks of data, enabling a breach of
secrecy with relatively minor effort. This problem is par-
ticularly difficult given the long time that data must re-
main secret, since such breaches could occur over years,
making detection of small-scale intrusions nearly im-
possible. PASIS addressed the issue of refactoring se-
cret shares [35]; however, this approach could compro-
mise data in the system because the refactoring process
may reveal information during the reconstruction process
that a malicious archive could use to recover user data.
By keeping this on separate nodes, the PASIS designers
hoped to avoid information leakage. Mnemosyne used a
local steganographic file system to hide chunks of data,
but this approach is still vulnerable to rapid information
leakage if the encryption algorithm is compromised be-
cause the IDA provides no additional protection to the
distributed pieces.

2.3 Disaster Recovery

With long data lifetimes, hardware failure is a given;
thus, dealing with a failed archive is inevitable. In ad-
dition, a long-term archival storage solution that relies
upon multiple archives must be able to survive the loss
of an archive for other reasons, such as business fail-
ure. Recovering from such large-scale disasters has long

Figure 1: An overview of POTSHARDS showing the data
transformation component producing shards from objects and
distributing them to independent archives. The archives utilize
distributed RAID algorithms to securely recover shards in the
event of a failure.

been a concern for storage systems [17]. To address
this issue, systems such as distributed RAID [30], Myr-
iad [4] and OceanStore [25] use RAID-style algorithms
or more general redundancy techniques including (m,n)
error correcting codes along with geographic distribution
to guard against individual site failure. Secure, long-term
storage adds the requirement that the secrecy of the dis-
tributed data must be ensured at all times, including dur-
ing disaster recovery scenarios.

3 System Overview

POTSHARDS is structured as a client communicating
with a number of independent archives. Though the
archives are independent, they assist each other through
distributed RAID techniques to protect the system from
archive loss. POTSHARDS stores user data by first split-
ting it into secure shards. These shards are then dis-
tributed to a number of archives, where each archive
exists within its own security domain. The read proce-
dure is similar but reversed; a client requests shards from
archives and reconstitutes the data.

Data is prepared for storage during ingestion by a data
transformation component that transforms objects into a
set of secure shards which are distributed to the archives,
as shown in Figure 1; similarly, this component is also
responsible for reconstituting objects from shards dur-
ing extraction. The data transformation component runs
on a system separate from the archives on which the
shards reside, and can fulfill requests from either a sin-
gle client or many clients, depending on the implementa-
tion. This approach provides two benefits: the data never
reaches an archive in an unsecured form; and multiple
CPU-bound data transformation processes can generate
shards in parallel for a single set of physical archives.

2007 USENIX Annual Technical Conference USENIX Association146

Figure 2: Data entities in POTSHARDS, with size (in bits) in-
dicated above each field. Note that entities are not shown to
scale relative to one another. S is the number of shards that the
fragment produces. split1 is an XOR secret split and split2 is a
Shamir secret split in POTSHARDS.

The archives operate in a manner similar to financial
banks in that they are relatively stable and they have a in-
centive (financial or otherwise) to monitor and maintain
the security of their contents. Additionally, the barrier
to entry for a new archive should be relatively high (al-
though POTSHARDS does takes precautions against a
malicious insider); security is strengthened by distribut-
ing shards amongst the archives, so it is important that
each archive can demonstrate an ability to protect its
data. Other benefits of archive independence include re-
ducing the effectiveness of insider attacks and making
it easier to exploit the benefits of geographic diversity
in physical archive locations. For these reasons, a sin-
gle entity, such as a multinational company, should still
maintain multiple independent archives to gain these se-
curity and reliability benefits.

3.1 Data Entities and Naming

There are three main data objects in POTSHARDS: ob-
jects, fragments and shards. As Figure 1 shows, objects
contain the data that users submit to the system at the top
level. Fragments are used within the data transformation
component during the production of shards, which are
the pieces actually stored on the archives. The details of
these data entities can be seen in Figure 2.

All data entities in the current implementation of POT-
SHARDS are given unique 128-bit identifiers. The first
40 bits of the name uniquely identify the client in the
same manner as a bank account is identified by an ac-
count number. The remaining 88 bits are used to identify
the data entity. The length of the identifier could be ex-
tended relatively easily in future implementations. The
names for entities that do not directly contribute to secu-
rity within POTSHARDS, such as those for objects, can
be generated in any way desired. However, the security
and recovery time for a set of shards is directly related to
the shards’ names; thus, shards’ IDs must be chosen with
great care to ensure a proper density of names, providing
sufficient security.

In addition to uniquely identifying data entities within
the system, IDs play an important role in the secret split-
ting algorithms used in POTSHARDS. For secret split-
ting techniques that rely on linear interpolation [28], the
reconstitution algorithm must know the original order of
the secret shares. Knowing the order of the shards in a
shard tuple can greatly reduce the time taken to recon-
stitute the data by avoiding the need to try each permu-
tation of share ordering. Currently, this ordering is done
by ensuring that the numerical ordering of the shard IDs
reflects the input order to the reconstitution algorithm.

3.2 Secrecy and Reliability Techniques

POTSHARDS utilizes three primary techniques in the
creation and long-term storage of shards. First, se-
cret splitting algorithms provide file secrecy without the
need to periodically update the algorithm. This is due
to the fact that perfect secret splitting is information-
theoretically secure as opposed to only computationally
secure. Second, approximate pointers between shards al-
low objects to be recovered from only the shards them-
selves. Thus, even if all indices over a user’s shards are
lost, their data can be recovered in a reasonable amount
of time. Third, secure, distributed RAID techniques
across multiple independent archives allow data to be re-
covered in the event of an archive failure without expos-
ing the original data during archive reconstruction.

POTSHARDS provides data secrecy through the use
of secret splitting algorithms; thus, there is no need to
maintain key history because POTSHARDS does not use
traditional encryption keys.Additionally, POTSHARDS
utilizes secret splitting in a way that does not combine
the secrecy and redundancy parameters. Storage of the
secret shares is also handled in a manner that dramat-
ically reduces the effectiveness of insider attacks. By
using secret splitting techniques, the secrecy in POT-
SHARDS has a degree of future-proofing built into it—it
can be proven that an adversary with infinite computa-
tional power cannot gain any of the original data, even if
an entire archive is compromised. While not strictly nec-
essary, the introduction of a small amount of redundancy
at the secret splitting layer allows POTSHARDS to han-
dle transient archive unavailability by not requiring that
a reader obtain all of the shards for an object; however,
redundancy at this level is used primarily for short-term
failures.

