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Introduction 

A species abundance distribution (SAD) describes 

the abundance of all species recorded within an 

ecological community, assemblage or sample. The 

study of SADs has a long history in biogeography 

and community ecology (e.g. Preston 1948, Toke-

shi 1993, McGill et al. 2007), and the observation 

that ecological systems contain few very abundant 

species and relatively more rare species (the so-

called hollow curve) is often labelled as one of the 

few universal laws in this subject space (McGill et 

al. 2007, Ulrich et al. 2010). SADs also provide the 

theoretical foundation for exploration of other 

biogeographical and macroecological patterns, 

such as the species–area relationship (‘SAR’, e.g. 

Preston 1948, Hubbell 2001, Whittaker & 

Fernández-Palacios 2007). The SAD has broad util-

ity in applied ecology and biogeography and a 

number of applications are described in Table 1. 

 A plethora of SAD models have been de-

scribed in the literature; indeed, a review by 

McGill et al. (2007) lists 27 different models. A 

summary of the models referenced in our review 

is given in Table 2. These models can largely be 

classified based on the mechanisms underlying 

the model, and traditionally models have been 

dichotomised as either statistical or biological (i.e. 

non-niche-oriented and niche-oriented). The dis-

tinction between statistical and biological models, 

as Magurran (2004, p.28) states, has become 

‘blurred,’ and many distributions originally classi-

fied as statistical, such as the logseries and log-
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Abstract. A species abundance distribution (SAD) characterises patterns in the commonness and rarity 
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SADs in the last decade, less focus has been placed on methodology in SAD research, and few attempts 

have been made to synthesise the vast array of methods which have been employed in SAD model 

evaluation. As such, our review has two aims. First, we provide a general overview of SADs, including 

descriptions of the commonly used distributions, plotting methods and issues with evaluating SAD mod-

els. Second, we review a number of recent advances in SAD model fitting and comparison. We conclude 

by providing a list of recommendations for fitting and evaluating SAD models. We argue that it is time 

for SAD studies to move away from many of the traditional methods available for fitting and evaluating 

models, such as sole reliance on the visual examination of plots, and embrace statistically rigorous tech-

niques. In particular, we recommend the use of both goodness-of-fit tests and model-comparison analy-

ses because each provides unique information which one can use to draw inferences.  
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Box 1. Neutral theory and the species abundance distribution 
The Unified Neutral Theory of Biodiversity and Biogeography (Hubbell 2001) is a biogeographical theory which em-
phasises the importance of stochastic processes in ecological community structure. In this context, neutrality means 
that, for trophically similar species, all species are equivalent in terms of birth, death, speciation and dispersal rates, 
when measured on a per-capita basis. The theory is based on the assumption that differences between species are 
not important in determining ecological community properties, such as relative abundances. As such, it rejects two 
concepts that have formed the basis of traditional ecological research and niche theory, namely that species are 
ecologically and functionally different, and that environmental context is important. A number of different neutral 
models have been put forward under the ‘neutral theory’ banner and these can be largely dichotomised into spa-
tially implicit neutral models (i.e. those in which spatial processes are only implied, e.g. Hubbell’s classic two tier 
metacommunity–local community model) and spatially explicit neutral models (i.e. models with a multi-scale struc-
ture; see Rosindell et al. 2008).  
 Neutral models are capable of predicting many different macroecological and biogeographical patterns, in-
cluding the species–area relationship and the species abundance distribution (SAD). However, the majority of empiri-
cal tests of neutral theory have focused on the SAD, usually testing the spatially implicit model of Hubbell (2001; for 
a review see Matthews and Whittaker 2014). Hubbell’s model predicts a logseries distribution at the metacommu-
nity scale and a zero-sum multinomial distribution (ZSM) at the local scale (see Table 1). The ZSM has three parame-
ters which in theory can be measured empirically, including the number of individuals in the local community and a 
parameter specifying the degree of immigration from the metacommunity. Early tests of the ZSM were hampered by 
the lack of a full analytical solution for the distribution, meaning the model had to be fit, and the goodness of fit esti-
mated, using simulation techniques. However, more recent advancements (e.g. Etienne 2005) have derived a full 
analytical solution, meaning that information-theoretic approaches, amongst others, can now be used to compare 
the fit of the ZSM with other candidate models (e.g. see Figure 1). These tests have shown that, despite its simple 
assumptions, the ZSM (and the SADs of other neutral models) often provides a very good fit to empirical data, but 
not necessarily a superior fit to certain competitor models. 

normal, have since been interpreted biologically. 

For example, niche-based theories concerning 

resource allocation have predicted logseries and 

truncated lognormal distributions (Table 2, Sugi-

hara 1980, Connolly et al. 2005), while demo-

graphic models based on ecological drift (such as 

Hubbell’s interpretation of neutral theory, Box 1) 

predict logseries SADs at the metacommunity 

scale. As an aside, several authors (e.g. Tokeshi 

1993, Magurran 2004) further classify SAD models 

into deterministic and stochastic models and 

stress the importance of knowing where a model 

falls in this dichotomy, in terms of fitting. In prac-

tice, the former include many of the statistical 

models, such as the lognormal and logseries, and 

make the assumption that individuals are distrib-

uted between species in a deterministic manner; 

that is, frequency values cannot vary. Stochastic 

models, which include the entire set of niche-

oriented biological models with the exception of 

Thomas J. Matthews and Robert J. Whittaker — species abundance distribution models  
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Broad application Description References 

Disturbance ecology The SAD has been used as ecological indicator to measure the effects of 
disturbance (e.g. pollution, land-use change) on biotic communities. 
 

Gray & Mirza 
(1979) 

Hotspot selection Rank–abundance plots have been shown to aid in the selection of re-
gional biodiversity hotspots for conservation purposes. 
 

Dunstan et al. 
(2012) 

Gradient analysis The SAD has been used to analyse changes in community structure along 
ecological gradients, e.g. gradients of vegetation succession. 

Bazzaz (1975) 

Extrapolation A number of studies have explored the scaling properties of SADs, includ-
ing the prediction of the SAD of a large area from the SADs of its smaller 
constituent areas (upscaling) and vice versa (downscaling). 
 

