
UNIVERSITY OF CALIFORNIA

Los Angeles

General, Flexible and Unified Near-Data Computing

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Zhengrong Wang

2023

© Copyright by

Zhengrong Wang

2023

ABSTRACT OF THE DISSERTATION

General, Flexible and Unified Near-Data Computing

by

Zhengrong Wang

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2023

Professor Anthony John Nowatzki, Chair

Over the past decades, the memory hierarchy has increasingly become the bottleneck in

general-purpose processors due to a widening gap between the growing demand for large data

and the much slower scaling of conventional memory hierarchies. Therefore, conventional

in-core computing suffers from increasingly expensive overheads such as excessive request

messages, unnecessary data movement and coherence traffic, as well as limited off-chip band-

width, to bring the data from memory to computing cores. To continue the performance

and energy efficiency scaling, architects propose near-data computing (NDC) in which com-

putations are offloaded to where the data is. However, existing NDC techniques fall short

of providing generality and flexibility across different application domains, programming

paradigms, computing substrates, which are crucial to the wide adoption of NDC.

Our key insight is that the critical missing cornerstone for general and flexible near-

data computing is a novel rich-semantic memory abstraction. Unlike existing byte-grained

load/store operations, the new interface should express a wide range of rich semantics such as

the access pattern, reuse distance, near-data computations, etc. Such high-level information

is essential for the system to promptly recognize the program’s long-term behavior and

ii

adjust accordingly to reach optimal states. More importantly, the new interface should be

as transparent as possible to programmers with automatic compiler analysis and runtime

library support. Based on this, we can fundamentally revolutionize the memory interface

and co-optimize computation and data together.

This dissertation explores a new ISA interface - streams - to precisely capture the pro-

gram’s long-term memory and compute activities. Streams are incorporated into the pro-

gram’s functional semantics and are exposed to the entire system stack to guide various

policies. Our evaluation and analysis suggest serval key findings. First, a set of useful and

prevalent stream patterns cover a wide range of program behaviors and can be embedded

into the program in a lightweight way while still maintaining the sequential ordering. Second,

streams naturally decouple the address generation and computation from the core pipeline

and can be offloaded as the basic unit for near-data computing. Third, by exposing high-

level semantics to the system, we can unify different computing paradigms and codesign

the software and data structure. Overall, this dissertation aims to enable a general and

end-to-end near-data computing system that wipes out the boundary between computation

and data – the computation is freely scheduled in the system near the data, and the data

is carefully mapped to the memory resources to provide maximal locality and parallelism.

Such data-computation orchestration is the key to continuing the performance and energy

efficiency scaling.

iii

The dissertation of Zhengrong Wang is approved.

Harry Guoqing Xu

Glenn D. Reinman

Todd D. Millstein

Anthony John Nowatzki, Committee Chair

University of California, Los Angeles

2023

iv

To my parents. . .

v

TABLE OF CONTENTS

1 Introduction . 1

1.1 Existing Near-Data Computing . 3

1.2 Near-Stream Computing . 9

1.3 Contributions . 10

1.4 Organization . 13

2 Stream Basics . 14

2.1 Stream Characterization . 14

2.2 Decoupled-Stream ISA . 18

2.3 Near-Stream Computing Abstraction . 24

2.4 Compiler Support . 27

3 Stream-Specialized Processors . 32

3.1 Stream Specialization Overview . 32

3.2 SSP Microarchitecture Extensions . 35

3.3 Stream-Aware Policies . 39

3.4 Methodology . 43

3.5 Evaluation . 45

3.6 Related Work . 51

3.7 Summary . 54

4 Proactive and Decentralized Stream-Aware Cache Optimizations 55

4.1 Motivation and Overview . 56

vi

4.2 Stream Floating Design . 62

4.3 Coherence and Consistency . 70

4.4 Methodology . 73

4.5 Evaluation . 75

4.6 Related Work . 82

4.7 Summary . 84

5 Near-Stream Computing . 85

5.1 Motivation and Overview . 85

5.2 In-Core Near-Stream Computing . 95

5.3 Near-Stream Computing . 97

5.4 Synchronization-Free Optimization . 105

5.5 Methodology . 106

5.6 Evaluation . 109

5.7 Additional Related Work . 117

5.8 Summary . 119

6 Affinity Alloc: Taming Not-So Near-Data Computing 120

6.1 Motivation and Overview . 121

6.2 Affine Data Layout . 130

6.3 Irregular Data Layout . 137

6.4 Methodology . 141

6.5 Evaluation . 143

6.6 Discussion . 152

vii

6.7 Related Work . 153

6.8 Summary . 155

7 In-/Near-Memory Computing Fusion . 156

7.1 Background and Overview . 157

7.2 Infinity Stream Abstraction . 163

7.3 Runtime Support . 172

7.4 Microarchitecture Extensions . 179

7.5 Implementation Limitations . 184

7.6 Methodology . 184

7.7 Evaluation . 187

7.8 Related Work . 195

7.9 Summary . 197

8 Conclusion . 198

A NDC Related Works . 205

B tDFG Optimization . 210

References . 216

viii

LIST OF FIGURES

1.1 Conventional In-Core (Top) vs. Future Near-Data Computing (Bottom) 3

2.1 Stream Breakdown (PC: Pointer-Chasing) . 16

2.2 Average Stream Length . 17

2.3 Number of Control Paths . 18

2.4 Decoupled Stream ISA Examples . 21

2.5 Near-Stream Computing ISA Examples . 25

2.6 Decoupled Stream Assembly Example . 29

3.1 Overview of Stream Specialization Paradigm vs Traditional Out-of-Order 33

3.2 Stream-specialized Pipeline . 35

3.3 Stream Engine . 35

3.4 Iteration Map . 36

3.5 State Transition for Cache Bypassing . 42

3.6 Overall Speedup and Energy Efficiency . 46

3.7 Speedup of SSP-Non-Bind. vs. SSP-Semi-Bind 47

3.8 Dynamic Instructions in SSP-Semi-Bind . 48

3.9 Speedup with Dynamic Throttling . 49

3.10 Unused Stream Requests . 50

3.11 Speedup with Cache Awareness . 51

3.12 Relative Speedup and Energy Efficiency for Various OOO Processors 52

4.1 Overhead of Caching Data without Reuse . 57

ix

4.2 Affine Floating Optimization . 59

4.3 Indirect Floating Optimization . 60

4.4 Stream Confluence Optimization . 61

4.5 Stream Floating Overview . 62

4.6 L2 Stream Engine (SEL2) . 63

4.7 L3 Stream Engine (SEL3) . 63

4.8 Detecting Aliasing to Floating Stream Load . 69

4.9 Coherence Protocol Interaction . 70

4.10 Overall Speedup and Energy Efficiency . 76

4.11 Requests to L3 of SF-OOO8 . 77

4.12 OOO8 NoC Traffic and Utilization . 78

4.13 SF vs. Bingo with 128, 256, 512-bit link (OOO8) 79

4.14 Effect of NUCA Interleaving Granularity (OOO8) 80

4.15 Core Scaling . 81

4.16 Energy vs. Speedup for IO4, OOO4, OOO8 . 82

5.1 Potential of Sub-Thread Near-Data (View in Color) 89

5.2 Near-Stream Computing Optimizations . 90

5.3 In-Cache Near-Stream Computing Overview . 97

5.4 L3 Stream Engine (SEL3) . 98

5.5 Timeline of Range-Synchronization . 99

5.6 Fully Decoupled Loop (Same Legend as Fig 2.5) 106

5.7 Overall Speedup over Base OOO8 Core . 110

5.8 Energy vs. Speedup for IO4, OOO4, OOO8 . 111

x

5.9 Breakdown of Dynamic Micro Ops . 112

5.10 OOO8 NoC Traffic (top) and Utilization (bottom) 113

5.11 NS, NSno sync, NSdecouple with 1-32 SCM Latency 114

5.12 Sensitivity to 8-128 SCC ROB-Entry . 115

5.13 Sensitivity to Affine Range Generation (NS) . 116

5.14 Exclusive vs. MRSW . 116

5.15 Sensitivity to Scalar PE in SEL3 . 118

6.1 Affinity Optimization Opportunities in NDC (View in Color) 121

6.2 Affine Data Layout for Vec Add . 124

6.3 Impact of Affine Data Layout on Vec Add . 126

6.4 Irregular Data Layout for Graph Edge List . 127

6.5 Impact of Irregular Data Layout . 128

6.6 Affinity Alloc Approach Overview . 129

6.7 Affine Data Layout Optimizations . 133

6.8 Distribute Partitions (Assume 𝑃 = 𝑋 × 𝑌) . 136

6.9 Irregular Data Layout API . 137

6.10 Linked CSR Format . 139

6.11 Overall Performance and Traffic Reduction . 144

6.12 Sensitivity on Irregular Layout Policies . 145

6.13 Distribution of Atomic Stream in BFS-Push . 146

6.14 Speedup of Affine Layout on Large Inputs . 147

6.15 Speedup of Linked CSR on Large Graphs . 147

6.16 BFS Iteration Characteristic . 149

xi

6.17 BFS Push vs. Pull Timeline . 150

6.18 Speedup vs. Avg. Node Degree . 150

6.19 Performance on Real World Graphs . 151

7.1 Overview of In-Core/Near-Mem/In-Mem Computing Paradigms 157

7.2 Speedup of Different Paradigms (Fp32) . 160

7.3 Infinity Stream Workflow Overview . 162

7.4 Examples of Infinity Stream Abstractions . 164

7.5 tDFG Node Semantics . 165

7.6 Example of Optimized tDFG . 168

7.7 Example of Compiled Infinity Stream Program 170

7.8 Programming GEMM for Infinity Stream . 171

7.9 Moving a Tensor in Tiled Layout (View in Color) 172

7.10 Infinity Stream Microarchitecture . 180

7.11 Overall Speedup . 187

7.12 NoC Traffic Breakdown (Bar) and Util. (Dot) 188

7.13 Inf-S Traffic Breakdown . 188

7.14 Inf-S Cycle Breakdown . 189

7.15 Inner vs. Outer Product Dataflow . 190

7.16 Cycle Breakdown vs. 2D Tile Size . 190

7.17 Inf-S Speedup vs. 3D Tile Size (Default as Bold) 191

7.18 Overall Energy Efficiency . 192

7.19 Timeline of PointNet++ SSG/MSG Classifier 193

B.1 Example of Applying Rewrites . 213

xii

LIST OF TABLES

1.1 Characterization of Representative Near-Data Approaches 5

1.2 Dissertation Organization and Relation to Author’s Prior Work 13

3.1 Fields of Stream Table . 41

3.2 Simulation Parameters for Baseline . 43

4.1 Affine and Indirect Stream Configuration . 65

4.2 Stream History Table . 67

4.3 System and Microarchitecture Parameters . 73

4.4 Workload Datasets . 74

5.1 Capabilities of Sub-thread Near-data Approaches 92

5.2 Address and Compute Patterns of Near-Data Works 94

5.3 Capabilities of Stream ISA Works . 94

5.4 Near-Stream Computing Configuration . 104

5.5 System and Microarchitecture Parameters . 108

5.6 Workloads (MO: Multi-Op) . 109

6.1 Interleave Override Table (IOT) . 132

6.2 System and 𝜇arch Parameters . 141

6.3 Workloads Parameters . 142

6.4 Real World Graphs . 151

7.1 Layout Override Table (LOT) . 181

7.2 System and 𝜇arch Parameters . 185

xiii

7.3 Workloads (BC: Broadcast) . 186

7.4 PointNet++ . 186

8.1 Characterization of This Work . 198

A.1 Characterization of Near-Data Approaches . 205

xiv

ACKNOWLEDGMENTS

I am profoundly grateful to Prof. Tony Nowatzki, my esteemed Ph.D. advisor, whose

unwavering support and guidance have been the cornerstone of my academic journey. Our

collaboration commenced in 2017 when I was a master’s student, and under his mentorship, I

have gained invaluable insights that have significantly shaped the trajectory of my research.

His dedication, expertise, and encouragement have been instrumental in every step of this

dissertation, and I owe much of its success to his profound influence. Without his steadfast

assistance, none of this would have been possible.

I also extend my thanks to my committee members, Prof. Todd Millstein, Prof. Glenn

Reinman, and Prof. Harry Xu. Their insights during my oral qualification exam and final

defense significantly enriched my research, and I appreciate their valuable contributions.

I express my gratitude to an outstanding group of collaborators and lab mates who have

played pivotal roles in shaping the diverse facets of this dissertation. Prof. Jason Lowe-Power

from UC Davis provided invaluable insights into cache coherence and encouraged my work

on gem5. Prof. Nathan Beckmann from CMU engaged in insightful discussions, enhanc-

ing my understanding of data affinity for near-data computing. Prof. Lizy John and Prof.

Aman Arora offered essential guidance in the detailed modeling of in-memory computing

hardware. Dr. Jayesh Gaur contributed significantly to discussions on CPU microarchitec-

ture, while Prof. Jian Weng provided enjoyable insights into compilers and programming

languages. Vidushi Dadu’s expertise in irregular parallelism and Sihao Liu’s patient guid-

ance in hardware intricacies have been instrumental. Special thanks to Christopher Liu for

his assistance and the creation of remarkable slides. Each of them has left an indelible mark

on this dissertation, and I am deeply appreciative of their collaborative efforts.

A heartfelt thank you goes to my badminton partners, the steadfast companions who

brought joy and camaraderie to these years. Dr. Xiaoyu Wu, Dr. Shuaihang Pan, Dr. Hao

Liu, Dr. Kaiyuan Jin, Dr. Zizhao Zhang, Ziqing Luo, Jiayu Yi, Jiarui Wang, and Lu Cheng,

xv

playing alongside you all was a source of solace during the challenges of the pandemic. Special

appreciation to Alex, Andy, Arnold, Harry, Miranda, Yifan, Hallie, Carol, and Dr. Ke Huo

for making every Tuesday/Thursday night over the past two years incredibly enjoyable.

Xiaoyu, I could not have survived COVID-19 and these years without your help (including

cold jokes). Hallie, your impeccable taste in songs added an extra layer of joy; best of luck

with your DDS study. To each of you, I extend my wishes for the very best. Keep smashing

both on and off the badminton court.

A special shoutout to my dear friends at UCLA, who added vibrant colors to my journey.

Dr. Jie Wang, thank you for the exhilarating mountain hikes by Santa Monica Beach,

creating cherished memories that will last a lifetime. Dr. Weikang Qiao and Dr. Bing Han,

your delightful company and shared culinary adventures have made every meal an enjoyable

experience. Congratulations on the arrival of Jojo, and I wish your growing family all the

happiness. A heartfelt appreciation to Dr. Licheng Guo, the maestro behind the lens, for

skillfully capturing our best moments and turning them into timeless treasures.

I also thank my friends around the world who have left indelible marks on my life. Dr.

Zhanhao Su, your unwavering inspiration has been a driving force, urging me to aim high

and persevere. Jiajian Kuang, you’ve been a lifesaver on countless gaming nights, turning

each one into a memorable adventure. Hsien-yu Meng, thank you for your steadfast support

during my Ph.D. application; I wish you all the best in your endeavors. Liqing Xu, you made

Boston unforgettable with your insights and company. To Minjun Huang, your presence has

enriched my life in too many ways to count. To the many other friends I’ve missed during

these years of the pandemic, your absence has been felt.

To my dearest parents, Hongbing Wang and Jianhua Yi, words fall short of expressing

my gratitude. I may not be the perfect son, but you, without a doubt, are the best parents

in the world. Your unwavering love, support, and sacrifices have shaped me into the person I

am today. Thank you for being my pillar of strength throughout this journey. I am endlessly

fortunate to have you by my side.

xvi

VITA

2012–2016 Bachelor of Engineering, Department of Electronic Engineering, Tsinghua

University, Beijing, China.

2016–2018 Master of Science, Department of Computer Science, UCLA. Designed a

trace-based simulator using LLVM-IR.

2019 Published Stream-based Memory Access Specialization for General Pur-

pose Processors in 2019 ACM/IEEE 46th Annual International Symposium

on Computer Architecture (ISCA).

2021 Published Stream Floating: Enabling Proactive and Decentralized Cache

Optimizations in 2021 International Symposium on High-Performance

Computer Architecture (HPCA).

2022 Published Near-Stream Computing: General and Transparent Near-Cache

Acceleration in 2022 International Symposium on High-Performance Com-

puter Architecture (HPCA).

2022 Teaching Assistant of CS 33, Spring Quarter, Department of Computer

Science Department, UCLA.

2023 Published Infinity Stream: Portable and Programmer-Friendly In-/Near-

Memory Fusion in 2023 International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS).

2023 Published Affinity Alloc: Taming Not-So Near-Data Computing in 2023

ACM/IEEE 56th International Symposium on Microarchitecture (MI-

CRO).

xvii

CHAPTER 1

Introduction

For decades, conventional computer architectures followed the classical von Neumann model

which draws a clear boundary between computation and data – centralized process units (e.g.

cores in CPU/GPU) perform all the computation, with memory units (e.g. caches, DRAM)

reacts to requests and serves the data. Such a compute-centric interface simplifies the design

and works well as long as data movement is relatively cheap compared to performing the

computation.

However, the landscape is fundamentally changed by an increasing gap between the

rapidly growing demand for large data and the much slower scaling of conventional memory

hierarchies. For example, ChatGPT requires ∼14000× more parameters than its predecessor

in 2017, while high-end GPUs used to train it only scale by 2.5× in memory capacity and

2.2× in memory bandwidth at the same time. To bridge this gap, modern systems also scale

up the cache hierarchy to hold more data on-chip and serve the core’s requests more timely.

However, with the existing compute-centric interface, the cache hierarchy is inherently reac-

tive and responsive, requiring complicated tiling schemes in the software as well as complex

best-effort microarchitecture policies to predict the program behavior. Therefore, even

with caches, conventional in-core computing still suffers from increasingly expensive over-

heads such as excessive request messages, unnecessary data movement and coherence traffic,

as well as limited off-chip bandwidth, to bring the data from memory to computing cores.

This calls for a fundamental redesign to revolutionize the memory interface and co-optimize

computation and data together.

1

To mitigate such overheads, architects propose a variety of specialized architectures that

carefully schedule computation near data and orchestrate data movements through efficient

pipelines. This broad paradigm of near-data computing (NDC) covers an extremely large

design space: near where (on-chip cache, DRAM, or storage), how to compute (small cores,

reconfigurable arrays, or bit-serial logic using bit lines), how to program (domain-specific lan-

guage or general compiler), as well as so many other aspects. Existing near-data computing

techniques are limited to a subset of these design choices and often require manual pro-

gramming using specific APIs, and hence insufficient to enable general, flexible and unified

near-data computing.

Key Question How to build a NDC system in which general near-data computations can

be flexibly scheduled to all available memory levels and computing substrates, with a unified

programming and ISA abstraction and automatic analysis and optimization across the full

system stack.

Our key insight is that such a general and flexible system is infeasible without a powerful

unified abstraction to precisely capture and fuse the high-level memory access behaviors

and compute patterns. This dissertation explores streams – general memory access patterns

with near-stream computations – as a potential candidate. Streams inherently condense

the essential information about memory accesses and near-data computations into a unified

offloading basic unit, and unlock many opportunities to enable perfect prefetching, general

and transparent near-data computing, automatic data layout optimization, etc.

The remainder of this chapter will focus on first introducing the background of near-

data computing, and categorizing the huge design space and corresponding challenges to

enable general, flexible and unified near-data computing. Then we introduce our approach to

leverage streams as the fundamental near-data computing abstraction and how that presents

a unique opportunity. Finally, we summarize our main contribution and the organization of

this dissertation.

2

Core L2

R
o

u
te

r

Shared L3
Bank

L1

Chiplet

…

IO
 In

te
rc

o
n

n
ec

t

DRAM

DRAM

DRAM

PCIe …

…

Chiplet

Chiplet

Chiplet

M
u

lt
i-

C
o

re
M

u
lt

i-
C

o
re

Conventional
In-Core Computing

Centralized
Computation

Excessive Requests &
Reactive Responses

Expensive Data Movement
w. Coherence Overheads

Limited Off-Chip Bandwidth
to DRAM, SSD & Remote

Offload Computation
Near-Data

Co-optimized Data Layout
-> Minimal Data Movement

Compute near DRAM/Storage
w. Massive Internal Bandwidth

Next-Gen
Near-Data Computing

Cmp. Mem. Hierarchy

Fused Cmp./Data
Orchestration

Distributed Computation w.
Proactive Communication

(a)

(b)

Figure 1.1: Conventional In-Core (Top) vs. Future Near-Data Computing (Bottom)

1.1 Existing Near-Data Computing

In this section, we first compare near-data computing with conventional in-core computing,

then define the design space for near-data computing and the insufficiencies of existing near-

data computing techniques.

In-Core Computing Fig 1.1 compares conventional in-core computing (top) and near-data

computing (bottom) across various abstract levels of a multi-core system. In conventional

in-core computing, all computations are centralized in the core, which incurs significant data

movement and communication overheads to fetch and write back the data. For example, to

perform a simple vector addition A[i]=B[i]+C[i], the core needs to fetch all three vectors

and write back C[] even when there is no data reuse, as the computation is fixed in the core.

These overheads are only going to be worse as modern systems continue to scale up in the

number of cores and memory hierarchy levels, leading to longer data movement distance.

Also, the growing demand for large data puts more pressure on the cache hierarchy to hold

and reuse the working set, making it wasteful to move and cache the data.

Why Caches are Insufficient To mitigate these overheads, architects spend tremendous

efforts to improve the cache hierarchy in terms of capacity and policies. For capacity, modern

CPUs employ larger caches with more levels, e.g. 2MB private L2 cache and 2.7MB shared

3

L3 cache per core for Intel Xeon 4th Gen Sapphire Rapids. However, a more complex cache

hierarchy requires a more complex tiling scheme to improve the data reuse, and is infeasible

when the application has no reuse. On the other hand, architects also propose various

microarchitecture policies to dynamically bypass certain cache levels, to replace unused cache

lines, to prefetch future data, etc. However, these are all best-effort approaches to recovering

the original high-level program semantics from the primitive memory interface that operates

on individual cache lines, and are inefficient if the program’s behaviors are too complicated

or transient to be captured.

Fundamentally speaking, with the existing computing-centric interface, caches are inher-

ently reactive and lack a holistic view of the program to proactively adjust to application

phases. Even with an ideal cache that perfectly predicts the program’s future behaviors, the

data movements are inevitable due to the fixed in-core computing. Therefore, we need a

fundamental redesign of the memory interface and hierarchy to address these challenges.

Near-Data Computing To overcome these overheads, near-data computing wipes out the

boundary between computation and memory. As shown in Fig 1.1, the memory hierarchy is

enhanced with computing capability at different levels, so that computation can be scheduled

across the memory hierarchy near the data in on-chip caches, off-chip DRAM, or even near

the storage. This replaces the superfluous requests and data movements with coarse-grained

offloading messages and minimal data traffic to collect the operands. This is the key to

continuing the scaling of performance and energy efficiency.

Design Space As Fig 1.1 suggests, near-data computing touches the entire system stack

and forms a broad design space that includes at least the following dimensions. Table 1.1

characterizes a representative subset of recent near-data computing techniques. For a more

comprehensive characterization, see Table A.1.

4

Table 1.1: Characterization of Representative Near-Data Approaches

NDC Work Yr. ABST. Near Where Substrate Domain Program Data Layout

Goal Unified All All General Trans. Automatic

CDCS [1] ’15 Thread Core Local Core General Trans. Limited1

Dist-DA [2] ’22 DFG LLC Core/CGRA General Trans. Oblivious

Omni-Compute [3] ’19 Inst. GPU LLC FU General Trans. Oblivious

SnackNoC [4] ’20 Kernel NoC Router FU Regular API Scratchpad

Fafnir [5] ’21 Kernel DRAM2 FU Gather API Manual

GenASM [6] ’20 Kernel DRAM ASIC Genomic API Scratchpad

EMC [7] ’16 𝜇op Seq. DRAM FU Prefetching Trans. Oblivious

To PIM or Not [8] ’22 Thread DDR Bank Core General Trans. Oblivious3

MeNDA [9] ’22 Kernel DDR Rank ASIC Sparse LA4 API Manual

Tesseract [10] ’15 Thread HMC Core Graph API Manual

TOM [11] ’16 Thread HMC GPU Core General Trans. Limited5

GPU-PIM [12] ’16 Thread HMC GPU Core General Trans. Oblivious

ABNDP [13] ’23 Thread HMC Core General API Oblivious6

PIM-Enabled Inst. [14] ’15 Inst. HMC FU General Trans. Oblivious

IMPICA [15] ’16 Kernel HMC ASIC Ptr-Chasing API Oblivious

Active Routing [16] ’19 Packet HMC FU Aggregation API Oblivious

Gearbox [17] ’22 Kernel HMC Bank ASIC Sparse LA7 API Manual

FANS [18] ’21 Kernel SSD FPGA Sorting API Manual

ASSASIN [19] ’22 Kernel SSD ASIC General8 API Oblivious

Neural Cache [20] ’18 Kernel In-LLC Bitline ML API Scratchpad

Duality Cache [21] ’19 SIMT In-LLC Bitline General Trans. Oblivious

DUAL [22] ’20 Kernel In-DRAM Bitline Clustering API Manual

Ambit [23] ’17 Inst. In-HMC Bitline General API Scratchpad

1Only at page granularity.

2In interconnects of DDR ranks and channels.

3Customized physical address layout in DRAM.

4Sparse matrix transposition.

5Specific to strided patterns on GPU.

6With DRAM-based cache to capture locality.

7Sparse linear algebra, mainly SpMV and SpMSpV.

8Programs need to be transformed into streaming computing.

5

SISA [24] ’21 Set Multi.9 Multi.10 Graph Mining API Manual

MLIMP [25] ’22 DFG Multi.11 Multi. GEMM/GNN API Scratchpad

NDC Compiler [26] ’21 Inst. Multi.12 FU General Trans. Oblivious

Livia [27] ’20 Kernel13 Multi.14 Core/FPGA General API Oblivious

∙ Offloading Location: There are two possible offloading dimensions for NDC: verti-

cally across memory hierarchy levels, and horizontally among units within the same

level Many works focus on the vertical approach near the controller of cache, DRAM,

HMC, or SSD. Emerging technologies such as in-situ bitline operation turn the SRAM/DRAM

arrays into massive vector units (labeled as In-X in Table 1.1). As for the horizontal

dimension, many multi-core works targetting non-uniform memory accesses (NUMA)

and non-uniform cache accesses (NUCA) do not offload computations from the core,

but try to schedule and migrate computations horizontally among the cores to im-

prove data locality (labeled as Core in Table 1.1). Notice that most vertical offloading

approaches have a horizontal dimension within the offloaded level.

Most existing works focus on a single offloading location. However, depending on the

application, different near-data computations may favor different offloading locations,

and the optimal offloading level for a single near-data computation can also change

depending on the input size and runtime behavior.

Goal: An ideal NDC system should intelligently schedule computations to a single or

multiple efficient levels with minimal synchronization.

9In-situ DRAM (SISA-PUM) and near DRAM controller (SISA-PNM).

10In-situ DRAM bitline for SISA-PUM, and small in-order cores for SISA-PNM.

11In-situ LLC, In-situ DRAM and ReRAM.

12NoC routers, LLC controllers, DRAM controllers, inside DRAM.

13Can only process a single cache line.

14LLC controllers and DRAM controllers

6

∙ Computing Substrate: Besides the offloading location, different substrates to per-

form the near-data computation also present different tradeoffs. A small in-order core

offers maximal generality but still incurs all the overheads of a general-purpose pipeline,

e.g. instruction decoding, register reads and writes, etc. The opposite extreme is fix-

function ASIC units, which are highly specialized for certain operations by sacrificing

generality. Reconfigurable hardware like FPGA and CGRA, as well as tailored func-

tion units (FUs) that can be programmed to perform some predefined primitives, tries

to balance programmability and efficiency. There are also many emerging comput-

ing substrates, e.g. bit-serial in-memory computing, resistive random-access memory

(RRAM), non-volatile memory (NVMe), high-bandwidth memory (HBM), etc. All

these techniques pose different tradeoffs.

Goal: An ideal NDC system should offload computations to the suitable computing

substrate, or even split between them to combine their strengths.

∙ Application Domain: Many prior near-data computing techniques are limited to

a specific application domain: graph processing, linear algebra, DNA sequencing,

database acceleration, sorting, etc. These applications are usually memory intensive

and can benefit the most from the improved memory bandwidth of near-data comput-

ing. Others try to target general computation by directly offloading an entire thread

or providing a general programming interface. We argue that a general near-data

computing system is more favorable in the future to handle more and more diverse

applications and amortize the costs.

Goal: An ideal NDC system should be general enough to cover a wide range of appli-

cation domains.

∙ Programming Model: Another key design choice is how to program such a complex

near-data computing system, as much essential information is required to efficiently

coordinate various system components. Some works simply program a low-level in-

7

terface, e.g. intrinsics or assembly instructions, while others provide special APIs

in domain-specific or general-purpose languages. All these approaches require manu-

ally rewriting the program. Another approach is reusing a general-purpose language

and automatically extracting near-data opportunities with minimal programmer hints.

This significantly eases the overheads to adopt near-data computing on existing ap-

plications with less programmer intervention, but requires advanced compiler analysis

and careful microarchitecture optimization to maintain consistency.

Goal: An ideal NDC system should remain almost transparent to the programmer with-

out sacrificing performance.

∙ Data Layout: A common oversight in designing a near-computing system is data

layout. Simply pushing computing into the memory hierarchy does not guarantee

that computation is now closer to the data, especially when the computation accesses

more than a single piece of data. For example, stencil workloads compute on multiple

arrays, and graph workloads require indirect access to neighboring vertices. Without a

suitable data layout, the required operands may be scattered far away from each other,

and näıvely offloading computation near data may yield no data movement reduction

or even hurt the performance. However, existing NDC work either relies on manual

coarse-grained data partition, or is simply oblivious to the data layout and falls back

to in-core computing when near-data computing is not profitable.

Goal: An ideal NDC system should automatically optimize data layout to improve data

affinity.

On top of Table 1.1 lists the goal of an ideal near-data computing system. Unfortunately,

existing NDC works fall short of reaching these goals. They are often limited to certain

offloading location, computing substrate and application domain, requires enormous efforts

to program, and are oblivious to data layout. We need a general, flexible and unified NDC

system that fully realizes the potential of near-data computing.

8

1.2 Near-Stream Computing

A fundamental limitation of existing NDC techniques is that they still focus more on com-

puting than data, i.e. they simply shift the conventional compute-centric view closer to the

data, but lack of holistic data-centric view. The data is still treated as a small contiguous

chunk identified by its address and size, and served by a memory subsystem reacting to

individual memory requests. Such primitive memory abstraction completely misses diverse

and rich memory behaviors. For example, do memory accesses follow a specific pattern such

as linear, affine, or pointer-chasing? What is the computation performed on the fetched

data? Are multiple data structures involved in the computation? If so, how should the sys-

tem optimize their affinity? Without a rich semantic abstraction to efficiently capture this

information, it is infeasible for near-data computing to reach the desired level of generality,

flexibility and unification.

This dissertation replaces the primitive “data” abstraction with “stream” – a general

abstraction with high-level data access patterns and near-data computations – to form a new

paradigm called near-stream computing. For example, the above vector addition example

C[i]=A[i]+B[i] can be represented as three streams: two load streams A[] and B[], and

a store stream C[]. The addition can be associated with the store stream C[], forming a

near-stream computation that is scheduled along with the stream. Specifically, near-stream

computing presents the following unique opportunities.

∙ Streams capture broad access patterns, and computations consuming or producing

stream data can be associated with the stream, forming near-stream computations.

Moreover, streams still preserve the original sequential ordering, and can be automati-

cally recognized by compiler analysis from general-purpose languages without sacrific-

ing programmability or transparency.

∙ Streams and associated near-stream computations are inherently decouplable from the

remainder of the program, making them a natural match for distributed near-data

9

computing. The embedded high-level access patterns also enable proactive and highly

efficient data orchestration and synchronization between the core and offloaded streams

across the entire memory hierarchy.

∙ The dependency relationship between streams and near-stream computations precisely

represents the affinity relationship between data structures, enabling automatic data

layout optimization to make near-data computations truly near the data.

Overall, near-stream computing fundamentally takes a data-centric view: it employs a

unified data abstraction that captures general data movement and near-data computations

(§2), orchestrates data and computation flexibly across the entire memory hierarchy (§3,

§4, §5, §7), and automatically optimizes the data affinity to balance spatial locality and

parallelism (§6).

1.3 Contributions

This dissertation identifies streams as the fundamental near-data computing abstraction and

explores many unique opportunities for near-stream computing. The potential impact of this

is to enable general, flexible and unified near-data computing that eliminates communication

bottlenecks without sacrificing programmability or transparency. The specific contributions

are in terms of stream characterization/ISA extension, unified execution model/architecture

design for near-stream computing, and automatic data layout optimization and data struc-

ture codesign for data affinity.

Stream Characterization and ISA Extension We characterize various stream patterns

in a variety of representative workloads from simple strided linear accesses on an array, to

complex data-dependent accesses such as irregular indirect pattern A[B[i]] and pointer-

chasing p=p.next. Streams are prevalent, covering on average more than 60% memory

accesses [28]. Based on these observations, we extend a general-purpose ISA (we use x86)

10

with stream abstraction to capture the high-level access pattern and potential near-data

computations in the presence of control flow and indirect memory, This serves as the missing

cornerstone of next-gen near-data computing. We also implement the automatic compiler

analysis and transformation to directly recognize streams from plain-C programs.

In-Core Stream Specialization With streams explicitly embedded in the ISA, we can

leverage the inherent structure of streams to specialize the core pipeline, cache interface and

cache policies. We find that streams can be decoupled, providing a semi-binding interface

that does not require stream data to be consumed. Our stream-specialized microarchitecture

benefits from stream-based prefetching, decoupling of address computation, and stream-

awareness in prefetch throttling and cache bypassing. Broadly, this paradigm of encoding

rich memory access semantics could open up new opportunities for specialization of access

and communication at even higher levels within the cache and memory hierarchy.

In-Cache Near-Stream Computing We then explore the idea of decoupling long-term

access patterns, i.e. streams, with computations into on-chip caches. Instead of always

bringing data to the core, computations are offloaded along with streams and are performed

near the data. We propose microarchitecture extensions that can recognize near-stream

computing opportunities and offload computations to remote cache banks while still main-

taining the precise state with low overhead. It dramatically reduces the network traffic and

improves core utilization, all without requiring programmer involvement. More importantly,

this work breaks with the core-centric view and explores using memory streams as the basic

unit for near-data scheduling. This hybrid approach is key to enabling high-performance

and energy-efficient execution in future large-scale multi-core systems.

Software Co-Design for Data Layout We propose the first general and programmable

framework that automatically optimizes data layout for any near-data computing technique.

The idea is to capture the essential data affinity requirement, i.e. 𝑋 should be close to 𝑌 ,

in a lightweight memory allocator interface. For example, when allocating the vectors A[N],

11

B[N] and C[N], the programmer can specify that they should be element-wise aligned for

near-data computing. Another example is pointer-based data structures, e.g. linked lists,

with the new node allocated closer to the previous one. Complemented by co-optimized

data structures, runtime libraries, minimal OS extensions and microarchitecture tables, it

achieves a clean layered design that systematically captures data affinity information and

optimizes data layout throughout the system stack. Evaluated with critical dense scientific

computing and irregular graph processing workloads, it achieves 2.36× speedup and 1.82×

energy efficiency over a state-of-the-art near-data computing technique. More importantly,

it also yields 75% traffic reduction, making near-data computations truly near the data.

Fusing Near-Cache and In-Cache Computing While this new stream abstraction

captures the essential program semantics, it remains neutral to the underlying hardware

details. This makes it possible to apply it to improve the programmability and usability of

other emerging computing paradigms, or even to fuse multiple paradigms. A particularly

interesting case is bit-serial in-cache computing, in which each cache bitline is a vector lane,

forming a massive vector unit (e.g. a 64MB L3 cache with 256x256 SRAM arrays has

2M vector lanes). Due to the massive parallelism, it is especially effective for large dense

computations, e.g. matrix operations, but is not as efficient for irregular computations.

Hence we need a hybrid paradigm.