POTSHARDS provides approximate pointers to en-
able the reasonably quick reconstitution of user data
without any information that exists outside of the shards
themselves. POTSHARDS users normally keep indexes
allowing them to quickly locate the shards that they need
to reconstitute a particular object, as described in Sec-
tion 4.3, so normal shard retrieval consists of asking

2007 USENIX Annual Technical ConferenceUSENIX Association 147

Figure 3: Approximate pointers point to R “candidate” shards
(R = 4 in this example) that might be next in a valid shard tuple.
Shards0X make up a valid shard tuple. If an intruder mistak-
enly picks shard21, he will not discover his error until he has
retrieved sufficient shards and validation fails on the reassem-
bled data.

archives for the specific shards that make up an object,
and is relatively fast. Approximate pointers are used
when these user indexes are lost or otherwise unavail-
able. Since POTSHARDS can be used as a time capsule
to secure data, it is foreseeable that a future user may
be able to access the shards that they have a legal right
to but have no idea how to combine them. The shards
that can be combined together to reconstitute data form
a shard tuple; an approximate pointer indicates the re-
gion in the user’s private namespace where the next shard
in the shard tuple exists, as shown in Figure 3. An ap-
proximate pointer has the benefit of making emergency
data regeneration tractable while still making it difficult
for an adversary to launch a targeted attack. If exact
pointers were used, an adversary would know exactly
which shards to target to rebuild an object. On the other
hand, keeping no pointer at all makes it intractable to
combine the correct shards without outside knowledge
of which shards to combine. With approximate pointers,
an attacker with one shard would only know the region
where the next shard exists. Thus, a brute force attack re-
questing every shard in the region would be quite notice-
able because the POTSHARDS namespace is intention-
ally kept sparse and an attack would result in requests for
shards that do not exist. Unlike an index relating shards
to objects that users would keep (and not store in the clear
on an archive), an approximate pointer is part of the shard
and is stored on the archive.

The archive layer in which the shards are stored con-
sists of independent archives utilizing secure, distributed
RAID techniques to provide reliability. As Figure 1
shows, archive-level redundancy is computed across sets
of unrelated shards, so redundancy groups provide no in-
sight into shard reassembly. POTSHARDS includes two
novel modifications beyond the distributed redundancy
explored earlier [4, 30]. The first is a secure reconstruc-
tion procedure, described in Section 4.2.1, that allows a
failed archive’s data to be regenerated in a manner that
prevents archives from obtaining additional shards dur-
ing the reconstruction; shards from the failed archive

(a) Four data transformation layers in POTSHARDS.

Module Input Output
Pre-processing file object

Secrecy split object set of fragments
Availability split fragment set of shards

Placement set of shards msgs for archives
(b) Inputs and outputs for each transformation layer.

Figure 4: The transformation component consists of four lev-
els. Approximate pointers are utilized at the second secret
split. Note that locating one shard tuple provides no informa-
tion about locating the shards from other tuples.

are rebuilt only at the new archive that is replacing it.
Second, POTSHARDS uses algebraic signatures [27] to
ensure intra-archive integrity as well as inter-archive in-
tegrity. Algebraic signatures have the desirable property
that the parity of a signature is the same as the signature
of the parity, which can be used to prove the existence of
data on other archives without revealing the data.

4 Implementation Details

This section details the components of POTSHARDS
and how each contributes to providing long-term, secure
storage. We first describe the transformation that POT-
SHARDS performs to ensure data secrecy. Next, we de-
tail the inter-archive techniques POTSHARDS uses to
provide long-term reliability. We then describe index
construction; the use of indices makes “normal” data re-
trieval much simpler. Finally, we describe how we use
approximate pointers to recover data with no additional
information beyond the shards themselves, thus ensuring
that POTSHARDS archives will be readable by future
generations.

4.1 Data Transformation: Secrecy

Before being stored at the archive layer, user data trav-
els through the data transformation component of POT-
SHARDS. This component is made up of four layers as
shown in Figure 4.

1. The pre-processing layer divides files into fixed-sized,

2007 USENIX Annual Technical Conference USENIX Association148

b-byte objects. Additionally, objects include a hash
that is used to confirm correct reconstitution.

2. A secret splitting layer tuned for secrecy takes an object
and produces a set of fragments.

3. A secret splitting layer tuned for availability takes a
fragment and produces a tuple of shards. It is also
at this layer that the approximate pointers between the
shards are created.

4. The placement layer determines how to distribute the
shards to the archives.

4.1.1 Secret Splitting Layers

Fragments are generated at the first level of secret split-
ting, which is tuned for secrecy. Currently we use an
XOR-based algorithm that produces n fragments from an
object. To ensure security, the random data required for
XOR splitting can be obtained through a physical process
such as radio-active decay or thermal noise. As Figure 2
illustrates, fragments also contain metadata including a
hash of the fragment’s data which can be used to confirm
a successful reconstitution.

A tuple of shards is produced from a fragment us-
ing another layer of secret splitting. This second split
is tuned for availability which allows reconstitution in
the event that an archive is down or unavailable when
a request is made. In this version of POTSHARDS,
shards are generated from a fragment using an (m,n) se-
cret splitting algorithm [24, 28]. As the Figure 2 shows,
shards contain no information about the fragments that
they make up.

The two levels of secret splitting provide three impor-
tant security advantages. First, as Figure 4 illustrates,
the two-levels of splitting can be viewed as a tree with
an increased fan out compared to one level of splitting.
Thus, even if an attacker is able to locate all of the mem-
bers of a shard tuple they can only rebuild a fragment
and they have no information to help them find shards
for the other fragments. Second, it separates the secrecy
and availability aspects of the system. With two levels
of secret splitting we do not need to compromise one as-
pect for the other. Third, it allows useful metadata to be
stored with the fragments as this data will be kept secret
by the second level of splitting. The details of shards and
fragments are shown in Figure 2.