Hubbell (2001), 
Zillio & He 
(2010) 

Community structure 
analysis 

The SAD has been used to infer information relating to how ecological 
communities are structured. For example, the deconstruction of multi-
modal SADs has illustrated how non-native species can inflate the num-
ber of rare species in ecological samples. 

Matthews et 
al. (2014) 

Table 1. Applications of the species abundance distribution (SAD) in ecology and biogeography. 
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Table 2. Descriptions of the various species abundance distribution (SAD) models referenced within the review. For each 
model, a description, selection of relevant references, and the model family according to McGill et al. (2007) are given. 

SAD model Family Description Relevant  
references 

Gambin Purely 
statistical 

Gambin is a stochastic model which combines the gamma distribution 
with a binomial sampling method. Gambin has a single free parame-
ter (α), which characterises the distribution shape. 
 

Ugland et al. 
(2007) 

Lognormal 
  

Purely 
statistical 
  

The lognormal represents a situation in which the logarithms of the 
different species’ abundances follow a Gaussian distribution and as 
such it characterises a community with relatively few very abundant 
or very rare species; whereby the observed frequencies increase to a 
modal frequency and then decrease. 
 

Preston (1948), 
May (1975) 

Truncated 
lognormal 

Purely 
statistical 
  

As for the lognormal, but the distribution is truncated at the left hand 
side in accordance with Preston’s (1948) concept of the veil line: the 
idea that rarer species are often missed because of under-sampling 
and thus that the left hand side of the lognormal distribution is not 
revealed. This truncation methodology has since been criticised as 
inexact and other authors have advocated techniques such as Poisson 
sampling and hypergeometric sampling, as more accurate alterna-
tives (e.g. Dewdney 1998). 
 

Preston (1948), 
Dewdney 
(1998) 

Logseries 

  
Purely 
statistical 
  

The logseries (logarithmic series) results from the Poisson sampling of 
a gamma distribution after a certain relevant limit is taken, and condi-
tional presence is considered. That is, it gives the conditional prob-
ability of attaining a certain abundance level given that the species is 
present. The number of species at different levels of abundance pre-
dicted by the logseries is given by: Sn= (α * xn)/n, where α and x are 
constants, and Sn is the number of species with n individuals. This 
distribution is characterised by a skewed J-curve with a modal value 
of 1 in arithmetic space. There is no fixed variance assumption and an 
increase in sample size leads to an increased variation in log abun-
dance. 
 

Fisher et al. 
(1943) 

Poisson log-
normal 
(PLN) 
  

Purely 
statistical 
  

An issue with the continuous lognormal is that it allows fractional 
abundances and does not have an associated sampling theory. One 
workaround in this regard is to incorporate Poisson sampling variabil-
ity and fit the Poisson lognormal distribution: the Poisson sampling of 
individuals from a standard lognormal distribution. 
 

Bulmer (1974) 

Niche parti-
tioning 
models 

Niche par-
titioning 

Models in which it is assumed that the total niche space of a commu-
nity, often termed ‘the stick’, is sequentially divided in some manner 
between the species that comprise this community. Species’ abun-
dances are then related to the proportion of the stick acquired by 
each species. The development of such models has a long history, 
starting with Motomura’s (1932, see Numata et al. 1950, for a biologi-
cal interpretation) geometric series, and includes MacArthur’s (1957, 
1960) three niche apportionment models. Of these, the broken-stick 
model is of particular interest in that it is one of the only SAD models 
to be rejected by its developer. More recently, Tokeshi (e.g. 1993, 
1999) proposed several niche partitioning models. 
 

Motomura 
(1932, see 
Numata et al. 
1950),  
MacArthur 
(1957, 1960), 
Sugihara 
(1980),  
Tokeshi (1993, 
1999) 

Zero-sum 
multinomial 
distribution 
(ZSM) 
  

Population 
dynamics 

  

The SAD predicted for the local community in Hubbell’s (2001) spa-
tially implicit neutral model. The ZSM has three parameters: the num-
ber of individuals in the local community (J), the probability that a 
dead individual is replaced by a randomly selected immigrant from 
the metacommunity (m), and the ‘fundamental biodiversity num-
ber’ (θ). The zero-sum assumption is simply that when an individual 
dies it is immediately replaced by another individual, i.e. resources 
are fully saturated at all times. 

Hubbell 
(2001),  
Matthews & 
Whittaker 
(2014) 



the geometric series (Table 2), incorporate a de-

gree of randomness and assume that abundance 

will vary between communities structured 

through the same set of rules—thus allowing 

these models to better incorporate random varia-

tion such as may arise from sampling (Tokeshi 

1993, Magurran 2004). The characterisation of a 

particular model as deterministic or stochastic has 

important implications when testing the fit of the 

model with real ecological data. 