Our stream abstraction captures essential program semantics to effectively fuse both

paradigms. First, dense regular operations are often represented as computation involving

multiple affine streams. By relaxing the sequential semantics of stream and allowing all

stream elements to be processed in parallel, we can easily exploit the massive parallelism

provided by in-cache computing without introducing another set of abstractions. Second,

irregular sparse operations can still be handled as normal near-cache computing using irreg-

ular streams. We performed an end-to-end case study on the state-of-the-art point cloud

application: PointNet++, in which the dense multi-layer perceptron (MLP) is handled by

in-cache computing, while irregular operations, e.g. sampling centroids, gathering neighbor-

12

Chap. Topic Author’s Related Prior Work

2 Stream Characterization and ISA ISCA 2019 [28], HPCA 2022 [31]

3 In-Core Stream Specialization ISCA 2019 [28]

4 Stream-based Proactive Cache HPCA 2021 [32]

5 In-Cache Near-Stream Computing HPCA 2022 [31]

6 Automatic Data Affinity Optimization MICRO 2023 [33]

7 In-/Near-Cache Computing Fusion ASPLOS 2023 [30], CAL 2022 [29]

8 Conclusion

Table 1.2: Dissertation Organization and Relation to Author’s Prior Work

ing vertices’ feature vectors, are left as near-cache computing. This unifies two computing

paradigms using a single abstraction, and achieves 1.92× speedup over the baseline, and

1.20× over the best of individual paradigm [29, 30]. This demonstrates the potential of a

unified abstraction to fully unleash the benefit of data-computation orchestration.

1.4 Organization

Table 1.2 summarizes the organization of the dissertation and the author’s related prior

works. In the rest of this dissertation, we first introduce stream definition, stream character-

ization as well as the proposed stream ISA in Chapter 2. Following that, we discuss how to

exploit streams and support in-core stream specialization in Chapter 3. Then we move on to

how to leverage streams to enable proactive and decentralized cache optimizations (Chap-

ter 4), and how to schedule computation along with streams (Chapter 5). Chapter 6 enables

automatic software co-optimization for data affinity, and Chapter 7 leverages streams as the

unified abstraction to fuse in-/near-memory computing. We conclude in Chapter 8.

13

CHAPTER 2

Stream Basics

In this chapter, we first define and characterize streams in representative applications to

demonstrate that streams are suitable candidates for next-gen memory abstraction (§2.1).

Then we move to explore how to embed streams in the ISA (§2.2) and extend them to cover

near-data computing (§2.3). We also introduce necessary compiler support to automatically

recognize streams and transform the program.

2.1 Stream Characterization

A foundational question for a stream-specialized system is whether programs exhibit enough

streaming behavior to take advantage of. We define four key questions:

Q1 - Coverage: Do streams cover program access?

Q2 - Pattern: What are their access patterns?

Q3 - Length: Are streams long enough to be meaningful?

Q4 - Control: Are they entangled with the core’s control flow?

This section attempts to answer the above questions through a trace-based analysis of

streams. The observations both justify our motivation and provide insights for the ISA and

microarchitecture.

Stream Definition For this analysis, we empirically characterize patterns that may

eventually be capturable by an instruction as streams. where the longest extent is defined

as the entry and exit of the outermost containing loop.

14

Desirable Properties Extracting access patterns from memory streams and decoupling

them from the von Neumann order of the program is key to achieving high performance

and energy efficiency. However, certain memory streams are more amenable than others for

specialization. In particular, certain properties are desirable, so we consider streams with

these properties to be “qualified”:

∙ Within an inlinable loop: This is because saving and restoring streams at function-

call boundaries would be more expensive than for a scalar register.

∙ Address is Control Independent: We intend to leave control decisions within the

non-stream portion of the program, so that traditional speculative execution may take

advantage. We disqualify control-dependent address computation, as supporting this

would simultaneously eliminate the benefit of decoupling (close interaction with non-

stream instructions), and make analysis for cache specialization more difficult.

∙ Affine Strides: This restriction keeps the hardware for streams trivial (an integer

ALU is sufficient) and also enables simple analysis by cache hardware.

Three Clarifications First, these properties only need to hold up to some loop nesting

level, because they can be considered to start at that level. Second, data-dependent streams

(indirect and pointer-chasing) are still potentially quite profitable to target, as their addresses

are still control independent. Third, it can still be profitable to target streams where not

all elements of the stream’s data are guaranteed to be used – i.e. the memory access can

be control dependent. Note that the access being control dependent is orthogonal to the

address being control dependent, and control-dependent access is not disqualified.

Methodology We profile SPEC CPU 2017 [34] to capture general application behavior,

as well as CortexSuite [35, 36] to reflect the importance of data processing. To analyze the

workloads, we use dynamic instrumentation and trace analysis. We exclude stack spilling

accesses as it would inflate the number of affine stream accesses.

15

ld
a

lib
lin

ea
r

m
ot
io
n-
es
tim

at
io
n

pc
a

rb
m

sp
hi
nx sr
r

sv
d3

di
sp
ar
ity

lo
ca
liz
at
io
n

m
se
r

m
ul
ti_

nc
ut si
ft

st
itc

h
sv
m

te
xt
ur
e_
sy
nt
he
si
s

tr
ac
ki
ng

na
m
d_
r

pa
re
st
_r

po
vr
ay
_r

bl
en

de
r_
r

pe
rl
be
nc
h_

s
gc
c_
s

m
cf
_s

lb
m
_s

om
ne

tp
p_
s

xa
la
nc
bm

k_
s

x2
64
_s

de
ep
sj
en

g_
s

im
ag
ic
k_
s

le
el
a_
s

na
b_
s

xz
_s

av
g.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Outside Unqualified PC Indirect Affine

Figure 2.1: Stream Breakdown (PC: Pointer-Chasing)

Q1 and Q2: Coverage and Pattern Fig 2.1 shows the breakdown of dynamic memory

accesses. Memory accesses outside of inlinable loops are labeled “outside”. Depending on

its access pattern, each qualified stream is further classified as affine, indirect or pointer-

chasing (PC). On average, 51.49% dynamic memory accesses belong to affine streams, while

10.90% come from indirect streams and 0.3% from pointer-chasing streams. Although on

average indirect streams contribute less than 12%, for some benchmarks more than 40% of

stream accesses are indirect, e.g. namd r. These benchmarks require efficient support for

dependence between streams to achieve high performance.

Observation 1: More than 60% of dynamic memory access instructions belongs to a

stream with specializable properties.

Observation 2: Affine streams are the most common, while indirect streams are also

common for some benchmarks.

16

ld
a

lib
lin

ea
r

m
ot
io
n-
es
tim

at
io
n

pc
a

rb
m

sp
hi
nx sr
r

sv
d3

di
sp
ar
ity

lo
ca
liz
at
io
n

m
se
r

m
ul
ti_

nc
ut si
ft

st
itc

h
sv
m

te
xt
ur
e_
sy
nt
he
si
s

tr
ac
ki
ng

na
m
d_
r

pa
re
st
_r

po
vr
ay
_r

bl
en

de
r_
r

pe
rl
be
nc
h_

s
gc
c_
s

m
cf
_s

lb
m
_s

om
ne

tp
p_
s

xa
la
nc
bm

k_
s

x2
64
_s

de
ep
sj
en

g_
s

im
ag
ic
k_
s

le
el
a_
s

na
b_
s

xz
_s

av
g.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

>0 >50 >100 >1k

Figure 2.2: Average Stream Length

Q3: Length Fig 2.2 shows the breakdown of stream accesses by the stream length. 51% of

stream accesses belong to a stream of length at least 1000, and 62.1% come from streams with

length at least 100. Notice that a stream of length N represents at least N loop iterations

(greater if we consider the reuse of stream elements). Therefore, even a shorter stream may

span across a long instruction window if the loop body is large.

Observation 3: Streams are generally long enough to convey meaningful patterns, while

shorter streams are also common, requiring low initialization overhead.

Q4: Interaction with Control For general-purpose workloads, it is common for streams

to coexist with the core’s control flow. To characterize the degree of this interaction, Fig 2.3

shows the accumulated distribution of stream accesses, grouped by the number of control

paths within the loop containing that static memory access instruction. Loops with 3 or

more control paths contribute 27.7% of dynamic stream access.

17

ld
a

lib
lin

ea
r

m
ot
io
n-
es
tim

at
io
n

pc
a

rb
m

sp
hi
nx sr
r

sv
d3

di
sp
ar
ity

lo
ca
liz
at
io
n

m
se
r

m
ul
ti_

nc
ut si
ft

st
itc

h
sv
m

te
xt
ur
e_
sy
nt
he
si
s

tr
ac
ki
ng

na
m
d_
r

pa
re
st
_r

po
vr
ay
_r

bl
en

de
r_
r

pe
rl
be
nc
h_

s
gc
c_
s

m
cf
_s

lb
m
_s

om
ne

tp
p_
s

xa
la
nc
bm

k_
s

x2
64
_s

de
ep
sj
en

g_
s

im
ag
ic
k_
s

le
el
a_
s

na
b_
s

xz
_s

av
g.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1 2 3 >3

Figure 2.3: Number of Control Paths

Observation 4: Because many stream accesses coexist with control flow, it is essential

for the ISA to decouple control flow.

2.2 Decoupled-Stream ISA

In this section, we first make an argument for the requirements of a stream-specialized

interface. We then define the decoupled-stream ISA informed by these requirements.

Stream ISA Requirements

In §2.1, we find that streams are common (> 50% of dynamic access), which is promising.

However, some streams are shorter (37% less than 100 accesses), streams often have indirect

access (about 11%), and streams often coexist with control flow (> 50% of stream accesses).

Therefore, we argue that a decoupled-stream ISA interface should have five qualities:

18

1 Integration-simplicity It should be lightweight and not require excessive core modifi-

cation, while also efficiently conveying stream patterns to hardware with low overhead for

short streams.

2 Generality It should be able to capture both regular and irregular (indirect, pointer-

chasing) memory access patterns.

3 Pattern-simplicity The stream definition should be analyzable by hardware (for stream-

aware cache policies).

4 Control under streaming It should enable control-dependent access, without interfer-

ing with the core speculation.

5 Abstract It should not expose the underlying microarchitecture.

Decoupled-stream ISA Approach Streams are initialized through a configuration in-

struction that defines the pattern. To communicate with the core pipeline, each stream is

assigned a pseudo-register, which is a register implicitly mapped to stream data. This means

that instructions which consume/produce stream data remain unmodified, keeping the inte-

gration simple (req. 1). Streams may specify other streams as dependences, which enables

generality across irregular types (req. 2). Streams are simple to analyze because there are

only a handful of common patterns (req. 3).

Streaming under control (req. 4) is possible because of how we update the meaning of

each pseudo-register, i.e. the data item a pseudo-register corresponds to within the stream.

Specifically, our approach is to add a “step” instruction to the core, which indicates the

advancement of the stream from the core’s perspective. This implies that data within the

stream may be used multiple times, or even ignored if not needed depending on the core

control flow.

Streams are general and ubiquitous, and therefore useful across subsequent ISA genera-

tions (req. 5). The only aspect of the microarchitecture exposed is the number of pseudo-

registers, which represents the number of streams supported simultaneously.

19

Decoupled-Stream Concepts

The following are the essential components of the ISA extensions:

∙ Streams: Streams are decoupled portions of the program which together generate

memory accesses. They are explicitly constructed and deconstructed (stream cfg and

stream end instructions), and their data can be accessed by traditional instructions

through pseudo-registers.

∙ Stream Types and Dependence: There are two stream types: memory streams

describe a memory access pattern; and induction streams define a repeating pattern of

values. Memory streams are dependent on either 1. induction variable streams (affine

access patterns), 2. other memory streams (indirect access patterns), or 3. themselves

(pointer-chasing).

∙ Pseudo-registers and Stream Stepping: A pseudo-register is a register which

refers to a stream’s data. The meaning of the register, the position into the stream,

is updated by a stream step instruction to the associated induction variable stream.

In other words, a stream step advances the pseudo-register position of all dependent

streams.

∙ Memory Semantics and Architecture State: Semantically, a load occurs at the

point of the first use of a pseudo-register corresponding to a load stream after stepping

or configuring, while a store happens at every write to a pseudo-register of a store

stream. Pseudo-registers become part of the architecture state after their first use and

are removed from the architecture state after stepping the corresponding induction

variable stream.

∙ Pseudo-register Width: Pseudo-registers have a definable width, which determines

the amount of data read by each step instruction. Instructions that access narrower

portions of the register specify an offset.

20

Stream-ISA Extensions

To explain the ISA intuitively, we describe its principles and potential through a series of

examples that stress its different aspects. Fig 2.4 shows five examples, with the decoupled-

stream pseudo code, and the stream dependence graph.

while (i < N)
 C[i] = A[i] + B[i];
 i++;

si

sc sa sb

s_cfg(sa=A[si],sb=B[si],sc=C[si]);
while (si < N)
 sc = sa + sb;
 s_step(si);
s_end(si,sa,sb,sc);

for (i = 0:N)
 C[i] = A[B[i]];
 i++;

si

sc sb

sa

s_cfg(sb=B[si],sa=A[sb],sc=C[si]);
while (si < N)
 sc = sa;
 s_step(si);
s_end(si,sa,sb,sc);

while (i < N && j < N)
 if (A[i] < B[j])
 v += C[i];
 i++;
 else
 j++;

si

sa sb

sj

s_cfg(sa=A[si],sb=B[sj],sc=C[si]);
while (si < N && sj < N)
 if (sa < sb)
 v += sc;
 s_step(si);
 else
 s_step(sj);
s_end(si,sa,sc,sj,sb);

for (i = 0:N)
 B[i] = A[i].x
 + A[i].y;
 i++;

si

sb sa

s_cfg(sa=A[si],sb=B[si]);
while (si < N)
 sb = sa.x + sa.y;
 s_step(si);
s_end(si,sa,sb);

a) Vector Add

sc

Legend: i, si, : induction variable stream A[i], sa, : memory stream

Original Pseudo Code Stream Decoupled Pseudo Code Stream Dependency Graph

for (i = 0:M)
 for (j = 0:N)
 sum += A[i][j];
 j++;
 i++;

s_cfg(sj=0:MxN,sa=A[sj]);
while (i < M)
 while (sj < N)
 sum += sa;
 s_step(sj);
 i++;
s_end(si,sj,sa);

sa

sj

b) Indirect Access

c) Control Flow

d) Structural Access

e) Multi-Level Stream

Affine access pattern
to A[], B[] and C[].

Indirect access pattern to A[B[i]].

Advance si, sa, sb, sc.

Conditional usage of sc.

Structural access on sa.

Configured at outer loop level.

Figure 2.4: Decoupled Stream ISA Examples

21

Basic Operation – Fig 2.4(a) The example is a dense vector addition, using three affine

streams. There are two load streams A[i], B[i] and a store stream C[i], which are all

dependent on an induction variable stream i. Each stream is assigned a pseudo-register,

which is used by the traditional instructions to interact with streams. Next, we explain the

use of stream instructions.

s cfg: A s cfg instruction is inserted before entering the loop which uses the stream’s

data. It defines all of the streams within this loop level, including their type (induc-

tion/memory), pattern (stride, width, and optional length), dependences, and starting ad-

dress1. This interface conveys stream information at a coarse granularity, using a stable

interface.

In practice, after the configuration is complete, the hardware may begin fetching data

ahead of the core’s requests based on the program. Also, note that the stream’s data never

needs to be consumed, though an unused stream would occupy a pseudo-register.

s step: As described earlier, the s step instruction advances the pseudo-register posi-

tion of the induction variable and dependent streams. In this example, stepping s i will also

advance s a, s b and s c by one element. This highlights how the approach of implicitly

stepping dependent streams avoids redundant step instructions.

An alternative decoupled ISA could have used a “destructive read” interface, where a

read of a pseudo-register implicitly advances the state. This would have worked well in this

example, eliminating the need for step instruction. However, this would not allow control-

dependent access, as described shortly.

s end: The s end instruction deallocates a set of streams from the corresponding pseudo-

registers. Generally, this happens after the loop in which the stream use occurred, but an

explicit s end enables the termination of a stream to be data-dependent.

1This can be implemented with a series of instructions for each stream. While this is shown abstractly
in the figure, in our implementation, it is an instruction cache load of configuration data, interpreted by the
hardware.

22

Indirect Memory Access – Fig 2.4(b) Indirect memory access is supported by making

the address of one memory stream dependent on the value of another. In this example, s a

is dependent on s b. We also refer to s b as the base stream of s a. Note that s a is also

stepped with the s step of s i.

Control Flow – Fig 2.4(c) The s step interface enables the ISA to specify control-

dependent access, meaning that a stream element may be used 0 times, once or many times.

This example iterates over the elements of a[i] and b[j], but their relative ordering is data-

dependent. This is implemented by conditionally stepping stream s i and s j depending

on the outcome of the comparison. Having a s step instruction makes it trivial to support

such a scenario, by simply replacing the increment instruction with a corresponding s step.

Notice that here not every element of s c will eventually be used. In a traditional ISA,

such unused elements make it harder for the prefetcher to figure out the access pattern and

prefetch for future elements. With the help of the compiler and the support of explicit control

on when to step the stream, we effectively decouple the access pattern from the control flow.

This also enables a new opportunity for the hardware, as now it knows the addresses and

can speculate whether the stream element will be used and whether it should prefetch.

Coalescing Streams – Fig 2.4(d) In some situations, memory access patterns become

more regular when coalescing from two static instructions. A common scenario is iterating

through an array of structs, as shown in the example. Here the structural accesses on x and y

fields can be coalesced into a single stream, where the pseudo-register width is now doubled.

This reduces the total number of streams and also makes the access pattern contiguous.

To support this, the user of a pseudo-register may add an immediate offset parameter to

specify the offset from the head of the pseudo-register2. In this example, s a.y has an offset

of 4 bytes (assuming int32 t data type).

2In theory, this support could be added to the ISA by extending each instruction or adding a header byte
to specify the offset. In our implementation, we add this information to the stream configuration.

23

Multi-Level Streams – Fig 2.4(e) It is sometimes advantageous to configure a stream

at an outer loop level to increase the length. This example iterates over a 2D array and is

transformed into a single memory stream. Because N is known and there is no conditional

stepping, the affine access pattern can be determined before entering the outer loop. The

induction variable i is not specialized as a stream in this example, while the induction

variable stream s j iterates from 0 to 𝑀 ×𝑁 .

Pattern Limitations and Speculation

The address patterns that we support are limited to those that are decouplable, i.e. de-

termined at the point of configuration. There are two relevant caveats: 1. data may be

conditionally used, and 2. the outermost dimension of the pattern can have an unknown

length. This corresponds to the two forms of speculation that we allow for address patterns:

that cache lines in the pattern are likely useful, and that streams are long enough that the

overhead of loading a few extra items is acceptable.

This has implications for how many loop levels we can hoist up the configuration of a

stream. If at a given outer level either the trip count of the inner loop becomes unknown,

or the induction variable becomes conditionally stepped, then the decoupling invariant can

no longer be maintained.

2.3 Near-Stream Computing Abstraction

Here we discuss extensions to decoupled stream ISAs [28] to associate streams with compu-

tation, as well as the compiler support.

24

while (i < N)
 C[i] = A[i]+B[i];
 i++;

while (i < N)
 s_store(sc);
 s_step(i);
s_end(sa, sb, sc);

while (i < N)
 v = (A[B[i]] += 1);
 i++;
 foo(v);

sb

sa

s_cfg(sb=B[i], sa=A[sb]+=1);
while (i < N)
 v = s_atomic(sa);
 s_step(i);
 foo(v);
s_end(sa, sb);

(c) Indirect Atomic

 Legend: Address Dependence Value Dependence Stream with N-S Insts.
 sv: Stream id. for reduction stream sa,b,c: Stream id. for memory stream

N-S Computing Pseudo Assembly Stream Dep. GraphOriginal Pseudo Code

s_cfg(sc=C[i]=sa+sb=A[i]+B[i]);

sa sb

sc

Semantically, 2 loads,
1 add & 1 store

Semantically,
indirect atomic

(b) Vector Add

while (i < N)
 v += A[i];
 i++;

s_cfg(sa=A[i], sv+=sa);
while (i < N)
 s_step(i);
v = s_load(sv);
s_end(sv,sa);

sv

saSemantically,
 1 load & 1 add

(a) Vector Sum Config.

Get final value
+=

++

+

Config.

Config. outer &
inner streams

while (u < N)
 P, Q = Edges[u];
 i = 0, s = 0;
 while (i < Q - P)
 v = P[i];
 s += C[v];
 // ...

(d) Pull Page-Rank s_cfg(se=Edges[u], sv=se.P[i],
 sc=C[sv], ss+=sc);
while (u < N)
 while (i < se.Q-se.P)
 s_step(i);
 s = s_load(ss);
 // ...
s_end(se, sv, sc, ss);

Config.
se

ss +=

Outer Inner

sc

sv

Get final indirect
reduction value

Config.

Figure 2.5: Near-Stream Computing ISA Examples

Near-Stream Computing ISAs

We extend streams to define co-located computation, or near-stream instructions. Many

types of streams can have near-stream instructions: load streams (computing using loaded

values), store streams (computing values to be stored), atomic streams (the atomic function

is defined by the stream), and special reduction streams (computing using its previous result

and loaded values). When there is a choice of associating an instruction with one or another

stream, the compiler decides based on heuristics to optimize data traffic and reuse (see §2.4).

Besides the normal address dependence for the access pattern, streams with computation

may also have value dependencies if they take other streams’ data as their computation

inputs. We define the user as the value-dependent stream and the provider as the value-base

25

stream. Loop-invariant inputs are provided at configuration time. Streams cannot accept

loop-variant core values, as it breaks the decoupling boundary.

Near-stream instructions are outlined in a separate function, with the pointer in the

stream configuration. Computation is wrapped in a loop to facilitate pipelined execution of

instances of the near-stream instructions. These functions have no memory access and are

stackless. They use s load/store to communicate the stream inputs/result, and s step to

advance to the next ready computing iteration. These instructions convey no shared memory

semantics in this context and are only used for communication. This approach is general

enough for the targeted workloads.

Examples Fig 2.5 shows four examples in the near-stream computing ISA, each demon-

strating a specific feature.

Reduction - 2.5(a): A reduction stream sv sums a load stream sa. sv has value depen-

dencies on sa and itself. The in-loop s load is eliminated as the reduction is decoupled from

the core. Instead, after exiting the loop, a s load retrieves the final result.

Store - 2.5(b): A store stream sc has two value dependencies on load streams sa and

sb. The s store recieves both the address and stored value from the store stream sc, and

semantically it completes several near-stream operations: 2 loads, 1 addition and 1 store.

Atomic - 2.5(c): A s atomic instruction performs the atomic operation on the indirect

stream address, and returns the new value, which is consumed by foo().

Nest - 2.5(d): To avoid frequent configuration of short inner loop streams, we extend

the stream ISA [28] to allow nesting of stream configuration. The inner loop streams’

configuration and trip count must only depend on outer stream or loop-invariant data. Each

outer stream iteration instantiates a new inner loop stream. A conditional inner loop can

also be nested, as long as the condition purely depends on outer streams; this is transformed

into predication in the configuration.

26

2.4 Compiler Support

We implement compiler support to identify streams and transform the original program to

decouple streams with near-stream computations. We implement the compiler transforma-

tions using LLVM IR [37]. Programs are transformed and compiled to an extended x86

backend with new stream instructions.

Decoupled-Stream ISA

To support decoupled-stream ISA, there are three phases: recognizing stream candidates,

selecting qualified candidates, and code generation.

Recognizing Stream Candidates The compiler treats every static memory access in-

struction in a loop as a candidate for a memory stream, and every 𝜑 node in the loop

entrant basic block as an induction variable stream. 𝜑 nodes not in the loop entrant basic

block represent other control-dependent values and are not considered as candidates. Start-

ing from the candidate instruction, the compiler performs a backward search on its operands,

gathering instructions until it encounters a loop-invariant, a constant, or another candidate

instruction. It will also record dependencies between stream candidates.

Selecting Stream Candidates After finding the candidates, the compiler identifies all

candidates qualified for stream decoupling. First, a candidate can only be qualified if it

has a simple enough pattern to match the supported affine, indirect, and pointer-chasing

patterns. Specifically, it can not contain any 𝜑 node, which represents control-dependent

address generation. Also, it should not contain any unsupported operations, e.g. floating

point operations.

Second, the compiler checks the dependencies between streams. A trivial constraint

is that if any of its base streams within the same loop level is unqualified, the stream is

unqualified. A more sophisticated case is to handle multiple induction variables. To support

27

configuring streams in outer loops, if the address pattern limitations in 2.2 are satisfied, we

remove the dependency on any outer loop induction variable so that the memory stream

depends on only one innermost induction variable (the iteration domain is incorporated into

the inner loop variable). If this is not possible, the stream becomes unqualified.

During this phase, the compiler coalesces affine streams with the same induction variable

and small offsets between their elements. The compiler also drops some qualified streams if

the total number of streams exceeds the maximum. The compiler prioritizes memory streams

with no dependent streams to drop, as they are less likely on the critical path.

Similar to some prior work [38, 39, 40], we take a hardware/software codesign approach to

memory aliasing. The compiler records which loads and stores may alias, so that non-aliasing

streams can bypass the core’s LSQ.

Code Generation During the code generation phase, the compiler first generates the

stream configuration for the selected candidates. The configuration specifies 1. which

pseudo-register to represent the stream; 2. the type of the stream (induction, load, store);

3. loop invariant values (stride, width); and 4. stream dependencies.

The compiler transforms the loop by 1. inserting stream cfg, stream step and stream end

instructions; 2. replacing the operand of a user instruction with the corresponding pseudo

register, along with the offset within the element (for a coalesced stream); 3. removing the

memory access instruction for a memory stream, and possibly insert a dummy user instruc-

tion to ensure the original program order is preserved; and 4. if there are no other users,

remove the address computation instructions.

Fig 2.6 shows both the original and transformed X86 assembly code for example in

Fig 2.4(c). The stream operands are replaced by the corresponding pseudo-registers.

28

 ...
.LBB0_1:
 movsxd rdx, r8d
 mov edi, [4*rdx + a]
 movsxd rcx, eax
 cmp edi, [4*rcx + b]
 jge .LBB0_3
 add esi, [4*rdx + c]
 add edx, 1
 mov r8d, edx
 cmp r8d, 1023
 jle .LBB0_5
 jmp .LBB0_6
.LBB0_3:
 add eax, 1
 cmp r8d, 1023
 jg .LBB0_6
.LBB0_5:
 cmp eax, 1024
 jl .LBB0_1
 ...

 ...
 s_cfg
.LBB0_1:
 cmp s2, s3
 jge .LBB0_3
 add esi, s4
 s_step s0
 cmp s0, 1023
 jle .LBB0_5
 jmp .LBB0_6
.LBB0_3:
 s_step s1
 cmp s1, 1023
 jg .LBB0_6
.LBB0_5:
 cmp s1, 1024
 jl .LBB0_1
.LBB0_6:
 s_end
 ...

Register to Stream Mapping
r8d -> iv stream si
eax -> iv stream sj
[4*rdx + a] -> memory stream sa
[4*rcx + b] -> memory stream sb
[4*rdx + c] -> memory stream sc

Stream to Pseudo
Register Mapping
Stream si -> s0
Stream sj -> s1
Stream sa -> s2
Stream sb -> s3
Stream sc -> s4

Original Stream Specialized

Figure 2.6: Decoupled Stream Assembly Example

Support Near-Stream Computing

Ideally, we could formulate this as an optimization problem to find the best slicing between

computations and streams. However, we find a heuristic-based approach is capable of han-

dling the existing workloads. Specifically, the compiler tries to recognize load computation,

store computation and reduction one by one:

Load For each load stream, the compiler performs a BFS on its user instructions, and

checks if visited instructions form a closure, i.e. no outside users except the candidate final

instruction. If so, and the final instruction has a smaller data type, the compiler slices out

29

the visited instructions, with the final instruction as the return value. The compiler iterates

to find larger closures with fewer bits total in live outputs. Algorithm 1 covers the details.

Store Similar to loads, the compiler searches for instructions computing the stored value,

and records a value dependence when encountering a load instruction (or its final instruction).

Reduce Reduction variables are typically represented as phi nodes in the loop entry basic

block, and can be recognized by searching backward for computation instructions. The initial

value for reduction is recorded either directly in the configuration (if constant) or as a live

input at runtime.

RMW A load and the following store to the same address are merged into a single up-

date stream. Atomics are handled similarly to stores, with a possible return value. The

compiler only targets atomics with relaxed memory order, which only guarantees atomicity

and can be reordered with other memory accesses. Therefore, they should not be used for

synchronization, e.g. locks. The compiler wraps the near-stream instructions into a loop and

outlines this to a function, with stream instructions to communicate the operands/results.

It also inserts necessary stream instructions in the original program to communicate with

streams, e.g. s store.

30

Algorithm 1: Find Load Computation
Result: ComputeInsts, FinalInst

1 ComputeInsts ← ∅, FinalInst ← Load;

2 Visited ← Frontier ← {Load}, NextFrontier ← ∅;

3 while !Frontier.empty() do

4 forall Inst : Frontier do

5 forall User : Inst.users() do

6 if User in Visited or !isComputeInst(User) or !isSameBasicBlock(User) then

7 continue;

8 NextFrontier.insert(User)

9 if NextFrontier.size() == 1 then // check closure

10 FormClosure ← true;

11 CandidateFinalInst ← NextFrontier.front();

12 forall Inst : Visited do

13 forall User : Inst.users() do

14 if not User in Visited and User != CandidateFinalInst then

15 FormClosure ← false;

16 break;

17 if FormClosure and CandidateFinalInst.size() ¡ FinalInst.size() then

18 ComputeInsts ← Visited;

19 FinalInst ← CandidateFinalInst;

20 Visited ← Visited ∪ NextFrontier;

21 Frontier ← NextFrontier;

22 NextFrontier ← ∅;

31

CHAPTER 3

Stream-Specialized Processors

Even without near-stream computations, streams by themselves are powerful abstractions.

In this chapter, we develop stream-specialized processors (SSP), which leverage the high-level

semantics exposed by only streams to improve performance and energy efficiency. Specif-

ically, we first overview the proposed stream-specialized processor (§3.1) with detailed mi-

croarchitecture design (§3.2) and stream-aware policies (§3.3). Then we describe the method-

ology in §3.4 and evaluate stream-specialized processors in §3.5. Finally, we discuss related

works in §3.6.

3.1 Stream Specialization Overview

Given the premise of explicitly encoding streams in the ISA, the core pipeline can be extended

to explicitly manage the stream context and the relative index in each stream. We first

overview our approach in terms of the microarchitecture of the stream-specialized processor

(SSP), and then discuss how it unlocks the following opportunities depicted in Fig 3.1.

Microarchitecture Approach We modify the core pipeline’s front end to track the posi-

tion within each stream based on interpreting step instructions. We add a stream engine (SE)

to generate addresses and interact with the memory system. Finally, we add a load-stream

FIFO (and store-stream FIFO), which core instructions may access when loading (and stor-

ing) pseudo-registers. Streams may be configured and accessed speculatively; and a simple

protocol enables the rollback of stream positions and configurations on misspeculation.

32

Program Order Traditional Out-of-order Stream-specialized OOO
...

loop_br

ctrl
addr_gen
ld a[i+1]
compute
...

iter
i-1

Core

ctrl
addr_gen
ld a[i]
compute
...

loop_br

In
st

ru
ct

io
n

 W
in

d
o

w

addr_gen

ld

loop_br

ld

compute

loop_br

Cache

...

Core

compute

In
st

ru
ct

io
n

 W
in

d
o

w

loop_br

loop_br

...

compute

compute

...

...

stream_cfg

addr

val

addr

val

lookup

respond

lookup

respond

loop_br

...
compute

Stream
addr, pattern

Stream FIFO

Long Miss Latency

Opportunity 2. Decoupling stream access from OOO core.

Opportunity 1. Prefetching for
stream-based access, even in

the presence of control.

Opportunity 3.
Cache access is
stream-aware

Before Loop

ctrl

ctrl

ctrl

ctrl

ctrl

addr_gen Miss,
go to L2

Miss,
go to L2

L2 Cache

respond

lookup
bypass l1

iter
i

iter
i+1

Figure 3.1: Overview of Stream Specialization Paradigm vs Traditional Out-of-Order

Opportunity 1: Stream-based prefetching Knowing access patterns and their rela-

tionship to the core’s control flow can lead to a very effective stream-based programmable

prefetcher. As shown in Fig 3.1, the prefetcher can understand when exactly to make a

request based on how far ahead of the core the prefetch is. Similar to other programmable

prefetchers, this would enable the scheduling of memory requests far past the limits of a

traditional OOO core processor’s instruction window.

Our Approach: Stream requests are decoupled from the core’s instruction window, en-

abling deep prefetching for regular and irregular memory access. The primary benefit of

decoupling is reducing the negative impact of long-latency memory accesses, without requir-

ing a large instruction window. Maintaining the relationship to the control flow of the core

through the “step” instruction enables the prefetcher to keep an accurate distance without

running ahead and polluting the cache.

Opportunity 2: Stream decoupling Stream primitives can further be incorporated

into the functional semantics of the program to enable what we refer to as semi-binding

prefetching. Following the principle of decoupled access execute [41], a specialized mem-

ory access engine would generate requests corresponding to streams, and ordinary core in-

structions can access stream data through registers that are mapped to this data (we call

these pseudo-registers). There are several potential advantages, including the removal of

33

address-generation instructions from the general core pipeline, coalescing accesses from re-

lated streams into a smaller number of requests to cache, and also reducing the possibility

of cache pollution through timely, semi-binding prefetch.

Our Approach: The principle of stream decoupling is to create a direct interface between

data which is stream-prefetched, and the core instructions. This eliminates redundant ad-

dress generation which is typical of programmable prefetchers, and simultaneously reduces

instruction pressure on the core pipeline. Besides, the benefits of vectorization of memory

are brought to traditionally non-vectorizable code; stream loads fetch data in units of the L1

bandwidth, even though a particular code may have too much control flow to be otherwise

vectorized, and our design requires no vector shuffling.

Decoupled streams are what we call semi-binding. They are binding in that they are

obligatory and consume registers. However, they are non-binding in that not all data must be

consumed, and so the hardware can ignore memory protection faults for non-consumed data.

Therefore, stream-decoupling keeps the benefits of binding prefetch, even in the presence of

control flow and indirect access. Also, the prefetch distance can be controlled through

dynamic throttling, reducing the negative impact of being obligatory.

Opportunity 3: Cache Awareness Streams are precise definitions of an access pattern.

Various cache policies could take advantage of advanced knowledge of these patterns: re-

placement policies, dead-block prediction, cache bypassing etc. One specific idea is to let

the cache bypass streams based on the expected footprint of the stream.

Our Approach: The stream engine has access to high-level information regarding streams,

through stream configuration instructions. Using this information, and supplemented by the

access pattern, the stream engine can make requests to the cache in a way that is aware of

stream behaviors.

We specifically explore the idea of exposing the footprint of the stream to the cache. A

footprint is an under-approximation of the total number of cache lines accessed. Knowing

34

ICache

Decode

Register
File

Execution
Pipeline

Stream
Ld FIFO

Fetch Dispatch Execute Memory Writeback

Stream
Engine

Config

Cache
Load Data

Iter. Map

Stream
St. FIFO

(to reg. file)

Store
data

Iter. step

PEB+LSQ

DCache

Figure 3.2: Stream-specialized Pipeline

Iteration Update
(address gen.)

D
ef

in
it

io
n

Load
Engine

Config.
Unit

Cache
load

Store
FIFO

Stream
Config.

St
at

e

O
pe

ra
n

ds
(i

n
d

ir
ec

t)

St
re

a
m

 T
ab

le
s

Iteration Update
(address gen.)

D
ef

in
it

io
n

St
at

e

O
pe

ra
n

ds
(i

n
d

ir
ec

t)

St
re

a
m

 T
ab

le
s

Cache
Data

Stream SelectStream Select
Stream FIFO
Occupancy

Indirect data bus

config
bus

Store
 Engine

Figure 3.3: Stream Engine

the footprint in advance can lead to an enhanced cache bypassing policy, where requests

from a high-footprint stream (that would not fit in e.g. an L2 cache) with low temporal

reuse are bypassed to larger caches so that they do not evict useful data.