One cost of two-level secret splitting is that the over-
all storage requirements for the system are increased.
A two-way XOR split followed by a (2,3) secret split
increases storage requirements by a factor of six; dis-
tributed RAID further increases the overhead. If a user
desires to offset this cost, data can be submitted in a com-
pressed archival form [37]; compressed data is handled
just like any other type of data.

4.1.2 Placement Layer

The placement layer determines which archive will store
each shard. The decision takes into account which shards
belong in the same tuple and ensures that no single
archive is given enough shards to recover data.

This layer contributes to security in POTSHARDS in
four ways. First, since it is part of the data transforma-
tion component, no knowledge of which shards belong to
an object need exist outside of the component. Second,
the effectiveness of a insider attack at the archives is re-
duced because no single archive contains enough shards
to reconstitute any data. Third, the effectiveness of an ex-
ternal attack is decreased because shards are distributed
to multiple archives, each of which can exist in their own
security domain. Fourth, the placement layer can take
into account the geographic location of archives in order
to maximize the availability of data.

4.2 Archive Design: Reliability

Storage in POTSHARDS is handled by a set of in-
dependent archives that store shards, actively monitor
their own security and actively question the security of
the other archives. The archives do not know which
shards form a tuple, nor do they have any information
about fragments or object reconstitution. A compro-
mised archive does not provide an adversary with enough
shards to rebuild user data. Nor does it provide an adver-
sary with enough information to know where to find the
appropriate shards needed to rebuild user data. Absent
such precautions, the archive model would likely weaken
the strong security properties provided by the other sys-
tem components.

Since POTSHARDS is designed for long-term stor-
age, it is inevitable that disasters will occur and archive
membership will change over time. To deal with the
threat of data loss from these events, POTSHARDS uti-
lizes distributed RAID techniques. This is accomplished
by dividing each archive into fixed-sized blocks and re-
quiring all archives to agree on distributed, RAID-based
methods over these blocks. Each block on the archive
holds either shards or redundancy data.

When shards arrive at an archive for storage, inges-
tion occurs in three steps. First, a random block is cho-
sen as the storage location of the shard. Next, the shard
is placed in the last available slot in the the block. Fi-
nally, the corresponding parity updates are sent to the
proper archives. Each parity update contains the data
stored in the block and the appropriate parity block lo-
cation. The failure of any parity update will result in a
roll-back of the parity updates and re-placement of the
shard into another block. Although it is assumed that
all of the archives are trusted, we are currently analyz-

2007 USENIX Annual Technical ConferenceUSENIX Association 149

Figure 5: A single round of archive recovery in a RAID 5
redundancy group. Each round consists of multiple steps.
Archive N contains data n and generates random blocks rn.

ing the security effects of passing shard data between the
archives during parity updates and exploring techniques
for preventing archives from maliciously accumulating
shards.

The distributed RAID techniques used in POT-
SHARDS are based on those from existing systems [4,
30]. In such systems, cost-effective, fault-tolerant, dis-
tributed storage is achieved by computing parity across
unrelated data in wide area redundancy groups. Given
an (n,k) erasure code, a redundancy group is an ordered
set of k data blocks and n− k parity blocks where each
block resides on one of n distinct archives. The redun-
dancy group can survive the loss of up to n− k archives
with no data loss. The current implementation of POT-
SHARDS has the ability to use Reed-Solomon codes or
single parity to provide flexible and space-efficient re-
dundancy across the archives.

POTSHARDS enhances the security of existing dis-
tributed RAID techniques through two important ad-
ditions. First, the risk of information leakage during
archive recovery is greatly mitigated through secure re-
construction techniques. Second, POTSHARDS utilizes
algebraic signatures [27] to implement a secure protocol
for both storage verification and data integrity checking.

4.2.1 Secure Archive Reconstruction

Reconstruction of data can pose a significant security risk
because it can involve many archives and considerable
amounts of data passing between archives. The secure
recovery algorithm implemented within POTSHARDS
exploits the independence of the archives participating
in a redundancy group and the commutativity of evaluat-
ing the parity. Our reconstruction algorithm permits each
archive to independently reconstruct a block of failed
data without revealing any information about its data.
The commutativity of the reconstruction procedure re-
sults in a reconstruction protocol that can occur in per-
mutations, which greatly decreases the likelihood of suc-
cessful collusion during archive recovery.

The recovery protocol begins with the confirmation of
a partial or whole archive failure and, since each archive
is a member of one or more redundancy groups, pro-

ceeds one redundancy group at a time. If a failure is
confirmed, the archives in the system must agree on the
destination of recovered data. A fail-over archive is cho-
sen based on two criteria: the fail-over archive must not
be a member of the redundancy group being recovered
and it must have the capacity to store the recovered data.
Due to these constraints multiple fail-over archives may
be needed to perform reconstruction and redistribution.
Future work will include ensuring that the choice of fail-
over archives prevent any archive from acquiring enough
shards to reconstruct user data.

Once the fail-over archive is selected, recovery occurs
in multiple rounds. A single round of our secure recov-
ery protocol over a single redundancy group is illustrated
in Figure 5. In this example, the available members of
a redundancy group collaborate to reconstruct the data
from a failed archive onto a chosen archive X . An archive
(which cannot be the fail-over and cannot be one of the
collaborating archives) is appointed to manage the pro-
tocol by rebuilding one block at a time through multi-
ple rounds of chained requests. A request contains an
ordered list of archives, corresponding block identifiers
and a data buffer and proceeds as follows at each archive
in the chain:

1. Request α involving local block n arrives at archive N.
2. The archive creates a random block rn and computes

n⊕ rn = n′.
3. The archive computes β =α⊕n′ and removes its entry

from the request
4. The archive sends rn directly to archive X .
5. β is sent to the next archive in the list.

This continues at each archive until the chain ends at
archive X and the block is reconstructed. The commu-
tativity of the rebuild process allows us to decrease the
likelihood of data exposure by permuting the order of
the chain in each round. This procedure is easily paral-
lelized and continues until all of the failed blocks for the
redundancy group are reconstructed. Additionally, this
approach can be generalized to any linear erasure code;
as long as the generator matrix for the code is known, the
protocol remains unchanged.