 The easiest way to interpret SADs is to plot 

them. This produces graphical output which can 

be used to determine the form of the SAD, and as 

a basic means of evaluation of the goodness of fit 

(see Table 3). Two main methods are employed to 

plot SADs. First, a histogram (frequency distribu-

tion) of the species’ abundances can be con-

structed (Figure 1a). The number of individuals 

(horizontal axis) can be left untransformed or may 

be logarithmically transformed before being 

‘binned’. The binning of data into abundance oc-

taves is widespread in the SAD literature (e.g. Pre-

ston 1948, Volkov et al. 2003; see Figure 1a). Data 

can be binned in various ways; however, all result 

in the loss of information. Based on MacArthur 

(1957), Whittaker (e.g. 1965) developed an alter-

native plotting method (variously termed ‘rank–

abundance Plots,’ ‘Whittaker plots,’ and 

‘dominance–diversity graphs’; see Figure 1b) to 

circumvent the issue of losing information when 

binning. Rank–abundance plots are constructed 

through plotting abundance (untransformed or 

log transformed) against rank order, where rank 

one corresponds to the species with the highest 

abundance, rank two corresponds to the species 

with the second highest abundance, and so on. As 

a method to determine the best SAD model for 

any given data set, rank–abundance plots are not 

perhaps as intuitive as frequency distributions, 

but they are beneficial in highlighting differences 
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Figure 1. Exemplar SAD model fits illustrating the two major plotting methods: a) histograms and b) rank–abundance 
plots. In (a) the lognormal distribution (red line and triangles), logseries distribution (purple line and squares), and 
zero-sum multinomial distribution of Hubbell’s (2001) spatially implicit neutral model (blue line and circles) have 
been fitted to binned simulated data (green bars, 365 species and 22945 individuals) derived through the random 
sampling of individuals from a simulated lognormal metacommunity, and fitted using maximum-likelihood methods. 
The predicted value of the logseries model for the first octave has been omitted for clarity. In (b) abundance is or-
dered in decreasing magnitude and plotted against the corresponding rank in this order. The broken-stick model 
(‘Null’, black line), geometric series (‘Pre-emption’, red line), log normal (green line), Zipf (dark blue line) and Man-
delbrot (light blue line) distributions have been fitted to simulated data (open circles). Both plots were constructed in 
R: part (a) is based on a figure in Matthews & Whittaker (2014) and part (b) was constructed using the vegan R pack-
age (Oksanen et al. 2013).  
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Table 3. A summary of different methods (including some not otherwise discussed in the review) available for fitting, 
determining the goodness of fit, and comparing species abundance distribution models. For each method, a descrip-
tion and associated relevant references are given. Where appropriate, example tests or metrics are also given. Inter-
ested readers are directed to Magurran (2004) and Connolly & Dornelas (2011) for more information.  

Method Description Example 
metrics 

References 

Fitting 

Least squares Parameter values are selected which minimise the squared 
differences between the observed and predicted abun-
dances 
 

- Gray et al. (2005) 

Maximum likelihood 
(species abundance) 

In maximum likelihood approaches the observed dataset is 
classed as a fixed observation, and a search is conducted for 
model parameter values that produce the most probable 
characterisation of the data, given the model 
 

- Matthews et al. 
(2014) 

Maximum likelihood 
(rank–abundance) 

As above, but for rank–abundance plots 
 

- Foster & Dunstan 
(2010) 

Independent pa-
rameter estimation 

Certain models (e.g. Hubbell’s neutral model, Box 1) have 
parameters that can be estimated independently 

- Wootton (2005) 

Goodness of fit 

Visual inspection A subjective measure of fit in which the fit of models is de-
termined by eye 
 

- Fisher et al. 
(1943) 

Asymptotic good-
ness-of-fit tests 
  

A set of tests which compare a given fit statistic with that of 
a null distribution 
  

Pearson's χ² Matthews et al. 
(2014) 

Linear regression Only suitable for the geometric series and broken-stick 
model, because these have linear form in rank–abundance 
plots 
 

R2 Fattorini (2005) 

Monte-Carlo test Method to fit and evaluate a specific set of niche-partioning 
models. Preferred to Tokeshi’s test, the leading alternative 
(see text) 
 

- Cassey & King 
(2001) 

Parametric boot-
strapping 

A statistical resampling procedure whereby the properties 
of a metric are estimated through repeated sampling from 
an approximating distribution (see text) 
 

ĉ Connolly et al. 
(2009) 

Model comparison 

Simple metrics and 
visual inspection 

Comparison of models by eye, or by goodness-of-fit metrics 
and R2 values 

  

R2, χ² Gray & Mirza 
(1979) 

Akaike's information 
criterion 

A measure of the relative quality of a model, given a set of 
data. It provides a relative estimate of lost information re-
sulting from the use of a model as a representation of the 
process that produced the observed data. A version of the 
metric corrected for small sample size (AICc) is often used 
 

AIC, AICc Burnham & 
Anderson (2002) 

Bayesian methods A mathematical approach which incorporates prior beliefs/
insights and uses probability distributions to determine the 
level of uncertainty surrounding parameter values (see text) 
 

Bayes factor Etienne & Olff 
(2004) 

Deviance informa-
tion criterion 

Derived in a Bayesian context, DIC is a model selection sta-
tistic based on deviance: the quality of fit of a given model. 
It is calculated using the log-likelihood of a given model, and 
comparing it to the log-likelihood of a hypothetical model 
providing a perfect fit  

DIC Mac Nally (2007) 

Alternative approach 

Maximum entropy Defines the most likely probability distribution as that which 
maximises entropy subject to particular information con-
straints (see text) 

- Harte et al. 
(2008) 



in evenness between datasets, as well as not los-

ing information in binning. Other SAD plotting 

methods exist, such as the empirical cumulative 

distribution function (e.g. McGill 2011), but are 

rarely used in practice.  

 There are three stages to fitting and evalu-

ating SAD models: fitting the model and estimat-

ing the parameters, determining the goodness of 

fit of the model, and comparing the fit of the 

model with that of other models (Connolly & Dor-

nelas 2011). Because SADs are often used to test 

different biogeographical theories, it is essential 

that rigorous statistical procedures are employed 

at each stage of model evaluation. A comprehen-

sive review of the many different methods that 

have been employed at each of these three stages 

(see Table 3) is beyond the scope of this paper. 

Rather, we provide a synthesis of recent advances 

representing promising avenues for future SAD 

research. A number of general SAD reviews have 

been written (e.g. Pielou 1975, McGill et al. 2007), 

with a small number focusing specifically on meth-

odology (e.g. Connolly & Dornelas 2011). How-

ever, our review differs from these in that we 

combine a general overview of SADs with a review 

of methodology. Furthermore, for each of the 

methodological advancements discussed, we pro-

vide recommendations and examples from our 

own experience of fitting and evaluating SAD 

models in biogeographical studies. Our review 

also differs from a number of others (e.g. Connolly 

& Dornelas 2011) in that we discuss themes such 

as maximum entropy and biological SAD models. 

Biological SAD models are particularly interesting 

from a biogeographical perspective, but are often 

overlooked. 

 The remainder of the paper is structured as 

follows. First, we summarise a number of issues in 

the fitting and evaluation of SAD models, using a 

simulated dataset in illustration, in order to con-

textualise recent methodological advances. We 

then evaluate novel advances in each of the afore-

mentioned three stages of SAD model evaluation 

(fitting, assessing goodness of fit, comparing mod-

els). Finally, we focus on fitting and evaluating 

biological SAD models; these models are consid-

ered separately since they require different ap-

proaches to those used for statistical models. 
 