3.2 SSP Microarchitecture Extensions

A traditional processor can be extended with a small number of relatively simple structures

to create a stream-specialized processor (SSP), as we depict at a high level in Fig 3.2. SSP

extensions have four basic responsibilities: 1. Maintain the core’s view of stream position

based on configuration and stepping instructions; 2. Maintain the streams’ decoupled view of

their state, and allow streams to issue memory requests; 3. Maintain the data that decoupled

between the core’s view and the streams’ view, and enable core instructions to access this

data; 4. Keep the above consistent during misspeculation and exceptions. We overview each

of the corresponding components:

Core’s view – Iteration Map The front end of the pipeline maintains the iteration map

(Fig 3.4), which counts iterations of induction variable streams, as seen by dispatch. A

s cfg instruction updates the mapping from the stream index to the iteration count table.

A s step increments the iteration count table. User instructions of a stream access the table

to ascertain the current iteration, which is used to index into stream FIFOs.

35

Iter. Count

Stream Map
Ind. Var

Index
3 0

Stream
 Index

7

Figure 3.4: Iteration Map

Streams’ View – Stream Engine The stream engine (SE) is the central component of a

stream-specialized design, as shown in Fig 3.3. It contains an induction table to hold iterator

parameters, and a load engine and store engine, which generates load and store requests to

memory. Multiple streams may be mapped to each engine.

To explain the operation, first, a s cfg instruction will load data to the stream engine’s

configuration unit. This will initialize the designated streams and parameters on the load

and store engines. When the unit receives notice of a committed s end, the associated stream

is deallocated from the load or store engine.

The load and store engine maintains three tables describing the state of any stream. The

first is the stream’s definition, containing the pattern (affine, indirect, linked) and parameters

(stride, width, optional length). The second is the stream’s state, essentially the memory-

side view of the induction variables. This is where the current address is stored. Finally are

operands, which store any dependences on the data of other streams (for indirect streams and

pointer-chasing streams). Each stream can have up to two dependencies on other streams,

and for each dependence, we keep enough space for four iterations worth of storage for any

given dependence to run ahead.

Each cycle, the stream select unit picks a stream based on the readiness of corresponding

operands (if any) and whether remaining FIFO entries are allocated to the stream (see

Section 3.3 on page 39 for allocation policies). Requests are in units of per-port L1 cache

bandwidth (64 bytes in our design). In parallel with sending the request, the stream’s state

is updated for the next iteration.

36

Decoupled Data – Stream FIFOs The stream FIFOs are responsible for holding de-

coupled state either from or to memory (load and store FIFO). We use an implementation

similar to the dynamically partitioned queues of Outrider [42], which uses a pointer table

to virtualize a single wide buffer into multiple FIFO queues (in our case, one for each con-

current stream). For core instructions which consume stream data, they would access the

load stream FIFO instead of the register file1. For stores to streams, core instructions only

produce values, and addresses are produced by the stream engine. These are combined at

the store stream FIFO before being sent to the memory system.

Control Mispeculation Stream requests and uses are speculative to avoid pipeline seri-

alization. We discuss implementation in the context of an R10K [43] style merged register

file. To maintain the core’s view, during misspeculation rollback while the map table is

being reverted using register mapping information stored in the core’s reorder buffer, the

iteration map is also similarly decremented for each misspeculated step instruction. If no

s cfg instruction is misspeculated, only the core’s view of the stream is reverted, because

the addresses for streams are control-independent. This means we achieve a low-cost form

of selective replay [44] by virtue of semi-binding prefetch.

When reverting a s cfg instruction, both the core’s view and streams’ view is reverted.

On the core side, the stream map entries are freed, and the corresponding streams are de-

configured within the stream engine. Data stored within decoupled FIFOs corresponding to

these streams is flushed.

Precise State and Context Switch Precise states and exceptions can be supported using

the same speculation recovery mechanisms as above. Because the stream configuration and

pseudo-register values (specifically, those that have not been stepped since the last use) are

part of the architecture state, they must be saved on the context switch. These items amount

to less than 1KB for our design.

1An alternate design could partition the physical register file for use as a stream-FIFO.

37

Interaction with Memory Before issuing a stream request, the virtual address is trans-

lated by the core’s MMU. Access to TLB can be delayed to favor core loads, but address

translation needs only occur once per page for affine streams with low strides, reducing TLB

access in the common case.

Because stream loads effectively aggressively reorder loads, may-alias streams require

memory disambiguation and recovery. For this, the stream engine relies on the core’s LSQ

to perform memory disambiguation, along with its memory dependence predictor (similar

to MAD [38]). When dispatching a core instruction that semantically triggers the memory

access, it is inserted into the core’s LSQ as a normal load/store. To detect RAW dependence

between a store and a prefetch stream element, the stream engine also maintains a prefetch

element buffer (PEB). The PEB can be considered a logical extension of the LQ, which

contains the prefetched elements by the stream engine. Elements in the PEB are freed when

the first use is dispatched, or when the element is released as unused. Traditional memory

order checking is performed between SQ and LQ + PEB. Hitting in the PEB indicates a

misordered stream access, and the streams’ view should be reverted. Overall, may-alias

streams can still be aggressively reordered, but do not reduce the LSQ-energy.

To implement a non-relaxed memory model, SSP needs to be integrated with the core’s

memory-consistency speculation mechanism (e.g. if relevant coherence state changed, flush

core pipeline and roll back streams’ view).

Finally, because the ISA semantically only performs memory operations if a pseudo-

register is accessed, memory faults from prefetching stream requests are delayed until the

execution of the corresponding user instruction. Faults are silently ignored if the FIFO entry

is unused.

38

3.3 Stream-Aware Policies

Now with the stream-specialized microarchitecture aware of high-level stream information,

we can leverage it to design effective prefetching and stream-aware cache bypassing policies.

Stream Prefetch Distance and Throttling

One common problem for prefetching is to determine a suitable prefetch distance. An ideal

prefetcher would bring in the data precisely when the user instruction is ready to be issued.

Thus, a waiting user instruction is an accurate signal that the prefetcher is falling behind. It

is straightforward to leverage this information within a decoupled-stream microarchitecture,

as the user instruction checks the readiness of the FIFO entry before issuing. Since the data

is prefetched into the FIFO, allocating a different number of FIFO entries to a stream will

effectively change its prefetch distance.

A simple policy would be to split the FIFO evenly for all stream pseudo-registers. This

reduces the hardware complexity of managing the FIFO. However, this leads to low utiliza-

tion, as FIFO entries for unassigned pseudo-registers will be wasted. Also, streams with

different memory footprints may hit different cache levels and require different prefetch dis-

tances to hide the memory latency. A better policy is to dynamically allocate FIFO entries

on demand.

Dynamic Throttling We implement a stream-aware dynamic throttling policy. Each

stream is assigned a FIFO occupancy 𝑁 . Associated with each FIFO entry is a 1-bit late

flag, which is set by the issue logic when the stream operand is the last operand to be

ready. Each stream is assigned a 3-bit late counter. When releasing a FIFO entry, the

late counter is incremented if late is set, and decremented otherwise. When the late

counter reaches a threshold (currently 7), the stream is considered lagging behind the core

and its 𝑁 is increased (by 2) if 𝑁 is smaller than a maximum threshold 𝑇 and the sum of

all configured streams’ 𝑁 does not exceed the total FIFO size. Having a maximum size 𝑇

39

avoids the pathological case when a stream occupies most of the FIFO. 𝑁 is initialized to

a small value when configuring the stream, which helps capture different behaviors of the

same stream during different phases.

Possible Extensions The compiler could provide a suggested initial value for 𝑁 when

generating stream configurations, by leveraging the information of stream memory footprints,

profiled latency, etc. Another opportunity is to use the dependencies between streams to

prioritize those with dependent streams, as they are more likely on the critical path. These

are left to future work.

Stream-Aware Cache Bypassing

Caching data with low temporal locality unnecessarily wastes the cache capacity and hurts

the performance. It is beneficial to identify and bypass such requests.

Our insight is that streams inherently contain useful information for the cache to make

such a bypassing decision, e.g. memory footprint, stream length, reuse distance, etc. Ideally,

the cache should bypass a stream when the storage required to achieve temporal reuse is

beyond its capacity. Bypassing correct streams brings two major benefits: 1. It avoids

polluting the cache with data that will not be reused; and 2. Since a bypassed stream is not

cached, the cache can speculate that a request from that stream will miss and immediately

forward the request to the next level of cache without waiting for the tag lookup or allocating

an MSHR. Tag lookup is still necessary to detect misspeculation, but it is removed from

the critical path for the common miss case. Not allocating an MSHR increases memory

parallelism by allowing more misses to be handled simultaneously.

To better understand how stream information can help cache bypassing, consider the

following examples:

Example 1: Repeatedly iterating over two affine streams, where the cache can hold only

one stream. Without bypassing, the cache tries to keep both streams and results in a 0% hit

40

Field Description Field Description

sid Stream id miss # cache misses

footprint Est. mem. footprint reuse # cache reuses

request # stream requests bypass Whether to bypass

Table 3.1: Fields of Stream Table

rate. With the footprint of the stream, the cache can reason that the total storage required

to cache both streams is beyond its capacity, and thus bypass one stream. The other stream

now can be fully cached, which improves the hit rate to 50% and reduces the bandwidth

pressure to lower cache levels.

Example 2: Iterating over one large affine stream that can not fit in the LLC. In such a

case, there are no benefits to caching it. Bypassing it will increase the memory parallelism.

The benefit of stream-awareness is knowing the footprint at the time of stream configuration.

While useful, stream information is not sufficient to handle all situations. For example,

it is impossible to accurately estimate the memory footprint of an indirect stream. Also,

there may be some temporal reuse from non-stream requests, and bypassing the cache for

such a stream hurts the performance.

To mitigate this, a hybrid policy is used to leverage both the stream information and

dynamic statistics. In the cache, a stream is identified by the s cfg’s PC and pseudo-

registers (sid). Some lower bits of the PC are used to distinguish streams with the same

pseudo-register from different regions. We augment the cache with a stream table. Table 3.1

gives a basic description of each field of the stream table. An sid field is also added to the

tag representing which stream brought in this cache line.

Stream Configuration: After configuration, the stream engine will send a request to

the cache, which contains all configured streams’ sids and their memory footprints. For affine

streams with known length at configuration time, their memory footprint can be estimated

41

Not
Bypass

Bypass

Receive NOT_BYPASS message
from lower level cache

High miss count &&
Low reuse count &&

(Memory footprint > Cache Capacity
|| Memory footprint == 0)

High reuse count

Send NOT_BYPASS message

to higher level cache

Figure 3.5: State Transition for Cache Bypassing

by the stream engine from the configuration. If not, it sets the memory footprint to 0, and

the cache will exclude this information when making bypassing decisions. The cache fills in

the corresponding stream table entry when receiving this request. Requests generated by

the stream engine contain the stream’s sid. The cache looks up the stream table to check if

it should bypass.

Non-Bypass Stream Requests: If bypass is not set, the request is treated as a

normal request. The cache updates the stream’s dynamic information by: 1. Incrementing

the access counter. 2. If missed, incrementing the miss counter. When the cache line is

brought in from the lower level cache, it sets the sid field of the tag to the request stream’s

sid so that reuse information can be tracked. 3. If hit, and the sid of the tag is valid,

incrementing the reuse counter of that stream.

Bypass Stream Requests: If the stream is bypassed, i.e. bypass is set, the cache

will forward the request directly to the lower level cache without waiting for its tag lookup

or allocating MSHRs. 1. If missed, the cache forwards the future response from the lower-

level cache without caching it. 2. If hit, the cache responds normally and drops the future

response from the lower-level cache.

Bypassing Decision: Fig 3.5 shows the FSM making bypassing decisions. The cache

reconsiders its decision for a stream when its access counter hits a threshold. A stream

42

Core 2.0GHz 8-Way fetch/issue/commit OoO Cores

64 IQ, 32 LQ, 32 SQ, 192 ROB, 256 Int RF, 256 FP RF

Function Units 6 Int ALU (1 cycle), 2 Int Mult/Div (3/20 cycles)

4 FP ALU (2 cycles), 2 FP Mult/Div (4/12 cycles), 4 SIMD (1 cycle)

Priv. L1 ICache 32KB, 8-way, LRU, 8 MSHRs, 2-cycle latency

Priv. L1 DCache 32KB, 8-way, LRU, 8 MSHRs, 2-cycle latency, LRU

Priv. L2 Cache 256KB, 16-way, 16 MSHRs, 15-cycle latency, LRU

To L3 Bus 16-byte width

Shared L3 Cache 8MB, 8-way, 20 MSHRs, 20-cycle latency

DRAM 2 channel, 1600MHz DDR3 12.8 GB/s

Table 3.2: Simulation Parameters for Baseline

satisfies the condition in Fig 3.5 is marked as bypassed. On the other hand, streams with

a high reuse count may also have a high reuse rate at the higher-level cache. In such a

case, the cache will send a NOT BYPASS message to the higher-level cache to cancel its bypass

decision. The LLC never bypasses any stream. The cache also clears the access, miss and

reuse counter after reconsidering the bypassing decision. This is to ensure that the stream

table captures the changing dynamic behavior of the stream at run time.

3.4 Methodology

Simulation and Compilation For the simulation, we model an out-of-order processor with

a modified version of gem5 [45], extended with support for decoupled-stream ISA extensions

and the proposed microarchitecture. As described, we use an LLVM-based compiler to

43

identify streams and transform the program. The simulation is carried out with an approach

similar to Aladdin [46, 47] and TDG [48, 49], where compiler transforms are applied to

a dynamic dependence graph (DDDG) of LLVM IR operations. We generate wrong-path

addresses of streams in the DDDG to ensure fair accounting of unused elements.

Common Parameters Table 3.2 summarizes the parameters of the baseline system. We

use McPAT [50] for energy estimation, extended to model the stream engine. For the number

of pseudo-registers, we choose 24, as it is sufficient to cover most of the hot regions in the

benchmarks we simulated.

Baselines/Configurations We compare against the following:

∙ Stride Prefetching (Pf-Stride): In this configuration, we add a PC-based stride

prefetcher to all three cache levels. The prefetcher takes 1 cycle to generate the prefetch

request and it prefetches for 8 requests ahead.

∙ Ideal Helper Thread Prefetching (Pf-Helper): As discussed earlier, helper-

thread approaches [51, 52, 53, 54, 55, 56, 57, 58] are a form of aggressive execution-

driven prefetching. We evaluate against an ideal SMT-based helper-thread approach,

which consumes no core resources (e.g. ROB, RF)2. The helper thread is fixed to run 𝑘

dynamic instructions ahead of the main thread to prefetch the data. We experimentally

found 𝑘 = 1000 is sufficient to bring significant speedup for the main thread.

∙ Non-Binding Stream Prefetching (SSP-Non-Bind): This configuration is a lim-

ited version of SSP, where the compiler only recognizes the stream and inserts stream

instructions, i.e. s cfg, s step and s end. This configuration only uses the stream

engine as a prefetcher and the data fetched is stored in cache. If not specified, we

use a 192-entry FIFO for this configuration, with 8 entries per stream. Since most

2Properly allocating resources and choosing an instruction slice for a helper thread is the subject of much
research, so we abstract here.

44

streams will have element size less than or equal to 8 bytes, we set the FIFO entry size

to 8 bytes. Note that throttling is not possible in SSP-Non-Bind as there are no user

instructions.

∙ Semi-Binding Stream Prefetching (SSP-Semi-Bind): This configuration is the

same as SSP-Non-Bind except that we use the full decoupled-stream ISA, which has the

additional benefits of semi-binding streams and address-computation specialization. If

not specified, the dynamic throttling policy from Section 3.3 is enabled.

∙ Stream-Aware Cache (SSP-Cache-Aware): This configuration is built upon SSP-

Semi-Bind, but with the stream-based cache bypassing policy described in Section 3.3.

We simulate 33 benchmarks from the SPEC CPU 2017 and CortexSuite [35, 36]. We

exclude all Fortran benchmarks from SPEC CPU 2017 [34] due to incompatibilities with our

current framework. We use the reference input set for SPEC and the largest provided input

set for CortexSuite. We use SimPoint [59] to select multiple representative simpoints for

simulation from the first 10 billion dynamic instructions. Each simpoint contains 10 million

dynamic instructions, and on average 10 simpoints are selected for each benchmark. After

cache warm-up, we simulate the simpoints and compute the total execution time and energy

based on each simpoint’s weight.

3.5 Evaluation

Our evaluation studies the benefits of the three potential opportunities: stream-prefetching,

stream-decoupling, and cache-awareness. We first analyze the overall benefit, then discuss

each aspect, and end by discussing the integration with different cores.

Overall Benefit Fig 3.6a shows the speedup of all the configurations over the baseline

OOO core. Stride prefetching achieves 1.22× speedup, while ideal helper thread yields

1.50× speedup. For SSP, non-binding stream prefetching achieves 1.20× speedup, which is

45

ld
a

lib
lin

ea
r

m
ot
io
n-
es
tim

at
io
n

pc
a

rb
m

sp
hi
nx sr
r

sv
d3

di
sp
ar
ity

lo
ca
liz
at
io
n

m
se
r

m
ul
ti_

nc
ut si
ft

st
itc

h
sv
m

te
xt
ur
e_
sy
nt
he
si
s

tr
ac
ki
ng

na
m
d_
r

pa
re
st
_r

po
vr
ay
_r

bl
en

de
r_
r

pe
rl
be
nc
h_

s
gc
c_
s

m
cf
_s

lb
m
_s

om
ne

tp
p_
s

xa
la
nc
bm

k_
s

x2
64
_s

de
ep
sj
en

g_
s

im
ag
ic
k_
s

le
el
a_
s

na
b_
s

xz
_s

ge
om

ea
n.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5 SSP-Cache-Aware

SSP-Semi-Bind
SSP-Non-Bind
Pf-Helper
Pf-Stride

(a) Overall Speedup

ld
a

lib
lin

ea
r

m
ot
io
n-
es
tim

at
io
n

pc
a

rb
m

sp
hi
nx sr
r

sv
d3

di
sp
ar
ity

lo
ca
liz
at
io
n

m
se
r

m
ul
ti_

nc
ut si
ft

st
itc

h
sv
m

te
xt
ur
e_
sy
nt
he
si
s

tr
ac
ki
ng

na
m
d_
r

pa
re
st
_r

po
vr
ay
_r

bl
en

de
r_
r

pe
rl
be
nc
h_

s
gc
c_
s

m
cf
_s

lb
m
_s

om
ne

tp
p_
s

xa
la
nc
bm

k_
s

x2
64
_s

de
ep
sj
en

g_
s

im
ag
ic
k_
s

le
el
a_
s

na
b_
s

xz
_s

ge
om

ea
n.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0 SSP-Cache-Aware

SSP-Semi-Bind
SSP-Non-Bind
Pf-Helper
Pf-Stride

(b) Energy Efficiency

Figure 3.6: Overall Speedup and Energy Efficiency

similar to stride prefetching. Semi-binding stream prefetching achieves 1.53× speedup, which

outperforms even the ideal helper thread. The main reason is that semi-binding removes the

instruction overhead for address computation. It also does not generate duplicate memory

requests to L1. Finally, stream-aware cache results in 1.67× speedup over the baseline OOO

core.

Fig 3.6b shows the overall energy efficiency of all the configurations over the baseline OOO

core. Stride prefetching improves the energy efficiency by 1.12×, while ideal helper thread

achieves 1.16×. Non-binding stream prefetching slightly increases the energy efficiency by

1.09×, while semi-binding stream prefetching gives a significant improvement to 1.47×, as

semi-binding removes much instruction overhead. Finally, making the cache stream-aware

achieves 1.53× energy efficiency.

Benefits of Semi-Binding Stream Prefetching

The major benefit of semi-binding stream prefetching versus non-binding stream prefetch-

ing comes from a combination of removing address computation from the pipeline and reduc-

ing traffic to the L1 cache. Fig 3.7 shows the performance of semi-binding stream prefetching,

46

ld
a

lib
lin

ea
r

m
ot
io
n-
es
tim

at
io
n

pc
a

rb
m

sp
hi
nx sr
r

sv
d3

di
sp
ar
ity

lo
ca
liz
at
io
n

m
se
r

m
ul
ti_

nc
ut si
ft

st
itc

h
sv
m

te
xt
ur
e_
sy
nt
he
si
s

tr
ac
ki
ng

na
m
d_
r

pa
re
st
_r

po
vr
ay
_r

bl
en

de
r_
r

pe
rl
be
nc
h_

s
gc
c_
s

m
cf
_s

lb
m
_s

om
ne

tp
p_
s

xa
la
nc
bm

k_
s

x2
64
_s

de
ep
sj
en

g_
s

im
ag
ic
k_
s

le
el
a_
s

na
b_
s

xz
_s

ge
om

ea
n.

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8 2.1x->

Figure 3.7: Speedup of SSP-Non-Bind. vs. SSP-Semi-Bind

normalized over non-binding stream prefetching. Both configurations use a 192-entry FIFO

without throttling. Overall, compared to non-binding prefetching, semi-binding prefetching

achieves 1.26× speedup.

Fig 3.8 shows the number of dynamic instructions committed in semi-binding prefetching,

normalized to the original program. On average, semi-binding prefetching removes 35% of the

dynamic instructions from the original program, while adding back only 5.6% to control the

stream engine. Most of the new instructions added are s step instructions that advance the

stream FIFO – in most cases one per loop iteration. An extreme case is svm from CortexSuite.

The hot regions of this benchmark involve small matrix multiplication, which has a small

memory footprint. The L1 data cache has less than 1% miss rate, and this explains why

neither stride prefetching nor ideal helper thread can improve the performance. When cache

is not the bottleneck, semi-binding stream prefetching achieves 1.48× speedup over non-

binding stream prefetching for svm. A similar analysis also applies to texture synthesis.

Dynamic Throttling Fig 3.9 shows the performance of semi-binding stream prefetching

with various FIFO sizes and throttling policies, normalized to the configuration with a

72-entry FIFO, non-throttling configuration. Compared with an evenly distributed policy,

dynamic throttling improves the performance the most when the FIFO is small, as it achieves

47

ld
a

lib
lin

ea
r

m
ot
io
n-
es
tim

at
io
n

pc
a

rb
m

sp
hi
nx sr
r

sv
d3

di
sp
ar
ity

lo
ca
liz
at
io
n

m
se
r

m
ul
ti_

nc
ut si
ft

st
itc

h
sv
m

te
xt
ur
e_
sy
nt
he
si
s

tr
ac
ki
ng

na
m
d_
r

pa
re
st
_r

po
vr
ay
_r

bl
en

de
r_
r

pe
rl
be
nc
h_

s
gc
c_
s

m
cf
_s

lb
m
_s

om
ne

tp
p_
s

xa
la
nc
bm

k_
s

x2
64
_s

de
ep
sj
en

g_
s

im
ag
ic
k_
s

le
el
a_
s

na
b_
s

xz
_s

av
g.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Added Insts
Remain Insts

Figure 3.8: Dynamic Instructions in SSP-Semi-Bind

a better utilization for the FIFO by allocating more space to streams lagging behind the core.

With a 72-entry FIFO, dynamic throttling improves the performance by 13%, while for a

larger 192-entry FIFO, it yields a marginal improvement of 5%.

An extreme case is multi ncut, where most of the execution time is spent on a simple

loop that iterates through a matrix and generates sorted indexes. The matrix is too large to

be cached in L2, and 68.7% of the memory accesses in this loop go to the L3 cache. Since

one stream FIFO entry corresponds to one loop iteration when it is unconditionally stepped,

the maximum effective prefetch window measured in dynamic instructions is the number of

dynamic instructions per iteration times the FIFO entries allocated for that stream. As the

loop body contains only 9 static instructions, the effective prefetch window achieved by a

non-throttling policy is not large enough to fully hide the L3 cache latency.

Unused Stream Requests Since we are decoupling the stream pattern from the control

flow, the stream elements may be fetched from the cache into the stream FIFO but never

used by the core. Fig 3.10 shows the percentage of unused requests issued by the stream

engine to the L1 cache in SSP-Semi-Bind. The average unused stream requests is 11.1%.

An extreme case is namd r, which has 66% of unused requests. This is partly because some

48

ld
a

lib
lin

ea
r

m
ot
io
n-
es
tim

at
io
n

pc
a

rb
m

sp
hi
nx sr
r

sv
d3

di
sp
ar
ity

lo
ca
liz
at
io
n

m
se
r

m
ul
ti_

nc
ut si
ft

st
itc

h
sv
m

te
xt
ur
e_
sy
nt
he
si
s

tr
ac
ki
ng

na
m
d_
r

pa
re
st
_r

po
vr
ay
_r

bl
en

de
r_
r

pe
rl
be
nc
h_

s
gc
c_
s

m
cf
_s

lb
m
_s

om
ne

tp
p_
s

xa
la
nc
bm

k_
s

x2
64
_s

de
ep
sj
en

g_
s

im
ag
ic
k_
s

le
el
a_
s

na
b_
s

xz
_s

ge
om

ea
n.

1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00 same FIFO with throttling

192-entry FIFO, non-throttling
144-entry FIFO, non-throttling
96-entry FIFO, non-throttling
72-entry FIFO, non-throttling

Figure 3.9: Speedup with Dynamic Throttling

stream elements are unused due to control flow, but also because some stream elements are

prefetched beyond the termination of the stream (stream end); this is more common for

shorter streams. However, these unused stream requests may still be useful as the fetched

data may be used by future accesses. It is also possible that the unused stream requests may

hit in the L1 cache and not increase the overall memory traffic. The overhead is mainly the

extra pressure on the bandwidth between the core and the L1 cache.

Stream-Aware Cache Fig 3.11 shows the performance of stream-aware cache, normalized

by the performance of semi-binding stream decoupling. Stream-aware cache supports stream-

based bypassing (see Section 3.3). Both configurations use a 192-entry FIFO with dynamic

throttling.

Stream-aware cache improves the performance from 1.53× to 1.67× (9%), with the high-

est peak of 3.4× on the pca benchmark. For pca, the key kernel (based on our simpoints)

is computing the correlation matrix, which contains a 3-level nested loop (𝑖, 𝑗, 𝑘), and the

49

ld
a

lib
lin

ea
r

m
ot
io
n-
es
tim

at
io
n

pc
a

rb
m

sp
hi
nx sr
r

sv
d3

di
sp
ar
ity

lo
ca
liz
at
io
n

m
se
r

m
ul
ti_

nc
ut si
ft

st
itc

h
sv
m

te
xt
ur
e_
sy
nt
he
si
s

tr
ac
ki
ng

na
m
d_
r

pa
re
st
_r

po
vr
ay
_r

bl
en

de
r_
r

pe
rl
be
nc
h_

s
gc
c_
s

m
cf
_s

lb
m
_s

om
ne

tp
p_
s

xa
la
nc
bm

k_
s

x2
64
_s

de
ep
sj
en

g_
s

im
ag
ic
k_
s

le
el
a_
s

na
b_
s

xz
_s

av
g.

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65 Unused Stream Requests

Figure 3.10: Unused Stream Requests

innermost loop accesses two matrix columns (𝑎[𝑘][𝑖] × 𝑎[𝑘][𝑗]). The reuse distance is 𝑘 for

the first column and 𝑘× 𝑗 for the second one. To make things worse, the matrix is accessed

in column order, meaning that most data within the cache line goes unused. Without cache

awareness, we constantly miss in the L2 cache. Notice that semi-binding stream prefetching

here can not effectively hide this latency as we are bound by the L1 cache MSHRs, while

the stride prefetcher in the L2 cache does not face this constraint. In a stream-aware cache,

the L2 cache bypasses the second column, which releases enough space to fully cache the

first column. This increases the L2 cache hit rate and saves bandwidth on the bus to the L3

cache, and leads to 3.4× speedup over semi-binding stream prefetching and 4.1× over the

baseline OOO core.

Another case is lbm s, whose memory footprint is too large to be cached in L3 and is

memory-bound. In such a case, the stream-aware cache can forward requests to the L3 cache

when all MSHRs of the upper-level cache are used. This effectively increases the total number

of parallel misses that can be handled by the cache system and improves the performance of

50

ld
a

lib
lin

ea
r

m
ot
io
n-
es
tim

at
io
n

pc
a

rb
m

sp
hi
nx sr
r

sv
d3

di
sp
ar
ity

lo
ca
liz
at
io
n

m
se
r

m
ul
ti_

nc
ut si
ft

st
itc

h
sv
m

te
xt
ur
e_
sy
nt
he
si
s

tr
ac
ki
ng

na
m
d_
r

pa
re
st
_r

po
vr
ay
_r

bl
en

de
r_
r

pe
rl
be
nc
h_

s
gc
c_
s

m
cf
_s

lb
m
_s

om
ne

tp
p_
s

xa
la
nc
bm

k_
s

x2
64
_s

de
ep
sj
en

g_
s

im
ag
ic
k_
s

le
el
a_
s

na
b_
s

xz
_s

ge
om

ea
n.

1.0
1.1
1.2
1.3
1.4
1.5 <-3.4x

Figure 3.11: Speedup with Cache Awareness

lbm s by 1.3×.

Design Space Interaction To understand the tradeoffs and interaction with different

OOO cores, we simulate several configurations from dual-issue up to 8-issue. Fig 3.12 shows

the relative speedup and energy efficiency of the baseline OOO processor, stride prefetching,

ideal helper thread and SSP with stream-aware cache, normalized to a dual-issue OOO core.

Compared with traditional prefetching, stream decoupling can greatly improve both the

performance and energy efficiency in both SPEC CPU 2017 and CortexSuite. Notably a

6-issue SSP can surpass an 8-issue OOO in both energy efficiency and performance.

Compared to an ideal helper thread, SSP is much more effective on CortexSuite. This is

because most accesses are streams, which can decoupled from the core, and also because SSP

can intelligently reason about the cache behavior of streams. SSP only sees similar benefits

to the ideal helper thread on SPEC CPU, because its advantage of decoupling is offset by

its disadvantage in coverage against non-streaming access.

3.6 Related Work

While the idea of stream-specialized general-purpose processors itself is novel, it derives

inspiration from and has an intimate relationship with at least four main areas of architecture

51

1.0 1.5 2.0 2.5 3.0
CortexSuite Speedup

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10

En
er

gy

1.0 1.5 2.0 2.5 3.0
SPEC CPU 2017 Speedup

OOO[2,6,8]
Pf-Stride[2,6,8]

Pf-Helper[2,6,8]
SSP-Cache-Aware[2,6,8]

Figure 3.12: Relative Speedup and Energy Efficiency for Various OOO Processors

research: specialization of address generation, decoupled access-execute, prefetching, and

cache policy enhancements.

Memory Interface Specialization The concept of exposing patterns of memory access

as “streams” within an ISA perhaps originated with the Imagine Stream Processor [60], de-

signed for media processing. Following in their footsteps, a variety of specialized architectures

have employed stream abstractions, like RSVP [61], Q100 [62], Softbrain [63], VEAL [64]

and CoRAM++ [65]. None of the above target a traditional general-purpose out-of-order

core (e.g. no control speculation) or make a general cache stream-aware.

Memory Access Dataflow (MAD) [38] is a reconfigurable front-end/memory-fetch engine

for accelerators and SIMD units, but does not use stream abstractions. MAD powers down

the OOO core pipeline while it is active, and also does not support exceptions or control

speculation. On the other hand, our approach extends the OOO core and does not interfere

with its capabilities.

A philosophically similar approach is XMem [66] and the locality descriptor [67], which are

52

cross-layer programming abstractions for conveying memory semantics. The key difference

is that our ISA conveys semantics about each access at the instruction level, rather than

describing a memory region. This gives our ISA a more fine-grain view of memory patterns.

Decoupled Access Execute (DAE) By encoding and performing streaming memory

operations separately from the Von Neumann order of the program, we are implementing a

limited form of DAE [41] which is tailored to certain common access patterns. From that

perspective, other DAE architectures exploit similar parallelism within programs and can

also hide memory latency [68, 69].

One example is Outrider [42], which supports multiple simultaneous decoupled inorder

threads; our stream generator supports multiple concurrent streams. DeSC [70] is a recent

example that couples an OOO core with either a second OOO core or an accelerator for the

computation. DeSC adds compiler/architecture support to break dependencies for certain

control-dependent and indirect memory access patterns, which we also address in our work.

In the accelerator space, several designs decouple the datapath, like DySER [71], CCA [72],

Chainsaw [73] and ASIC accelerators [74, 75, 76]. However, they are fundamentally limited

by the instruction window of the general-purpose core for latency-hiding. A recent work in

this space is Buffets [77], which is a storage idiom for decoupled access-execute accelerators,

enabling fine-grain synchronization, flexible data reuse and composability.

Runahead/Prefetching Similar to DAE, prefetching also hides memory latency. Stream-

specialized processors have an advantage over traditional hardware prefetchers (e.g. stride-

based [78] and indirect [79], spatial/temporal memory streaming [80, 81, 82], and irregular

correlating prefetchers [83]), in that the data they prefetch is guaranteed to be accurate.

Also, the stream-FIFOs can be seen as software-exposed stream-buffers [84, 85], eliminating

the overhead of dynamic prediction as well as tag-checking in caches.

The type of prefetching performed with SSP is more similar to software/execution-driven

prefetching. For example, The stream-generator can be viewed as a highly-specialized helper

53

thread [51, 52, 53, 54, 55, 56, 57, 58]. Software prefetching [86] also exposes access pat-

terns through the ISA, and some recent proposals are highly programmable [87] and can be

compiler-directed [88].

SSP is different in two key ways: There is no redundant address generation, and there

is little potential for cache pollution. These are due to SSP’s semi-binding prefetch, which

eliminates the problems with traditional binding using regular registers (too much register

pressure, cannot prefetch under faults or control flow).

Cache-Policy Our cache-policy enhancements are inspired primarily by prior works in

cache bypassing, like those based on reuse count [89, 90, 91, 92]. Using the footprint for

modifying the cache replacement policy is inspired by the prior cache insertion policy tech-

niques [93, 94], which are designed to dynamically detect behavior that we have available

statically in the stream definition. We also combine static and dynamic information about

memory accesses for cache bypassing, as was previously explored in the GPU space [95].

3.7 Summary

This chapter explores the concept of leveraging the inherent structure of streams to specialize

the core pipeline, cache interface and cache policies. We find that streams can be decou-

pled, providing a semi-binding interface that does not require stream data to be consumed.

Our stream-specialized microarchitecture benefits from the proposed decoupled-stream ISA

extension and enables stream-based prefetching, decoupling of address computation, and

stream-awareness in prefetch throttling and cache bypassing. Broadly, this paradigm of en-

coding rich memory access semantics could open up new opportunities for the specialization

of communication and computation at even higher levels within the memory hierarchy.

54

CHAPTER 4

Proactive and Decentralized Stream-Aware Cache

Optimizations

While stream-specialized processors leverage explicit stream information in the core, the

cache hierarchy is still unaware of the stream1. In this chapter, we develop extensions to a

tiled multicore’s memory system to allow decoupled streams to be offloaded into the shared

last-level (L3) cache banks. We name our approach stream floating, as decoupled streams

float between L3 cache banks automatically following the access pattern, and proactively

generate read requests for the requesting core.

We view stream floating as a new avenue for achieving less request and response traffic,

lower effective access latency, and less L3 bandwidth demand. In the remainder of this

chapter, we first motivate by discussing overheads in existing reactive caches, and overview

how we address these with our three optimizations (§4.1). Following that, we develop the

hardware extensions and policies necessary for stream floating (§4.2), as well as coherence

considerations (§4.3). Finally, we present methodology (§4.4), evaluation (§4.5), and discuss

related work (§4.6).

1except the stream-aware cache bypassing, in which the bypassing decision is still made by the stream
engine in the core.

55

4.1 Motivation and Overview

As the system scales up, the memory system becomes more and more critical, as it incurs

significant overheads to move data around the memory hierarchy and track the coherence

state. On the other hand, this also means that there is still a lot of room for optimization,

provided that the cache system is proactive and decentralized. For example, if the remote

shared last level cache (henceforth L3) knew the long-term access pattern, it could proactively

stream data back to the requesting core without the excessive control traffic. Furthermore,

if the system could correctly recognize data without reuse, it could bypass the coherence

protocol to avoid expensive invalidation and writeback.

Unfortunately, it is not obvious how to implement such a style of optimizations with

conventional reactive and centralized cache systems. The reactive nature of caches – that

they take actions based on downstream fine-grain (cache-line grain) requests – prevents the

cache from being aware of and exploiting long-term behavior. Even prefetchers, which try

to learn access patterns, are typically activated as a response to cache misses. Furthermore,

all memory requests and responses are centralized at the core, even if the core needs to do

nothing but initiate the subsequent access.