4.2.2 Secure Integrity Checking

Preserving data integrity is a critical task in all long-term
archives. POTSHARDS actively verifies the integrity of
data using two different forms of integrity checking. The
first technique requires each of the archives to periodi-
cally check its data for integrity violations using a hash
stored in the header of each block on disk. The sec-
ond technique is a form of inter-archive integrity check-
ing that utilizes algebraic signatures [27] across the re-
dundancy groups. Algebraic signatures have the prop-

2007 USENIX Annual Technical Conference USENIX Association150

erty that the signatures of the parity equals the parity
of the signatures. This property is used to verify that
the archives in a given redundancy group are properly
storing data and are performing the required internal
checks [27].

Secure, inter-archive integrity checking is achieved
through algebraic signature requests over a specific in-
terval of data. A check begins when an archive asks
the members of a redundancy group for an algebraic sig-
nature over a specified interval of data. The algebraic
signature forms a codeword in the erasure code used by
the redundancy group and integrity over the interval of
data is checked by comparing the parity of the data sig-
natures to the signature of the parity. If the comparison
check fails, then the archive(s) in violation may be found
as long as the number of incorrect signatures is within
the error-correction capability of the code. In general,
a small signature (typically 4 bytes) is computed from a
few megabytes of data. This results in very little infor-
mation leakage. If necessary, restrictions may be placed
on algebraic signature requests to ensure that no data is
exposed during the integrity check process.

4.3 User Indexes

When shards are created, the exact names of the shards
are returned to the user along with their archive place-
ment locations; however, these exact pointers are not
stored in the shards themselves, so they are not avail-
able to someone attacking the archives. Typically, a user
maintains this information and the relationship between
shards, fragments, objects, and files in an index to allow
for fast retrieval. In the general case, the user consults her
index and requests specific shards from the system. This
index can, in turn, be stored within POTSHARDS, re-
sulting in an index that can be rebuilt from a users shards
with no outside information.

The index for each user can be stored in POTSHARDS
as a linked list of index pages with new pages inserted at
the head of the list, as shown in Figure 6. Since the index
pages are designed to be stored within POTSHARDS,
each page is immutable. When a user submits a file to
the system, a list of mappings from the file to its shards
is returned. This data is recorded in a new index page,
along with a list of shards corresponding to the previous
head of the index list. This new page is then submitted
to the system and the shard list returned is maintained as
the new head of the index list. These index root-shards
can be maintained by the client application or even on a
physical token, such as a flash drive or smart card.

This approach of each user maintaining their own pri-
vate index has three advantages. First, since each user
maintains his own index, the compromise of a user index
does not affect the security of other users’ data. Second,

Figure 6: User index made up of two pages. One page was
created at time t0 and the other at time t1.

the index for one user can be recovered with no effect on
other users. Third, the system does not know about the
relationship between a user’s shards and their data.

In some ways, the index over a user’s shards can be
compared to an encryption key because it contains the
information needed to rebuild a user’s data. However,
the user’s index is different from an encryption key in
two important ways. First, the user’s index is not a sin-
gle point of failure like an encryption key. If the index
is lost or damaged, it can be recovered from the data
without any input from the owner of the index. Second,
full archive collusion can rebuild the index. If a user can
prove a legal right to data, such as by a court subpoena,
than the archives can provide all of the user’s shards and
allow the reconstitution of the data. If the data was en-
crypted, the files without the encryption key might not be
accessible in a reasonable period of time.

4.4 Approximate Pointers and Recovery

Approximate pointers are used to relate shards in the
same shard tuple to one another in a manner that al-
lows recovery while still reducing an adversary’s ability
to launch a targeted attack. Each shard has an approxi-
mate pointer to the next shard in the fragment, with the
last shard pointing back to the first and completing the
cycle, as shown in Figure 3. This allows a user to recover
data from their shards even if all other outside informa-
tion, such as the index, is lost.

There are two ways that approximate pointers can
be implemented: randomly picking a value within R/2
above or below the next shard’s identifier, or masking off
the low-order r bits (R = 2r) of the next shard’s identi-
fier, hiding the true value. Currently, POTSHARDS uses
the latter approach; we are investigating the tradeoffs be-
tween the two approaches. One benefit to using the R/2
approach is that it allows a finer-grained level of adjust-
ment compared to the relatively coarse-grained bitmask
approach.

The use of approximate pointers provides a great deal
of security by preventing an intruder who compromises
an archive or an inside attacker from knowing exactly
which shards to steal from other archives. An intruder
would have to steal all of the shards an approximate
pointer could refer to, and would have to steal all of the
shards they refer to, and so on. All of this would have to
bypass the authentication mechanisms of each archive,
and archives would be able to identify the access pattern
of a thief, who would be attempting to obtains shards that

2007 USENIX Annual Technical ConferenceUSENIX Association 151

may not exist. Since partially reconstituted fragments
cannot be verified, the intruder might have to steal all
of the potential shards to ensure that he was able to re-
constitute the fragment. For example, if an approximate
pointer points to R shards and a fragment is split using
(m,n) secret splitting, an intruder would have to steal, on
average, Rm−1/2 shards to decode the fragment.

In contrast to a malicious user, a legitimate user with
access to all of his shards can easily rebuild the fragments
and, from them, the objects and files they comprise. Sup-
pose this user created shards from fragments using an
(m,n) secret splitting algorithm. A user would start by
obtaining all of her shards which, in the case of recover-
ies, might require additional authentication steps. Once
she obtains all of her shards from the archives, there are
two approaches to regenerating those fragments. First,
she could try every possible chain of length m, rebuild-
ing the fragment and attempting to verify it. Second,
she could narrow the list of possible chains by only at-
tempting to verify chains of length n that represented
cycles, an approach we call the ring heuristic. As Fig-
ure 2 illustrates, fragments include a hash that is used
to confirm successful reconstitution. Fragments also in-
clude the identifier for the object from which they are de-
rived, making the combination of fragments into objects
a straightforward process.

Because the Shamir secret splitting algorithm is com-
putationally expensive, even when combining shards that
do not generate valid fragments, we use the ring heuris-
tic to reduce the number of failed reconstitution attempts
in two ways. First, the number of cycles of length n is
lower than the number of paths of length m since many
paths of length n do not make cycles. Second, recon-
stitution using the Shamir secret splitting algorithm re-
quires that the shares be properly ordered and positioned
within the share list. Though the shard ID provides a
natural ordering for shards, it does not assist with posi-
tioning. For example, suppose the shards were produced
with a 3 of 5 split. A chain of three shards, 〈s1,s2,s3〉,
would potentially need to be submitted to the secret split-
ting algorithm three times to test each possible order:
〈s1,s2,s3,φ ,φ〉, 〈φ ,s1,s2,s3,φ〉, and 〈φ ,φ ,s1,s2,s3〉.