The importance of considering methodology 

in the application of SADs 

The choice of methods employed to fit and evalu-

ate SAD models is an important consideration for 

any SAD study and can significantly affect the out-

come of a particular analysis. For example, the 

selection of a particular SAD model as the ‘best-

fitting’ model from a set of candidate models is 

often used as support for a particular theory, or as 

evidence for the importance of a particular bio-

geographical process. The early debate regarding 

Hubbell’s (2001) spatially implicit neutral model 

was largely centred on the fit of the model’s pre-

dicted SAD (the zero-sum multinomial, ZSM, Table 

2) and acceptance of the model often came down 

to whether the ZSM provided a better fit to em-

pirical data than other commonly used models 

(Box 1). However, this comparative approach has 

been criticised on a number of counts. This is 

largely due to the fact that: (a) the use of tradi-

tional goodness-of-fit tests (such as Pearson’s χ², 

Table 3) generally reveals that most models fit the 

data well, (b) as such, small differences in factors 

such as sample size can result in changes to the 

model selected as ‘best’, (c) the model selected as 

‘best’ often varies with the goodness-of-fit test 

used, (d) a number of commonly used tests are 

inappropriate (McGill 2003, Williamson & Gaston 

2005), (e) multiple processes can produce the 

same SAD shape (McGill et al. 2007), and (f) the 

type of plotting method used (i.e. rank–

abundance plots or histograms) can determine 

which model provides the best fit to a given data-

set (Ulrich et al. 2010). With regard to the neutral 

model debate, the performance of the ZSM rela-

tive to other SAD models has been found to rely 

on the method used to fit the ZSM, the goodness-

of-fit test used to compare models, and the plot-

ting method used (e.g. Etienne & Olff 2004, 

Etienne 2005, Gray et al. 2006). 

 The use of the SAD in disturbance ecology 

provides an example of the importance of using 

appropriate methods. The SAD is often used to 

measure the impact of disturbance on community 

structure (e.g. Gray & Mirza 1979, Table 1). In this 
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context, the lognormal is theorised to characterise 

undisturbed communities (May 1975), while de-

viation from log-normality to more logseries-like 

shapes is expected in disturbed communities. 

Whether the lognormal provides a better fit than 

the logseries is thus an important part of this ap-

proach. However, different tests have been found 

to give conflicting results with regard to the fit of 

a given model (above, McGill 2003). To highlight 

this issue, we simulated an ecological community 

which followed a lognormal SAD (with left skew, 

as commonly observed in nature, 1000 individu-

als) and compared the fit of the logseries, Poisson 

lognormal (PLN) and truncated Poisson lognormal 

distributions to the data using a variety of metrics: 

χ² (log2 binning), χ² (arithmetic binning), AIC, a 

Kolmogorov–Smirnov test and visual inspection of 

the models plotted in rank–abundance form 

(Table 3). The PLN was the ‘best-fitting’ model 

according to AIC, χ² (log2 binning) and visual in-

spection, while the K–S test and χ² (arithmetic 

binning) identified the logseries as the ‘best’ 

model. Repeating this analysis for communities 

simulated to follow different SADs (see next para-

graph) revealed that the five methods never uni-

versally selected a single model as the ‘best’. 

Thus, the choice of metric can determine the 

choice of best-fitting model and it is essential that 

workers are aware of the most appropriate meth-

ods, several of which we outline below, in addi-

tion to recognising that method selection may 

influence any inferences drawn. 

 The methods used to fit and evaluate SAD 

models are also important considerations when 

the aim of model fitting is parameter estimation—

for instance, if the parameters of a particular 

model are to be used in a comparative analysis. 

The gambin distribution (Table 2) has been used in 

such a way. Gambin has a single shape parameter 

(α) which can be used as an ecological metric: low 

α values (around 1) indicate logseries-like SAD 

shapes, while higher values (e.g. 4) indicate log-

normal-like SAD shapes (Ugland et al. 2007). As 

initially presented, the gambin model (e.g. Ugland 

et al. 2007) estimated α through a simulation-

based approach. However, subsequent work 

(Matthews et al. 2014) derived the distribution’s 

likelihood function and thus α can now be esti-

mated using maximum-likelihood (ML) methods, 

which is preferable to simulations (below and Ta-

ble 3; see Box 1 for a similar example involving 

neutral theory and fitting the ZSM). We estimated 

α using both methods for five simulated commu-

nities of approximately 1000 individuals: a log-

normal community, and a logseries, a broken-stick 

and two lognormal communities with varying de-

grees of left skew. All communities were simu-

lated in R (R Development Core Team 2013). 

When using the simulation methodology, the esti-

mated α values were 4.04, 1.03, 11.8, 0.01 and 

2.71 for the five communities, respectively. When 

α was estimated using ML, the corresponding val-

ues were 4.46, 1.46, 12.01, 0.84 and 3.13. While 

these differences may not appear large in abso-

lute terms, the deviation is considerable. For in-

stance, the difference of 0.83 between the two 

values of α for one of the skewed lognormal com-

munities is similar to differences in α observed 

between a number of disturbed and undisturbed 

Azorean arthropod communities (Matthews et al. 

2014).  

 In sum, the choice of method used to fit and 

compare SAD models is an important considera-

tion when applying the SAD to biogeographical 

problems. As such, several authors have argued 

for an updated SAD research agenda: one which 

incorporates improved tests for determining the 

performance of individual models (McGill et al. 

2007). As we emphasize herein, many of these 

improved methods already exist and it is possible 

to circumvent a number of the aforementioned 

issues; it is just a case of increasing the uptake of 

the available ‘statistical machinery’ (McGill 2003). 

For example, the use of information-theoretic ap-

proaches to compare SAD models is more rigorous 

than simply visually comparing the fit of models, 

or comparing metrics such as χ² (Table 3). In order 

to encourage the use of appropriate methodology 

in SAD research, a prescription of best practice is 

provided at the end of this paper. 
 