Goal and Approach To enable proactive and decentralized cache optimizations, we ar-

gue that caches need to be aware of decoupled components of programs corresponding to

common access patterns. For this, we can leverage prior decoupled-stream ISAs [28, 96],

which integrates streaming memory patterns into general-purpose ISAs. These prior works

use decoupled-streams to enable efficient programmable prefetching. In this work we take

this principle to its logical endpoint: allow streams to be decoupled from the core, floating

them into cache hierarchy. Our goal is to explore how floating streams can enable proactive

and decentralized optimizations, ultimately enabling higher efficiency in many-core systems.

56

conv3D mv bfs
b+tree cfd

hotspot

hotspot3D nn nw

particl
efilte

r

pathfinder
srad avg.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

L2
 E

vi
ct

io
n

Not Reused Not Reused Stream

(a) Clean L2 Cache Lines Evicted without Reuse

conv3D mv bfs
b+tree cfd

hotspot

hotspot3D nn nw

particl
efilte

r

pathfinder
srad avg.

0.0
0.2
0.4
0.6
0.8
1.0

Fl
its

 In
je

ct
ed Not Reused Data

Not Reused Ctrl

(b) Flits of Clean L2 Cache Lines Evicted without Reuse

Figure 4.1: Overhead of Caching Data without Reuse

Motivation: Reactive Cache Inefficiency

Conventional cache systems reactively attempt to exploit locality: they make a best-effort

approach to keep data recently used by the core in the hopes that it will be reused later.

However, for the N-1 cache levels for which the working set of a program phase does not

fit, the data stored there is nearly guaranteed to be evicted with zero reuse. This leads to

thrashing, wasting both cache capacity and network bandwidth.

To show the inefficiency for working sets that fit in LLC, we simulate 12 data processing

workloads on a 64-core CMP with private L1, L2 caches and shared L3 banks (see §4.4 for

details). The results reveal three major overheads:

57

∙ Cache Thrashing: Fig 4.1a shows the ratio of L2 cache lines evicted in a clean state

without being reused. Overall, 72% of evicted cache lines have not been reused at all.

This cache pollution can hurt performance and energy efficiency.

∙ Tracking Coherence State: Caching data without reuse also implies unnecessary

tracking of coherence state, which incurs significant overheads in possible invalidation

and writeback for peer cache controllers. Fig 4.1b measures the flits injected into the

NoC due to caching not reused data, normalized to total flits. Flits are classified as

data and control flits (for coherence). Caching not reused data contributes 50% of total

network traffic, and 20% is from control messages. Notice that this is an underestimate,

as it does not include the traffic generated from replacing the “victim” line, which could

include useful data.

∙ Redundant Request Messages: Even if we ignore all the overheads mentioned

before, the NoC traffic is still not optimal. Existing memory systems require one

request per cache line, even if the pattern is very simple.

The fundamental reason behind such inefficiency is that current caches are designed to be

reactive – driven by individual requests from the core. They lack a holistic view of the access

pattern, duration of the pattern, presence of dependent accesses and reuse, etc. Without

such key information, the cache can only react passively to external events with suboptimal

policies. Hence, ISAs with richer abstractions can help to provide this information.

Stream Behavior In this work, rather than trying to have the caches derive pattern

information, we use a specialized ISA that encodes streams explicitly. Streams are well-

defined patterns of memory accesses. They can be as simple as an affine pattern A[i] or an

indirect pattern like B[A[i]]. Fig 4.1a shows the fraction of the cached data without reuse

corresponding to streaming patterns. On average it is 63% out of 72%, indicating that in the

applications we target, streams are widely applicable to cover most of the required memory

access behavior.

58

Requests Responses

Conventional System

Stream Configure

Stream Floating System

Stream Migrate

Figure 4.2: Affine Floating Optimization

Optimization Overview

With streams as the abstraction for floating, we discuss three optimizations that can improve

network traffic, coherence overheads, and data prefetching.

Affine Floating Fig 4.2 demonstrates floating an affine stream A[i]. In a conventional

system, the core issues a sequence of requests to the remote L3 banks to fetch the data

(multiple arrows on one line). The stream’s data may be distributed among multiple tiles,

due to address interleaving in the shared L3. Responses are driven by individual requests.

In stream floating, the core first provides stream information to the cache, including

the access pattern, length, etc. After configuration, the cache independently streams data

back to the core, without excessive request messages. After some iterations, the stream

may attempt to access an address outside the range of that bank (determined by address-

interleaving granularity). At this point, the stream will migrate to the appropriate L3 bank

to keep fetching data until completing. Stream floating replaces many request messages with

a one-time configuration and a few migration messages and the cache proactively prefetches.

59

Requests Responses

Conventional System

Stream Configure

Stream Floating System

Indirect Request

Figure 4.3: Indirect Floating Optimization

Indirect Floating Fig 4.3 shows floating an indirect stream B[A[i]]. Normally, the

core first gets data from the index array A[], computes the indirect access address, and

finally accesses array B[]. The cache does not know the access pattern and cannot generate

addresses on behalf of the core: the core centralizes all requests.

With stream floating, the indirect stream can be offloaded together with the affine stream.

Once the affine stream data is ready, the remote L3 cache can simultaneously stream back

A[] and fetch B[A[]] on behalf of the core (both labeled as 2 in Fig 4.3). This shortens

the chain for indirect accesses.

Stream Confluence In multi-threaded workloads, it is common for different threads to

request the same data. However, in existing systems, these accesses are independent of

each other, as Fig 4.4 shows. The cache lacks sufficient information to detect and coalesce

identical accesses, as individual requests from different cores are short-lived and arrive at

different times.

Streams, on the other hand, encode access patterns and are much easier to compare and

coalesce. Streams accessing the same data tend to have the same parameters: e.g. start

60

Requests Responses

Conventional System

Stream Configure

Stream Floating System

❷ Multicast A[0:N)

Figure 4.4: Stream Confluence Optimization

address and stride. Also, streams are generally long enough to describe long-term behaviors,

which exposes more multicast opportunities. In Fig 4.4, streams accessing the same data can

be transparently merged by the cache, turning them into one multicast stream and further

reducing the NoC traffic.

Enabling these optimizations to work efficiently means overcoming several challenges

that we address in this work. This includes: how to avoid the communication overheads of

the stream offloading and maintaining flow control; how to decide when to offload streams

by leveraging both static and dynamic information; how to interface with the coherence

protocol; and how to detect when streams have confluence and avoid overheads of stalling

cores. Overall, leveraging streams as a coarse grain unit of offloading can empower proactive

and more intelligent caches.

61

Core L2$

Shared L3$
Bank

R
o

u
ter

L1 I

L1 D

SECORE SEL2

SEL3

❸
 M

igrate

Cache
Controller

Figure 4.5: Stream Floating Overview

4.2 Stream Floating Design

In this section, we develop the detailed microarchitecture and policies for transparently

supporting stream floating.

Fig 4.5 overviews the stream floating system. In addition to the core stream engine

(SECORE), we add a “stream engine” to the L2 and L3 cache levels (SEL2, SEL3) to manage

stream interactions there. We refer to the tile consuming the stream data as the “requesting”

tile, and the tile where the floating stream is offloaded to as the “remote” tile. In general,

the remote SEL3 (Fig 4.7) generates requests and sends stream data back to the requesting

SEL2. The requesting SEL2 (Fig 4.6) buffers the stream data and matches it with requests

from the SECORE. We first show a detailed example of an affine stream, and then generalize

to indirect streams and stream confluence.

Affine Stream Floating

Stream Configure SECORE decides whether a load stream should be floated to cache

using its pattern and history information (details in §4.2). If so, SECORE sends a stream

configuration packet to SEL2, containing the hardware context id (same as core id if no

62

Config.
Unit

Control Unit
(addr. gen.)

Translate
BufferL2 TLB

Msg. to
Remote L3 SE

Configure/
End

Data from
Remote L3

SE

L2 Stream
Engine

Stream States

Stream
Buffer

Drain by
Core SE

Figure 4.6: L2 Stream Engine (SEL2)

Config.
Unit

Merge
Unit

St
re

a
m

St
at

es

O
pe

ra
n

ds
(I

nd
ir

ec
t)

Merge
Table

Flow
Unit

Issue Unit (addr. gen.)

Translate
Unit

Migrate
Unit

Req. to L3

Configure/
Migrate/

End

Credits
from Req.

L2 SE

Ind. Index
from L3

Migrate to next L3

L3 Stream
Engine

Local or
remote
MMU

Figure 4.7: L3 Stream Engine (SEL3)

SMT), the stream id, and its pattern (i.e. base address, stride, etc.). This is 1 in Fig 4.5.

SEL2 sets up the stream context and allocates the stream buffer. Then it computes and

translates the address of the first stream element (see §4.2). SEL2 sends a configuration

message over the NoC to the remote L3 bank where the first element is mapped. Upon

receiving the packet, the configure unit in the SEL3 initializes the stream state, and the issue

unit starts to generate requests based on the stream pattern.

Stream Request Once configured, SEL3 computes addresses and sends requests to the

colocated L3 cache controller. The issue unit selects ready streams in round-robin order.

Besides address and type, requests also contain the stream id and the element index. The

L3 cache controller is directed to send the data response to the original requesting tile (2 in

Fig 4.5). Thus, we generate requests at the remote tile on behalf of the requesting tile and

eliminate the unnecessary NoC traffic. The stream data will be buffered at SEL2, not cached

by the L2 cache. SEL2’s buffer is address-tagged for memory disambiguation (see §4.2).

Note that SECORE still generates requests to prefetch the stream data. These requests

are also tagged with the stream id and the element index and are intercepted by the SEL2 if

matched to a floating stream. If so, the SEL2 checks its stream buffer, and either responds

or delays if the data is not ready yet.

Most commonly, stream data is not present in the requesting private cache. However, in

63

some scenarios (e.g. inadvertently floating a stream with high reuse) the data may already

be cached in the L1 or L2. To avoid stalling the core, the L1 and L2 cache still perform

normal tag checking for floating streams’ requests and respond immediately if hitting in the

cache. The SEL2 will also be notified that the stream request is already served so that it can

correctly advance the stream buffer.

Stream Migrate As the stream iterates in the SEL3, eventually, the next element will be

mapped to another L3 bank. At this point, the migrate unit constructs a stream migration

packet similar to the stream configuration packet, but also with the current iter and remain-

ing flow control credits (explained later in this section). This migration packet is sent to the

L3 bank which holds the next element, and the stream continues there (3 , 4 in Fig 4.5).

Stream End When a stream completes, the SECORE constructs a “stream end” packet

to terminate the floating stream. The SEL2 uses the last allocated element’s address to

determine where to forward the packet, and the SEL3 will ack once done (5 in Fig 4.5).

Floating streams with known length can be silently terminated with no stream end packets.

Notice that the stream end packet also enables the SECORE to terminate the stream early.

This can be useful for implementing context switching, as well as reversing the decision to

float a stream (i.e. sinking the stream) when there is L1/L2 locality (see §4.2).

Coarse-Grained Flow Control Since the stream data is buffered at the SEL2, we need

a flow control scheme to synchronize the SEL2 and SEL3 and avoid overwhelming the SEL2’s

buffer. We use a credit-based flow control scheme, where the SEL2 sends credits to the SEL3

indicating the vacancy of the stream buffer. These credit messages are handled by the flow

unit in Fig 4.7, and the issue unit stalls the stream when running out of credits. This scheme

is coarse-grained, as SEL2 only sends out credits when half of the allocated buffer is available;

this helps amortize the overhead of flow control messages. SEL2 computes the last allocated

element’s addresses to determine which L3 bank it should send credits to.

Configuration Size Table 4.1 summarizes the fields in a stream configuration packet. We

64

Field Bits Description Field Bits Description

A
ffi
n
e

cid 6 Core id. ptbl 48 Page table addr.

sid 4 Stream id. iter 48 Current iter.

base 48 Base virt. addr. size 8 Element size.

strd 48 Mem-stride (3×) len 48 Length (3×)

In
d
. sid 4 Stream id. size 8 Element size.

base 48 Base virt. addr.

Table 4.1: Affine and Indirect Stream Configuration

assume a 48-bit virtual address. Notice that we support up to a 3-level affine pattern to

enable broad applicability and coarse grain patterns. The total size is 450 bits, which is less

than one cache line.

Indirect Streams and Subline Transmission

Indirect streams are supported by combining their pattern with the corresponding affine

stream – they are configured, migrated, and ended together, and share the same flow control

credits. When a floated stream is indirect, the L3 cache controller notifies the colocated SEL3

when the indirect index is ready. This index is buffered in the operands table (Fig 4.7) and

is used to compute the indirect access address. Finally, the indirect request is sent to the

target L3 bank which responds to the requesting core with indirect data (6 , 7 in Fig 4.5).

Supported Patterns The general indirect access pattern is:

𝑖len𝑖0 𝑗
len𝑗
0 𝑘len𝑘

0⏟ ⏞
any order

𝑤size
0 𝐵[𝐴[𝑖][𝑗][𝑘] + 𝑤] (4.1)

The 𝑖,𝑗, and 𝑘 iterators can be reordered (by changing the strides in Table 4.1), to

65

support strided access. The 𝑤 loop iterates over multiple consecutive data items from the

indirect address. This enables the stream to support iterating over the fields of a structure

(i.e. A[i].x and A[k].y) with one stream. It can also be used to iterate over a small linear

range at each indirect location. Finally, by encoding further stream configuration within the

indirect request, it is possible to support longer indirect chains like C[B[A[i]]].

It is common in stencil workloads that two streams A[i], A[i+K] have a constant offset

(and thus reuse) [97]. If such reuse distance can fit in SEL2’s buffer (after accommodating

other streams), SEL3 would only send the first 𝐾 elements of the first stream A[i], and

SEL2 would reuse data from the second stream A[i+K] for the following elements. This

essentially provides the A[i] stream with a prefetch distance of 𝐾 elements. This approach

is compatible with the aliasing detection scheme in 4.2.

Benefits Floating indirect streams can 1. shorten the dependence chain for indirect accesses

by generating the address at the remote L3 bank instead of returning to the requesting core;

and 2. in most cases, indirect accesses have low inter-line locality, so we only need transmit

the required portion of the cache line, which can further save network traffic.

Configuration Size Table 4.1 lists the fields of an indirect stream, which are appended to

the base affine configuration and require 60 bits per indirect stream.

Stream Confluence

As an optimization, SEL3 transparently merges the traffic for cores requesting the same

streaming data. When adding a stream to the SEL3 (either configuring or migrating), the

merge unit compares the new stream’s parameters with those of existing streams (one com-

parison per cycle). Affine streams from different cores, but with the same address space and

parameters, form a confluence group, which is recorded in the merge table. The issue unit

records any merged information in the request and the response is multicast to the cores.

Although it is possible to merge streams from any two cores, it increases the hardware

66

Field Description Field Description

sid Stream id request # stream requests

reuse # priv. cache reuses miss # priv. cache misses

aliased Aliased with stores

Table 4.2: Stream History Table

complexity and yields fewer benefits if they share no common path through the mesh NoC.

Thus, we divide mesh tiles into smaller 2-by-2 blocks and only merge streams from the same

block. Each confluence group contains at most 4 streams, sorted by their progress (i.e.

number of issued elements). The issue unit delays streams with more progress so that those

lagging can catch up and form a confluence request.

Policy for Floating and Sinking Streams

The SECORE decides whether to float a stream by considering both the current pattern as

well as historical information. If the stream’s length is known and its estimated memory

footprint is already larger than the private L2 cache, it can be directly floated. Otherwise,

the SECORE will defer floating, and record its runtime behaviors in a stream history table,

as in Table 4.2. This includes the stream id, the number of requests sent and private cache

misses. The private cache tag array is extended to remember the id of the stream that

brought the line in. When a “stream” line is reused, the cache controller notifies the SECORE

to increment the reuse field in the history table. Finally, the aliased bit is set to true if

the core detects an aliasing store. After accumulating a certain number of stream requests,

SECORE floats the stream if it exhibits no reuse, has a high miss ratio in the private cache

and is not aliased.

SECORE may “sink” a floating stream (undo the offload), by terminating it and starting

67

to cache its data. It can be beneficial to sink a stream when the core detects an aliased store.

Another case is when the floating stream starts to hit in the private cache. To handle this,

SECORE sinks a stream if it hits in the private cache several times consecutively (we use 8 as

the threshold).

Crosscutting Concerns

Address Translation Since stream patterns generate virtual addresses, SEL2 and SEL3

addresses need to be translated. We assume each core has its own private two-level TLB

within each tile. Addresses generated by SEL2 are satisfied by the L2 TLB. TLB access is

infrequent, as only the configure/end and coarse grain flow control messages are translated

here.

As for SEL3, we include a TLB in its translate unit in Fig 4.7, which again only needs

to be queried for indirect access and at the beginning of a page for affine access. For SEL3

TLB misses, there are several options. One option is to send the translation request to the

processor’s IOMMU [98, 99, 100]. Another option is to use the requesting core’s MMUs for

translation, as was explored in prior work for accelerators [101]. This allows the reuse of the

core’s page table walker, MMU cache, and data cache for caching the page table entries. A

third option is to use the remote core’s MMU, but the potential downside is disturbing its

MMU’s caches if it is executing an unrelated workload. Therefore, if the thread running on

the remote core is within the same address space as the requesting thread, SEL3 will access

the remote core’s MMU to avoid extra traffic, otherwise SEL3 will access the requesting core’s

MMU to avoid polluting the remote MMU.

Memory Disambiguation Since floating streams load data before the core, we must

detect aliasing. Fig 4.8 visualizes the life of a floating stream load. Starting backward from

commit, there are three windows where aliasing could happen:

After the SECORE issues the request, the floating load is protected by the PEB and LSQ,

68

GetM
at L2

Evict
from L2

Credit to
Remote L3 SE

Req. from
Remote L3 SE

Resp. arrives
at L2 SE

Req. from
Core SE

Commit

Protected by
PEB+LSQ

Protected by
L2 Stream BufferExact Vulnerable Window

Conservative Alias Detection
with Delayed Eviction

Floating Load Aliasing Store

Figure 4.8: Detecting Aliasing to Floating Stream Load

similar to other non-floating stream loads. Also, since a core stream request always checks

the private cache’s tag, it will get the updated value if the modified line is still present in

the private cache. This mitigates the problem of detecting an aliasing store being evicted

before the core stream request is serviced.

When the L2 cache evicts a dirty cache line, it searches the L2 stream buffer for a possible

aliasing floating load. If found, it can either update the stream buffer with the latest data

or simply mark the floating stream aliased and let the SECORE sink it. This search can be

performed in parallel while the L2 cache is waiting for the ack from the L3 and is not on the

critical path. This covers the second window.

Finally, there is a race condition when the store happens after the remote SEL3 issues the

request and is written back before the response comes back. Since the floating load happens

at the remote L3 tile in a decentralized fashion, we take a conservative approach to cover

a slightly larger vulnerable window, starting from sending the credit to the remote SEL3.

Specifically, we maintain two sequence numbers (head and tail) for in-flight credits: newly

sent credits remember and increment head, and incoming floating responses are reordered

by their sequence number and increment tail. The L2 cache tags the line with head when

it sees a dirty eviction from the L1 cache. Eviction of dirty cache lines will be delayed if

its sequence number is greater than tail, as that means there are possible aliasing in-flight

floating stream loads. This case is rare since the window is relatively short. However, there

is a potential deadlock when the remote L3 bank happens to be waiting on the writeback.

69

Remote
L3$/Dir

I  EE

(1) GetU

Requesting
L2$

I  I
(4) Data

Mem

I  E

Requesting SEL2

(2) GetU

(3) Data

(5) Data

Remote
L3$/Dir

E  E

M  M

(1) GetU

Requesting
L2$

I  I

Owner
L2$

E  E

M  M

(2) GetU

(3) Data

(4) Data

Remote
L3$/Dir

S  S

EE  EE

(1) GetU

Requesting
L2$

I  I
(2) Data

(3) Data

(a) S: Shared copy in L2$. EE: No copy in L2$.

(b) I: Invalid.

(c) E/M: One L2$ owns the cache line.

Requesting SEL2

Requesting SEL2 Remote SEL3

Remote SEL3

Remote SEL3

Figure 4.9: Coherence Protocol Interaction

To break the dependence cycle, the SEL2 will notify the SECORE to sink a floating stream if

it causes a long delay.

Precise State and Context Switch Stream-floating adds no architectural state to the

decoupled-stream ISA. On a context switch, SEs will discard/flush all floating streams. On

switching back, all streams are initially not floating.

4.3 Coherence and Consistency

As discussed in §4.1, one of the major overheads for caching lines without reuse is that

eviction causes traffic to the coherence directory (to update snoop filters to avoid unnecessary

70

invalidations). Our goal is to avoid directory updates for data without reuse, so we can see

the maximum potential of stream floating. We first outline the approach we take in our

implementation, which does not allow for memory consistency of stream accesses (but allows

for software to provide stream consistency). Then we outline an alternate that would, but

which has other tradeoffs.

Our Approach: Uncached Stream Data

Our approach to avoiding clean-eviction traffic is to simply let the stream data reside in

SEL2’s buffer without being in a cached state from the perspective of coherence. The conse-

quence is that we cannot support a traditional notion of consistency for streams, as another

core can perform a store to the stream data that is not detected by the directory. Note

that this is rare in data-processing workloads, as writes to streaming data are otherwise

synchronized. Streams are guaranteed to see stores before the creation of the stream, which

is accomplished by waiting to offload the stream until the stream configuration instruction is

committed. It is thus the compiler’s responsibility to ensure that this guarantee is sufficient

for correct execution. Our compiler’s strategy is to limit stream lifetime to synchronization-

free regions.

Uncached Coherence Extension To support the uncached requests performed by SEL3,

we add a minor extension to a standard 3-level MESI protocol. Specifically, we add a new

request: GetUncached (GetU), which means the requested data will not be cached in the

private cache. Fig 4.9 summarizes the transition and action for stable states involving GetU.

These are for when (a) the data is present in L3 (e.g. S state), (b) the data is not present

(e.g. I state), and (c) another L2 owns the data (e.g. M state). In all cases, the transitions

follow a typical GetS, except that the requesting core is not added as a sharer. In (c), when

another L2 owns the data, we let that core forward the data, again without altering its state.

71

Alternate: Stream-grain Coherence

In stream-grain coherence we let stream data be cacheable at the core (stream data still

uses SEL2’s stream buffer), and perform coherence at the granularity of streams. Instead

of tracking the coherence state of stream data in the directory, we let the SEL3 track the

coherence state on a per-stream basis, for example by keeping the accessed ranges of each

stream with base/bound registers (false positives due to conservative range check will be

rare). When another core accesses the directory, it also checks the SEL3 to see if it needs

to invalidate the stream data (which would eventually cause the stream to re-execute and

sink to SECORE). Also, the SEL3 will need to be informed when to deallocate a stream’s

range data. This would be performed when the core commits the s end instruction. The

SEL2 would keep track of which SEL3’s to deallocate for each stream. This idea is inspired

by prior coarse grain coherence tracking works [102, 103, 104, 105, 106], but uses streams as

the granularity.

The main advantage of this approach is, of course, that we could still use coherence events

to implement consistency speculation for streams in the traditional way2. One disadvantage

is that the range checks may have false positives (if a write is in between the reads of a

stream) leading to unnecessary invalidations (though we suspect this is uncommon). A

second disadvantage is the additional messages to deallocate streams in SEL3, which can be

an overhead for short streams that touch multiple banks (e.g. due to striding or indirect

access).

Implementing stream-grain coherence is future work. However, we do not expect its

disadvantages to be significant for the workloads we evaluate: streams are relatively long,

and writes do not generally appear in the middle of stream ranges.

2Also, the need to prevent cache line evictions for alias detection (see Section 4.2) becomes unnecessary,
as the SEL3 can inform the requesting core if it is attempting write ownership of stream data (indicates alias
misspeculation).

72

System Params 2.0GHz, 8x8 Cores

IO4 CPU 4-wide fetch/issue/commit

(4-issue) 10 IQ, 4 LSQ, 10 SB

OOO4 CPU 24 IQ, 24 LQ, 24 SQ+SB

(4-issue) 256 Int/FP RF,96 ROB

OOO8 CPU 64 IQ, 72 LQ, 56 SQ+SB

(8-issue) 348 Int/FP RF, 224 ROB

Func. Units 4 Int ALU/SIMD (1 cycle)

(×2 for OOO8) 2 Int Mult/Div (3/12 cycles)

2 FP ALU/SIMD (2 cycles)

2 FP Div (12 cycles)

L1 D/I TLB 64-entry / 8-way

L2/SEL3 TLB 2k/1k-entry / 16-way, 8-cycle latency

L1 I/D Cache 32KB / 8-way, 2-cycle latency

Private L2 Cache 256KB / 16-way, 16-cycle latency

L1 Stride Pf. 16 streams, 8 pf. per stream

L1 Bingo Pf. 8kB PHT, 2kB region

L2 Stride Pf. 16 streams, 18 pf. per stream

NoC 256-bit 1-cycle link

5-stage router, multicast

8x8 Mesh, X-Y routing

Memory controller at 4 corners

Shared L3 Cache 1MB per bank / 16-way

20-cycle latency, MESI coherence

Static NUCA, 64B Interleave

Replacement Policy Bimodal RRIP, 𝑝 = 0.03

DRAM 1600MHz DDR3 12.8 GB/s

SECORE IO4/OOO4/OOO8 256B/1kB/2kB FIFO, 12 streams

SEL2 16kB FIFO, 12 streams

SEL3 12 streams per core, 768 total

Table 4.3: System and Microarchitecture Parameters

4.4 Methodology

Simulator We extend X86 gem5 [45, 107] with partial AVX-512 support for higher vector

width and simulate all cores in execution-driven, cycle-level detail. The CPU is extended with

a SECORE to support decoupled-stream ISA extensions. For the NoC, we use Garnet [108].

Compiler We develop an LLVM-based compiler to generate stream-specialized programs

with X86 backend, similar to prior work [28]. One difference is that we use explicit load/store

instructions (i.e. stream {load|store}) , instead of pseudo-registers3 to access stream data.

Benchmarks We simulate 10 OpenMP benchmarks (-O3 and AVX-512) from Rodinia [109]

and two tiled kernels: matrix-vector multiplication (mv) and 3d convolution (conv3d), as they

3Pseudo-registers implicitly map certain registers in a region to stream data, and can eliminate some
instruction overhead. Enabling pseudo-register support would further reduce the instruction overhead and
shift more pressure to the cache and thus provide even more opportunities for stream floating.

73

Benchmark Dataset Parameters

conv3d H/W: 256× 256, I/O: 16×64, K: 3× 3

mv matrix 256× 65536

b+ tree 1m leaves, 10k lookups, 6k range queries

bfs 1m nodes, 599970 edges

cfd fvcorr.domn.193K

hotspot 1024× 1024, 8 iters

hotspot3D 512× 512× 8, 8 iters

nn 768k entries

nw 2048× 2048

particlefilter 48k particles, 1000× 1000

pathfinder 1.5m entries, 8 iterations

srad 512× 2048, 8 iterations

Table 4.4: Workload Datasets

are important workloads with stream behavior. Table 4.4 summarizes the parameters.

Systems and Comparison Table 4.3 summarizes the default system parameters includ-

ing added hardware structures. We use McPAT [50] to estimate the energy at 22nm, and

extended to model SECORE, SEL2 and SEL3.

We choose two different prefetchers to compare against: traditional strided, because they

capture the streaming behavior of these workloads, and the Bingo spatial prefetcher [110],

because it won 1st place for multi-core prefetching in DPC3 [111] in 2019. By experimenting

with different configurations, we found that adding an L2 prefetcher to both Bingo and the

L1-stride prefetcher also improved performance.

We also implemented a “micro-architecture-only” version of the concept of coarse-grain

74

requests to L3: bulk prefetch. Specifically, we augmented the L2 stride prefetcher to group

consecutive prefetch requests as a single message if they are to the same L3 bank. We group

4 requests, as this reduced NoC traffic and avoided overfetch. This optimization can only be

applied when the L3 address interleaving granularity is greater than 64B (one cache line).

Since this helped performance less than just using 64B interleaving, it is only shown in the

traffic analysis (Fig 4.12).

Specifically, we compare a Base core with no prefetching to:

∙ Stride Prefetching (L1Stride-L2Stride): Baseline core with L1 and L2 stride

prefetcher. Single-cycle request gen.; 16 streams and 8 (16 for L2) prefetching requests

per stream.

∙ Bingo Prefetching (L1Bingo-L2Stride): Baseline core with L1 Bingo spatial prefetcher [110],

and L2 stride prefetcher.

∙ Stream Specialized Processor (SS): Stream-specialized core as described in [28].

It gets the benefits of stream-based prefetching, but not floating.

∙ Stream Floating Processor (SF): Stream floating as described in this paper. Unless

mentioned otherwise, SF uses 1kB L3 interleaving to reduce stream migration.

4.5 Evaluation

Our evaluation attempts to address two main questions: First is how much potential exists in

exploiting streaming patterns to reduce network traffic and coherence overheads, and second

is whether that potential is only attainable when streams are embedded in the ISA. We

begin by evaluating the overall performance and energy efficiency, then analyze how stream

floating reduces network traffic, as well as its sensitivity to network bandwidth, NUCA

mapping scheme and system size.

75

co
nv

3D m
v

bf
s

b+
tre

e
cfd

ho
ts

po
t

ho
ts

po
t3

D nn nw
pa

rti
cle

fil
te

r
pa

th
fin

de
r

sr
ad

ge
om

ea
n.

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
~

6.5

Sp
ee

du
p

13.968.506.56

Little Core (IO4)

co
nv

3D m
v

bf
s

b+
tre

e
cfd

ho
ts

po
t

ho
ts

po
t3

D nn nw
pa

rti
cle

fil
te

r
pa

th
fin

de
r

sr
ad

ge
om

ea
n.

6.73

Medium Core (OOO4)

co
nv

3D m
v

bf
s

b+
tre

e
cfd

ho
ts

po
t

ho
ts

po
t3

D nn nw
pa

rti
cle

fil
te

r
pa

th
fin

de
r

sr
ad

ge
om

ea
n.

6.79

Big Core (OOO8)
co

nv
3D m

v
bf

s
b+

tre
e

cfd
ho

ts
po

t
ho

ts
po

t3
D nn nw

pa
rti

cle
fil

te
r

pa
th

fin
de

r
sr

ad
ge

om
ea

n.

1.00
1.25
1.50
1.75
2.00
2.25
2.50

En
er

gy
 E

ffi
cie

nc
y

3.26 4.20 2.71
co

nv
3D m

v
bf

s
b+

tre
e

cfd
ho

ts
po

t
ho

ts
po

t3
D nn nw

pa
rti

cle
fil

te
r

pa
th

fin
de

r
sr

ad
ge

om
ea

n.

3.90 2.75

Base L1Stride-L2Stride L1Bingo-L2Stride SS SF

co
nv

3D m
v

bf
s

b+
tre

e
cfd

ho
ts

po
t

ho
ts

po
t3

D nn nw
pa

rti
cle

fil
te

r
pa

th
fin

de
r

sr
ad

ge
om

ea
n.

2.51 4.02

Figure 4.10: Overall Speedup and Energy Efficiency

Overall Speedup, Energy Efficiency and Area

Performance Fig 4.10 shows the speedup and energy efficiency over different baseline cores.

For small cores (IO4), SS-IO4 (1.95×) is slightly worse than BG-IO4 (2.10×) due to limited

FIFO size (256B). SF-IO4 further improves the speedup to 3.20×. The performance bene-

fits can be attributed to network and coherence benefits, because the prefetchers generally

recognize and optimize for the same patterns. The two exceptions are bfs, as our evaluated

prefetchers do not support indirection, and nw, which failed on the stride prefetcher (blocked

2D array accessed in diagonal order). SF-IO yields 64% more performance than SS-IO, as

it floats streams to the cache to reduce network traffic and latency. For OOO cores, the

speedup of SF over SS is still significant, at 37% (OOO4) to 31% (OOO8), even though the

wide OOO can hide much more memory latency.

76

conv3D mv bfs
b+tree cfd

hotspot

hotspot3D nn nw

particl
efilte

r

pathfinder
srad avg.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Re
qu

es
ts

 to
 L

3
Ca

ch
e

Float-Confluence
Float-Indirect
Float-Affine
Core-Stream
Core-Normal

Figure 4.11: Requests to L3 of SF-OOO8

Energy For OOO8, the stride prefetcher and Bingo improve the energy efficiency by 19%

and 21% respectively. Prefetching may hurt energy efficiency due to inaccuracy (bfs and

nw). SS-OOO8 achieves 1.44× energy efficiency, and SF-OOO8 pushes it to 1.80× with 25%

improvement over SS-OOO8.

Area Most of the area comes from the SRAM to store stream configuration and data, and

we estimate the area using CACTI and McPAT (22nm). Each SEL3 can hold 12× 64 = 768

streams and uses 48kB (0.11mm2) to store stream configuration, as well as a 1k entry TLB

(0.04mm2). These sum to 4.5% overhead for the L3. At L2, the stream buffer takes 0.09mm2

and the configuration state takes 0.05mm2. The 35-bit L2 tag is extended with a 4-bit stream

id and 12-bit sequence number (§4.2). Summing together, stream floating introduces 9% area

overhead for L2 (0.16mm2 / 1.85mm2). The whole chip area overhead is 1.6% for IO4 and

1.4% for OOO8 (OOO8 also uses larger stream FIFOs in SECORE).

Floating Requests

Fig 4.11 breaks down requests to the L3 cache into normal/stream requests from the core and

requests from floating affine/indirect/confluence streams. On average, 68% of the requests

are generated by SEL3, showing that a significant portion of memory accesses can be floated.

Most of the requests are from affine floating (50%), and only 5% are from indirect floating

77

conv3D mv bfs
b+tree cfd

hotspot

hotspot3D nn nw

particl
efilte

r

pathfinder
srad avg.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Tr
av

el
le

d
Ho

ps

2.49
2.47

1.61 1.79
1.70

Strm
Data
Ctrl

conv3D mv bfs
b+tree cfd

hotspot

hotspot3D nn nw

particl
efilte

r

pathfinder
srad avg.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

No
C

Ut
iliz

at
io

n

Base L1BG-L2ST L1BG-L2ST-Bulk SS SF-Aff SF-Ind SF

Figure 4.12: OOO8 NoC Traffic and Utilization

(bfs and cfd). For stream confluence, SEL3 can successfully recognize multicast, e.g. the

input feature map in conv3D constituting 51% of requests.

Network Traffic

Fig 4.12 shows the total number of traveled hops of all injected flits, normalized to Base, as

well as average network utilization. The traffic in the first graph is classified by the packet

type (from bottom to top): coherence control, data, and extra messages to manage floating

streams (config., migration, termination, flow control). Besides SS and SF, we include SF-

Aff with only affine floating enabled, and SF-Ind which adds indirect floating. We also add

the bulk optimization for the prefetchers, as described in §4.4, which groups 4 contiguous

prefetch requests.

Streams are accurate L1Bingo-L2Stride actually increases the NoC traffic by 34% due to

78

conv3D mv bfs
b+tree cfd

hotspot

hotspot3D nn nw

particl
efilte

r

pathfinder
srad

geomean.
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6

Sp
ee

du
p

2.81 3.97 5.62

SF-Link128
L1BG-L2ST-Link128

SF-Link256
L1BG-L2ST-Link256

SF-Link512
L1BG-L2ST-Link512

Figure 4.13: SF vs. Bingo with 128, 256, 512-bit link (OOO8)

inaccurate patterns and aggressive prefetching. This can be mitigated by dynamically trading

off prefetching aggressiveness with accuracy and timeliness. However, the decoupled-stream

ISA extension provides accurate stream information and SS does not increase traffic (except

3% for cfd and hotspot3D due to interference between SECORE and normal core requests).

SF fundamentally reduces traffic The bulk prefetching optimization reduces traffic by

6%, but it is still limited by the inaccurate pattern and unnecessarily caches the data with

no reuse. On the other hand, offloading affine streams reduces the traffic by 30%. Most

of the reduction comes from control messages, as SF eliminates redundant requests and

simplifies the coherence protocol for offloaded streams. More importantly, data traffic is also

sometimes reduced (e.g. pathfinder), as not caching stream data without reuse prevents

pollution. Finally, only 2% traffic overhead is needed to configure and migrate streams, as

they capture long-term behavior.