5 Experimental Evaluation

Our experiments using the current implementation of
POTSHARDS were designed to measure several things.
First, we wanted to evaluate the performance of the sys-
tem and identify any bottlenecks. Next, we compared
the behavior of the system in an environment with heavy
contention for processing and network resources against
that in a dedicated, lightly loaded environment. Finally,
we evaluated POTSHARDS’ ability to recover from the
loss of an archive as well as the loss of a user index.

During our experiments, the data transformation com-
ponent was run from the client’s system using object
sizes of 750 KB. The first layer of secret splitting used
an XOR based algorithm and produced two fragments
per object, and the second layer utilized a (2,3) Shamir
threshold scheme. The workloads contained a mixture
of PDF, Postscript files, and images. These files are
representative of the content that a long-term archive
might contain, although it is important to note that POT-
SHARDS sees all objects as the same regardless the ob-
jects’ origin or content. File sizes ranged from about half
a megabyte to several megabytes in size; thus, most were
ingested and extracted as multiple objects.

For the local experiments, all systems were located on
the same 1 Gbps network with little outside contention
for computing or network resources. The client com-
puters were equipped with two 2.74 GHz Pentium 4 pro-
cessors, 2 GB of RAM and Linux version 2.6.9-22.01.1.
Each of the sixteen archives were equipped with two
2.74 GHz Pentium 4 processors, 3 GB of RAM, 7.3 GB
of available local hard drive space and Linux version
2.6.9-34. In contrast to the local experiments, the global-
scale experiments were conducted using PlanetLab [21],
resulting in considerable contention for shared resources.
For these experiments, both the clients and archives were
run in a slice that contained twelve PlanetLab nodes
(eight archives and four clients) distributed across the
globe.

The POTSHARDS prototype system itself consists of
roughly 15,000 lines of Java 5.0 code. Communications
between layers used Java sockets over standard TCP/IP,
and the archives used Sleepycat Software’s BerkeleyDB
version 3.0 for persistent storage of shards.

5.1 Read and Write Performance

Our first set of experiments evaluated the performance
of ingestion and extraction on a dedicated set of systems
and on PlanetLab. Table 2 profiles the ingestion and ex-
traction of one block of data. comparing the time taken
on an unloaded local cluster of machines and the heavily
loaded, global scale PlanetLab. In addition to the time,
the table details the number of messages exchanged dur-
ing the request.

As Table 2 shows, most of the time on the local
cluster is spent in the transformation layer. This is
to be expected as Shamir secret-splitting algorithm is
compute-intensive. While slower than many encryp-
tion algorithms, such secret-splitting algorithms do not
suffer from the problems discussed earlier with long-
term encryption and are fast enough for archival storage.
The compute-intensive nature of secret-splitting is fur-
ther highlighted in the local experiments due to the local
cluster’s dedicated network with almost no outside cross-

2007 USENIX Annual Technical Conference USENIX Association152

Ingestion Profile Cluster PlanetLab

Secret Splitting time (ms) 1509 2276
Layers msgs in 1 1

Request msgs out 1 1
Placement time (ms) 37 30606

Layer msgs in 1 1
Request msgs out 6 6
Archive time (ms) 67 39109
Layer msgs in 6 6

Request msgs out 6 6
Response Trip time (ms) 88 54271

Total Round Trip time (ms) 1731 95952

Extraction Profile Cluster PlanetLab

Request Trip time (ms) 28 6493
Shard time (ms) 832 29666

Acquisition msgs 34 34
Transformation time (ms) 1009 1698

Layer msgs in 1 1
Response msgs out 1 1

Total Round Trip time (ms) 1843 31410

Table 2: Profile of the ingestion and extraction of one object,
comparing trials run on a lightly-loaded local cluster with the
global-scale PlanetLab. Results are the average of 3 runs of
36 blocks per run using a (2,2) XOR split to generate fragments
and a (2,3) Shamir split to generate shards.

traffic. The transformation time for ingestion is greater
than for extraction for two reasons. First, during inges-
tion, the transformation must generate many random val-
ues. Second, during extraction, the transformation layer
performs linear interpolation using only those shards that
are necessary. That is, given an (m,n) secret split, all n
are retrieved but calculation is only done on the first m
shards; the minimum required to rebuild the data. Dur-
ing extraction, the speed improvements in the transfor-
mation layer are balanced by the time required to collect
the requested shards from the archive layer.

In a congested, heavily loaded system, the time to
move data through the system begins to dominate the
transformation time as the PlanetLab performance fig-
ures in Table 2 show. This is evident in the comparable
times spent in the transformation layers in the two envi-
ronments contrasted with the very divergent times spent
on requests and responses in the two environments. For
example, the extraction request trip took only 28 ms on
the local cluster but required about 6.5 seconds on the
PlanetLab trials. Since request messages are quite small,
the difference is even more dramatic in the shard acqui-
sition times for extraction. Here, moving the shards from
the archives to the transformation layer took only 832 ms
on the local cluster but over 29.5 seconds on PlanetLab.

The measurements per object represent two distinct
scenarios. The cluster numbers are from a lightly-loaded,

Number of clients
0 2 4 6 8 10 12

Th
ro

ug
hp

ut
(M

B/
s)

0
1
2
3
4
5

Extraction
Ingestion

Figure 7: System throughput with sixteen archives and a work-
load of 100 MB per client using the same system parameters as
in Table 2.

well-equipped and homogeneous network with unsatu-
rated communication channels. In contrast, the Planet-
Lab numbers feature far more congestion and resource
demands as POTSHARDS contended with other pro-
cesses for both host and network facilities. However, in
archival storage, latency is not as important as through-
put. Thus, while these times are not adequate for low-
latency applications, they are acceptable for archival
storage.