Fitting statistical SAD models 

Traditionally, SAD models have largely been fitted 

to empirical data using one of two approaches: 
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least-squares approaches and ML methods. In 

least-squares approaches, the aim is to select the 

parameter values that minimise the squared dif-

ferences between the observed and predicted 

species abundance values. This is generally con-

ducted using rank–abundance plots so that the 

observed and predicted abundances of species at 

each rank are compared. However, least-squares 

approaches to fitting SAD models are generally 

inappropriate because the statistical assumptions 

of least-squares methods, such as the statistical 

independence of data points, are rarely met with 

SAD data (Connolly & Dornelas 2011). As such, we 

advise that least-squares approaches to fitting 

SAD models are avoided where possible. Mainly 

because of the issue of violated assumptions, 

most SAD models are now fitted using ML meth-

ods (e.g. Matthews et al. 2014). In ML approaches 

the observed dataset is classed as a fixed observa-

tion and a search is conducted for model parame-

ter values that produce the most probable charac-

terisation of the data, given the model. As such, 

the likelihood (L) of observing the parameters, 

given the data, is: 

L(T | X) = P(X| T), 

where T is a vector of model parameters and X is 

the observed data (e.g. the abundance of each 

species in a sample). Generally, ML methods are 

used with species’ abundance values, but they 

have also been applied to rank–abundance data 

(e.g. Foster & Dunstan 2010). One issue with ML 

methods is that they generally use optimisation 

algorithms to find the parameters that maximise 

the likelihood. While such algorithms greatly 

speed up the process, they can fail to provide the 

optimal values when multiple peaks exist in the 

likelihood profile; that is, the algorithms may con-

verge on sub-optimal parameter values 

(Matthews & Whittaker 2014). One workaround 

for this is to start the optimisation algorithms 

from multiple starting points (e.g. Matthews et al. 

2014), and we recommend ML methods as the 

preferred general method for fitting most SAD 

models.  

 The choice of fitting method is not simply 

statistical nit picking: it can result in very different 

parameter estimates for the same model. Our 

gambin analysis (above) provides an effective ex-

ample of this. By way of a further example we 

simulated another skewed lognormal community 

(1000 individuals) and fitted a lognormal model to 

the data using four different methods: 1) log2-

transformed rank–abundance fitted using a least-

squares approach; 2) log2-transformed rank–

abundance fitted using a ML approach; 3) the 

model was fitted to the untransformed data using 

ML; and 4) binned data fitted by a ML approach, 

using Preston’s method of binning (Preston 1948). 

The mean and standard deviation parameters of 

the distribution estimated using the various meth-

ods were 1.54 +1.12, 0.85 +0.27, 1.53 +1.08 and 

2.55 +1.8, respectively. Again, this shows that the 

choice of method for fitting SAD models (e.g. least 

squares or ML) can have important implications. 
 

Goodness-of-fit tests 

Most SAD studies have determined the goodness 

of fit of a particular SAD model through either vis-

ual inspection of SAD plots (see ‘Introduction’), or 

the use of asymptotic goodness-of-fit statistics, 

such as Pearson’s χ² (Table 3). Both methods have 

significant drawbacks. Visual inspection methods 

are inherently subjective, and there is no need to 

rely upon them given modern advances in com-

puting power (which is not to say that visual in-

spection should be abandoned as part of a check-

ing process). Asymptotic tests, while evidently less 

subjective than visual methods, face similar issues 

to those associated with the use of least-squares 

approaches to fitting SAD models: the various test 

assumptions are often violated when using spe-

cies’ abundance data (see Connolly & Dornelas 

2011).  
 

Parametric Bootstrapping 

A goodness-of-fit technique which potentially cir-

cumvents some of the aforementioned issues in-

volves parametric bootstrapping (Connolly et al. 

2005, 2009), which estimates parameters through 

repeated sampling from an approximating distri-

bution (Varian 2005). Thus, the method allows a 

measure of accuracy to be applied to sample esti-

mates (Efron & Tibshirani 1998, Varian 2005). In 

the context of SADs, Connolly et al. (2009) use 
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parametric bootstrapping to estimate a goodness 

of fit statistic, termed ĉ, based on model deviance 

from the best model for the data (Connolly et al. 

2009). Multiple values of ĉ can be calculated to 

produce a bootstrap distribution, which can indi-

cate whether the data agree with the assumptions 

of the model (Connolly et al. 2009). However, pa-

rametric bootstrapping is not limited to this one 

metric (ĉ), and can be used in conjunction with a 

variety of different test statistics (e.g. Volkov et al. 

2003). Parametric bootstrapping is an informative 

and relatively simple method that should gain in 

popularity in SAD research. We recommend it for 

evaluating the fit of a SAD model. 

 

Model comparison 

A number of different methods have been used to 

compare SAD models (Table 3), but recent studies 

have largely focused on two overlapping ap-

proaches: information-theoretic model selection 

criteria (generally Akaike’s information criterion, 

AIC) and Bayesian methods. 

 

Information-theoretic model-selection criteria 

Information-theoretic model-selection criteria are 

used to determine which of a set of candidate 

models most closely represents the ‘true’ model; 

in this way they allow researchers to choose be-

tween competing models. Their increase in preva-

lence is due to the realisation that, since models 

are only characterisations of nature, it may be 

more conducive to compare the fit of competing 

models, rather than simply trying to determine 

whether a model provides a statistically significant 

fit (i.e. goodness-of-fit tests; Burnham & Anderson 

2002). In practice, the most effective protocol is to 

use both approaches in tandem. The last decade 

has seen a large increase in the use of information

-theoretic approaches for comparing SAD models. 

For instance, the derivation of a full analytical so-

lution to Hubbell’s (2001) neutral zero-sum multi-

nomial SAD model (ZSM, Etienne 2005) has en-

abled the use of information-theoretic approaches 

for comparing the ZSM with other SAD models, an 

advance which has resulted in more rigorous tests 

of the model (see Box 1).  