Among these benchmarks, only bfs and cfd contain indirect streams, and indirect of-

floading helps in the case of bfs due to subline transfer. For cfd, the traffic slightly in-

creased by 2%, as a small fraction of indirect stream data is already cached. Finally, stream

confluence shows significant benefits on conv3D (sharing the same input feature map) and

particlefilter (resample through the same accumulated weight array). Overall, SF re-

duces network traffic by 36% and average network utilization from 35% (Bingo) to 25%.

79

conv3D mv bfs
b+tree cfd

hotspot

hotspot3D nn nw

particl
efilte

r

pathfinder
srad

geomean.
0.6
0.8
1.0
1.2
1.4
1.6
1.8
~

3.6
3.8

Sp
ee

du
p

SF-64B
L1BG-L2ST-64B

SF-256B
L1BG-L2ST-256B

SF-1kB
L1BG-L2ST-1kB

SF-4kB
L1BG-L2ST-4kB

Figure 4.14: Effect of NUCA Interleaving Granularity (OOO8)

Sensitivity to NoC Bandwidth

Fig 4.13 shows the performance of SF and Bingo under different link widths normalized to

Bingo with 128-bit links. For some benchmarks, increasing the link width does not cause

speedups because: 1. For computation-intensive workloads (e.g. particlefilter) a 128-bit

link can already transfer data fast enough; 2. when streaming from main memory (e.g. nn),

memory bandwidth/latency becomes the bottleneck.

Compared to Bingo with the same link width, SF performs better as the link width

increased from 128-bit (1.34×) to 512-bit (1.43×). This is because with 512-bit links, data

messages are broken into fewer flits and can be transmitted faster, meanwhile, the latency

of control messages becomes proportionally more critical. SF benefits more from higher link

width, as it eliminates unnecessary control messages.

Sensitivity to NUCA Mapping

Addresses are interleaved in L3 banks to avoid hotspots. We evaluate how interleaving

granularity affects performance for simple linear static NUCA, as finer granularity implies

more migrations. Fig 4.14 shows the performance of Bingo and SF with 64B, 256B, 1kB

and 4kB interleaving granularity, normalized to Bingo-64B. Some benchmarks do suffer from

hotspots with coarse interleaving granularity (e.g. mv) and Bingo-4kB performs slightly worse

than Bingo-64B (0.93×). SF performs the best with 1kB interleaving, as network traffic

80

conv3D mv bfs
b+tree cfd

hotspot

hotspot3D nn nw

particl
efilte

r

pathfinder
srad

geomean.
0

1

2

3
4
5
6
7

Sp
ee

du
p

12.47 31.55
23.04

SF-OOO8-4x4
SS-OOO8-4x4

SF-OOO8-4x8
SS-OOO8-4x8

SF-OOO8-8x8
SS-OOO8-8x8

SS-OOO8 L3 Hit Rate
SS-OOO8 L2 Hit Rate

Figure 4.15: Core Scaling

caused by stream control messages is still negligible (1.5% for SF-1kB vs. 1.1% for SF-IO-

4kB), while also avoiding hotspots in L3 banks. For 64B interleaving, streams constantly

migrate, generating 12% stream control traffic compared to Base, but still reducing the total

network traffic by 22%. Also, floated streams run ahead of the core, and migration latency

is hidden.

Although we consider static NUCA, dynamic NUCA may also have interesting oppor-

tunities. E.g. aggressively migrating cache lines closer to the requesting tile based on the

stream pattern, or the center of multiple requesting tiles if they are offloading the same

stream (i.e. during stream confluence).

Sensitivity to Core Scaling

Fig 4.15 shows SF’s speedup over SS with varying core counts, normalized to SS-4x4. Dots

indicate L2 and L3 hit rates in SS. For some benchmarks (e.g. pathfinder), stream floating

has better scaling than SS, especially when the working set can be cached in L3 and the L2

hit rate is low, as the NoC bandwidth pressure is reduced and L2 cache capacity is saved for

reused data. However, when the data cannot be cached on-chip, SF suffers from the same

81

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
Speedup

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

Re
la

tiv
e

En
er

gy

This way better

Base L1ST-L2ST L1BG-L2ST SS SF

IO4
OOO4
OOO8

Figure 4.16: Energy vs. Speedup for IO4, OOO4, OOO8

memory bottleneck as SS and yields marginal speedup, e.g. mv-4x8. Overall, SF achieves

slightly better speedup for 8x8 (1.32×) than 4x4 (1.30×).

Fig 4.16 shows the energy vs. speedup across IO4, OOO4, and OOO8. For these work-

loads, SS slightly outperforms state-of-the-art prefetchers for OOO cores. After enabling

streams to float into the cache hierarchy, significantly new tradeoffs emerge: SF-IO4 even

outperforms SS-OOO8, and has much lower energy consumption.

4.6 Related Work

Decentralizing Compute A large body of work explored the idea of bringing near-data

computing to general-purpose systems. One example is PIM-enabled instructions [14], which

enables offloading remote memory instructions. Active Routing [16] maps computation ker-

nels to the memory network in a hybrid memory cube. While sending packets for operands,

the network builds a routing tree for the computation and computes the result at the least

common ancestor of the operands. SnackNoC [4] leverages the idle time of the NoC router

to perform computation. A centralized packet manager distributes computation to routers,

82

which chains computation by forwarding. Livia [27] enables user-defined, single-input com-

putation kernels to be offloaded to the highest level of the memory hierarchy where the data

exists, including memory.

Stream floating focuses on long-term data-movement (inspired by [63, 28, 112, 113, 114])

and only computation offloading of address generation, simplifying hardware requirements.

Furthermore, all of the above require APIs/programmer support, whereas stream floating

leverages an ISA targetable by a simple compiler.

EMC [115] augments a memory controller with compute, and enables miss-generating

data-dependent instructions to be executed at the memory controller. Pattnaik et al. explore

offloading RMW instruction chains to remote cores, as well as computing at the “meet” of

two remote inputs, to reduce traffic [3].

Cache Policy Optimizations Dead-block techniques predict which cache lines have little

reuse, and help quickly replace or avoid caching them [116, 117, 89, 118, 94]. Other bypassing

techniques follow similar principles [90, 91, 92, 119, 95]). It is future work to selectively decide

whether to bypass or allow floating stream data to enter the cache. Similarly, several cache

replacement policies avoid thrashing by initially assuming little reuse [120, 121, 122].

Another body of work recognizes data-sharing patterns to simplify coherence operations

(e.g. producer-consumer [123, 124], migratory [125, 126], false-sharing [127]), and also to

enable forwarding to hide latency [128, 129, 130]. The pattern can be detected by hardware,

or supplied by software.

None of the above support accesses whose requests originate remotely, which is required

for stream floating optimizations.

Prefetching This work is heavily inspired by many prior prefetching works. E.g. feedback

directed prefetching [131] monitors prefetching usefulness, lateness and pollution to throttle

the prefetcher; we also monitors the usefulness of floating and throttles based on timing.

Specifically for indirect (data-dependent) prefetching, prior work explored software tech-

83

niques [132] and hardware techniques like IMP [79] and CATCH [133]. Our approach identi-

fies similar patterns. An even more general approach is the event-triggered prefetcher [134],

which allows specialized prefetching hardware to run simple programs that can respond to

prefetch events. Our prefetcher is less general, focusing on common forms.

Buffets [77] are an efficient composable storage idiom for accelerators that enables effi-

cient data reuse without the overheads of caching or inflexibility of double-buffering with

scratchpads. They do not integrate with general caches.

4.7 Summary

This chapter explores the idea of leveraging inherent program access patterns – streams –

as the units of near-data offloading. We find that streams are prevalent in data processing

workloads, and encode useful information that can help eliminate coherence and traffic over-

heads. By exposing stream information to the caches, they can proactively prefetch with

optimized cache policies and mechanisms. Our microarchitecture can correctly identify ben-

eficial streams and transparently float them among the caches, reducing the network traffic

as well as improving the cache utilization.

More broadly, as we continue to scale multicores, especially without the help of technology

improvements, we believe that the concept of exposing higher-level abstractions like streams

can help to enable new memory system optimizations, especially near-data computing.

84

CHAPTER 5

Near-Stream Computing

While streams mainly describe memory access behaviors, they can also be extended to include

the computation producing or consuming the stream values. These computations now apply

to the entire stream (subjected to predication). This enables a new paradigm, “near-stream

computing”, where computations are flexibly scheduled along with the associated stream

near the data.

In this chapter, we first make a case for near-stream computing in §5.1, and also overview

our optimizations and compare against prior near-data works. Then we discuss the basic in-

core operation in §5.2. We describe our offloading approach and range-based synchronization

in §5.3, while §5.4 discusses programmer-exposed synchronization-free optimizations. We

cover methodology and evaluation in §5.5 and §5.6, with additional related work in §5.7.

5.1 Motivation and Overview

We first discuss general tradeoffs for general near-data computing abstractions. Then, we

introduce a taxonomy of sub-thread near-data patterns and the opportunity they provide.

Finally, we overview our approach and compare it to other sub-thread near-data techniques.

Why Sub-Thread Near-Data Computing?

As systems scale, the overheads of data movement and communication become the primary

bottlenecks for high-performance energy-efficient execution, especially for data-processing

85

workloads that rely on large datasets. A variety of specialized architectures mitigate these

overheads by carefully scheduling computation near data and orchestrating data movement

with efficient pipelines. This broad paradigm of near-data computing (NDC) includes near-

memory techniques [135, 136, 137, 138, 139, 140, 15, 141, 142, 143, 144, 145, 146], as well as

near-cache [27, 147, 148, 21, 20, 149, 3]; the latter is our focus.

Bringing NDP to general-purpose computing is challenging because of three competing

goals: transparency to the programmer, generality of computations offloadable, and auton-

omy of offloaded computations to keep overheads low.

Transparency can be provided trivially by performing near-data computation at thread-

level [143, 12, 11]. However, efficient thread-level NDP is limited to workloads that only

process a single data structure, as different data structures generally have different access

patterns and would benefit from a tailored offloading approach. Generality can be provided

by instead using finer-grain, sub-thread abstractions for offloading decisions, like offloading

special instruction sequences [14, 3, 141] or short program regions [16, 27, 4].

While attractive, sub-thread offloading poses significant challenges to all three goals. In

terms of generality, NDP techniques should support offloading near many types of data

structures (arrays, lists, trees, etc.) and flexibly employ various computation strategies

(near-data filtering, stores, atomics, reductions, etc.). However, prior works only support a

subset [14, 3, 16, 27, 4, 141].

To provide transparency, sub-thread offloading requires maintaining sequential mem-

ory semantics with distributed address generation and computation. To this end, prior

instruction-based offloading techniques integrate remote memory access with the coherence

protocol [14, 3]; however, because offloaded computations are instruction-granularity – and

thus not autonomous – they require expensive fine-grain coordination. Another approach

is to rely on the programmer to provide guarantees on access patterns [16, 27, 4], but the

corresponding APIs generally require expert knowledge.

86

In this work, our goal is to provide effective and general near-cache computing capabil-

ity for general-purpose cores without programmer help. Our primary insight is that using

streams – i.e. coarse grain memory access patterns – as the granularity and abstraction for

offloading helps to enable general, autonomous, and transparent offloading:

∙ Generality: Streams capture long-term per-data-structure behavior, so optimizations

can be more aggressive than with instruction-level offloading. (e.g. stream abstractions

enable a reduction operation to be fully offloaded, so that only the final value needs to

be returned).

∙ Autonomy: Streams enable efficient autonomous offloading by eliminating coordination

overhead (e.g. copying array a[] to b[] only requires two requests from the core, rather

than one request per cache line).

∙ Transparency: Streams reduce the overhead of maintaining sequential memory seman-

tics by enabling the detection of memory ordering violations using per-data-structure

access summaries rather than individual accesses.

Sub-Thread NDC Taxonomy and Opportunity

Taxonomy For sub-thread near-data, there are two dimensions of generality: address

patterns and computation types.

Address patterns intuitively include affine (e.g. A[i,j]), indirect (e.g. B[A[i,j]+w]),

and pointer-chasing (e.g. P=P.next). The latter two are data-dependent and non-contiguous,

so imply distributed access. We also include multi-operand access patterns, for when a

computation operates on multiple data sources (e.g. A[i] op B[i]). This requires further

coordination of distributed access, as A[i] and B[i] may not be mapped to the same location.

When such an address pattern is decoupled from the remainder of the program, we refer

to it as a stream.

87

Compute Patterns define the relationship between near-memory and in-core work.

Four common patterns are:

∙ Near-Load-Stream: Computation may be performed near a dependent load stream

to reduce the data traffic, either by reducing bit width or filtering data.

∙ Near-Store-Stream: Computations may be performed near a store stream to avoid

returning outputs to the core.

∙ RMW: Read-modify-write ops update each data item in place and greatly reduce the

latency and network traffic.

∙ Reduction: Like near-load-stream but with accumulation. No intermediate data is

communicated to the core.

Near-Stream Opportunity To understand the potential of near-stream computing, we

study how prevalent different compute and address types are across data-parallel workloads

(see §5.5/§2.4 for workload/compiler details). Fig 5.1(a) shows the breakdown of dynamic

micro-ops committed that can be associated with streams, where 21% are associated with

load-streams (including reduction) and 31% with store and RMW.

Next, we demonstrate that the ideal near-data scheme heavily reduces data traffic with

respect to even ideal private caches. Fig 5.1(b) shows the pure data traffic (bytes × NoC

hops) of three abstract systems. No-Priv$: baseline system with no private caches, Perf-

Priv$: system with perfect private cache (fully-associative, byte-granularity, LRU, 256kB,

zero-cost update-based protocol), and Perf-Near-LLC where computation is offloaded to

LLC banks. All systems have 64 cores, a mesh NoC, and 1MB/bank LLC. We find that

adding private caches only reduces 27% of data traffic, due to the large reuse distance.

However, near-LLC computing reduces the data traffic by 64%.

88

pathfinder
srad

hotspot

hotspot3D

histo
gram

sclu
stersvm

bfs_p
ush
pr_pushssspbfs_p

ull
pr_pull

bin_tre
e

hash_joinavg.
0.0
0.2
0.4
0.6
0.8
1.0

M
icr

o
Op

s Reduce
RMW
Load
Store

Multi-Op.
Ptr-Chase
Indirect
Affine

(a) Dynamic Micro Ops Associated with Memory Accesses

pathfinder
srad

hotspot

hotspot3D

histo
gram

sclu
stersvm

bfs_p
ush
pr_pushssspbfs_p

ull
pr_pull

bin_tre
e

hash_joinavg.
0.0
0.2
0.4
0.6
0.8
1.0

Da
ta

 T
ra

ffi
c

No-Priv$-Core
No-Priv$-Stream

Perf-Priv$-Core
Perf-Priv$-Stream

Perf-Near-LLC-Core
Perf-Near-LLC-Stream

(b) Data Traffic Reduction after Offloading Computation

Figure 5.1: Potential of Sub-Thread Near-Data (View in Color)

Optimization Overview

The basic principle of stream-based near-data computing is that a decoupled stream may be

offloaded near an LLC bank, along with some computation. The coordination and flow of

data varies depending on the aspects of the taxonomy. We begin assuming a simple affine

access pattern and discuss how different compute types would work. Then we generalize to

more complex access patterns.

Reduce Fig 5.2(a) shows the case of affine reduction (ΣA[i]). Conventional systems

fetch all the data to accumulate the result (multiple request/response arrows), introducing

89

Requests Responses

Conventional System
Stream Configure

Near Stream Computing
Stream Migrate

S += A[0:3N)

S += A[0:N)

S += A[2N:3N)

C[i] += A[i] + B[i]

Indirect Request

B[A[i]] += C
B[A[0]] += C

B[A[1]] +=C

Node.Val == Key

Node1.Val==Key

Node3.Val==Key

(a
)A

ffi
ne

Re
du

ce
(b
)M

ul
ti
Op

Af
fin

e
St
or
e

(c
)I
nd

ire
ct
RM

W
(d
)P

oi
nt
er

Ch
as
e
Re

du
ce

Figure 5.2: Near-Stream Computing Optimizations

90

unnecessary traffic. By coupling the reduction with the stream A[i], the remote LLC can

perform the computation in place. As the stream iterates, it automatically migrates to the

next LLC bank with the new data and keeps reducing. Nearly all data traffic is eliminated.

Store Store streams, like memset (i.e. A[i]=0), introduce significant overhead, as they

require writing permission and writing back. With near-stream computing, this can be

performed in place as the stream migrates.

Load It may also be beneficial to couple computation with a load stream and respond with

the computation result, especially when the computation reduces the data type size. For

example, extracting a hash key of a few bits from a larger value. Also, if a computation’s

result is used by multiple stores, associating it with the load stream instead would avoid

redundant computing.

RMW RMW streams (e.g. A[i]+=C) are a hybrid case of both load and store computation.

Semantically, they guarantee the atomicity of the update.

Access Pattern: Multi-op Operating on multiple data streams complicates near-data

computing, as it requires coordination within the memory system. Fig 5.2(b) shows the

case of vector addition, i.e. C[i]=A[i]+B[i]. Our approach is to allow the load streams to

compute the location of the store stream, so their data can be forwarded there directly. Here,

the computation is performed at the store stream and is updated in place with minimal data

traffic and no writeback traffic at all.

Access Pattern: Indirection Computations can also be associated with indirect streams.

Fig 5.2(c) shows an indirect RMW on B[A[i]]. Instead of fetching A[i], computing the

indirect address, and finally bringing in and updating B[A[i]], we can associate the atomic

operation with the indirect stream B[A[i]], and generate indirect atomic requests in remote

cache banks. This not only reduces the data traffic, but also shortens the long dependence

chain and lowers the latency.

91

Active Livia Omni- Snack PIM- Near

Rtng [16] [27] Comp. [3] -NoC [4] En. [14] -Stream

Data Level HMC LLC/MC LLC LLC Mem LLC

Prog. Transparent No No Yes No No Yes

Loop Autonomous Yes Yes No No No Yes

Patterns (Tab 5.2) 3/16 8/16 9/16 8/16 6/16 16/16

Workloads 2/14 5/14 10/14 5/14 6/14 14/14

HMC: Hybrid Memory Cube, LLC: Last Level cache, MC: Memory Controller

Table 5.1: Capabilities of Sub-thread Near-data Approaches

Access Pattern: Pointer-Chasing Fig 5.2(d) shows an example of searching in a linked

list. This example uses a reduction and chases the pointer among LLC banks. Similar to

indirect patterns, this removes the core from the long dependence chain and only the final

matched result is sent to the core.

Unlike affine streams, the bank for indirect and pointer-chasing access is data-dependent.

Therefore, we do not allow them to have arbitrary streams as operands. An example in-

eligible stream would be C[B[i]]+=A[i], as it would be burdensome for the A[i] stream

to compute the bank of C[B[i]]. Among the workloads we studied, we never encountered

this case. Patterns where a value-producing stream is the base stream are supported, like

C[A[i]]+=A[i]; A[i] is included in such an indirect request.

Related Sub-thread Near-data Techniques

While prior works have explored sub-thread-level abstractions for near-data offloading, none

are both programmer-transparent and support autonomous loops executing remotely. Fur-

ther, none of them are general enough for all combinations of address and computation

patterns. Table 5.1 summarizes comparison, and Table 5.2 compares supported address and

92

compute patterns to prior works. We explain in detail below.

Active Routing [16] enables offloading of reductions to a network of HMC memories.

A programmer specifies a dataflow graph with accesses at endpoints. As it only supports

reduction (except pointer-chasing), only 2/14 of workloads are targetable.

Livia [27] offloads single-cache-line accessing functions to the cache or memory controller.

Functions may be chained, so Livia can achieve loop autonomy (except for indirect pattern).

However, it requires programmers to use an API to identify offload regions and has no

support for multi-operand offload functions. Also, Livia can only modify the data and/or

send back a final value, therefore does not support the “load” pattern.

SnackNoC [4] offloads computation dataflow graphs to NoC routers. It requires pro-

grammer support through special APIs and does not support any form of indirect addressing.

It also offloads at iteration granularity only.

PIM-enabled [14] offloads programmer-designated instructions to memory; a locality

monitor (cache-tag replica) tracks line-level locality and determines whether to offload. Of-

floading is done at instruction level only, so offloaded regions are not autonomous (high

coordination overheads, gray in Table 5.2).

Omni-Compute [3] offloads RMW instruction chains to LLC banks. Computation is

performed in the middle (at the “meet”) of remote banks. It has a good expressiveness

(covers 10 workloads), but a finer granularity.

Evaluation Baselines We compare quantitatively against Livia, since it provides loop

autonomy and more workloads than Active Routing. We also evaluate Omni-Compute,

because it is the only other programmer-transparent technique.

Relationship to Prior Stream-Based ISAs

The essential idea of encoding high-level memory access patterns in the ISA to improve

various microarchitectural policies has been explored by many prior stream ISA works [28,

93

Address Pattern S Affine Indirect Ptr-chasing Multi-op.

A[i] A[B[...C[i]]] A = A.next A[i],B[i]

Load =f(*S) O S P N O P N N O S N

Store *S = f() L O S P N L O P N L N O S N

RMW *S = f(*S) L O S P N L O P N L N O S N

Reduce 𝜎f(S) A L S N A N L N A S N

A: Active Routing, L: Livia, O:Omni, S: Snack-NoC, P: PIM-en, N: Near-stream

Underline indicates partial support through fine-grain offloading (high overhead).

Table 5.2: Address and Compute Patterns of Near-Data Works

32, 96, 150, 151], primarily in the context of prefetching. Table 5.3 compares their capabilities

to generate various access patterns. Note that Prodigy [151] uses a different terminology of

Data Indirection Graph (DIG) instead of stream dependencies.

Addr. Pattern Near-Data Compute?

Stream-Specialized Processor [28] Affine, Indirect, Ptr. No

Stream-Semantic Register [96] Affine No

Unlimited Vector Extension [150] Affine, Indirect No

Prodigy [151] Affine, Indirect No

Stream Floating [32] Affine, Indirect, Ptr. Address Only

Near-Stream Computing (this work) Affine, Indirect, Ptr. Addr. + Comp.

Table 5.3: Capabilities of Stream ISA Works

Unlike prior works focusing on address generation, this work extends streams with a new

dimension: computation. With compiler and ISA support (see §5.2), computations taking or

generating stream data are extracted from the original program and associated with streams.

They can be offloaded along with the stream to the bank (LLC in this work) near the data.

94

Furthermore, this work develops a coarse-grained synchronization scheme to coordinate

the core and remote streams and provide precise states and alias detection (see §5.3). When

synchronization is not required (through explicit pragmas), near-stream computing intro-

duces new aggressive optimizations (§5.4), e.g. embedding inner loop streams in outer-loop

streams and completely removing the inner loop, which is not supported in SSP [28] or

stream-floating [32].

5.2 In-Core Near-Stream Computing

Here we discuss the preliminary microarchitecture components of a near-stream system to

enable in-core execution only (i.e. not offloading near-data). The primary extension is the

core’s stream engine (abbreviated SECORE), which is essentially a programmable prefetcher,

supporting the address and compute patterns discussed earlier. Its role is to arbitrate mem-

ory requests between concurrent streams, configured by s cfg instructions, and provide data

to the core instructions through a FIFO interface (i.e. a load and store FIFO for stream

loads and stores).

Near-Stream Computation Simple scalar near-stream instructions (e.g. min) are per-

formed on the SE, similar to other address computations. However, many important work-

loads require a vector unit that would be inefficient to replicate. Instead, our approach is to

use light-weight thread contexts for executing more general near-stream computation.

The stream computing manager (SCM) manages the execution of near-stream func-

tion, arbitrating between requests of the local streams on its SECORE, and remote streams

from its SEL3, as explained later. Instances of the near-stream function are executed on a

lightweight thread called a stream computing context (SCC), for execution with simultane-

ous multithreading (SMT) [152]. SCCs are lightweight, as near-stream instructions do not

contain loads/stores and do not incur long latencies. Therefore, they are allocated minimal

physical registers and reorder-buffer (ROB) entries, and no LSQ entries.

95

As explained earlier, instances of the near-stream function are executed in a loop to avoid

the pipeline bubble triggering a new computation. The SCM is responsible for scheduling

computation instances onto iterations of this loop. Near-stream instructions access the

stream FIFO via stream load/store instructions to read input streams’ data and output

results. Exceptions in SCCs (e.g. divided by zero) are recorded in the output FIFO entries,

and are triggered when the core commits that iteration (similar to prior work [28]). The SE

configures the SCM with the function pointer and any loop invariant operands for new near-

stream functions. Once started, the SCC keeps running until blocked by unready stream

inputs (via s load), and is terminated when reassigned to new a computation.

Overall, this scheme allows instruction-level parallelism across near-stream function in-

stances, and provides a low-cost strategy for executing near-stream functions in the core.

Memory Ordering Similar to the stream-specialized processor, a prefetch element buffer

(PEB) is added for memory disambiguation of prefetched data before it is ordered by core

memory access instructions [28]; it is a logical extension of the load queue. If an alias is found

when checking against an earlier store, all prefetched elements are flushed and reissued, and

any dependent stream element is also discarded and recomputed.

Relation to Stream-prefetching/floating With the system described so far, it is pos-

sible to enable stream-based prefetching without necessarily performing near-data comput-

ing. With stream-based prefetching only, our design would perform similarly to the stream-

specialized processor (SSP) [28].

Stream-floating described in Chapter 4 [32] is an alternate near-data approach that of-

floads only memory read streams with no computation. It supports none of the near-data

computing patterns identified in our taxonomy, as it lacks ISA abstractions and microar-

chitecture for 1. offloading computation, 2. inter-stream dependencies for multi-operand

computation, 3. remote writes, and 4. streaming atomics. The following section will de-

scribe the challenges and our approach for adding this support.

96

Shared L3
Bank

Router
L1 I
L1 D
SEcore

SEL3 Cache
Controller

Core L2Data A[0:N)Commits
Done

End/Ack

B[i] = A[i]

C[B[i]] += 1

SCM

Figure 5.3: In-Cache Near-Stream Computing Overview

5.3 Near-Stream Computing

We first present an overview of the primary challenge and solution, then detail the key

innovation of range synchronization in-depth, and finally address crosscutting concerns.

Major Challenge and System Overview

Challenge and Insight One major challenge is to synchronize after decoupling streams

and computations to the cache. This involves maintaining the precise state and detecting

aliasing between streams and the core. A conventional core uses a centralized LSQ to reorder

aliased memory accesses. However, in near-stream computing, a remote store stream can

also write to memory, making it especially challenging to synchronize.

Intuitively, offloaded computations should not be aliased with other streams or the core,

as frequent synchronization eliminates the benefits of offloading. Also, because streams

access a single data structure, their addresses tend to be confined to a limited range. In this

work, we will further assume this observation extends to physical address ranges, due to the

97

Config.
Unit

Stream
States

Stream
Buffer

Range
Sync Unit

Issue Unit
(Addr. Gen./Cmp)

Translate
Unit

Migrate
Unit

Req. to L3

Configure/
Migrate/

End

Credits/
Commits
from SEcore

Data from
L3/SCM

Migrate to
next L3

L3 Stream
Engine

Colocated
L2 TLB

Ind. Ranges
to SEcore

Local Core
SCM

Scalar
PE

Figure 5.4: L3 Stream Engine (SEL3)

use of large pages or the OS’s support for transparently promoting continuous pages into

huge pages to reduce fragmentation [153]. Therefore, the synchronization scheme can be

coarse-grained and conservative, minimizing the control at the price of false positives. The

principle of our approach, range-based synchronization (range-sync), is to only synchronize

every few iterations and check aliasing against the range of touched addresses instead of

individual accesses1.

Proposed System Overview Fig 5.3 shows our proposed system. Besides the core stream

engine (SECORE), we add an analogous SE to shared L3 banks (SEL3) (Fig 5.4). The tile

where the stream is offloaded is called the “remote” tile.

Near-stream operation begins when the SECORE decides whether offloading would be

profitable, and sends the request to the remote SEL3 (Fig 5.4), which requests the stream

1Larger but more accurate approximation could also be used to reduce false positives, e.g. bloom filter
used in BulkSC [154], and this would not require per-data structure physical address contiguity.

98

Collect
ranges.

Send
commits.

Commit iteration [0, R).
Check alias in ranges.

Allocate more
credits.

Writeback & release
element [0, R).

Allocate
credits [0, R).

Co
re

SE
L3

SE
Co

re Pipelined to
hide latency.

Sync every R iterations.
Overheads: 4/R NoC
msg per affine elem.

Translate & access
element [0, R).

Collect
ranges.

Send
commits.

Alias/context switch at
iter.M (M < R).

Continue
streams in core.

Writeback & release
element [0, M). End.

Translate & access
element [0, R).

Allocate
credits [0, R).

Pipelined to
hide latency.

Execution continues
at iteration M with
streams in core.

Collect
ranges.

Send
commits.

Commit until iter.
N (N < R).

Continue
streams in core.

Translation fault at
element N (N < R).

Allocate
credits [0, R).

Pipelined to
hide latency.

Execution continues
at iteration N with
streams in core.

Writeback & release
element [0, N). End.

(a) Normal Case (b) Alias/Context Switch in Core (c) Fault in Remote Stream

Figure 5.5: Timeline of Range-Synchronization

data from the L3 cache and schedules computations (either on a small scalar unit within

the SEL3 if simple enough, or issued to the SCM within the same tile). The SEL3 also

forwards stream data to any dependent streams in other remote SEL3s, and writes results to

L3 for store/atomic streams. The SECORE issues flow control credits and commit messages

to synchronize with remote SEL3s.

Range-Based Synchronization

We first introduce the key concept of ranges and required hardware units. Then we present

details of different phases of range-sync, and how it maintains precise state.

Alias Check with Ranges To amortize synchronization overheads, an alias check between

core and offloaded streams is performed at ranges of touched addresses instead of individ-

ual accesses. Specifically, offloaded streams report the accessed physical address ranges

[𝑚𝑖𝑛,𝑚𝑎𝑥) to SECORE. When the core commits an access, it checks against the range for

possible aliases. Remote streams’ progress is either written back after the core commits

the corresponding iteration without detecting aliases, or discarded in cases of alias, context

switch or fault.

Hardware Units We add a stream buffer to SEL3 to hold operands and intermediate states

before they are committed (see Fig 5.4). The range unit listens to translated addresses (by

colocated L2 TLB) to build ranges for streams. SEL3 caches the current translation so there

is only one TLB access per page, (and it also participates in TLB shoot-down). For affine

99

streams, since the address pattern is predefined, ranges are built by SECORE instead of SEL3,

further reducing the synchronization traffic.

Coarse-Grained Protocol We build the synchronization protocol using ranges, with

all control messages designed to be coarse-grained, i.e. one for multiple iterations. This

amortizes traffic overhead and is the key to retaining the benefits of decoupling computation

to remote tiles. Details follow:

Stream Configure SECORE makes the offloading decision based on the stream’s config-

uration and history information (similar to [32]). If a stream’s memory footprint (inferred

from the pattern and length) cannot fit in the private cache, it can be directly offloaded.

Otherwise, SECORE records its miss and reuse rate in the private cache as well as whether it

has aliased with other streams or core accesses. Only streams with a high miss rate and no

reuse or aliasing are offloaded.

When SECORE decides to offload, it sends out a stream configure message to SEL3, contain-

ing the stream’s configuration, hardware context id (same as core id if no SMT), and address

patterns for receiving streams (here A[] → B[]) to determine its current location. When

received, SEL3 starts to generate stream requests and schedule computations (Fig 5.3 1).

Stream Forward Once configured, SEL3 computes the addresses and issues requests to the

colocated L3 cache controller. If the stream data is used by another offloaded stream, SEL3

also generates the receiving stream’s address of the same iteration and sets the receiving SEL3

as the requester so that the data is forwarded there (Fig 5.3 2). The response contains the

stream id and element index and is buffered in the receiving SEL3’s stream buffer. Streams

are issued round-robin.

Compute in SEL3 The issue unit schedules ready computations to a scalar PE (for simple

computations) or the local core’s SCM within the same tile to fully reuse existing hardware

resources. Data in the stream buffer is tagged with the core id, stream id and the iteration

100

number to be able to disambiguate multiple simultaneous iterations.

SCCs executing the same function can be shared among streams from different threads,

as each instance is stateless, and this reduces the need to have many SCCs. SCCs in the

remote tile are released after all user streams are terminated or migrated out. Since SEL3

sends memory requests directly to the L3 cache, now there is no need for the core to issue

requests for s store/atomic.

Precise State Range-sync helps define the architectural state of offloaded streams consis-

tently with the core: a stream element is considered committed if its first user instruction

is committed in the core. Fig 5.5(a) shows how range-sync maintains the precise states for

offloaded streams under normal circumstances (R is the granularity in iterations).

To start the range-sync protocol, SECORE sends credits to SEL3, allowing it to prefetch

and forward the data. Meanwhile, the range unit listens to the translated addresses and

builds the touched range [𝑚𝑖𝑛,𝑚𝑎𝑥) for each stream. After collecting ranges for a few

iterations (currently 8), SECORE checks if there is aliasing between streams. If not, the core

can commit until the latest iteration with complete range info. Before the core commits a

load/store, it checks the address against the ranges for possible aliases and terminates the

offloaded streams if it finds aliasing.

If there is no aliasing, SECORE sends commit messages to SEL3 for store and RMW

streams; only then can streams write back to the cache. Subsequently, SEL3 will reply to

SECORE with a “done” message, so that SECORE can allocate more credits (Fig 5.3 3 - 5).

When SECORE detects an alias involving offloaded streams (e.g. a false positive due to the

conservative range check), or when a context switch or exception happens, SECORE issues an

end message to the remote SEL3 to write back committed iterations and release the stream

(Fig 5.5(b)). After collecting all done messages from remote streams, the precise state is

restored and the core may continue with streams back in the core. A fault in remote streams

also triggers the ending procedure to let the core manage, as shown in Fig 5.5(c).

101

Stream Migrate & End Similar to [32], streams automatically migrate to the next L3

bank as necessary due to address interleaving. To terminate a stream, SECORE sends out

an end message to SEL3 (Fig 5.3 6). Streams with known length can be silently released in

SEL3 (after committing all work).

Coherence & Consistency SEL3 issues requests to the L3 controller to collect and write

back the stream data, which can be served normally if no private cache has a copy. Other-

wise, depending on the request type (load or store), the L3 cache controller reuses normal

invalidation transactions to clear private copies and get the latest version. Coherence states

are extended to lock the line for atomic operations (see §5.3).

At the instruction level, near-data streams only support weak consistency, as remote

stores/atomics are written out of order (serializing stores [155] is possible, but reduces

near-data benefits). It is the compiler’s responsibility to ensure strong memory consistency

for data-race free programs, which we accomplish by limiting near-stream computation to

synchronization-free regions (except atomics with relaxed ordering).

Resource Management We statically divide the stream state table and buffer in SEL3

among cores to avoid sharing. SECORE keeps track of resource utilization and may pause

issuing credits to avoid possible deadlocks. Another approach is to let SEL3 dynamically

allocate resources among streams, and have the SECORE terminate streams with no progress

after a timeout period (to break potential deadlock). This could lower the hardware overhead

and is left to future work.

Efficient Indirection Support

Indirect computation can be offloaded along with the affine stream. Fig 5.3 shows an indirect

atomic increment. After receiving the commit message, indirect store/atomic streams issue

the indirect request, compute the result in the indirect SEL3, and reply to SECORE (Fig 5.3 7

- 9).

102

Intra-Stream Ordering Range-sync only covers inter-stream and core-stream aliasing.

Aliasing within the same stream is not a problem for affine patterns, as they are not self-

aliasing and are written back in order. However, indirect requests may arrive out of order

and violate the memory ordering.

To retain the ordering for indirect streams, the remote SEL3 includes the last iteration

issued to that bank in newly issued requests. The indirect SEL3 can check this against the

latest seen iteration to detect missing inflight requests and reorder them if needed.

Supporting Atomics Indirect atomics are common in graph workloads. To guarantee

atomicity, the target cache line is locked in the L3 and other accesses are blocked. This

usually takes only a few cycles since the computation is fairly simple.

However, the locked window is much longer if we have to send back the value to the

core for further processing and wait for commit messages. To mitigate this, we observe that

many atomics do not change the value (e.g. compare-exchange in bfs, min in sssp), and

can be served concurrently by recording them in the coherence state (similar to recording

the private sharers) and blocking others that modify the value. This hardware multi-reader

single-write lock eliminates on average 97% of the contention for bfs push and sssp, and

reduces the conflict rate to 0.6%. Atomics from the same stream can always proceed even if

they modify the same memory, as they are ordered by SEL3.