The results from local tests show a per client through-
put of 0.50 MB/s extraction and 0.43 MB/s ingestion—
per-client performance is largely limited by the current
design of the data transformation layer. In the current
version, both XOR splitting and linear interpolation split-
ting is performed in a Java-based implementation; fu-
ture versions will use GF(216) arithmetic in an opti-
mized C based library. Additionally, clients currently
submit objects to the data transformation component and
synchronously await a response from the system before
submitting the next object. In contrast, the remainder
of the system is highly asynchronous. The high level
of parallelism in the lower layer is demonstrated in the
throughput as the number of clients increases. As Fig-
ure 7 shows, the read and write throughput scales as
the number of clients increases. With a low number of
clients, much of the system’s time is spent waiting for
a request from the secret splitting layers. As the num-
ber of clients increases, however, the system is able to
take advantage of the increased aggregate requests of the
clients to achieve system throughput of 4.66 MB/s for ex-
traction and 2.86 MB/s for ingestion. Write performance
is further improved through the use of asynchronous par-
ity updates. While an ingestion response waits for the
archive to write the data before being sent, it does not
need to wait for the parity updates.

An additional factor to consider in measuring through-
put is the storage blow-up introduced by the two levels of
secret splitting. Using parameters of (2,2) XOR splitting
and (2,3) shard splitting requires six bytes to be stored
for every byte of user data. In our experiments, system
throughput is measured from the client perspective even
though demands inside the system are six times those

2007 USENIX Annual Technical ConferenceUSENIX Association 153

0 1000 2000

Ti
m

e
(s

ec
on

ds
)

0

200

400

600 Ring heuristic
No heuristic

(a) 2 of 3 split.

0 1000 2000

Ti
m

e
(s

ec
on

ds
)

0

2000

4000

6000
Ring heuristic
No heuristic

(b) 3 of 5 split.

Figure 8: Brute force recovery time for an increasing number
of shards generated using different secret splitting parameters.

Name Space Shards False Rings Time

16 bits 4190 24451 6715 sec
32 bits 4190 0 225 sec

Table 3: Recovery time in a name space with 5447 allocated
names for two different name space sizes. For larger sys-
tems, this time increases approximately linearly with system
size; name density and secret splitting parameters determine
the slope of the line.

seen by the client. Nonetheless, one goal for future work
is to improve system throughput by implementing asyn-
chronous communication in the client.

5.2 User Data Recovery

In the event that the index over a user’s shards is lost or
damaged, user data, including the index, if it was stored
in POTSHARDS, can be recovered from the shards
themselves. To begin the procedure, the user authenti-
cates herself to each of the individual archives and ob-
tains all of her shards. The user then applies the algo-
rithm described in Section 4.4 to rebuild the fragments
and the objects that make up her data.

We ran experiments to measure the speed of the re-
covery process for both algorithm options. While the re-
covery process is not fast enough to use as the sole ex-
traction method, it is fast enough for use as a recovery
tool. Figure 8 shows the recovery times for two different
secret splitting parameters. Using the ring heuristic pro-
vides a near-linear recovery time as the number of shards
increases, and is much faster than the naı̈ve approach.
In contrast, recovery without using the ring heuristic re-
sults in an exponential growth. This is very apparent in
Figure 8(b), which must potentially try each path three
times. The ring heuristic provides an additional layer of
security because a user that can properly authenticate to
all of the archives and acquire all of their shards can re-
cover their data very quickly. In contrast, an intruder that
cannot acquire all of the needed shards must search in
exponential time.

The density of the name space has a large effect on the
time required to recover the shards. As shown in Table 3,
a sparse name space results in fewer false shard rings
(none in this experiment) and is almost 30 times faster

than a densely packed name space. An area of future re-
search is to design name allocation policies that balance
the recovery times with the security of the shards. One
simple option would be to utilize a sliding window into
the name space from which names are drawn. As the cur-
rent window becomes saturated it moves within the name
space. This would ensure adequate density for both new
names and existing names.

5.3 Archive Reconstruction

The archive recovery mechanisms were run on our lo-
cal system using eight 1.5 GB archives. Each redun-
dancy group in the experiment contained eight archives
encoded using RAID 5. A 25 MB client workload was
ingested into the system using (2,2) XOR splitting and
(2,3) Shamir splitting, resulting in 150 MB of client
shards, excluding the appropriate parity. After the work-
load was ingested, an archive was failed. We then used a
static recovery manager that sent reconstruction requests
to all of the available archives and waited for successful
responses from a fail-over archive. Once the procedure
completed, the contents of the failed archive and the re-
constructed archive were compared. This procedure was
run three times, recovering at 14.5 MB/s, with the veri-
fication proving successful on each trial. The procedure
was also run with faults injected into the recovery pro-
cess to ensure that the verification process was correct.

6 Discussion

While we have designed and implemented an infrastruc-
ture that supports secure long-term archival storage with-
out the use of encryption, there are still some outstanding
issues. POTSHARDS assumes that individual archives
are relatively reliable; however, automated maintenance
of large-scale archival storage remains challenging [3].
We plan to explore the construction of archives from au-
tonomous power-managed disk arrays as an alternative
to tape [8]. The goal would be devices that can distribute
and replicate storage amongst themselves, reducing the
level of human intervention to replacing disks when suf-
ficiently many have failed.

A secure, archival system must deal with the often
conflicting requirements of maintaining the secrecy of
data while also providing a degree of redundancy. To this
end, further work will explore the contention between
these two demands in such areas as parity building. In
future versions, we hope to improve the security of parity
updates in which sensitive data must be passed between
archives.

Currently, POTSHARDS depends on strong authenti-
cation and intrusion detection to keep data safe, but it is
not clear how to defend against intrusions that may occur

2007 USENIX Annual Technical Conference USENIX Association154

over many years, even if such attacks are detected. We
are exploring approaches that can refactor the data [35]
so that partial progress in an intrusion can be erased by
making new shards “incompatible” with old shards. Un-
like the failure of an encryption algorithm, which would
necessitate wholesale re-encryption, refactoring for se-
curity could be done over time to limit the window over
which a slow attack could succeed. Refactoring could
also be applicable to secure migration of data to new stor-
age devices.

We have introduced the approximate pointer mecha-
nism as a means of making data recovery more tractable
while maintaining security. While we believe they are
useful in this capacity, we admit that there is more work
to be done in understanding their nature. Specifically, we
plan on exploring the relationship between the ID names-
pace and approximate pointer parameters.