  

 Various information-theoretic model-

selection statistics can be used to compare mod-

els. For instance, AIC (Table 3) is the most com-

monly used metric in recent SAD studies. The use 

of Akaike’s information criterion corrected for 

small sample size (AICc) is often preferable as it is 

more applicable when sample size is small, and 

because AICc converges to AIC when the sample 

size is large (Burnham & Anderson 2002). Metrics 

such as AIC and AICc are advantageous because 

they include a penalty for the number of model 

parameters. A large number of parameters means 

a model will almost inevitably provide a good fit to 

the data, and thus a strong statistic for determin-

ing and comparing the fit of models should in-

clude a penalty for extra parameters (McGill 

2003). In addition to calculating the metric values, 

it can be useful to normalize the model likelihoods 

such that they sum to 1, and to regard them as 

probabilities (Akaike weights). Akaike weights are 

interpreted as the probability that a given model 

is, in fact, the best model for the data (Burnham & 

Anderson 2002). One limitation with information-

theoretic model-selection criteria is that they are 

only of use when comparing models: they provide 

a relative measure of goodness of fit rather than 

an absolute measure. For this reason information-

theoretic metrics should be used in conjunction 

with some sort of goodness-of-fit metric. For ex-

ample, if combined with likelihood-ratio tests (a 

likelihood-based test used to compare the fit of 

two nested models with varying numbers of pa-

rameters), the use of AIC has been labelled the 

most robust strength-of-fit test in macroecology 

(McGill 2003). A number of information-theoretic 

model-selection metrics have also been derived in 

a Bayesian context, and are discussed below. In-

formation-theoretic approaches to model com-

parison have been discussed extensively else-

where, and interested readers are directed to 

Burnham & Anderson (2002) as a useful starting 

point. Given their relative ease of calculation and 

the fact that they account for the number of pa-

rameters, we recommend that information-

theoretic model-selection criteria should be used 

to compare SAD models in preference to metrics 

such as χ² and R2. 
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A Bayesian approach 

Several recent studies have used a Bayesian 

framework for parameter estimation (and thus 

Bayesian methods can also be listed under the 

‘model fitting’ heading) and comparing SAD mod-

els (e.g. Etienne & Olff 2004, 2005). Bayesian 

analysis involves the use of probability distribu-

tions to determine the level of uncertainty sur-

rounding parameter values. Prior knowledge of 

potential parameter values is incorporated into 

the process and forms the ‘prior distribu-

tion’ (priors). If no prior knowledge exists, non-

informative priors (i.e. a prior distribution which 

has minimal impact on the posterior distribution) 

can be employed. The posterior distribution 

represents the ‘result’ in Bayesian analysis and 

comprises a probability distribution of parameter 

values, and thus can be seen as more informative 

than the single parameter value derived through 

more traditional methods (Bolker 2008). The pos-

terior distribution is derived through: 

P(A│B) =  ( P(B│A) · P(A) )  / c     

where P(A│B) is the posterior probability, P(B│A) 

is equivalent to the model likelihood (the prob-

ability of observing B, given A), P(A) is the prior 

distribution of parameter values, and c is a nor-

malising constant which allows the posterior dis-

tribution to be a probability distribution. Numer-

ous algorithms and statistical programs exist to 

compute Bayesian analyses, e.g. WinBugs. Model 

comparison can be conducted within a Bayesian 

framework using a criterion such as the posterior 

Bayes factor (e.g. Etienne & Olff 2005). The advan-

tages of adopting a Bayesian approach are that 

the probability distribution of parameter values 

allows for greater inference, and the Bayes factor 

provides a competent, easy-to-interpret model 

comparison criterion which is largely parameter 

independent (Etienne & Olff 2005). Furthermore, 

a Bayesian view allows for decisions to be made 

on the plausibility of SAD model parameter esti-

mates, a process which is an important compo-

nent of model testing (Etienne et al. 2007). The 

downside is that most Bayesian approaches are 

analytically complex and they generally require a 

greater amount of expert knowledge than infor-

mation-theoretic approaches. For example, many 

general and SAD-specific software packages fit 

particular SAD models and automatically return 

the log-likelihood value. However, this is not a 

reason to avoid Bayesian methods and they can 

be particularly useful in situations where the user 

is interested in deriving a probability distribution 

of the estimated values of a particular parameter, 

for example the immigration parameter of the 

ZSM (Box 1; e.g. Etienne & Olff 2004). Thus, de-

pending on the aim of a study, we recommend the 

use of Bayesian methods in SAD studies in combi-

nation with other approaches, in order to provide 

additional insights regarding parameter inference 

and model comparison. However, when using 

Bayesian approaches it is important that users 

evaluate how their choice of prior distribution has 

influenced results. 

 In addition to the Bayes factor, the Bayesian 

information criterion (BIC) and deviance informa-

tion criterion (DIC, Table 3) are model-selection 

metrics derived in a Bayesian context that enable 

comparison of competing SAD models. BIC is eas-

ier to calculate than the Bayes factor, and is su-

perficially more similar to AIC. Often studies pre-

sent model selection results using a number of 

different model selection metrics (e.g. Matthews 

et al. 2014). However, it is important to remember 

that AIC, BIC and DIC have different properties 

and assumptions (see Burnham & Anderson 

2002), and workers should adopt a reasoned posi-

tion on which is most appropriate for a given 

analysis. 

 

Maximum Entropy  

The maximum entropy principle has recently been 

applied to the field of SADs (e.g. Banavar et al. 

2010, Harte 2011, White et al. 2012). We place it 

under a separate heading because it does not op-

erate independently from a given SAD model and 

thus works differently from other approaches dis-

cussed. Maximum entropy is a tool developed in 

the physical sciences and works by defining the 

most likely probability distribution as that which 

maximises entropy, subject to particular informa-

tion constraints; the process starts with what we 

already know about the system and then fills out 

what we don’t know by maximising entropy 
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(Jaynes 2003, Harte et al. 2008, Frank 2011). The 

method has been applied in the field of statistical 

mechanics to investigate how spheres (e.g. atoms) 

are distributed into boxes (energy levels, Banavar 

et al. 2010). In SAD research, the spheres can rep-

resent individual organisms and the boxes can 

represent species. The theory behind the method 

is that multiple random factors that influence a 

particular pattern operate in different ‘directions’ 

and will ultimately cancel each other out in the 

aggregate (Frank 2009, 2011), leaving an entirely 

random pattern with the exception of the restrict-

ing constraints. Once the user has defined the 

constraints, the least biased distribution can be 

determined via a constrained optimisation proce-

dure, using the method of Lagrange multipliers 

(Jaynes 2003). As such, it can be considered to 

minimise the information ‘expressed in the final 

pattern’ (Frank 2011). For instance, Frank (2009) 

provides the example of the binomial distribution: 

if all the available information is minimised to the 

knowledge that a given observation is a set num-

ber of Bernoulli trials with an average number of 

successes, the observation will approximate the 

binomial distribution.  