Indirect atomics may also cause deadlocks, as locks are acquired out of order but re-

leased in order when committed by range-sync. The programming model requires shared

memory, and it is impossible to eliminate such deadlocks. Therefore, SECORE must timeout

an offloaded stream with no progress and restore the precise state (similar to Fig 5.5(b, c)).

However, this deadlock is very rare and never happened in our experiments.

Indirect Reduction Reducing over indirect streams is more difficult than affine reduction,

as data are likely randomly scattered among banks. A näıve scheme to perform the reduc-

tion sequentially, following the data, eliminates the benefits and may introduce more traffic

103

Field Bits Description Field Bits Description

A
ffi
n
e

cid 6 Core id. ptbl 48 Page table addr.

sid 4 Stream id. iter 48 Current iter.

base 48 Base virt. addr. size 8 Element size.

strd 48 Mem-stride (3×) len 48 Length (3×)

In
d
. sid 4 Stream id. size 8 Element size.

base 48 Base virt. addr.

C
m
p
.

type 4 Compute type. fptr 48 Func pointer.

sid 4 Arg. sid (8×). size 3 Arg. size 2𝑛 (8×).

ret 3 Ret. size 2𝑛. data Const. arg.

Table 5.4: Near-Stream Computing Configuration

overheads.

To break the recursive dependence, we limit indirect reduction to associative operations,

e.g. +, ×. When offloaded, partial results are reduced in each visited indirect banks, and

collected by a multicast message when the stream terminates. SECORE performs the final

reduction, and only considers offloading if the stream is longer than a threshold (we choose

4× # of banks) to avoid overheads of short indirect reduction.

Pointer-Chasing Stream Pointer-chasing streams migrate among LLC banks following

the pointer chain. Similar to indirect streams, SEL3 builds and sends back the accessed

range. By checking the sending bank of range messages, SECORE knows the current location

of the stream to send future credits.

104

Stream Encoding

Table 5.4 lists fields of a stream configuration, separated as the access pattern and possible

associated computation. We support up to 3-dimension affine patterns. For near-stream

computing, we encode simple scalar computations directly in type, e.g. +, ×, RMW, etc.,

which can be executed by the ALU in SEL3. Otherwise, the computation is encoded in

the function pointed by fptr, and executed by the local SCM. We support up to 8 inputs

(required for 3D stencil) of either streams (with non-zero sid) or constants (data). The

input stream records the receiving stream’s address pattern, to determine where to forward

the data.

To avoid excessive migration traffic, one optimization is to remember visited banks, and

only send core id, stream id and changing fields (e.g. iteration number) when migrating

to a visited bank. To terminate an offloaded stream, the end message is multicast to all

configured SEL3s. This is left as future work, as we found migration traffic is relatively low.

5.4 Synchronization-Free Optimization

Although range-sync amortizes the control overhead with coarse-grained messages, it still in-

troduces extra traffic and longer dependence chains. In many scenarios, inter-stream aliasing

never happens, and programmers may be willing to sacrifice precise states for performance.

This inspires us to introduce the synchronization-free optimization (sync-free), which reduces

the control overhead and allows offloaded streams to commit ahead of the core.

Specifically, programmers can add a pragma s sync free to a loop (Fig 5.6), indicating

that streams in this region never alias. When offloaded, such streams can commit immedi-

ately without sending commit messages or indirect ranges. Streams still report their progress

to SECORE, and the core is limited to not committing ahead of offloaded streams to avoid

complete desynchronizing. This eliminates some control overhead, and importantly, shortens

the dependence chain.

105

ss

sc

sv

ss

sc

sv

N S Computing Pseudo Assembly Stream Dep. Graph

Config.
#pragma s_sync_free
while (u < N)

P, Q = Edges[u];
i = 0, s = 0;
while (i < Q P)

v = P[i];
s += C[v];

// ...

s_cfg(se=Edges[u],sv=se.P[i],
sc=C[sv],ss+=sc);

while (u < N)
s = s_load(ss);
// ...

s_end(se,sv,sc,ss);

Outer Inner

Sync free breaks sequential semantics
Simultaneous multiple inner streams

Inner loop fully
decoupled/removed

(d) Pull Page Rank

Config.
se

ss +=

sc

sv

Figure 5.6: Fully Decoupled Loop (Same Legend as Fig 2.5)

Coarse-Grain Context Switch Without synchronization, streams are free to commit until

there are no remaining credits. Therefore, once the credits are sent out to the SEL3, there

is no sequential point in the original program order. However, a coarse-grain context switch

is still possible by stopping credit issuing and collecting all the done messages. Offloaded

streams’ progress is included in the architectural state and restored during a context switch.

Fully Decoupled Loop Synchronization-free streams break the sequential execution se-

mantics to enable aggressive optimizations. As shown in Fig 5.6, all memory accesses and

computations in the inner loop are captured by streams, and all inner loop streams’ param-

eters are from outer loop streams. In such a case, the compiler can eliminate the loop and

these fully decoupled streams are stepped independently by SECORE, further reducing core

instruction overhead.

More importantly, now SECORE can simultaneously advance multiple instances of fully

decoupled nested streams, increasing potential parallelism (3 concurrent instances in Fig 5.6).

5.5 Methodology

Evaluation Stack We use gem5-20 [107] for execution-driven, cycle-accurate simulation,

extended with partial AVX-512 support, with Garnet [108] for the NoC and DRAMsim3 [156]

106

for DDR4. We implement an LLVM-based compiler with x86 backed to recognize streams

and associated computations as described in §2.4.

Benchmarks We simulate 14 OpenMP workloads from Rodinia [109], MineBench [157] and

Gap Graph Suite [158], covering both affine patterns and irregular accesses (see Table 5.6).

bfs and pr have both a push (using atomic) and pull (using reduction) version. Programs are

compiled with -O3 and vectorized with AVX-512. If not specified, we simulate to completion.

Systems and Comparison Table 5.5 lists system parameters. Energy consumption is

estimated using McPAT [50] at 22nm (extended to model the stream engines). We use huge

pages for large data structures. In real systems, continuously-used base pages are likely to

be promoted into huge pages [153].

The baseline core’s L1 uses the Bingo [110] spatial prefetcher, the best multi-core prefetcher

in DPC3 [111]. We also add an L2 stride prefetcher, as it improves performance. All other

designs have hardware prefetchers turned off:

∙ Inst-Level NDC (INST): Near-stream computations are offloaded to LLC at iter-

ation granularity, with data forwarded to the “meet” of operands’ banks to perform

multi-operand computation (similar to Omni-Compute [3]). Reduction cannot be sup-

ported due to fine-grained offloading.

∙ Single-Line NDC (SINGLE): Single cache line accessing functions are offloaded to

the cache, and may be chained to support pointer-chasing patterns. This resembles

Livia [27] and has sync-free optimizations in §5.4 (as Livia does because of programmer

guarantees), but without offloading to memory controllers.

INST and SINGLE both benefit from stream-based prefetching even when the com-

pute pattern is not supported. This makes them a stronger baseline than the Bingo

prefetcher.

∙ In-core Streams (NScore): SECORE is only used as an prefetcher (similar to SSP [28]).

107

System Params 2.0GHz, 8x8 Cores

IO4 CPU 4-wide fetch/issue/commit

(4-issue) 10 IQ, 4 LSQ, 10 SB

OOO4 CPU 24 IQ, 24 LQ, 24 SQ+SB

(4-issue) 256 Int/FP RF,96 ROB

OOO8 CPU 64 IQ, 72 LQ, 56 SQ+SB

(8-issue) 348 Int/FP RF, 224 ROB

Func. Units 4 Int ALU/SIMD (1 cycle)

(×2 for OOO8) 2 Int Mult/Div (3/12 cycles)

2 FP ALU/SIMD (2 cycles)

2 FP Div (12 cycles)

L1 D/I TLB 64-entry, 8-way

L2/SEL3 TLB 2k/1k-entry, 16-way, 8-cycle latency

L1 I/D Cache 32KB, 8-way, 2-cycle latency

Private L2 Cache 256KB, 16-way, 16-cycle latency

Replace Policy Bimodal RRIP, 𝑝 = 0.03

L1 Bingo Pf. 8kB PHT, 2kB region

L2 Stride Pf. 16 streams, 16 pf. per stream

NoC 256-bit 1-cycle link, 8x8 Mesh

5-stage router, multicast

X-Y routing, 4 corner mem. ctrl.

Shared 1MB per bank / 16-way

L3 Cache 20-cycle latency, MESI coherence

Static NUCA, 64B Interleave

DRAM 3200MHz DDR4 25.6 GB/s

SECORE 256B/1kB/2kB FIFO, 12 streams

(IO4-OOO8) 2 SCCs, total -/32/64 ROB-entry

4/4/4-cycle latency to SCM

Stream Buf. 16kB FIFO

SEL3 12 streams per core, 768 total

64kB stream buffer, 1kB per core

4-cycle latency to local SCM

Table 5.5: System and Microarchitecture Parameters

∙ Address-only Near-Stream (NSno comp): Streams may be offloaded but without

offloading computation (similar to Stream Floating [32])

∙ Near-Stream Computing (NS): Computations are offloaded along with streams

among last-level cache banks, with range-sync ensuring sequential semantics and co-

herence described in §5.3.

∙ Synchronization-Free Optimizations: NSno sync turns off range-sync as program-

mers guarantee alias-free. NSdecouple further removes unnecessary fully-decouplable

loops so multiple streams may be executed simultaneously.

The best baseline for NS is INST (both programmer-transparent), and the best baseline

108

Benchmark Addr. Cmp Parameters

pathfinder [109] Multi-Operand Store 1.5M entries, 8 iters

srad [109] Multi-Operand Store 1k×2k, 8 iters

hotspot [109] Multi-Operand Store 2k×1k, 8 iters

hotspot3D [109] Multi-Operand Store 256×1k×8, 8 iters

histogram Affine Load 12M 32b value, 8b key

scluster [109] Indirect Load 768k×64B, 5 iters

svm [157] Indirect Load 384k×64B, 2 iters

bfs push [158] Indirect Atomic Kronecker generated

pr push [158] Indirect Atomic 256k nodes

sssp [158] Indirect Atomic 3.6M edges

bfs pull [158] Indirect Reduce A/B/C: 0.57/0.19/0.19

pr pull [158] Indirect Reduce weight [1,255]

bin tree Pointer-Chasing Reduce 128k nodes, 8B key, 512k uniform lookups

hash join Pointer-Chasing Reduce 8B key, 256k ◁▷ 512k, Hit Rate 1/8

Table 5.6: Workloads (MO: Multi-Op)

for NSdecouple is SINGLE (both programmer-exposed).

5.6 Evaluation

Here we evaluate the performance, energy efficiency, generality, and autonomy of near-stream

computing with respect to prefetching and prior near-data techniques, followed by sensitivity

to computation throughput and offload latency, as well as area overheads.

Overall Performance/Energy/Area

Fig 5.7 presents the speedup relative to the baseline OOO8 core. Near-stream computing

(NS) significantly outperforms prior prefetching and near-data techniques, achieving 3.19×

109

pathfinder
srad

hotspot

hotspot3D

histo
gram

sclu
stersvm

bfs_p
ush
pr_pushssspbfs_p

ull
pr_pull

bin_tre
e

hash_join

geomean.

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

Sp
ee

du
p

9.39.310.110.138.136.127.710.410.4

8.28.18.0

NScore NSno comp INST SINGLE NS NSno sync NSdecouple

Figure 5.7: Overall Speedup over Base OOO8 Core

speedup over the OOO8 core, 1.69× over NSno comp, and 1.85× over INST. With sync-free

support, NSdecouple achieves 4.27× speedup over the OOO8 core and 2.12× over SINGLE.

Fig 5.8 shows the normalized energy-performance tradeoff of different core sizes across

workloads. All core types see similar speedups, with in-order cores benefiting the most

(4.28× for NS over IO4). Because of the reduced communication and improved performance

(less static energy), NS and NSdecouple achieve 2.85×/ 3.52× energy efficiency improvement

respectively for OOO8 (similar tradeoffs for less powerful cores).

Area Most of the area comes from the SRAM to store stream states, and we estimate

the area using CACTI and McPAT (22nm). SECORE’s stream buffer takes 0.09mm2 [32].

SEL3 requires a 64kB buffer to hold the stream operands and results, which takes 0.195mm2.

Adding the SEL3’s stream configuration (48kB, 0.11mm2) [32] and other components, the

whole chip area overhead is 2.5% for IO4 (2.1% for OOO8 as SECORE has larger FIFOs).

110

1 2 3 4 5 6 7 8
Speedup

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

Re
la

tiv
e

En
er

gy

This way better

Base
NScore
NSno comp
INST
SINGLE
NS
NSno sync
NSdecouple

IO4
OOO4
OOO8

Figure 5.8: Energy vs. Speedup for IO4, OOO4, OOO8

Advantages of Stream-Based Offloading

With programmer transparency, our NS matches or exceeds INST in all workloads, and our

programmer-exposed approach matches or exceeds SINGLE in all tested workloads (while

requiring simpler programmer support). This can be attributed to advantages in generality

and autonomy.

Generality Fig 5.9 shows the breakdown of computing micro-ops associated with streams

relative to total micro-ops (atomic and update are listed separately for clarity). The second

bar shows the fraction that is actually offloaded at runtime. NS is capable of offloading

computations in all workloads, on average 93% of the possible operations are offloaded. A

few short reductions with reuse in private cache (e.g. bfs pull) are kept in-core to avoid

frequent stream configuration and termination.

These results also explain why INST underperforms on the last 4 workloads: because

it cannot support reduction patterns and can only offload single iterations. Likewise, it

111

pathfinder
srad

hotspot

hotspot3D

histo
gram

sclu
stersvm

bfs_p
ush
pr_pushssspbfs_p

ull
pr_pull

bin_tre
e

hash_joinavg.
0.0
0.2
0.4
0.6
0.8
1.0

M
icr

o
Op

s Reduce
Update
Atomic
Load
Store

Multi-Op.
Ptr-Chase
Indirect
Affine

Total Offloaded

Figure 5.9: Breakdown of Dynamic Micro Ops

explains why SINGLE underperforms on the first four workloads, as they are array codes

that operate on multiple arrays. The baseline prefetcher also only excels on affine patterns.

Indirect prefetchers may be able to recognize such patterns [79, 133], but require training at

runtime.

Autonomy A key benefit of stream-based offloading is to provide autonomy, thus reducing

NoC traffic. We evaluate this by examining the NoC traffic and utilization in Fig 5.10. Traffic

is classified as either offloaded: data and coordination messages for near-data computing (e.g.

credits, indirect ranges, commits, etc.), control: coherence/prefetch messages, or data: non-

offloaded data accesses and writebacks.

NS heavily reduces traffic (by 69%) by co-locating data and computation. This is ac-

complished by eliminating control traffic for affine workloads, as now store streams can also

be offloaded. More importantly, it also greatly reduces data traffic, as operands are directly

forwarded to the bank of the final store. Indirect workloads also benefit; e.g. in scluster

the stream sends back a scalar value of computed Euclidean distance rather than the origi-

nal high-dimension data, thus reducing the data traffic. Indirect atomic streams in pr push

perform the update in place without bringing the line to the core. Range-synchronization

itself accounts for only 11% of NS’s traffic. For bfs push and sssp, synchronization is more

expensive, as it takes two round trips to collect results and commit the indirect atomics.

112

pathfinder
srad

hotspot

hotspot3D

histo
gram

sclu
stersvm

bfs_p
ush
pr_pushssspbfs_p

ull
pr_pull

bin_tre
e

hash_joinavg.
0.0
0.2
0.4
0.6
0.8
1.0

Tr
av

el
le

d
Ho

ps Offloaded
Data
Control

pathfinder
srad

hotspot

hotspot3D

histo
gram

sclu
stersvm

bfs_p
ush
pr_pushssspbfs_p

ull
pr_pull

bin_tre
e

hash_joinavg.
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

No
C

Ut
iliz

at
io

n

Base NScore NSno comp INST SINGLE NS NSno sync NSdecouple

Figure 5.10: OOO8 NoC Traffic (top) and Utilization (bottom)

With synchronization eliminated in NSdecouple, a total traffic reduction of 76% is achieved.

This is especially helpful for performance on bin tree and hash join, as multiple fully-

decoupled inner streams can be offloaded simultaneously.

Compared to prior near-data approaches, INST also reduces traffic (by 49%), but has sig-

nificant overhead due to fine-grain iteration-level offloading. This is apparent on affine work-

loads, where the traffic is 3-5× higher than NS. SINGLE is, of course, highly-autonomous,

and provides high traffic reductions on the indirect workloads where it is applicable, match-

ing NSdecouple in many cases. The traffic is sometimes higher, as SINGLE cannot achieve

autonomy on indirect atomics and falls back to iteration-level offloading.

113

pathfinder
srad

hotspot

hotspot3D

histo
gram

sclu
stersvm

bfs_p
ush
pr_pushssspbfs_p

ull
pr_pull

bin_tre
e

hash_join

geomean.
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

Sp
ee

du
p

3.483.521.68

SCM-Lat-1 SCM-Lat-2 SCM-Lat-4 SCM-Lat-8 SCM-Lat-16 SCM-Lat-32

NSdecouple

NSno sync

NS

Figure 5.11: NS, NSno sync, NSdecouple with 1-32 SCM Latency

Sensitivity to Offload Capability

Fig 5.11 shows the performance of NSdecouple, NSno sync and NS with varying latency for SEL3

to issue a computation to the SCM, normalized to NS-OOO8 with 1-cycle latency. Irregular

workloads are insensitive to this latency, as their computation is simple enough to be handled

by the SEL3 (except one kernel in pr push and pr pull to update the score). On the other

hand, workloads with vector computation are more susceptible to its changes, especially

for pathfinder and srad, which contain a significant portion of short SIMD computations.

Overall, near-stream computing can hide much of this latency by overlapping with other

streams, and with 16-cycle latency the performance of NSdecouple drops by 11% over the

default 4-cycle latency.

We also show how the performance changes with limited ROB entries for stream comput-

ing contexts (SCC) in Fig 5.12. As expected, graph and pointer-chasing workloads are not

bounded by a small ROB, as their computations are mostly single scalar instructions with

less than a 10-cycle delay. However, workloads with SIMD operations need a larger ROB

to overlap computations and hide the latency to access the local SCM. On the other hand,

this also shows that near-stream computing shifts the pressure from data accesses to real

computation, which accounts for the significant speedup. We believe 2 SCCs is a reasonable

114

pathfinder
srad

hotspot

hotspot3D

histo
gram

sclu
stersvm

bfs_p
ush
pr_pushssspbfs_p

ull
pr_pull

bin_tre
e

hash_join

geomean.
1.01.52.02.53.03.54.04.55.05.56.0

Sp
ee

du
p

SCC-ROB-8 SCC-ROB-16 SCC-ROB-32 SCC-ROB-64 SCC-ROB-128

NSdecouple

NSno sync

NS

Figure 5.12: Sensitivity to 8-128 SCC ROB-Entry

choice for OOO cores since it requires fewer resources than a real hardware thread (less

ROB/IQ and no LSQ entries). Overall, we set the default OOO8 configuration to 2 SCCs

with a total of 64 ROB entries.

Other Sensitivity Studies

Affine Range Generation For affine streams, since the address pattern is known at

configuration time, SECORE can generate the ranges to avoid the traffic of sending them

from SEL3, at the cost of duplicate address generation and translation. Fig 5.13 shows the

speedup and traffic of five affine workloads in NS with affine ranges sent by SEL3 or generated

by SECORE (default behavior). The traffic data is classified as control, data and offloaded

(same as Fig 5.10). For indirect workloads, SEL3 always sends the range as addresses are

data-dependent. Overall, generating affine ranges at SECORE saves 15% traffic and achieves

5% performance improvement. NSno sync and NSdecouple do not generate ranges as they require

no range-based synchronization.

Lock Type Fig 5.14 shows the performance of exclusive and multi-reader single-writer

lock (MRSW) on the three graph workloads with atomic operations (see §5.3). Atomics in

pr push always modify the value and thus do not benefit fromMRSW lock. For bfs push and

sssp, many atomics do not change the value, and MSRW lock eliminates 97% of contention

115

pathfinder
srad

hotspot

hotspot3D

histo
gram

geomean.
0.96
1.00
1.04
1.08
1.12
1.16

Sp
ee

du
p Sent by SEL3 Built by SEcore (Default)

pathfinder
srad

hotspot

hotspot3D

histo
gram avg.

0.0
0.2
0.4
0.6
0.8
1.0

Tr
av

el
le

d
Ho

ps

Offloaded
Data
Control

Figure 5.13: Sensitivity to Affine Range Generation (NS)

bfs_p
ush

pr_push sssp

geomean.
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8

Sp
ee

du
p

Exclusive-Lock MRSW-Lock (Default)

NSdecouple

NSno sync

NS

Figure 5.14: Exclusive vs. MRSW

with 1.29× speedup (NS). For NSno sync and NSdecouple, since there is no synchronization,

atomic operations can be committed immediately without waiting for the core, significantly

shortening the locking window. Thus, both lock types achieve similar performance. By

default, we use MRSW lock.

Scalar PE Both SECORE and SEL3 have a scalar PE to handle simple operations and

avoid invoking SCM. Fig 5.15 shows the performance sensitivity for this optimization. As

expected, affine workloads mainly contain vectorized instructions and are not sensitive to this

feature. Indirect and pointer-chasing workloads benefit from this scalar PE as it reduces the

computing latency. Overall, for NSdecouple, adding the scalar PE improves the performance

by 2.5%, but indirect and pointer-chasing workloads significantly benefit from this (1.1× for

hash join), as it reduces the computing latency.

116

5.7 Additional Related Work

We discuss additional related work here; see S5.1 for comparison to sub-thread level offloading

techniques.

Coarse-grain Offloading Many near-data approaches use coarse-grain abstractions for

deciding what to offload. Kernel-level offloading is used in most domain-specific systems [5,

159, 22, 6, 160, 161, 162, 163].

Programmable architectures give varying degrees of control over how to schedule threads

near data [137, 10, 164, 142, 165]. Thread-level offloading also enables programmer trans-

parency. For example, in the context of GPUs, TOM [11] and Pattnaik et al. [12] trans-

parently decide which code to offload based on dynamic bottleneck analysis and predictive

models respectively. AMS adaptively schedules threads in systems with asymmetric mem-

ories, using dynamically profiled miss curves [143]. While transparent, they only make

decisions at thread granularity.

Near What? Near-data computing is applicable in many contexts: in-cache [3], near mem-

controller [27], near router [4], near-memory [10], near-storage [166], etc. It is future work

to evaluate stream-based abstractions, coordination, and offloading in these other settings.

Also, several works perform near-data computing using the memory structure itself as bit-

serial computation units, either in SRAMs [21, 149, 20] or DRAMs [167, 168, 23]. These

techniques could provide highly parallel computation substrates for use in a near-stream

system.

Speculative Multithreading Swarm [169, 170, 171] along with the T4 compiler [172],

executes sequential programs speculatively in parallel as a series of tiny tasks. It supports

scheduling such tasks near on-chip data [147]. In T4, near-data optimization is only applied

for single cache line tasks.

Coherence and Synchronization Recent works provide better support for near-data

117

pathfinder
srad

hotspot

hotspot3D

histo
gram

sclu
stersvm

bfs_p
ush
pr_pushssspbfs_p

ull
pr_pull

bin_tre
e

hash_join

geomean.
0.8
1.0
1.2
1.4
1.6
~

3.6
3.8
4.0
4.2

Sp
ee

du
p

No Scalar PE With Scalar PE (Default)

NSfree
NSno sync

NS

Figure 5.15: Sensitivity to Scalar PE in SEL3

accelerator (NDA) coherence and synchronization. CoNDA speculatively executes NDA

kernels while recording their memory accesses in bloom filters, condensing coherence traf-

fic [165]. SynCron [164] provides specialized synchronization without needing coherence.

Near-stream’s range synchronization protocol supports coherence efficiently by condensing

coherence information on a per-stream basis, and is inspired by prior non-NDA work [102,

103, 104, 105, 106, 154, ?].

Prefetching Prodigy [151] encodes indirect access patterns (similar to nested streams)

in the program to efficiently prefetch into L1 cache. Event-triggered prefetcher [134] and

Minnow [173] are programmable private-cache prefetchers for irregular accesses. However,

prefetching-only techniques still suffer from the traffic overhead of fetching data into the

core. Decoupled spatial architectures also leverage stream information for prefetching in

accelerator designs [63, 113, 112, 114, 174].

EMC [115] augments a memory controller with the capability to execute miss-generating

data-dependent instructions. This does provide support for near-data offloading, but only

for address generation.

118

5.8 Summary

In this chapter, we explore the idea of using streams as the abstraction for near-data com-

puting. Streams are ubiquitous in data-processing kernels, they enable coarse-grain offload-

ing protocols with low overhead, and they are simple enough to be extracted with modest

compiler extensions. Our implementation enables near-data computing with either zero or

minimal (via sync-free) programmer effort, as the compiler and microarchitecture work to-

gether to recognize near-stream computing opportunities while retaining the precise state.

Further, it requires little additional hardware, as the core’s pipeline is reused for near-data

computation through multithreading.

More importantly, this work breaks with the core-centric view and enables a new class of

optimizations for memory and communication-bound workloads. We believe this approach

can enable continued performance scaling and energy efficiency improvements in future large-

scale systems.

119

CHAPTER 6

Affinity Alloc: Taming Not-So Near-Data Computing

With near-stream computing, we can flexibly offload computation along with streams to

where the data is. However, the benefit of near-data computing heavily depends on spatial

affinity, where all relevant data are in the same location, e.g. same cache bank. Existing

NDC works lack a general and systematic solution: they either ignore the problem and abort

NDC when there is no spatial affinity, or rely on error-prone manual data placement.

Our insight is that the essential affinity relationship, i.e. data A should be close to data

B, is orthogonal to microarchitecture details and input sizes. By co-optimizing the data

structure and capturing this general affinity information in the data allocation interface,

the allocator can automatically optimize for data affinity and load balance to make NDC

computations truly near data.

With this insight, in this chapter, we propose affinity alloc, a general framework to

optimize data layout for near-data computing. It comprises an extended allocator runtime,

co-optimized data structures, and lightweight extensions to the OS and microarchitecture.

Evaluated on parallel workloads across broad domains, affinity alloc achieves 2.26× speedup

and 1.76× energy efficiency over a state-of-the-art near-data computing technique with 72%

traffic reduction.

Organization §6.1 discusses the data layout challenges and overviews our insight and

proposed approach. §6.2 covers the basic interface and extensions to support affine layout,

while §6.3 extends to irregular data layout. Methodology and evaluation are in §6.4 and

§6.5. Further discussion and related work are in §6.6 and §6.7.

120

(a) In-Core Computing (b) Not-So Near-Data Computing (c) Indirect Access A[B[i]]

❶ Offload A[i] -> C[i]

❶ Req./Resp. B[0:N)

❶ Offload B[i] -> C[i]

❸ Req. A[B[i]]

❶ Offload B[i], A[B[i]]

❷ Resp. B[0:N)

❷ Req./Resp. C[0:N)

C[i] += A[i] + B[i]
❶ Req./Resp. A[0:N)

❷ Load B[i]

❸ Req. A[B[i]]

Shared
L3 Bank

R
o

u
ter

L1 I
L1 D

SEcore

SEL3

Core
L2

SCM

L3
Tags

IOT

Ta
gs

IO
T

(d) NSC Microarchitecture

❶ Offload C[i]=A[i]+B[i]

Interleave
Override
Table

❷ Resp. A[0:N)

❸ C[i] = A[i] + B[i]

 Extra messages (in red) that could be eliminated by data affinity optimization.

Figure 6.1: Affinity Optimization Opportunities in NDC (View in Color)

6.1 Motivation and Overview

Challenges and Insights

Simply pushing computing into the memory hierarchy does not guarantee that computation

is now closer to the data, especially when the computation accesses more than a contiguous

piece of data. Without a suitable data layout, the required operands may be scattered

far away from each other. Fig 6.1 demonstrates, with Fig 6.1(a) depicting a conventional

system. Fig 6.1(b) shows an NDC vector addition, where arrays not aligned in memory cause

extra communication to collect operands. Fig 6.1(c) shows similar overheads for indirect

accesses, which dominate graph processing workloads to access neighboring vertices. Näıvely

offloading computation near data may yield no data movement reduction or even hurt the

performance. Therefore, an intelligent data layout decision is essential to fully realize the

potential of near-data computing.

Despite its importance, prior near-data computing work either relies on manual coarse-

grained data partition on reserved scratchpad space using customized APIs [6, 175, 4, 137,

10], or requires domain-specific preprocessing (e.g. graph partitioning) [11, 145]. Other work

simply is oblivious to the data layout, and falls back to the conventional computing paradigm

when NDC is not profitable [27, 16, 3, 5, 31, 176]. They all fall short of providing a general

121

and systematic solution to enabling guided and efficient data layout.

Challenges We provide the first general and programmable framework that automatically

optimizes data layout for near-data computing. This is challenging as a hypothetical optimal

data layout requires coordination of the entire system stack: to support customized data

placement in the microarchitecture, to manage virtual to physical address translation, to

expose network topology to the software, etc. Clearly, such a complex approach is not ideal.

This calls for general yet concise abstractions at each level of the system to efficiently

convey the information required for intelligent data placement decisions. For generality,

the interface should be expressive to specify broad data layout requirements, from simple

strided layouts to complex fine-grained pointer-based alignment. For simplicity, the interface

should only convey the minimal essential information across layers to maintain portability.

This works in both directions: the software should be agnostic to the microarchitecture,

while the hardware should be oblivious to the actual data structures. The interface should

be compatible with general programming languages and be expressive enough to enable

advanced layout optimizations for near-data computing.

Insight I To tackle these challenges, our first insight is that data placement can and should

be optimized with data allocation. This is possible because most data layout requirements

are known at allocation time [177], e.g. when allocating a linked list node, the previous

node is already allocated, and if the new node can be placed closer to it, we can signif-

icantly reduce data movement when chasing the pointer. Also, picking the optimal data

layout at allocation time saves the overhead of remapping later. Lastly, it incurs marginal

programming complexity if the allocator can be reused as the new data placement interface.

However, existing data allocators are either unaware of the data placement (e.g. malloc),

or are imperative and opaque (e.g. numa alloc onnode), still leaving the placement decision

to the programmer. We need a better allocator.

Insight II Secondly, instead of directly dictating the data placement, the new allocator

122

interface should capture the essential data alignment constraints for efficient near-data com-

puting. Such constraints are general to describe complex data affinity relationships, e.g. the

new linked list node should be close to the previous one. Also, they are determined by algo-

rithms and data structures, but orthogonal to the microarchitecture details. This is crucial

to maintain transparency and portability, freeing programmers from the burden of manual

placement for each hardware generation.

Insight III Perhaps most importantly, exposing a new allocator interface unlocks a variety

of new opportunities to co-optimize the data structure to data affinity in NDC scenarios.

For example, in graph algorithms, a global queue can be replaced by a spatially distributed

queue to avoid remote accesses when pushing a new vertex into the frontier. Another ex-

ample is using linked lists to replace the index array B[i] for indirect accesses A[B[i]].

Conventionally, traversing a linked list requires costly pointer chasing and is not as efficient

as an array. However, it provides the flexibility to place the index closer to the destination

data A[B[i]] and may yield higher performance in NDC. Such opportunities are impossible

without the new allocator considering data placement.

Our Approach To summarize, we name our approach affinity alloc, as it systematically

captures and optimizes data affinity for near-data computing. It contains a carefully de-

signed allocator interface to capture the affinity information, a runtime library to lower the

alignment constraints to an efficient data layout based on the underlying hardware details,

and a lightweight yet general microarchitectural scheme to control the data layout. This

design enables significantly more flexibility over manual data placement – instead of fixing

data structure locations, we only describe how data structure elements should be kept close

together. More importantly, it enables co-optimization between data structures and data

layout to make NDC computations truly near the data.

We apply affinity alloc to optimize data placement for near on-chip SRAM computing,

i.e. the last-level cache (LLC). The LLC level is promising because capacity continues to

123

(a) Naïve NSC

A[], B[] Mapped
Banks

C[] Mapped
Banks

Near-Stream
Computation

(b) Pathological Bisection Case (c) Affinity-Aware NSC

 C[i]=A[i]+B[i]

Bisection
Bottleneck

Aligned A[], B[], C[]
Mapped Banks

Figure 6.2: Affine Data Layout for Vec Add

scale in modern CPUs (768MB on AMD EPYC 7773X [178]), and many algorithms can be

tiled for locality in the LLC. However, because affinity alloc addresses the fundamental data

placement problem, its principles and implementation can be generalized to other near-data

computing levels and techniques, e.g. near memory controller, in HMC die, near SSD, etc.

In the remainder of this chapter, we first quantify the potential benefits of having an

optimal affine and irregular data layout, then overview our affinity alloc approach.

Affine Data Layout

We first consider a simple vector addition: C[i]=A[i]+B[i]. As shown in Fig 6.1(b) and

Fig 6.2(a), When offloaded to the L3 cache, sa and sb forward the data to sc, which writes

back the added result. Intuitively, the placement of array A[], B[] and C[] in the shared

L3 banks directly affects the data forwarding traffic and performance.

Fig 6.2(a) shows a näıve affine data layout for the vector addition. For simplicity, we

assume A[] and B[] are aligned in the shared L3 cache. However, since A[] and B[] are

not aligned with C[], we have to forward both operands through the network, leading to not

so near-data computing. Such oblivious data layouts may even lead to pathological cases.

124

For example, in Fig 6.2(b), C[i] is mapped two banks behind A[i] and B[i], causing a

bisection bottleneck in the network and significantly reducing the effective bandwidth.

Therefore, an intelligent near-data computing system should be aware of the data affinity

requirement and colocate all three arrays as shown in Fig 6.2(c). This eliminates the data

forwarding traffic and fully unlocks the potential of near data computing.

To quantify the impact of affine data layout, Fig 6.3 shows the performance and network

traffic of vector addition with various data layouts, normalized to baseline in core computing

(no offloading). We use an 8x8 mesh NoC and control the data layout such that bank

𝑖 always forwards to bank (𝑖 + ∆) mod 64 (methodology in §6.4). Although near-data

computing always outperforms the baseline, its performance is very sensitive to the data

layout (from 1.1× to 7.2×), as it dictates how much data traffic to forward the operands. A

random data layout (i.e. each virtual page is mapped to a random physical page) avoids the

pathological behavior, but only achieves 42% of the performance when data is aligned.

Challenges Even for this simple case, optimizing the data layout already requires opti-

mizations across the whole system stack: to convey the data alignment requirement from

the application, to translate virtual addresses in the OS, to control the physical cache line

mapping in L3 banks, etc.

Irregular Data Layout

The analogous data layout problems for irregular data structures are even more complicated

to solve. Fig 6.4(a) shows the baseline placement for a graph, using a compressed sparse

row (CSR) format. We assume each cache line can hold two vertices (blue) or edges (green),

and L3 banks are interleaved at cache line granularity. Many graph workloads (e.g. BFS,

SSSP) scan edges and update pointed vertices. When offloaded in NSC, it takes 19 hops

for indirect accesses to the vertices (green arrows) and 3 hops for stream migration (black

arrows). However, as shown in Fig 6.4(b), if we can place the edges closer to the pointed-to

125

In-Core
Δ Bank 0

Δ Bank 4
Δ Bank 8

Δ Bank 12

Δ Bank 16

Δ Bank 20

Δ Bank 24

Δ Bank 28

Δ Bank 32

Δ Bank 36

Δ Bank 40

Δ Bank 44

Δ Bank 48

Δ Bank 52

Δ Bank 56

Δ Bank 60

Δ Bank 64
Random

0
2
4
6
8

Sp
ee

du
p

In-Core
Δ Bank 0

Δ Bank 4
Δ Bank 8

Δ Bank 12

Δ Bank 16

Δ Bank 20

Δ Bank 24

Δ Bank 28

Δ Bank 32

Δ Bank 36

Δ Bank 40

Δ Bank 44

Δ Bank 48

Δ Bank 52

Δ Bank 56

Δ Bank 60

Δ Bank 64
Random

0.0
0.2
0.4
0.6
0.8
1.0

No
C

Ho
ps Offload

Data
Control

Figure 6.3: Impact of Affine Data Layout on Vec Add

vertices, we can significantly reduce the indirect access traffic to only 3 hops at the cost of

a slightly longer migration distance.