We would also like to reduce the storage overhead in
POTSHARDS, and are considering several approaches
to do so. Some information dispersal algorithms may
have lower overheads than Shamir secret splitting; we
plan to explore their use, assuming that they maintain
the information-theoretic security provided by our cur-
rent algorithm.

The research in POTSHARDS is only concerned with
preserving the bits that make up files; understanding the
bits is an orthogonal problem that must also be solved.
Others have begun to address this problem [9], but main-
taining the semantic meanings of bits over decades-long
periods may prove to be an even more difficult problem
than securely maintaining the bits themselves.

7 Conclusions

This paper introduced POTSHARDS, a system designed
to provide secure long-term archival storage to address
the new challenges and new security threats posed by
archives that must securely preserve data for decades or
longer.

In developing POTSHARDS, we made several key
contributions to secure long-term data archival. First, we
use multiple layers of secret splitting, approximate point-
ers, and archives located in independent authorization
domains to ensure secrecy, shifting security of long-lived
data away from a reliance on encryption. The combina-
tion of secret splitting and approximate pointers forces an
attacker to steal an exponential number of shares in or-
der to reconstitute a single fragment of user data; because
he does not know which particular shares are needed, he
must obtain all of the possibly-required shares. Second,
we demonstrated that a user’s data can be rebuilt in a
relatively short time from the stored shares only if suffi-
ciently many pieces can be acquired. Even a sizable (but
incomplete) fraction of the stored pieces from a subset of

the archives will not leak information, ensuring that data
stored in POTSHARDS will remain secret. Third, we
made intrusion detection easier by dramatically increas-
ing the amount of information that an attacker would
have to steal and requiring a relatively unusual access
pattern to mount the attack. Fourth, we ensure long-term
data integrity through the use of RAID algorithms across
multiple archives, allowing POTSHARDS to utilize het-
erogeneous storage systems with the ability to recover
from failed or defunct archives and a facility to migrate
data to newer storage devices.

Our experiments show that the current prototype im-
plementation can store user data at nearly 3 MB/s and
retrieve user data at 5 MB/s. Since POTSHARDS is an
archival storage system, throughput is more of a concern
than latency, and these throughputs exceed typical long-
term data creation rates for most environments. Since
the storage process is parallelizable, additional clients in-
crease throughput until the archives’ maximum through-
put is reached; similarly, additional archives linearly in-
crease maximum system throughput.

By addressing the long-term threats to archival data
while providing reasonable performance, POTSHARDS
provides reliable data protection specifically designed for
the unique challenges of secure archival storage. Storing
data in POTSHARDS ensures not only that it will remain
available for decades to come, but also that it will remain
secure and can be recovered by authorized users even if
all indexing is lost.

Acknowledgments

We would like to thank our colleagues in the Storage
Systems Research Center (SSRC) who provided valu-
able feedback on the ideas in this paper. This research
was supported by the Petascale Data Storage Institute,
UCSC/LANL Institute for Scalable Scientific Data Man-
agement and by SSRC sponsors including Los Alamos
National Lab, Livermore National Lab, Sandia National
Lab, Digisense, Hewlett-Packard Laboratories, IBM Re-
search, Intel, LSI Logic, Microsoft Research, Network
Appliance, Seagate, Symantec, and Yahoo.

References

[1] Health Information Portability and Accountability act, Oct. 1996.

[2] ADYA, A., BOLOSKY, W. J., CASTRO, M., CHAIKEN, R.,
CERMAK, G., DOUCEUR, J. R., HOWELL, J., LORCH, J. R.,
THEIMER, M., AND WATTENHOFER, R. FARSITE: Federated,
available, and reliable storage for an incompletely trusted envi-
ronment. In Proceedings of the 5th Symposium on Operating
Systems Design and Implementation (OSDI) (Boston, MA, Dec.
2002), USENIX.

[3] BAKER, M., SHAH, M., ROSENTHAL, D. S. H., ROUSSOPOU-
LOS, M., MANIATIS, P., GIULI, T., AND BUNGALE, P. A fresh

2007 USENIX Annual Technical ConferenceUSENIX Association 155

look at the reliability of long-term digital storage. In Proceedings
of EuroSys 2006 (Apr. 2006), pp. 221–234.

[4] CHANG, F., JI, M., LEUNG, S.-T. A., MACCORMICK, J.,
PERL, S. E., AND ZHANG, L. Myriad: Cost-effective disas-
ter tolerance. In Proceedings of the 2002 Conference on File and
Storage Technologies (FAST) (San Francisco, CA, Jan. 2002).

[5] CHOI, S. J., YOUN, H. Y., AND LEE, B. K. An efficient dis-
persal and encryption scheme for secure distributed information
storage. Lecture Notes in Computer Science 2660 (Jan. 2003),
958–967.

[6] CLARKE, I., SANDBERG, O., WILEY, B., AND HONG, T. W.
Freenet: A distributed anonymous information storage and re-
trieval system. Lecture Notes in Computer Science 2009 (2001),
46+.

[7] CLEVERSAFE. Highly secure, highly reliable, open source stor-
age solution. Available from http://www.cleversafe.org/, June
2006.

[8] COLARELLI, D., AND GRUNWALD, D. Massive arrays of idle
disks for storage archives. In Proceedings of the 2002 ACM/IEEE
Conference on Supercomputing (SC ’02) (Nov. 2002).

[9] GLADNEY, H. M., AND LORIE, R. A. Trustworthy 100-year
digital objects: Durable encoding for when it’s too late to ask.
ACM Transactions on Information Systems 23, 3 (July 2005),
299–324.

[10] GOLDBERG, A. V., AND YIANILOS, P. N. Towards an archival
intermemory. In Advances in Digital Libraries ADL’98 (April
1998), pp. 1–9.

[11] GOODSON, G. R., WYLIE, J. J., GANGER, G. R., AND RE-
ITER, M. K. Efficient Byzantine-tolerant erasure-coded storage.
In Proceedings of the 2004 Int’l Conference on Dependable Sys-
tems and Networking (DSN 2004) (June 2004).

[12] GUNAWI, H. S., AGRAWAL, N., ARPACI-DUSSEAU, A. C.,
ARPACI-DUSSEAU, R. H., AND SCHINDLER, J. Deconstruct-
ing commodity storage clusters. In Proceedings of the 32nd Int’l
Symposium on Computer Architecture (June 2005), pp. 60–71.