 Opinions on the use of maximum entropy in 

SAD research are divided. Studies have shown that 

logseries and lognormal distributions, as well as 

neutral-model SAD patterns (for summary of neu-

tral SAD models see Box 1), can be generated us-

ing a maximum-entropy method (Banavar & Mari-

tan 2007, Pueyo et al. 2007, Harte 2011, White et 

al. 2012). For example, using four constraints, in-

cluding the average per-species metabolic flux and 

the average number of individuals per species, 

Harte (2011) has shown that the SAD predicted by 

maximum entropy follows a logseries distribution. 

However, a number of workers have questioned 

the applicability of maximum entropy in ecology 

(e.g. Haegeman & Loreau 2008, Haegeman & 

Etienne 2010, He 2010). Part of the problem with 

the use of maximum entropy in general is that, in 

order to obtain accurate results, the user must 

make a number of assumptions and select appro-

priate constraints; the user cannot identify miss-

ing constraints from the method itself. These 

choices are not trivial and have been shown to 

affect the outcome of the process (Haegeman & 

Etienne 2010). Nonetheless, a recent application 

of the maximum entropy principle to over 15,000 

ecological communities has shown that it is possi-

ble to characterise the majority of SAD structure 

when the only known information is the number 

of species and total number of individuals (White 

et al. 2012, see also Pueyo et al. 2007), thus 

largely circumventing the issue of constraint selec-

tion. The same study also proved that the parame-

ter values of the logseries estimated by maximum 

entropy and by maximum-likelihood methods are 

equivalent (White et al. 2012; see their supple-

mentary material). As such, we label maximum 

entropy as a method with considerable potential, 

but one that requires further research and evalua-

tion. In particular, there is a need to determine 

the consequences for particular methods of spe-

cies missed during sampling (He 2010), and a 

greater understanding is needed of how initial 

assumptions affect results (Haegeman & Etienne 

2010). 
 

Fitting and evaluating biological SAD models 

Biological models are largely niche-oriented mod-

els in which it is assumed that the total niche 

space of the community, often termed ‘the stick’, 

is sequentially divided in some manner between 

the species that comprise this community 

(Marquet et al. 2003, Magurran 2004). The anal-

ogy of ‘the stick’ was introduced by MacArthur 

(e.g. 1957, 1960), who proposed a number of dif-

ferent biological SAD models, including the broken

-stick model (Table 2). MacArthur argued that if 

the focus was ecologically similar species compet-

ing in a community, a structured pattern of rela-

tive abundance results. According to MacArthur’s 

model, niche partitioning can be estimated as a 

random partition of a common limiting resource 

(breaking the stick). The relative abundances of 

the species are proportional to the total fraction 

of the resources each species appropriates. How-

ever, this is just one particular model (i.e. set of 

rules for linking abundance with niche space), and 

many others have been proposed (Table 2). 

Within all biological models, species that then im-

migrate into the community must apportion what-
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ever parts of the stick remain and break such 

sticks according to the rules of the particular 

model (see Figure 2a for an illustration of this 

process). In this way, biological models are 

mechanistic, providing ecological rationale to the 

way in which abundance is proportioned across 

species. This modus operandi assumes a one-to-

one relationship between species’ niches and spe-

cies’ abundances, a correspondence which is hard 

to test in practice, especially considering that a 

species has both a fundamental and (more re-

stricted) realised niche (Hutchinson 1957, Sugi-

hara 1980, Tokeshi 1993). Nonetheless, this as-

sumption is backed up by certain studies (e.g. 

Marquet et al. 2003). Niche models are also 

largely zero-sum models in the sense that the 

number of individuals within the local community 

is generally fixed; an increase in the number of 

individuals of one species must equate to a de-

crease in the number of individuals in one or more 

other species. Several authors have advised re-

moving the very rare species from a sample when 

calculating niche-based biological models (e.g. 

Tokeshi 1993, Magurran 2004, but see Fesl 2002). 
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Figure 2. Niche-oriented species abundance distribution models, where (a) illustrates the conceptual basis of niche-
oriented SAD models, and (b) sets out the spectrum of a selection of Tokeshi’s sequential-breakage niche models. 
These are models in which it is assumed that the total niche space of the community, often termed ‘the stick’, is se-
quentially divided between the species that ‘invade’ the community according to a set of rules. Going from left to 
right the arrow represents the increase in evenness/uniformity of species’ abundances in the community. The Domi-
nance Pre-emption Model (Tokeshi 1990, 1993) predicts a fixed dominance hierarchy and can be seen as conceptu-
ally similar to the geometric series (Table 1). The first species, the superior competitor, pre-empts more than 50% of 
the total niche. The second species, the next best competitor, then apportions more than 50% of the remaining 
niche space, and so on. The inverse of this division is the Dominance-decay Model (Tokeshi 1990), whereby it is al-
ways the largest niche in the community that is divided; thus, the probability of a niche being apportioned is related 
to the niche size. The MacArthur Fraction Model (Tokeshi 1990, 1993) specifies a sequential process of niche subdivi-
sion in which total niche space is randomly divided in two, with one of these resulting niches further chosen (again, 
this is based on the idea that the niche space of the most abundant species is most likely to be invaded) and divided 
randomly. The Random fraction model is similar, except that it assumes that niches of varying size have the same 
probability of invasion. See Tokeshi (1990, 1993, 1999) for a full description of these and additional niche-oriented 
SAD models. Part (a) is adapted from Tokeshi (1993).  