To quantify such benefit, Fig 6.5 shows the speedup and traffic reduction if we can break

the edge list in the CSR format into chunks of various sizes and freely map them to the L3

bank with minimal indirect traffic1. Smaller chunk sizes enable more fine-grained control on

data layout. With 64B chunk (a cache line), irregular data layout optimization yields 60%

traffic reduction and 2.14× speedup. An ideal configuration without indirect traffic achieves

4.1× speedup.

This demonstrates the potential of having an optimal data layout for irregular data

structures, including other pointer-based data structures, e.g. linked lists, trees, etc. By

optimizing the data layout, the overhead of irregular accesses can be significantly reduced.

Challenges Although promising, irregular data layout is even more challenging, as it

requires fine-grained cache line layout and load balancing to ensure bank-level parallelism.

1Subject to a max 2% load imbalance between L3 banks, by moving chunks with the least traffic reduction
to the least occupied bank.

126

Ind. Req.Edge Cache Lines
V: Out Vertex

Vertex
Cache Lines

2930

1617 1928

30312425 2627 2829

22231617 1819 2021

14158 9 1011 1213

6 7

(a) Naïve NSC (Intrlv=1$Line) (b) Idea Affinity-Aware NSC

0 1 2 3 4 5

0 1 2930

1617 1928

30312425 2627 2829

22231617 1819 2021

14158 9 1011 1213

6 70 1 2 3 4 5

0 1

4 5 1 19 Stream
Migrate

Indirect: 19 Hops
Migration: 3 Hops

Indirect: 3 Hops
Migration: 5 Hops

Figure 6.4: Irregular Data Layout for Graph Edge List

Affinity Alloc Approach Overview

To exploit these opportunities, we propose affinity alloc, a systematic data placement solution

that optimizes data affinity during allocation for near-data computing. Fig 6.6 overviews

the approach across different system levels.

Instead of having an imperative interface that exposes microarchitectural details and

leaves the placement to the programmer (e.g. libnuma), an affinity alloc application only

needs to convey the affinity information through the declarative allocator API. For example

in Fig 6.6, when allocating a tree node, the pointer to the parent node is passed in so that

the allocator can try to allocate the new node to the same bank as the parent node. Such

affinity information is general enough to capture the essential relationship: that these pieces

of data are used together and should be colocated.

To coordinate affinity information across all system levels, affinity alloc is designed by

the divide and conquer principle: each layer tackles a simpler subproblem and only minimal

information is exchanged between layers. Each layer is almost transparent to other layers.

Specifically:

127

pr_push bfs_push sssp pr_pull bfs_pull geomean.0.5
1.0
1.5
2.0
2.5
3.0

Sp
ee

du
p

4.16.97.4

pr_push bfs_push sssp pr_pull bfs_pull avg.
0.0
0.2
0.4
0.6
0.8
1.0

No
C

Ho
ps

Base Ind-4kB Ind-1kB Ind-256B Ind-64B Ind-Ideal

Offload
Data
Control

Figure 6.5: Impact of Irregular Data Layout

∙ Application: We choose to enhance the allocator with affinity information (either

an affine pattern for affine layouts or a list of affinity addresses for irregular layouts).

This significantly reduces the programming complexity as affinity information can be

straightforwardly extracted from the data structure, e.g. parent node in the binary

search tree. Also, since affinity information is purely determined by the algorithm

and data structure but orthogonal to the underlying microarchitecture, portability is

maintained by linking a platform-optimized runtime.

∙ Runtime: Similarly in Fig 6.6, The runtime is unaware of the data structure, but

simply takes the affinity information and underlying network topology to determine

the interleaving and the bank to allocate from. It also tracks the load balance to avoid

creating a hot spot in the system. For example, the node n2 is colocated with its

parent n5 for affinity, while n7 is spilled to bank 1 for load balancing (see bottom of

Fig 6.6). To allocate, the runtime maintains a free list that is aware of the L3 banks

and may require more space from the OS.

∙ OS: The OS simply manages a pool for different interleaving sizes. Interleave pools are

reserved in virtual address space when starting a program, and backed by contiguous

128

5
2

1 3 8
7

... ...

Data Structure Affinity Allocation

n5 = malloc_aff(64);
n2 = malloc_aff(64, n5);
n1 = malloc_aff(64, n2);
n7 = malloc_aff(64, n5);
...

Affinity Info Allocated Addr

Expand Interleave Pool Expand Pool + Topology

Per-Pool Interleave μArch Details

564B Intrlv. Pool

5
2

1

7

...

Customize L3 bank
interleave for pool.

Reduced ptr-chasing hops.
Balanced load between L3.

83

...

Legend:
2x2
Mesh

Cache Line at
Bank 0, 1, 2, 3
Cache Line at
Bank 0, 1, 2, 3

Affinity Info

Load Balance

Topology

Cross-Layer Info
Intra-Layer Info

Select
Bank

Interleave Pool

Allocate at
Bank

Free List

Allocated Addr

7 1 8 2 3
128B Intrlv. Pool ...
256B Intrlv. Pool ...
...

Figure 6.6: Affinity Alloc Approach Overview

physical addresses similar to a segment when accessed. It also passes the topology

information to the runtime but is oblivious to the data structure or the load balance.

∙ Microarchitecture: It supports customizable interleaving for physical addresses within

interleave pools but is unaware of any program-specific details.

Data Structure Co-Optimization Affinity alloc also enables novel data structure co-

optimizations to harness the new opportunities from managing the data affinity. One ex-

ample in the context of iterative graph processing is a spatially distributed work queue,

129

leveraging the affine layout. Compared to a global queue, it reduces the overhead of manag-

ing the frontier in BFS and SSSP, as vertices can be pushed to the aligned local sub-queue

with no remote accesses. This is possible in accelerators [179, 174, 169, 148, 147], but difficult

for general-purpose processors without control over affinity.

Also, by supporting fine-grained irregular data layout, we can use a linked list to replace

the array holding all edges in the compressed sparse row format (CSR). This provides the

flexibility to colocate edges with the outgoing vertices, reducing the indirect traffic. To our

knowledge, this optimization has not been explored even for accelerators, because of the lack

of fine-grain affinity control.

More generally, data structures for near-data computing face significantly different trade-

offs. While contiguous arrays often have the benefit of simple prefetching on general archi-

tectures, affinity-based allocation and near-data computing offer significant advantages to

pointer-based structures. Thus, affinity alloc opens new opportunities for codesign in the

near-data computing era, which would otherwise be impossible or impractical to program.

Affinity Alloc Overview Overall, affinity alloc adopts a clean layered design: the appli-

cation specifies the affinity information, the runtime performs the affinity-aware allocation

with load balancing, the OS manages the pools with different interleaving sizes, and the

microarchitecture simply customizes the interleaving for each pool. With these lightweight

extensions and data structure co-optimization (see §6.3), affinity alloc provides a general and

systematic solution to make NDC computations truly near data.

6.2 Affine Data Layout

In this section, we take a bottom-up view: how to efficiently support customizable mapping

from virtual address space to L3 bank locations in the microarchitecture and OS, then how

the application and runtime leverages it to optimize for data affinity.

130

Mapping Virtual Addresses to L3 Banks

One obstacle to NDC data affinity optimization is that the mapping from virtual addresses

to shared L3 banks is hidden from the user space or even the OS. First, address translation

is managed by the OS. Also, modern CPUs usually employ complex hash functions to map

a physical address to an L3 bank [180] to exploit bank-level parallelism and avoid hot spots.

Therefore, we need to expose the mapping from virtual addresses to L3 banks to the software.

Interleave Pool As shown in Fig 6.6, we introduce interleave pools. Each interleave pool

is a reserved segment in the virtual address space, and addresses within an interleave pool

are guaranteed to be mapped to L3 banks with the specified interleaving. For example, 64B

cache lines within the 64B interleave pool are linearly mapped to L3 banks one by one. Given

a pool with interleaving 𝑖𝑛𝑡𝑟𝑙𝑣 and starting virtual address 𝑠𝑡𝑎𝑟𝑡, we can compute the L3

bank for a given virtual address 𝑣𝑎𝑑𝑑𝑟 within the pool:

bank(𝑣𝑎𝑑𝑑𝑟) = ⌊𝑣𝑎𝑑𝑑𝑟 − 𝑠𝑡𝑎𝑟𝑡

𝑖𝑛𝑡𝑟𝑙𝑣
⌋ (mod 𝑁𝑏𝑎𝑛𝑘) (6.1)

Similar to the heap, interleave pools are managed by the OS, and the runtime can request

an expansion (similar to how mmap or brk is used to expand the heap). We provide a pool for

power-of-two interleavings from 64B (one cache line) to 4kB (one page, see below for larger

interleavings), i.e. 7 interleave pools per process2.

Physical Address Each interleave pool is mapped to contiguous physical pages. To ensure

this, when the OS handles a page fault on an unmapped interleave pool virtual address 𝑣𝑎𝑑𝑑𝑟,

it will allocate physical pages from the start of that interleave pool until 𝑣𝑎𝑑𝑑𝑟, and may

copy data and remap pages to make sufficient space (similar to how direct segment [181]

or RMM [182] supports continuous virtual to physical mapping). This simplifies the data

layout control in the hardware. To complete the picture, the microarchitecture is extended

2We reserve 1TB per interleave pool, which in total is 2.7% of the 48-bit virtual address space.

131

Field Bits Description Field Bits Description

start,end 48 [start, end) phys. addr. intrlv 16 Interleaving.

Table 6.1: Interleave Override Table (IOT)

with an interleave override table (IOT, Table 6.1) at each L2 and L3 cache controller.

Each entry overrides the interleave for physical addresses within [𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑). The L2/L3

cache controller as well as the SECORE/SEL3 query this table to determine which bank a cache

line is mapped to, so that it can forward the request or offload/migrate the stream. Since

this table is accessed frequently (every L2 miss and L3 access), mapping each interleave pool

to contiguous physical addresses ensures that only one IOT entry is required per interleave

pool, reducing the pressure on the size of IOT.

Other Interleavings Interleavings below a cache line size (64B) are not supported, as

they spread a single cache line to multiple L3 banks. This requires extra metadata to track

sub-line coherence states and is beyond this work. Large interleavings beyond a page size

(4kB) but aligning to page boundaries (e.g. 8kB, 12kB) are supported by mapping virtual

pages to 4kB interleaved physical pages at the desired L3 bank3. Finally, interleavings that

are not power-of-two help reduce the padding overhead, and can be supported at the cost of

a more complicated division instead of a right shift in Eq. 6.1 when querying the IOT. This

is left as future work.

Other Interleave Patterns The mapping from virtual addresses to L3 banks (i.e. Eq 6.1)

is a simple 1D linear pattern. More complicated interleaving patterns can also be supported,

e.g. a 2D pattern that fills L3 banks in the order of quadrant, or a two-level wrapping around

that first wraps a few times within each row before moving to the next row. These more

sophisticated interleave patterns can be supported by either changing how L3 banks are

3Physical pages for these interleavings are not continuous and are tracked as 4kB interleaving in the IOT.

132

(a) Affine Affinity Alloc API

struct AffineArray {
 int elem_size; // Element size (byte).
 uint num_elem; // Number of elements.
 void* align_to; // Pointer to the aligned affine array.
 int align_p, align_q, align_x; // Alignment parameters.
 bool partition; // Partition the array across banks.
};
void* malloc_aff(const AffineArray& a);

(b) Inter-Array Affine Affinity

// Compute kernel:
// C[i] = A[i] + B[i];
// Allocate float A[N].
A = malloc_aff({sizeof(float), N,
 nullptr, 1, 1, 0, false});
// Align float B[N] with A[N];
B = malloc_aff({sizeof(float), N,
 A, 1, 1, 0, false});
// Align double C[N] with A[N];
C = malloc_aff({sizeof(double),N,
 A, 1, 1, 0, false});

0 1

0 10 1

0 10 1

0 1

0 1

0 1

4 5

4 54 5

4 54 5

4 5

4 5

4 5

6 7

6 76 7

6 76 7

6 7

6 7

6 7

2 3

2 32 3

2 32 3

2 3

2 3

2 3

0 1

0 1

0 1

4 5

4 5

4 5

6 7

6 7

6 7

2 3

2 3

2 3A[0:4]

B[0:4]

C[0:4]

Optimized Layout (8B $Line)

A[4:8]

B[4:8]

C[4:8]

Interleave: A[] 8B, B[] 8B, C[] 16B

(c) Intra-Array Affine Affinity Optimized Layout (8B $Line)

// Compute kernel:
// B[i,j] = A[i-1,j] + A[i+1,j]
// - 2*A[i,j];
// Optimize row affinity A[M,N].
A = malloc_aff({sizeof(float),M*N,
 nullptr, 1, 1, N, false});
// Align B[M,N] with A.
B = malloc_aff({sizeof(float),M*N,
 A, 1, 1, 0, false});

0 10 1

0 10 1

N-2 N-1N-2 N-1

N-2 N-1N-2 N-1

N N+1N N+1

N N+1N N+1

2N-2 2N-12N-2 2N-1

2N-2 2N-12N-2 2N-1

...

...

...

0 1

0 1

N-2 N-1

N-2 N-1

N N+1

N N+1

2N-2 2N-1

2N-2 2N-1

...

...

...

A[0,:]

B[0,:]

A[1,:]

B[1,:]

Figure 6.7: Affine Data Layout Optimizations

numbered or enhancing Eq 6.1, and can provide more flexibility for the runtime to optimize

the data layout. However, we find that a simple 1D linear pattern is expressive enough to

achieve optimal spatial affinity for the affine workloads we studied.

Affine Layout Optimizations

With the OS and microarchitectural extensions to expose the mapping from virtual addresses

to L3 banks, it is already possible for the application to customize the data layout. However,

133

instead of leaving this burden to the programmer, we provide a runtime that automatically

optimizes for the data layout and requires only abstracted affinity information from the

application.

Affine Affinity Alloc API Fig 6.7(a) shows the API to allocate an array with affinity

information wrapped in the AffineArray struct. Besides the size of the element (elem size)

and the number of elements (num elem), it also contains parameters to define the affinity

relationship between arrays (orange box in Fig 6.7(a)).

Inter-Array Affine Affinity Fig 6.7(b) shows how the API is used to optimize inter-array

affine affinity. First, array A[N] is allocated with all default parameters, and the runtime

simply picks the default interleaving, which is the cache line size (8B in Fig 6.7(b)). When

allocating array B[N], we specify that B[i] aligns with A[i] by setting align to to A. More

generally, the affinity relationship between the allocating array B[N] and the aligned-to array

A[N] is defined as:

𝐵[𝑖]
𝑎𝑙𝑖𝑔𝑛𝑠 𝑡𝑜−−−−−→ 𝐴[

𝑎𝑙𝑖𝑔𝑛 𝑝

𝑎𝑙𝑖𝑔𝑛 𝑞
× 𝑖+ 𝑎𝑙𝑖𝑔𝑛 𝑥] (6.2)

Here align p and align q control the ratio between the aligned element indexes, and

align x adds the offset. Essentially, this is equivalent to defining an affine transformation

𝑦 = 𝐴𝑥+ 𝑏 between the index space. These parameters can be straightforwardly determined

from the access pattern, e.g. to align B[i] to A[4i+2], simply set align p=4, align q=1

and align x=2.

The runtime records the metadata and selected layout of allocated arrays. When allo-

cating a new array with inter-array affine affinity, it computes the interleaving of the new

array by considering the ratio of element sizes and the interleaving of the aligned-to array.

Specifically, the new array’s interleaving is computed by:

134

𝑖𝑛𝑡𝑟𝑙𝑣𝐵 =
𝑒𝑙𝑒𝑚 𝑠𝑖𝑧𝑒𝐵
𝑒𝑙𝑒𝑚 𝑠𝑖𝑧𝑒𝐴

× 𝑎𝑙𝑖𝑔𝑛 𝑞

𝑎𝑙𝑖𝑔𝑛 𝑝
× 𝑖𝑛𝑡𝑟𝑙𝑣𝐴 (6.3)

By factoring in the ratio of element sizes, the runtime chooses a 16B interleaving for the

array double C[N] in Fig 6.7(b). From the perspective of L3 bank locality, this effectively

converts the struct-of-array into an array-of-struct, with each element aligned within the

same L3 bank to eliminate data forward traffic.

Once the interleaving is determined, the runtime allocates from the corresponding inter-

leave pool and ensures that the start bank is offset by 𝑎𝑙𝑖𝑔𝑛 𝑥× 𝑒𝑙𝑒𝑚 𝑠𝑖𝑧𝑒𝐴/𝑖𝑛𝑡𝑟𝑙𝑣𝐴. Notice

that in certain cases the alignment is not perfect, i.e. when 𝑎𝑙𝑖𝑔𝑛 𝑥 × 𝑒𝑙𝑒𝑚 𝑠𝑖𝑧𝑒𝐴 is not a

multiple of 𝑖𝑛𝑡𝑟𝑙𝑣𝐴, or when we have to round the computed 𝑖𝑛𝑡𝑟𝑙𝑣𝐵 to a valid interleaving

supported by the system. However, such cases can be mitigated by padding the array and

supporting interleavings that are not power-of-two in future work (see below). Currently, in

these cases, the runtime can simply fall back to the baseline allocator without hurting the

performance.

Freeing Data Data allocated by malloc aff() is freed with free aff(void*) (omitted

in Fig 6.7(a)). Since the runtime records the metadata for allocated arrays, it can put the

space back to the free list similar to a normal allocator.

Intra-Array Affine Affinity We also support affinity within a single array. In Fig 6.7(c)

we access the column of the 2D array A[M,N] and hence want to optimize for affinity between

rows. This can be done by setting align to to nullptr and align x to N4. The runtime

picks a valid interleaving that minimizes the Manhattan distance between A[i] and A[i+N].

For example, in Fig 6.7(c) one row of array A[M,N] is mapped to one row of the mesh

topology, and the Manhattan distance is one hop to the bank below it. When N is small, the

runtime could also pick an interleaving that fits one or multiple rows into a single bank to

further reduce the distance. Array B[M,N] is handled with inter-array affine affinity.

4For intra-array affinity align p|q=1, as otherwise the alignment is no longer affine.

135

Partition Vertexes with Spatial Queue

// Distribute vertex partition.
V = malloc_aff({sizeof(T), N,
 nullptr, 1, 1, 0, true});
// Align spatial queue to V[N].
Q = malloc_aff({sizeof(int), N,
 V, 1, 1, 0, false});
// Align queue tails to V[N].
T = malloc_aff({sizeof(int64), P,
 V, N/P, 1, 0, false});
// Push v into Q (atomic ++).
Q[T[v*P/N]++] = v;

Optimized Layout

V[...]

Q[...]

T[XY-1]

V[...]

Q[...]

T[(X-1)Y]

V[...]

Q[...]

T[Y-1]

V[0:N/P]

Q[0:N/P]

T[0]

...

...

...

...

Y Banks

X
 B

a
n

ks

Figure 6.8: Distribute Partitions (Assume 𝑃 = 𝑋 × 𝑌)

Distribute Partitions We deliberately design the interface to only specify the general

affinity relationship, and delegate the runtime to select a proper interleaving across platforms.

However, the programmer may want to have a very coarse-grained interleaving, especially

when distributing a partitioned array across banks. Since align p/q/x can only specify the

affinity information but not interleaving, we add a partition flag to force an interleaving

that evenly distributes the array across all banks. Fig 6.8 shows a common use case in graph

processing when the vertex array V[N] is partitioned among banks by setting partition to

true.

Use Case: Spatially Distributed Queue Another more sophisticated use case of affinity

alloc is to implement a spatially distributed queue. In a push-based BFS, the updated vertex

v is pushed into a global queue for future processing. However, the tail of the global queue

and the writing position is not colocated with the vertex, requiring indirect traffic to push

into the global queue.

Instead, in Fig 6.8 we allocate a spatially distributed queue, with one sub-queue per

partition. The tail pointer and data storage of each sub-queue is aligned with the vertex

partition, and when pushing a vertex v, it is pushed to the local sub-queue with no indirect

traffic. Affinity alloc supports mismatch between the number of partitions P and L3 banks

136

void* malloc_aff(uint size, // Alloc size.
 // Specify affinity addrs.
 int num_aff_addrs, void** aff_addrs);

void linked_list_append(Node *prev, T v)
 // Allocate new node near to prev.
 Node *n = malloc_aff(sizeof(Node), 1, &prev);
 n->v = v; n->nxt = prev->nxt; prev->nxt = n;

Optimized LayoutUnbalanced Layout

1

4

0

5

32
1
2

0
3
4 ...

1
2

0
3
4 ...

 Low Bank-Level Parallelism
 High Capacity Miss

...

Figure 6.9: Irregular Data Layout API

B (i.e. P̸=B), but having them equal yields better load balancing and higher performance.

Priority queues, e.g. MultiQueues [183], can also be implemented as one queue per bank.

Heap rearrangement involves pointer-chasing, which is supported by NSC. This software

optimization is not possible without affinity alloc to control the data alignment.

6.3 Irregular Data Layout

Support Irregular Layout

While affine access patterns are relatively simple to optimize, irregular access patterns such

as indirect and pointer-chasing accesses are data-dependent and are notorious for low spa-

tial locality. However, with a small extension to the API, we show that affinity alloc can

optimize the data layout for irregular data structures without extra modification to the OS

or microarchitecture.

137

Irregular Layout API Fig 6.9 shows the irregular affinity allocation API and function to

allocate a new node to a linked list using affinity alloc. In addition to the allocating size,

the API can also provide a list of affinity addresses that the newly allocated data should

be close to. In the linked list example, it is the previous node prev. Affinity addresses

should be within some interleave pool so that the runtime can infer the mapped L3 bank.

This simple yet powerful API conveys sufficient information to the runtime to optimize for

irregular affinity while remaining oblivious to the actual allocated data structure. We limit

the maximal number of affinity addresses per allocation to 32, and the application can sample

a subset if there are more affinity addresses.

Irregular Allocation To allocate, the runtime rounds up the allocating size to a valid

interleaving size. This usually incurs no overhead, as irregular data structures often use

allocation sizes that are power-of-two and aligned to cache line granularity to avoid false

sharing. The runtime also maintains a free list for every valid interleaving size and every

bank. After selecting the bank to allocate based on the affinity addresses and load balance

(see §6.3), the runtime allocates from the free list of that bank, and may require the OS to

expand the specific pool if running out of space.

Free Data To free an object allocated with irregular layout API, we reuse the same interface

free aff(void*). The runtime distinguishes irregular layout objects from affine arrays by

checking if the address matches an allocated affine array. The interleaving of the object can

be directly inferred from the interleave pool it belongs to. Since irregular layout objects

are allocated at interleave granularity, the runtime knows the size of the object and can

free the space by adding it back to the free list. Unlike conventional allocators, the runtime

maintains no meta-data for irregular layout objects, avoiding space overheads for fine-grained

allocations.

All modifications to support irregular data layout are limited to application and runtime.

The OS and 𝜇Arch only needs to handle coarse-grained interleave pools.

138

0 3 4 6 8 0

1

2

31 2 3 0 0 3 0 2

Index

EdgeO
ri

g.
C

SR

1 2 3 0 0 3 0 2

Pointer

EdgeLi
n

ke
d

C

SR

Figure 6.10: Linked CSR Format

Bank Select Policy

Simply optimizing for data affinity may result in pathological unbalanced layout. For exam-

ple, in the bottom left of Fig 6.9, the whole linked list is allocated to a single bank, leading to

low bank-level parallelism and high capacity miss rate. Therefore, we design the bank select

policy to consider both data affinity and load balance. Specifically, the runtime computes a

score for each bank:

𝑠𝑐𝑜𝑟𝑒 = 𝑎𝑣𝑔 ℎ𝑜𝑝𝑠+𝐻 × (
𝑙𝑜𝑎𝑑

𝑎𝑣𝑔 𝑙𝑜𝑎𝑑
− 1) (6.4)

Here 𝑎𝑣𝑔 ℎ𝑜𝑝𝑠 is the average hops to the provided affinity addresses, and 𝑙𝑜𝑎𝑑 is the

number of irregular allocations to that bank. 𝐻 is a weight coefficient to control how much

the runtime should emphasize load balancing. The bank with the minimal score is selected.

This score function is inspired by the one used by ABNDP [13] to optimize task scheduling,

while here we extend it for data allocation. We evaluate the sensitivity to 𝐻 in §6.5.

Data Structure Co-Optimization

Supporting irregular affinity allows the runtime to optimize the data layout for a variety

of data structures, provided that they offer sufficient flexibility for data placement. This

covers many important pointer-based data structures, e.g. linked lists and trees. Such data

139

structures can benefit from affinity alloc without changing the data organization itself, simply

by adopting the new allocator API.

Similarly, our approach opens up many new codesign opportunities for coarse-grained

data structures that are not flexible enough to directly benefit from affinity alloc, e.g. the

index array B[] in A[B[i]] can only be remapped at page granularity with marginal perfor-

mance gain (Fig 6.5 in page 128). In this work, we focus on codesigning graph representations

to optimize data affinity.

Fig 6.10 shows a toy undirected graph and the original compressed sparse row (CSR)

format. In CSR format, each vertex has an index pointing to its first edge. However, since

the edges are stored in a single array, we can only optimize for data affinity at very coarse

granularity, i.e. partitioning the graph among banks with the affine layout API. However,

power-law graphs are hard to partition with many inter-partition edges. We need more

flexibility in the data structure to optimize data affinity at finer granularity.

This motivates for a Linked CSR format (Fig 6.10), in which the edges are stored in a

linked list, and we can place each edge list node closer to the pointed vertices by specifying the

affinity addresses. This is how we achieve the optimizations discussed in Fig 6.4 (page 127).

This comes with the cost of extra pointer-chasing between nodes, which is usually much

more expensive than the linear accesses in the original CSR format. However, we argue that

the tradeoffs in near-data computing are very different: 1. Pointer-chasing overheads are

amortized by indirect traffic reduction since each node can hold multiple edges. For example,

a 64B cache line can hold 14 edges of 4B after the 8B pointer. 2. Unlike conventional CPUs

where the run ahead distance is limited by the size of the reorder buffer (ROB), in NDC the

pointer-chasing task can be decoupled and run ahead of the edge processing task, further

hiding the latency.

Most importantly, co-optimizing the data structure with affinity alloc unlocks the benefit

of the fine-grained irregular layout at a low cost (𝑂(|𝐸|) to scan the edges once). This is the

key to unlocking the full potential of NDC and can be applied to other domains.

140

System 2.0GHz, 8x8 Cores

OOO8 CPU 64 IQ, 72 LQ, 56 SQ+SB

(8-issue) 348 Int/FP RF, 224 ROB

Func. Units 8 Int ALU/SIMD (1-cycle)

4 Int Mult/Div (3/12-cycle)

4 FP ALU/SIMD (4-cycle)

4 FP Div (12-cycle)

L1 D/I TLB 64-entry, 8-way

L2/SEL3 TLB 2k/1k-entry, 16-way, 8-cycle

L1 I/D Cache 32KB, 8-way, 2-cycle

Priv. L2 Cache 256KB, 16-way, 16-cycle

Replacement Bimodal RRIP, 𝑝 = 0.03

L1 Bingo Pf. 8kB PHT, 2kB region

L2 Stride Pf. 16 streams, 16 pf./stream

NoC 8x8 mesh topology

32B 1-cycle bidirection link

5-stage router, multicast

X-Y routing, 4 mem. ctrls

Shared 20 cycles, MESI

L3 Cache Static NUCA, 1kB interleave

16-way, 64 banks, 1MB/bank

total 64MB

DRAM 3200MHz DDR4 25.6 GB/s

4 channels at corners

SECORE 2kB FIFO, 12 streams

SEL3 768 streams, 64kB buf.

4-cycle compute init. lat.

IOT 16 regions

Table 6.2: System and 𝜇arch Parameters

6.4 Methodology

Compiler and Runtime We reuse the open-source LLVM-based near-stream computing

compiler [31]. Programs are compiled to x86 and extended with near-stream computing

instructions. We implement the affinity alloc runtime in C++ and manually replace the

original malloc and free calls with affinity alloc API.

Simulator We use gem5 v20.0+ [107] for execution-driven, cycle-level simulation, extended

with partial AVX-512 support. The caches are extended with NSC support and the interleave

override table (IOT) to customize the interleaving between L3 banks. We emulate the syscall

141

Benchmark Layout Parameters

pathfinder [109] Affine 1.5M entries, 8 iters

srad [109] Affine 1k×2k, 8 iters

hotspot [109] Affine 2k×1k, 8 iters

hotspot3D [109] Affine 256×1k×8, 8 iters

bfs [158] Linked CSR Kronecker generated

pr push [158] Linked CSR 128k nodes 4M edges

sssp [158] Linked CSR A/B/C: 0.57/0.19/0.19

pr pull [158] Linked CSR weight [1,255]

link list Ptr-Chasing 8B key, 512 nodes/list, 1 query/list, 1k lists

hash join Ptr-Chasing 8B key, 256k ◁▷ 512k, Hit Rate 1/8

bin tree Ptr-Chasing 128k nodes, 8B key, 512k uniform lookups

Table 6.3: Workloads Parameters

to expand interleave pools in gem5. We leverage McPAT [50] to estimate the energy and

area with the 22nm process.

Parameters and Configurations Table 6.2 lists system parameters. The only extension to

the baseline near-stream computing system is the IOT to support customized L3 interleavings

for interleave pools. The baseline OOO cores use advanced L1 and L2 prefetchers [110], but

no computation is offloaded (labelled as In-Core in §6.5). For near-memory computing,

Near-L3 offloads streams and the associated computation to SEL3, but is oblivious to data

affinity. For affinity alloc, we simulate the modified binary with affinity information conveyed

to the runtime.

Benchmarks We evaluate 10 OpenMP workloads compiled with -O3 and AVX-512, cover-

ing various affine and irregular data layouts. For graph workloads, In-Core and Near-L3

142

use the original CSR format, while affinity alloc adopts the new linked CSR representation.

For the pointer-chasing workloads, we randomly generate and insert the nodes into the bi-

nary tree without balancing it. For link list and hash join, they both search through link

lists, but link list has much longer lists (512) while the buckets in hash join are much

smaller (¡= 8). Table 6.2 summarizes the input data size and the major data layout pattern

for each benchmark.

Some benchmarks have alternate implementations, i.e. push and pull-based for page rank

and bfs. For page rank, we added the push version besides the original pull-based imple-

mentation in GAP suite [158], and select the best implementation for each configuration

(pull version for In-Core and push version for Near-L3 and affinity alloc). For bfs, the

state-of-the-art implementation dynamically switches between pushing and pulling based on

some runtime heuristics [184]. We discuss the tradeoffs between pushing/pulling and the

heuristics we used in §6.5.

6.5 Evaluation

We first evaluate affinity alloc on a variety of workloads, bank selection policies and input

sizes to demonstrate the performance and energy efficiency benefits due to improved data

affinity. We then perform a detailed study on how key graph processing workloads benefit

from codesigning the data structure with affinity alloc.

General Evaluation

Overall Performance Fig 6.11 shows the overall performance for all benchmarks. The

speedup and energy efficiency are normalized toNear-L3, while the NoC traffic is normalized

to In-Core where no computation is offloaded to the L3 cache. Overall, affinity alloc achieves

7.53× speedup and 4.69× energy efficiency over In-Core, and 2.26×/1.76× over Near-L3.

The benefit comes from the reduced NoC traffic for various messages: the data traffic to

143

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Sp
ee

du
p

3.2

pathfinder
hotspot

srad

hotspot3D pr bfs sssplink_list

hash_join
bin_tre

e

geomean.
0.0
0.5
1.0
1.5
2.0
2.5
3.0

En
er

gy
 E

ff.

pathfinder
hotspot

srad

hotspot3D pr bfs sssplink_list

hash_join
bin_tre

e avg.
0.0
0.2
0.4
0.6
0.8
1.0

No
C

Ho
ps

 &
 U

til
.

In-Core Near-L3 Aff-Alloc

NoC Util.
Offload
Data
Control

Figure 6.11: Overall Performance and Traffic Reduction

forward the operand in affine workloads (e.g. stencil1d), the control traffic to perform

indirect remote accesses in graph workloads, as well as the stream migration traffic to chase

the pointer in pointer-based data structures. Overall, affinity alloc reduces the network

traffic by 72% and 87% over Near-L3 and In-Core respectively, with 34% NoC utilization.

For the microarchitecture, affinity alloc only introduces a small interleave override table

(IOT). Estimated with CACTI 7 [185], the IOT takes 32kB (512B per bank), and accounts

for 0.07mm2, less than 0.1‰ of the whole chip.

Bank Selection Policy Fig 6.12 shows the speedup and NoC traffic when affinity alloc

employs different bank selection policies for irregular data layout, normalized to Rnd which

randomly selects the bank to allocate. Lnr selects the bank in a round-robin fashion, while

Min-Hop always picks the bank with the least distance to affinity addresses (same as setting

144

pr_push
pr_pull bfs sssp link_list

hash_join
bin_tre

e

geomean.
0.5
1.0
1.5
2.0
2.5
3.0

Sp
ee

du
p

pr_push
pr_pull bfs sssp link_list

hash_join
bin_tre

e avg.
0.0
0.2
0.4
0.6
0.8
1.0

No
C

Ho
ps

 &
 U

til
.

Rnd Lnr Min-Hop Hybrid-1 Hybrid-3 Hybrid-5 Hybrid-7

NoC Util.
Offload
Data
Control

Figure 6.12: Sensitivity on Irregular Layout Policies

𝐻 = 0 in Eq 6.4). We also evaluate the hybrid policy that considers both affinity information

and load balance with various 𝐻, labeled as Hybrid-H. Higher 𝐻 forces the policy to favor

the less occupied bank to balance the load.

As expected, Rnd and Lnr are oblivious to the affinity information and achieve similar

performance. Lnr only outperforms Rnd by 25% on link list, as we allocate the nodes

one by one and Lnr allocates the node to the next bank, reducing the pointer-chasing

distance (about 60% traffic reduction). However, this is not optimal compared to colocating

neighboring nodes in the same bank, which eliminates the need to migrate. Also, linear

allocation is less likely the case in real production scenarios, and when list nodes are inserted

randomly, Lnr would behave the same as Rnd.

On the other hand, Min-Hop optimizes the data affinity and achieves significant speedup

and traffic reduction on most benchmarks. However, since it does not consider the load

balance, it may produce pathological data layout. For example, in bin tree it allocates the

entire tree to a single bank. Although it successfully eliminates the migration traffic (much

less offload traffic in Fig 6.12), it dramatically increases the miss rate to that L3 bank and

results in a huge slowdown.

145

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0
4
8

12
16

At

om
icS

Timeline of bfs_push with Rnd (top), Min-Hops, Hybrid-5 (bot.)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0
4
8

12
16

At

om
icS

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Normalized Cycle

0
4
8

12
16

At

om
icS

bank-x-max
bank-x-75%
bank-x-avg
bank-x-25%
bank-x-min

Figure 6.13: Distribution of Atomic Stream in BFS-Push

The hybrid policy Hybrid-H avoids such pathological cases by allocating to less occu-

pied banks to balance the load. It also achieves better bank-level parallelism and improves

the performance over Min-Hop. To see this, Fig 6.13 shows the timeline of number of

atomic streams per L3 bank in bfs push for Rnd, Min-Hop and Hybrid-5. We show the

distribution by plotting the number of atomic streams from least to most occupied bank.

For example, the 25% line indicates that 75% banks have higher occupancy. Rnd has higher

stream occupancy, as it takes much longer for each stream to finish the indirect atomic

access. Hybrid-5 achieves better load balancing than Min-Hop with a higher 25% line.

Overall, Hybrid-5 achieves the highest performance with slightly more traffic, and is chosen

as the default policy.

146

25
50
75

L3
 M

iss
 %

pathfinder hotspot srad hotspot3D geomean.
1
2
3

Sp
ee

du
p

1x (Default) 2x 4x 8x

Aff-Alloc
Near-L3

Figure 6.14: Speedup of Affine Layout on Large Inputs

0
5
10
15
20
25

L3
 M

iss
 %

pr_push bfs sssp geomean.0.5
1.0
1.5
2.0
2.5
3.0

Sp
ee

du
p

|V| = 217 (Default) |V| = 218 |V| = 219 |V| = 220

Hybrid-5
Min-Hops
Near-L3

Figure 6.15: Speedup of Linked CSR on Large Graphs

Large Input Size Fig 6.14 shows the speedup and L3 miss rate of affine workloads when

scaling up the input size. Since this work focuses on near-cache computing, the benefits

of affinity alloc significantly drop when the working set cannot fit in the cache (¿75% L3

miss rate for 8× input size). Fig 6.15 shows the same evaluation on graph workloads.