[13] HAEBERLEN, A., MISLOVE, A., AND DRUSCHEL, P. Glacier:
Highly durable, decentralized storage despite massive correlated
failures. In Proceedings of the 2nd Symposium on Networked
Systems Design and Implementation (NSDI) (May 2005).

[14] HAND, S., AND ROSCOE, T. Mnemosyne: Peer-to-peer stegano-
graphic storage. Lecture Notes in Computer Science 2429 (2002),
130–140.

[15] IYENGAR, A., CAHN, R., GARAY, J. A., AND JUTLA, C. De-
sign and implementation of a secure distributed data repository.
In Proceedings of the 14th IFIP International Information Secu-
rity Conference (SEC ’98) (Sept. 1998), pp. 123–135.

[16] KALLAHALLA, M., RIEDEL, E., SWAMINATHAN, R., WANG,
Q., AND FU, K. Plutus: scalable secure file sharing on untrusted
storage. In Proceedings of the Second USENIX Conference on
File and Storage Technologies (FAST) (San Francisco, CA, Mar.
2003), USENIX, pp. 29–42.

[17] KEETON, K., SANTOS, C., BEYER, D., CHASE, J., AND

WILKES, J. Designing for disasters. In Proceedings of the Third
USENIX Conference on File and Storage Technologies (FAST)
(San Francisco, CA, Apr. 2004).

[18] MANIATIS, P., ROUSSOPOULOS, M., GIULI, T. J., ROSEN-
THAL, D. S. H., AND BAKER, M. The LOCKSS peer-to-peer
digital preservation system. ACM Transactions on Computer Sys-
tems 23, 1 (2005), 2–50.

[19] MILLER, E. L., LONG, D. D. E., FREEMAN, W. E., AND

REED, B. C. Strong security for network-attached storage. In
Proceedings of the 2002 Conference on File and Storage Tech-
nologies (FAST) (Monterey, CA, Jan. 2002), pp. 1–13.

[20] OXLEY, M. G. (H.R.3763) Sarbanes-Oxley Act of 2002, Feb.
2002.

[21] PETERSON, L., MUIR, S., ROSCOE, T., AND KLINGAMAN, A.
PlanetLab Architecture: An Overview. Tech. Rep. PDN–06–031,
PlanetLab Consortium, May 2006.

[22] PLANK, J. S. A tutorial on Reed-Solomon coding for fault-
tolerance in RAID-like systems. Software—Practice and Experi-
ence (SPE) 27, 9 (Sept. 1997), 995–1012. Correction in James S.
Plank and Ying Ding, Technical Report UT-CS-03-504, U Ten-
nessee, 2003.

[23] QUINLAN, S., AND DORWARD, S. Venti: A new approach to
archival storage. In Proceedings of the 2002 Conference on File
and Storage Technologies (FAST) (Monterey, California, USA,
2002), USENIX, pp. 89–101.

[24] RABIN, M. O. Efficient dispersal of information for security,
load balancing, and fault tolerance. Journal of the ACM 36
(1989), 335–348.

[25] RHEA, S., EATON, P., GEELS, D., WEATHERSPOON, H.,
ZHAO, B., AND KUBIATOWICZ, J. Pond: the OceanStore proto-
type. In Proceedings of the Second USENIX Conference on File
and Storage Technologies (FAST) (Mar. 2003), pp. 1–14.

[26] SANTRY, D. S., FEELEY, M. J., HUTCHINSON, N. C., VEITCH,
A. C., CARTON, R. W., AND OFIR, J. Deciding when to forget
in the Elephant file system. In Proceedings of the 17th ACM
Symposium on Operating Systems Principles (SOSP ’99) (Dec.
1999), pp. 110–123.

[27] SCHWARZ, S. J., T., AND MILLER, E. L. Store, forget, and
check: Using algebraic signatures to check remotely adminis-
tered storage. In Proceedings of the 26th International Confer-
ence on Distributed Computing Systems (ICDCS ’06) (Lisboa,
Portugal, July 2006), IEEE.

[28] SHAMIR, A. How to share a secret. Communications of the ACM
22, 11 (Nov. 1979), 612–613.

[29] STINSON, D. R. Cryptography Theory and Practice, 2nd ed.
Chapman & Hall/CRC, Boca Raton, FL, 2002.

[30] STONEBRAKER, M., AND SCHLOSS, G. A. Distributed RAID—
a new multiple copy algorithm. In Proceedings of the 6th Interna-
tional Conference on Data Engineering (ICDE ’90) (Feb. 1990),
pp. 430–437.

[31] STORER, M., GREENAN, K., MILLER, E. L., AND

MALTZAHN, C. POTSHARDS: Storing data for the long-term
without encryption. In Proceedings of the 3rd International IEEE
Security in Storage Workshop (Dec. 2005).

[32] STORER, M. W., GREENAN, K. M., AND MILLER, E. L. Long-
term threats to secure archives. In Proceedings of the 2006 ACM
Workshop on Storage Security and Survivability (Oct. 2006).

[33] SUBBIAH, A., AND BLOUGH, D. M. An approach for fault toler-
ant and secure data storage in collaborative work environements.
In Proceedings of the 2005 ACM Workshop on Storage Security
and Survivability (Fairfax, VA, Nov. 2005), pp. 84–93.

[34] WALDMAN, M., RUBIN, A. D., AND CRANOR, L. F. Pub-
lius: A robust, tamper-evident, censorship-resistant web publish-
ing system. In Proceedings of the 9th USENIX Security Sympo-
sium (Aug. 2000).

[35] WONG, T. M., WANG, C., AND WING, J. M. Verifiable secret
redistribution for threshold sharing schemes. Tech. Rep. CMU-
CS-02-114-R, Carnegie Mellon University, Oct. 2002.

[36] WYLIE, J. J., BIGRIGG, M. W., STRUNK, J. D., GANGER,
G. R., KILIÇÇÖTE, H., AND KHOSLA, P. K. Survivable storage
systems. IEEE Computer (Aug. 2000), 61–68.

[37] YOU, L. L., POLLACK, K. T., AND LONG, D. D. E. Deep
Store: An archival storage system architecture. In Proceedings
of the 21st International Conference on Data Engineering (ICDE
’05) (Tokyo, Japan, Apr. 2005), IEEE.

2007 USENIX Annual Technical Conference USENIX Association156