This suggestion is valid in theory but requires 

careful consideration of what constitutes rarity at 

the level to be omitted. 

 Tests of niche models have produced mixed 

results (Tokeshi 1990, Fesl 2002, Mouillot & Wil-

son 2002). Fesl (2002) compared a number of 

niche-oriented models, including six of Tokeshi’s 

(Table 2, Figure 2b), using data sourced from lar-

val Chironomidae assemblages in the River Da-

nube, Austria. Interestingly, Fesl’s study found 

that none of the models provided a good fit to the 

data when all species were included. However, 

when the whole assemblage was deconstructed 

into functional subgroups it was found that the 

‘random fraction model’ (RAM: one of Tokeshi’s 

models in which species apportion available niche 

space in a random manner; Figure 2b) generally 

provided the best fit amongst functional groups. 

Strong evidence also existed for the ‘random as-

sortment model’ (another of Tokeshi’s models in 

which abundances vary independently of one an-

other; see Tokeshi 1990, 1993). Based on the lat-

ter finding it was deduced that, in this system, 

species’ abundances are largely independent of 

each other (Fesl 2002). The RAM was also found 

to provide the best fit to a fish parasite commu-

nity, again indicating that species’ abundances 

vary independently (Mouillot et al. 2003).  

 Part of the problem with determining the 

goodness of fit of such sequential niche appor-

tionment models is that there is not an ‘industry 

standard’ goodness-of-fit test (Cassey & King 

2001). Tests such as χ² are not valid in this context 

because niche models produce a set of distribu-

tions as opposed to a single fixed distribution 

(Pielou 1975, Bersier & Sugihara 1997). A simple 

approach is to use linear regression analysis to fit 

the geometric series and broken-stick models 

(Table 2) in rank–abundance plots, and as a means 

of comparing the goodness of fit of the two mod-

els (Fattorini 2005). This works because the geo-

metric series has a linear form in rank–abundance 

plots in which the abundance data are log trans-

formed, and the broken-stick model a linear form 

when the ranks are log transformed. However, 

this approach is limited to these two distributions. 

A Bayesian approach has also been used to com-

pare the broken-stick model with various statisti-

cal models (Etienne & Olff 2005). Tokeshi (1990) 

developed a specific goodness-of-fit test to cir-

cumvent the issue of niche models producing sets 

of distributions, in which the mean of each rank of 

the theoretical distribution proposed by the dif-

ferent models is compared with the observed 

abundances of each rank within set confidence 

limits. However, as Bersier & Sugihara (1997) at-

test, Tokeshi’s method, while intuitively appeal-

ing, has several drawbacks, most problematic be-

ing that it is sensitive to species richness. This 

problem has been addressed by a computationally 

intensive Monte Carlo simulation method pro-

posed by Bersier & Sugihara (1997), and improved 

by Cassey & King (2001) and Mouillot et al. (2003). 

Given the aforementioned problems with Toke-

shi’s goodness-of-fit test, the Monte Carlo simula-

tion method (cf. Cassey & King 2001) is preferable 

when fitting and evaluating niche SAD models. 

While often receiving less focus than methods to 

fit statistical SAD models, the development and 

advancement of tests that allow for the evaluation 

of biological models, and the comparison of niche-

oriented models with statistical models, are key 

areas for future research on biological SAD mod-

els. 
 

Conclusions and a prescription for best practice 

The SAD is a key component of much bio-

geographical and ecological theory (McGill et al. 

2007, Whittaker & Fernández-Palacios 2007) and 

while it has not received as much coverage as 

other macroecological patterns, such as the SAR, 

SAD research has been at the forefront of meth-

odological progress in ecological biogeography. 

From the increases in computer power over the 

last two decades, coupled with recent advances in 

statistical theory, a number of novel methodologi-

cal opportunities have arisen with the potential to 

significantly progress the field of SAD research. As 

a result of these methodological advancements, 

we feel it is time for SAD studies to move away 

from many of the traditional methods available 

for fitting and evaluating models, such as sole reli-

ance on the visual examination of plots, and em-

brace many of these new approaches. Statistically 
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rigorous techniques should be applied at each of 

the three stages of SAD model evaluation and, in 

particular, we recommend the use of both good-

ness-of-fit tests and model-comparison analyses 

because each provides unique information which 

one can use to draw inferences. We are confident 

that the application and development of ap-

proaches synthesised in this review, in addition to 

others (Table 3), will result in the continued ad-

vancement of a vibrant and exciting field within 

ecological biogeography and macroecology. To 

encourage best practice, we conclude with a set 

of guidelines for use when comparing the fit of a 

set of SAD models to empirical data, while recog-

nising that alternative approaches exist and others 

may be developed in the future: 

1) Select a sensible set of candidate models for 

comparison, based on the aim(s) of the study. 

The selection of a priori (i.e. before step #2) 

models is an important first step that requires 

careful thought (Burnham & Anderson 2002). 

2) Plot the SAD to visually determine whether the 

models may poorly fit any parts of the empiri-

cal distribution. 

3) Where possible ML methods should be em-

ployed to fit the models and estimate the pa-

rameters. For complex models, optimisation 

algorithms should begin from multiple starting 

values. 

4) Combine parametric bootstrapping with a 

simulation approach to generate a distribution 

of, for example, the ĉ goodness-of-fit test sta-

tistic (cf. Connolly et al. 2009) for each a priori 

model.  

5) Compare models statistically, not simply by 

visual examination of plots. Information-

theoretic approaches are both appropriate and 

easy to use. If the assumptions are met, multi-

ple information criteria (e.g. AICc , BIC) should 

be compared to ensure robustness of out-

comes. It is important to test the goodness of 

fit of models in addition to comparing models 

in this way because, for example, the use of 

AIC assumes that a model is an accurate repre-

sentation of the data. 

6) For biological SAD models, linear regression 

can be used to analyse the fit of the broken-

stick model and geometric series in rank–

abundance plots, while Cassey & King’s (2001) 

Monte Carlo simulation method is preferable 

to Tokeshi’s (1990) test for other biological 

models. 
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