We scale up the graph by increasing the number of vertices, while keeping the average

vertex degree the same. Due to the irregular access pattern, we can get some reuse on the

vertex properties, leading to ¡20% L3 miss rate. Therefore, affinity alloc still yields some

performance improvement for the 8× graph. When |𝑉 | = 218, the graph can still fit in the

L3 cache for pr push and bfs, but not for sssp due to extra edge weights.

The implication is that the already common optimization of tiling and partitioning for

the on-chip cache becomes even more important. Also, as the on-chip cache continues to

scale up (768MB on AMD EPYC 7773X [178]), the number of tiles required can be reduced

(hence less overheads). This is orthogonal to this work. When there is no reuse at all on

the chip, future work could also apply affinity alloc to align data in DRAM to benefit NDC

techniques near the memory controller or inside DRAM.

147

Graph Processing

Graph processing contains heavy indirect accesses and benefits from improved data affinity

provided by affinity alloc. Here we evaluate codesigning the algorithm in NDC scenarios, as

well as sensitivity on graph structures.

Pushing vs. Pulling Graph processing algorithms page rank and bfs have both push-

based and pull-based implementations. These approaches have different trade-offs: Pushing

(i.e. top-down) approach propagates updates to outgoing neighbors and is implemented

with atomic access, while pulling (i.e. bottom-up) queries incoming neighbors and involves

reduction. Near-data computing naturally supports remote atomic accesses, but suffers from

indirect reduction which requires collecting operands distributed among LLC banks. On the

other hand, general-purpose processors can perform efficient reduction using registers, but

suffer from many coherence misses when contention on atomic accesses is high. Overall,

we observe that near-data computing usually favors the push-based implementation, while

in-core computing works better with the pull-based one. In our evaluation, this is the default

choice for page rank, in which all edges are active and processed in each iteration.

However, in bfs, each iteration has different characteristics and may benefit from per-

iteration choices between pushing and pulling [184]. Fig 6.16 shows three key characteristics

for iteration 𝑖: Visited Nodes: Total visited nodes after iteration 𝑖; Active Nodes: Visited

nodes during iteration 𝑖; Scout Edges: Outgoing edges from active nodes in iteration 𝑖. All

three are normalized to the total number of nodes or outgoing edges in the graph. Fig 6.17

shows the timeline of bfs using only pushing/pulling and a switching policy.

As expected for In-Core, pushing works well for the first and last few iterations, as there

are few active nodes and therefore fewer coherence misses compared to the middle iterations.

Iterations in the middle (Iter2, Iter3 and Iter4 of In-Core in Fig 6.17) favor pulling, as it

avoids the overheads of coherence misses on contended vertices. More generally, the number

of scout edges represents the number of pushing operations in the next iteration, and the

148

0 1 2 3 4 5 6
Iteration

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Ra
tio

Visited Nodes
Active Nodes
Scout Edges

Figure 6.16: BFS Iteration Characteristic

default bfs implementation in GAP suite [158] switches to pulling if the ratio of scout edges

exceeds a threshold.

This trade-off is different in near-data computing, as it is much cheaper to perform in-

place atomic operations in L3 without the overheads of coherence misses. Affinity alloc

improves the spatial locality and further reduces the overheads of remote atomic accesses.

Therefore, near-data computing chooses pushing for more iterations. For example, in Aff-

Alloc only Iter3 uses pulling in Fig 6.17, which suffers from excessive failed compare and

exchange operations on visited vertices and has a much lower active node ratio compared to

the scout edge ratio in the previous iteration in Fig 6.16. We adopt this insight and extend

the default switching policy to estimate the chance of failed atomic operations by taking into

account the ratio of visited vertices for Aff-Alloc:

∙ 𝑃𝑢𝑠ℎ→ 𝑃𝑢𝑙𝑙: Visited Node > 40% and Scout Edge > 6%.

∙ 𝑃𝑢𝑙𝑙→ 𝑃𝑢𝑠ℎ: Awake Nodes < 25%.

We find this policy robust across all evaluated graphs. This study and the linked CSR for-

mat shows that NDC poses many different trade-offs that require software and data structure

codesign.

Sensitivity to Node Degree One fundamental difference between affinity alloc and a

conventional graph partitioning scheme is the optimization granularity. Conventional graph

149

Switch
Push
Pull

In
-C
or
e

Switch
Push
Pull

N
ea

r-
L3

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Switch
Push
Pull

Af
f-
Al
lo
c

Iter0 Iter1 Iter2 Iter3 Iter4 Iter5 Iter6

Pull Push

Figure 6.17: BFS Push vs. Pull Timeline

pr_push bfs sssp geomean.
1.0
1.5
2.0
2.5
3.0

Sp
ee

du
p

D=4 D=8 D=16 D=32 D=64 D=128

Hybrid-5
Min-Hops
Near-L3

Figure 6.18: Speedup vs. Avg. Node Degree

partitioning divides the graph into a few coarse-grained subgraphs, and usually struggles for

high-degree graphs. On the other hand, by co-optimizing the data structure, affinity alloc

can optimize data affinity at cache line granularity and scales well with the connectivity.

To quantify this, Fig 6.18 shows the speedup of affinity alloc on various synthesized power

law graphs, normalized to Rnd. We fix the total number of edges but change the average

node degree. Affinity alloc actually achieves higher speedup on high-degree graphs (1.5×

when 𝐷 = 4 and 2.4× when 𝐷 = 128). This is because the edge list is sorted by outgoing

vertex id (as is common practice), and the longer the edge list, the more likely that outgoing

vertices of edges within one cache are mapped to the same or neighboring banks. We believe

affinity alloc provides a new angle to co-optimize NDC and data structures.

Real World Graphs We also evaluate affinity alloc on real-world social network graphs.

150

Input Graph Type |Vertex| |Edge| Avg. Degree

twitch-gamers [186] Power Law 168,114 13,595,114 81

gplus [187] Power Law 107,614 13,673,453 127

Table 6.4: Real World Graphs

pr_push bfs sssp
pr_push bfs sssp

geomean.
0.5
1.0
1.5
2.0
2.5

Sp
ee

du
p twitch-gamers gplus

pr_push bfs sssp
pr_push bfs sssp avg.

0.0
0.2
0.4
0.6
0.8
1.0

No
C

Ho
ps

 &
 U

til
.

Near-L3 Min-Hops Hybrid-5

NoC Util.
Offload
Data
Control

Figure 6.19: Performance on Real World Graphs

Table 6.4 lists the detailed information. These power-law graphs have a high average degree

and are hard to partition. Fig 6.19 shows the speedup and traffic reduction of affinity alloc

on these graphs, normalized to Near-L3. Overall, affinity alloc successfully optimizes the

fine-grained irregular data layout, and Hybrid-5 achieves 2.0× speedup over Near-L3.

This clearly demonstrates the benefit of co-optimizing the data structure and affinity data

layout for near-data computing.

151

6.6 Discussion

Dynamic Data Structures Although this work focuses on static data structures (i.e.

unchanged after creation), it is an interesting direction to apply affinity alloc to dynamic data

structures, especially for those that are pointer-based (e.g. trees, linked CSR). A particular

example is dynamic graph processing [188, 189, 190, 191, 192] which queries evolving graphs.

In this work we extend the static CSR format with pointers to provide the flexibility to

support irregular layout optimization, which needs some preprocessing. However, some prior

works already leverage pointer-based data structures similar to linked CSR to flexibly insert

and delete from the graph [193, 194], which can naturally benefit from the improved spatial

locality from affinity alloc without extra preprocessing.

Generally, if the affinity requirement changes, e.g. reinserting the tree node to a different

location, the previous layout choice becomes suboptimal. If the runtime is aware of the data

structure modification, e.g. via ‘realloc()’, the layout could also be dynamically adjusted,

or fall back to the default random layout if dynamic remapping overhead is intolerable. This

is left as future work.

Fragmentation One major challenge to support dynamic allocation is to handle fragmenta-

tion. In principle, the major source of fragmentation is limiting freed space in the interleave

pool to allocations with the same interleaving requirement (OS can still reclaim pages at

both ends by shrinking the interleave pool). For example, considering three consecutively

allocated arrays A[], B[] and C[] in the same interleave pool. The free space from releasing

B[] can only be reused for data structures with the same interleaving, as interleave pools

are backed by contiguous physical addresses. However, this fragmentation was not seen in

our static application set. A software solution is to compact the pool. Another possibility

is to dynamically break and merge interleave pools of the same interleaving. In the above

example, the single interleave pool can be split into two: one for A[] and the other one for

C[], and the free space in between can be claimed for other interleaving or normal allocations

152

without the overhead of copying and compacting. This requires a larger interleave override

table (IOT) in microarchitecture similar to prior works (e.g. RMM [182] has 32 range entries

vs. 7 interleave pools in this work).

6.7 Related Work

Multicore Caching and Dynamic Data Layout Multicore caches are physically dis-

tributed, giving rise to non-uniform cache access (NUCA) [195]. Many dynamic NUCA (D-

NUCA) designs have been proposed that change the data layout to reduce data movement[196,

197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212]. Unlike affinity

alloc, these designs do not offload computation near data. Rather, they move frequently

accessed data closer to the cores accessing it.

Several limitations make D-NUCA schemes hard to apply to near-data computing. Early

D-NUCAs treated the on-chip cache banks as a hierarchy, gradually migrating data closer

to cores that access it[196, 197, 198, 202, 199, 200]. These designs require another layer of

directories to locate data dynamically. As a result, most accesses still require an expensive

global lookup, eliminating most of the benefit of adapting the data layout. Later D-NUCAs

control data layout via the virtual memory system (i.e., page table and TLBs) so that no

additional directory lookup is required[198, 201, 202, 203, 204, 205, 212, 213, 214]. These

single-lookup D-NUCAs significantly reduce data movement, but can only control data layout

at page granularity, which we have shown is insufficient (Fig 6.5). Hotpad [215] designs a

scratchpad hierarchy for managed languages (e.g. Java), but does not optimize for data

affinity among banks.

Whirlpool [177] is a D-NUCA that controls data layout via the memory allocator, similar

to affinity alloc. Whirlpool uses the memory allocator to separate data into different “pools”

and uses a different data layout for each pool, letting the cache separate data with different

access patterns. By contrast, affinity alloc lets programmers express the affinity between

153

related data and control the layout so that related data is placed at the same location.

None of these works support single-lookup for fine-grained irregular affinity, nor do they

explore the benefit of co-optimizing the software to enable flexible data placement.

Near-Data Computing Various near-data approaches push computation into different

memory hierarchy levels to avoid unnecessary data movement: partial thread migration

among cores [216], near LLC [2, 31, 3, 32], on-chip network router [4], memory [13, 9, 11,

10, 8, 15, 17, 14, 5, 6, 175, 16, 137, 145, 160, 142] and storage [166, 19, 18], and even

across multiple levels or substrates [30, 29, 27, 24, 25, 26]. We can think of these as vertical

near-data computing.

The scope of near-data computing can be broadened beyond memory-hierarchy offload-

ing to those that only have a horizontal dimension: i.e. those that can map tasks to

different locations depending on locality. This includes works from the Swarm family of

ordered-algorithm accelerators [169, 217, 148, 170, 171] that use task hints to map tasks

near-data [172, 147]. Several prior multicore accelerators [179, 218, 10] and reconfigurable

architectures [174, 219, 220, 221] have this capability. Most vertical near-data architectures

have a horizontal aspect. We focus on improving the effectiveness of horizontal near-data,

but future work could also optimize vertically across levels.

Many of these works are oblivious to the data layout and take a best effort approach to

fall back to conventional execution when near-data computing is not profitable, e.g. [27, 16,

3, 5, 8, 31, 176, 26]. Other techniques require manual data placement using imperative APIs,

e.g. [6, 175, 4, 137, 10, 9]. Hong et al. [145] organize the linked list nodes into the same HMC

vault, and Gearbox [17] performs hybrid partition on SpMV and SpMSpV. These techniques

are limited to a specific domain or affine workloads. Another line of work [176, 26] leverages

the compiler to reschedule computation to optimize the arrival window in NDC. However,

it left the mapping between address space and cache banks as future work. Kandemir [222]

proposes loop transformation to reduce reuse distance in space for affine loops. Although it

154

does not handle irregular accesses, it could be combined with affinity alloc to handle some

tricky cases with less user intervention, e.g. transforming the loop to simplify the affinity

requirements.

Affinity alloc is orthogonal to these techniques – it tackles the fundamental data layout

problem in a systematic and programmable fashion. These near-data techniques could all

benefit from an affinity alloc-like approach to improve data affinity. It is future work to

extend affinity allocation to consider multiple memory hierarchy levels simultaneously.

Graph Processing Near-data scheduling is a prevailing optimization in graph processing

accelerators [223, 141, 163, 162, 10, 224, 179, 218, 174, 148]. One use case is for vertex-centric

graph processing, in which vertex-updates are scheduled near vertex properties storage [10,

224, 179, 218, 174, 148]. Our results suggest that our codesigned linked CSR format plus

affinity alloc would be effective for them.

6.8 Summary

This chapter systematically addresses the data layout problem in NDC by constructing a

clean layered design across the system. The application only needs to specify the essential

affinity information with the extended allocator interface, and the runtime can automatically

optimize data affinity and load balance. More importantly, affinity alloc opens up new

design space to co-optimize data structures with data affinity. This is a first but critical

step to revisiting many tradeoffs and realizing the full potential of the near-data computing

paradigm, where computation is truly near the data.

155

CHAPTER 7

In-/Near-Memory Computing Fusion

While our high-level stream abstraction exposes rich program semantics, it remains neutral

to the underlying microarchitecture details. This makes it possible to leverage streams as a

unified abstraction to fuse multiple near-data computing paradigms. While previous chapters

leverage the L3 stream engine and the remote core as the computing substrate, the emerging

in-SRAM computing using bitlines is an interesting alternative. However, key challenges

from its unique execution model remain unsolved: automated parallelization, transparently

orchestrating data transposition/alignment/broadcast for bit-serial logic, and mixing in-

/near-memory computing. Most importantly, the solution should be programmer-friendly

and portable across platforms.

In this chapter, we propose an execution model and intermediate representation (IR) that

enables hybrid CPU-core, in-memory, and near-memory processing. Our IR is the tensor

dataflow graph (tDFG), which is a unified representation of in-memory and near-memory

computation. The tDFG exposes tensor-data structure information so that the hardware and

runtime can automatically orchestrate data management for bit-serial execution, including

runtime data layout transformations. To enable microarchitecture portability, we use a

two-phase, JIT-based compilation approach to dynamically lower the tDFG to in-memory

commands.

Our name our approach infinity stream, as it enables in-/near-memory fusion. Evaluated

on a cycle-accurate simulator, across data-processing workloads with fp32, it achieves 2.6×

speedup and 75% traffic reduction over a state-of-the-art near-memory computing technique,

156

Way 17*
Way 16*
Way 15...

++ + +

++ + +

++ + +

++ + +

(a) In‐Core Computing

Offload Computation Near Mem.

(b) Near‐Mem Computing

Req./Resp. of A[i], B[i], C[i].

(c) In‐Mem Computing
❶ Configure L3 SRAM Arrays

Transposed A[i], B[i], C[i].

(d) One 8kB SRAM Array
Way 0

*Reserved

❷ Parallel Compute across SRAM Arrays

25
6
W
or
dl
in
es

A[i].LSB

A[i].MSB
B[i].LSB

B[i].MSB
C[i].LSB

C[i].MSBRo
w
 D
ec
od

er

256 PEs (A op B)

...

...

256 Bitlines
❶ Offload A[i] ‐> C[i]

❶ Req./Resp. B[0:N)

❸ C[i] = A[i] + B[i]

❶ Offload B[i] ‐> C[i] ❷ Resp. A[0:N)

❶ Offload C[i] = A[i] + B[i]

❷ Resp. B[0:N)

❷ Req./Resp. C[0:N)

C[i] += A[i] + B[i]
❶ Req./Resp. A[0:N)

Figure 7.1: Overview of In-Core/Near-Mem/In-Mem Computing Paradigms

with 2.4× energy efficiency.

Organization §7.1 gives background on in-memory computing and overviews our approach,

followed by the execution model and tDFG IR in §7.2. §7.3 details the runtime and dynamic

compilation, with the 𝜇arch in §7.4 and limitations in §7.5. Methodology and evaluation are

in §7.6 and §7.7, and related work is in §7.8.

7.1 Background and Overview

Here we overview the three computing paradigms with a simple vector addition example.

This characterizes in-memory computing and its challenges, which motivate this work.

Near-Memory Computing

Conventional systems adopt a core-centric view: all computation is centralized in the core,

with data fetched from the memory subsystem. Fig 7.1(a) shows a tiled multi-core system.

Each tile contains a core with a private L1/L2 and a shared L3 cache bank, and is connected

by a mesh network-on-chip (NoC). To perform C[i]=A[i]+B[i], the core issues multiple

requests to fetch A[i] and B[i], as well as writing back C[i]. Vectorization and multi-

threading can be used to exploit the massive data parallelism in this example. One major

overhead here is the unnecessary data movement, as all three arrays A[], B[] and C[] have

157

no reuse at all. Techniques like prefetching and cache bypassing can only partially help, as

the data movement is inevitable and incurs a high energy cost. Such overheads are only

going to be more severe as the system scales up and the data grows.

Near-Memory Computing To fundamentally eliminate unnecessary data movement,

near-memory computing moves computation closer to the data, and has been applied in

many contexts: e.g. near on-chip SRAM [31, 3], within the NoC [4, 16], near memory

controller [27, 14, 137]. They also offload computation at different granularities from coarse-

grained kernel-level [5, 159, 175, 160, 161, 163] to fine-grained short instruction sequences [14,

4, 16].

Near-Stream Computing For the near-memory computing baseline, we use near-stream

computing [31], which offloads long-term memory accesses (i.e. streams) with computations

near the L3 cache. In Fig 7.1(b), the memory accesses are decoupled into three streams

A[i], B[i], C[i], and offloaded to the shared L3 banks where the data resides. Stream

A[i] and B[i] directly forward their data to stream C[i]. Stream C[i] coordinates with

the remote CPU core to perform SIMD ops on a spare thread, and then writes directly to

L3. This significantly reduces the data traffic and control overheads.

Bit-Serial In-Cache Computing

Near-L3 approaches still read the data out from the L3 SRAM arrays, hence are still bound

by the L3 cache’s bandwidth. To fully unlock the massive potential data parallelism, in-

memory computing moves the computation inside SRAM arrays. For this work, we assume

the same compute SRAM technology as Neural Cache [20].

In Fig 7.1(c), SRAM arrays are configured to add A[i] and B[i] in parallel and directly

write back to C[i], with no sequential reads and writes at all. Fig 7.1(d) demonstrates

how in-memory computing works in one 8kB SRAM array with 256 wordlines (row) and 256

bitlines (column). Specifically, it requires the data to be transposed and bit-serial logic.

158

Transposed Data Layout In Fig 7.1(d), array elements (4 bits each) are transposed from

a horizontal layout across columns to a vertical layout on the same column. E.g. the least

significant bit (LSB) of A[0] is stored in the cell indexed by wordline 0 and bitline 0, and

the most significant bit (MSB) of A[0] by wordline 3 and bitline 0.

Bit-Serial Compute In-memory computing leverages bit-serial logic to compute the result.

This requires operands to be aligned in the same column. In the example in Fig 7.1(d), A[i],

B[i], and C[i] are all placed in the same bitline. To start the computation, we activate the

wordlines of A[i].LSB and B[i].LSB at the same time, and the 256 PEs perform the bit

operation on the sensed bit (e.g. AND for carry, XOR for addition). The PEs have cells holding

intermediate results (e.g. carry of addition). The result bit is then written back to C[i].LSB

by activating wordline 8 with the write signal. This process repeats to compute the result

one bit at a time (hence “bit-serial”). It takes 𝑂(𝑛) cycles to perform integer addition and

𝑂(𝑛2) for integer multiplication, where 𝑛 is the data type width. However, this is amortized

by the massive parallelism it provides.

Max System Speedup Assuming a 64-core system with 16-way 2MB L3 banks (total

128MB) and 16 256×256 SRAM arrays/way, the peak throughput of int32 addition is:

𝑇 = 𝑁𝑏𝑎𝑛𝑘 ×𝑁𝑤𝑎𝑦 ×𝑁𝑎𝑟𝑟𝑎𝑦/𝑤𝑎𝑦 ×𝑁𝑏𝑖𝑡𝑙𝑖𝑛𝑒/𝐿𝑎𝑡𝑒𝑛𝑐𝑦
1

= 64× 16× 16× 256/32 = 131072 ops/cycle
(7.1)

Assuming each baseline core can issue one 512-bit vector op per cycle (64 × 16 =

1024 ops/cycle), in-memory provides 128× peak speedup. Fig 7.2 shows the speedup of two

microbenchmarks with various input sizes on the baseline (AVX-512 and 1 or 64 OpenMP

threads), near-L3, and in-L3 computing using bit-serial logic. We assume data is cached in

L3 and already transposed for in-memory computing. in-L3 computing usually favors larger

1We adopt the integer addition from [21]. System params in §7.6. See In-/Near-Memory Computing [225]
for more details, and §7.8 for related works.

159

vec
_ad

d/16
k

vec
_ad

d/64
k

vec
_ad

d/25
6k

vec
_ad

d/1M

vec
_ad

d/4M

arra
y_su

m/1
6k

arra
y_su

m/6
4k

arra
y_su

m/2
56k

arra
y_su

m/1
M

arra
y_su

m/4
M
geo

mea
n.

100
101
102
103
104

Sp
ee

du
p

Base-Thread-1 Base-Thread-64 Near-L3 In-L3

Figure 7.2: Speedup of Different Paradigms (Fp32)

input sizes as they amortize the overhead of bit-serial operation. Despite this, in-L3 achieves

the best performance for vec add across all input sizes. With 4M elements, it achieves 21×

over Near-L3, making it a promising approach to exploit the available data parallelism.

Infinity Stream Approach Overview

There are still barriers to the broad adoption of in-memory computing. An ideal in-memory

system would be programmer-transparent, compatible with existing core-centric and near-

data execution without adding much overhead, and also preserve program compatibility with

future microarchitectures. No existing in-memory system has achieved all three due to the

challenges of the unique paradigm. Here, we overview the challenges and our approach.

Automated Orchestration Bit-serial logic requires transposing large arrays, managing

on-chip space, and enforcing bitline alignment. A suitable data layout, tiling, and explicit

reuse are critical to reducing data traffic. Also, distributing computation to bitlines requires

massive vector parallelism. Ideally, this orchestration would be done without any program-

mer involvement. Thus, the system must automate this management and ease integration

with conventional code. The key challenge is expressing sufficient information to the hard-

ware and software runtime.

Our approach: We develop a program representation called the tensor dataflow graph

(tDFG). The tDFG operates over tensors with explicit data-parallel semantics, and repre-

160

sents inter-data structure alignment with the concept of a global lattice space. Reuse can

be determined precisely, and the tDFG can be annotated with hints about optimal tiling

patterns. The tDFG is embedded as an extension to a traditional ISA, and gives the runtime

sufficient information to make good decisions.

Fused In-/Near-Memory Computing Sometimes it is better to split the work between

in-/near-memory computing. E.g. an in-memory reduction to produce partial results, which

are reduced to the final value by near-memory computing; or a phase with both irregular

and regular data structures, where only the latter is suitable for in-memory. This requires

a unified execution model and low-overhead hardware implementation. As suggested by

Fig 7.2, in-memory struggles with small input sizes. Also, many code patterns like irregular

control and memory (e.g. A[B[i]]) are only potentially suitable for near -memory. This

motivates both a runtime selection between in-/near-memory computing, and a fused in-

/near-memory paradigm.

Our approach: The tDFG can express both in-memory and near-memory opportunities

in a unified representation. This generalizes the near-data approach from near-stream com-

puting [31]. At runtime, the system decides the offload target (in-/near-memory) based on

data size and access behavior. One key hardware feature is to integrate the transposed data

layout with the coherence protocol to allow data communication between the two paradigms.

Portability High-performance in-memory code requires exploiting both low-level hard-

ware details (e.g. # of bitlines/array, SRAM-level instructions) and runtime values, e.g.

array dimensions, compute constants. Thus, it is difficult for a single low-level binary to be

compatible with all software parameters and future microarchitectures without sacrificing

performance.

Our approach: We take a just-in-time (JIT) approach, with the tDFG playing a similar

role to PTX virtual assembly for CUDA GPUs. A JIT runtime is in charge of quickly

lowering the tDFG “virtual” ISA into in-memory computing commands and managing the

161

Application
(Plain C Code)

Host Code
+ Inf-S Runtime

tDFG
Config.

Initial
tDFG
Initial
tDFG

Optimal
tDFG

Optimal
tDFG

+

(1) Extract (2) Optimize

(3) Schedule &
Reg. Alloc.

for SRAM sizes.

(1) Transform
Infinity Stream (Fat) Binary

Static
Compiler

Dynamic
Runtime
(When Configured)

Bit-Serial
Commands

(5) JIT Compile

Transposed
Data Layout

To Infinity Stream μArch

(4) Spatial Tiling

Figure 7.3: Infinity Stream Workflow Overview

transposed data layout. This requires carefully splitting the job between the compiler and

the runtime to maintain compatibility while keeping JIT overheads reasonable.

Programmability Ideally, the system should be easy to program, without programmers

writing multiple code versions, worrying about data orchestration, and switching between

paradigms. This requires a unified compiler and ISA abstraction, as well as a flexible runtime

library and microarchitecture support.

Our approach: The tDFG is constructed purely by the compiler using plain C code. The

algorithm and program transformations (e.g. inner vs. outer product) can of course affect

the performance, so we discuss programming implications in §7.2. Overall, infinity stream

requires only minimal programmer intervention.

Infinity Stream Workflow Overview Fig 7.3 summarizes the overall workflow: our

static compiler first extracts an initial tDFG from plain C code and optimizes it for compute

162

reuse and less data traffic. The optimal tDFG is scheduled for common SRAM sizes (we use

256 × 256 and 512 × 512). This generates a fat binary with multiple tDFG configurations,

which reduces the complexity of JIT compilation. At runtime, when an infinity stream region

is configured, the runtime dynamically decides the transposed data layout with tiling based

on the data size and hardware parameters. The matched version of tDFG is JIT lowered

into bit-serial commands. The infinity stream 𝜇arch transposes the data and executes the

commands to perform in-memory computing.

7.2 Infinity Stream Abstraction

This section shows how the proposed abstraction captures the unique properties of in-memory

computing to enable helpful optimizations while simplifying programming complexity.

Stream Dataflow Graph

We first extract the stream dataflow graph (sDFG) from the program, which embeds memory

access patterns as streams with associated near-stream computations. We leverage the sDFG

as the foundation and later extend it to support in-memory computing.

Stream The compiler decouples access patterns into streams. E.g. Fig 7.4(a) contains

three load streams A[i-1], A[i], A[i+1], and one store stream B[i], with linear access

patterns. Streams may be extracted from outer loops if the access pattern is supported.

Irregular access patterns (e.g. A[B[i]] and p=p->next) are also streams but are inefficient

for pure in-memory computing.

Near-Stream Computation Computation can also be associated with streams. E.g. in

Fig 7.4(b) the reduction is associated with stream A[i]. Although the operation is applied to

all elements, streams still implicitly define the access order and preserve sequential semantics.

In hardware, each stream (and associated computation) can be independently moved near

163

 Legend: Value Dependence Mem. Stream Const. Value Compute Op.
 Tensor from Unrolling Stream Move/Broadcast Node to Align Tensors

Stream DFG (sDFG)Original Pseudo Code

for i in [1, N-1)
 B[i] = A[i-1]
 + A[i+1]
 + A[i];

(a) 1D Filter

❶ Fully unroll
streams into tensors.

+
+
B

A0 A1 A2 A0

mv

A1 A2

+
+
B

dim=0
dist=1

dim=0
dist=-1mv

❷ Explicit mv
nodes to align
tensors.

Tensor DFG (tDFG)

Optimize/
Schedule.

for i in [0, N)
 v += A[i];

(b) Vector Sum

+

A A

+ reduce
:dim=0

v

for k in [0, N-1)
 akk = A[k][k];
 bk = B[k];
 for i in [k+1, N)
 m = A[i][k]/akk;
 B[i] -= m * bk;
 for j in [k+1, N)
 A[i][j] -=
 A[k][j] * m;

(c) Gaussian Elim

/

Aik Akj

bcBk

Akk

Bi

Bi

Akj

Aij

Aij

Reuse
by N-k-1

m

bc

Aij

Aij

❶ In-memory reduce
to partial results.

❷ Near-memory stream
to reduce to final result.

Mix in-/near-memory computing.

❶ Partial unrolling
on Akj, Aij.

❷ Broadcast m, Akj.

/

AikAkk

m

Aijm

Akj

...

Results from
Stream

A0=
A1=
A2=
B =

A0=
A1=
A2=
B =

Tensor
Pat.

A0=
A1=
A2=
B =

Tensor
Pat.

A0=
A1=
A2=
B =

A0=
A1=
A2=
B =

Strm.
Pat.

A0=
A1=
A2=
B =

Strm.
Pat.

Figure 7.4: Examples of Infinity Stream Abstractions

the L3 if more locality there.

Stream Dataflow Graph Streams and near-stream computations form the stream DFG.

Streams can have dependencies: data from the outer loop can be reused by the inner loop,

e.g. in Fig 7.4(c) where the value m is reused (N-k-1) times.

Tensor Dataflow Graph

Intuition In-memory computing requires unrolling computation across all bitlines. Inspired

by this observation, if the domain of the stream is a hyperrectangle (i.e. 𝑁 -dimensional

rectangle) of the data structure, we can fully unroll the stream into a tensor. We can then

164

S

C

f

mv

tDFG Node SemanticLattice Space Representation

count=4
dim=1
dist=0

Ao=∩Ai

An infinite tensor C with
compile-/run-time constant c

at all lattice cells.

Sequentially accesses the array
using the access pattern.

@ret: normal values v | a tensor A

Apply an element-wise f(A0,…) to
the intersection of input tensors.

Assume no inter-elem. order.
@ret: a tensor Ao

Move the input tensor A
by dist in dimension dim.

@ret: a tensor Ao

Broadcast tensor A count times in
dimension dim with offset dist.

@ret: a tensor Ao

dim=0
dist=1

A

A = tensor(
 ptrdata,
 p0, q0, …
 pN-1, qN-1)

Value c broadcasted
to all lattice cells.

1 2 3 4
5 6 7 8
9 101112

12141516

1 2 3 4
5 6 7 8
9 101112

12141516

1 2 3 4
5 6 7 8
9 101112

12141516

A N dimension hyperrectangle
set of data elements in

lattice space.

[p0,q0)x…x[pN-1,qN-1)
E.g., A=[0,4)x[0,4)

fA0 AM...

1 2 3 4
5 6 7 8
9 101112

12141516

1 2 3 4
5 6 7 8
9 101112

12141516

1 2 3 4
5 6 7 8
9 101112

12141516

1 2 3 4
5 6 7 8
9 101112

12141516

1 2 3 4
5 6 7 8
9 101112

12141516

1 2 3 4
5 6 7 8
9 101112

12141516

mv
A

bc

A 1 2 3 41 2 3 41 2 3 4
bc

c c c c
c c c c
c c c c
c c c c

c
c
c
c

c c c c
c c c c
c c c c
c c c c

c
c
c
c

c c c c
c c c c
c c c c
c c c c

c
c
c
c

Access Pattern:

1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4

1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4

1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4

Ao = cmp(
 f,
 A0, … AM)

Ao = mv(
 A,
 dim, dist)

Ao = bc(
 A, count,
 dim, dist)

v|A = strm(
 acc_pat)

C = const(
c)

𝑖𝑖�0
N𝑖𝑖�𝑗𝑗�0

N
�
𝑗𝑗𝑘𝑘��0

N
�𝑘𝑘

any order
0
s𝑤𝑤 ize𝐵𝐵[𝐴𝐴[𝑖𝑖][𝑗𝑗][𝑘𝑘] + 𝑤𝑤]

Figure 7.5: tDFG Node Semantics

reformulate the computation as a dataflow graph where the operands are tensors; we call

this the tensor DFG (tDFG). Fig 7.4 shows three example tDFGs, and Fig 7.5 summarizes

all types of tDFG nodes. We now define the key concepts and semantics of the tDFG.

Global Lattice Space A key feature of the tDFG is the ability to reason about the

relative location of different tensors in memory, so that data can be aligned at the bitline

level. To enable abstract reasoning about relative locality, we introduce a global lattice space

to the tDFG. All tDFG tensors are positioned on an 𝑁 -dimension global lattice space (its

dimensionality is that of the data structure with the highest dimension), shown as the dashed

grid in Fig 7.5. Each lattice cell can hold an arbitrary number of data elements. At runtime,

cells are mapped to physical locations, e.g. SRAM bitlines. More importantly, the lattice

165

space serves as a homogeneous coordinate system to abstract away the complex underlying

hardware hierarchy, including bitlines, SRAM arrays, banks, NoC, etc. This helps keep the

tDFG abstraction portable across platforms.

Tensor As in Fig 7.5, a tDFG tensor is a hyperrectangle set of data in the lattice space,

denoted by [𝑝0, 𝑞0)× ...× [𝑝𝑁−1, 𝑞𝑁−1) where 𝑝𝑖 and 𝑞𝑖 are the start and end coordinates in

dimension 𝑖. Each data element of a tensor resides in its own lattice cell. An 𝑁 dimensional

array is by itself a tensor with 𝑝𝑖 = 0, 𝑞𝑖 = 𝑆𝑖 where 𝑆𝑖 is the array size on dimension 𝑖.

Unlike streams, tensors do not imply a temporal sequential order but are fully expanded in

the lattice space.

Compute with Tensors A compute node takes one or more input tensors, applies the

computation to a domain which is the intersecting hyperrectangle (see Fig 7.5), and produces

an output tensor. The tDFG uses a static single-assignment form (SSA), i.e. nodes always

produce a new tensor without overwriting existing ones. There are two key characteristics

of tensor computation:

∙ Data Parallelism: Since tensors are fully unrolled, the tDFG does not assume an

elementwise order within one tensor computation, exposing massive data parallelism.

∙ Data Alignment: Tensor computation requires operand elements from different ten-

sors to be exactly aligned within the same lattice cell. This captures the data alignment

requirement for in-memory computing.

Explicit Tensor Alignment We introduce two types of node in the tDFG to facilitate

explicit tensor alignment, which is crucial to optimize and compile data movement for in-

memory computing:

∙ Move: A move node (mv) in Fig 7.5 shifts a tensor along a dimension by a certain

distance. E.g. in Fig 7.4(a), tensor A[0,N-2) is moved to the right by 1 to align with

A[1,N-1).

166

∙ Broadcast: To capture reuse spatially, a broadcast node (bc) in Fig 7.5 broadcasts

a small reused tensor along the reuse dimension to align with the larger tensor. In

Fig 7.4(c) A[k,k+1)x[k+1,N) is broadcast downwards to align with A[k+1,N)x[k+1,N).

Global Bounding Hyperrectangle Due to the finite hardware resources, not every lattice

cell has a valid physical location. we define the global bounding hyperrectangle as the

minimal one that contains all involved data structures. semantically, data elements outside

the bounding hyperrectangle have undefined values, so data moved or broadcasted outside

is discarded. For now, we implicitly assume all data structures are aligned to the origin, but

this can be relaxed to placing the array anywhere in the lattice.

Optimizing tDFG We leverage equality graphs (e-graphs) [226, 227] to search for an

optimized tDFG. E-graphs are a representation of all possible rewrites to a graph in a com-

pact form, which leverages equality relationships between different rewrites. To construct an

e-graph for our case, we start from the initial tDFG, then repeatedly grow the e-graph by ap-

plying rewrites and maintaining equivalence points between them. The final tDFG selection

is based on architecture-informed cost metrics (e.g. estimated latency of move vs. compute

node), and can be exhaustive or terminated early to reduce compile time. Fig 7.6 shows the

initial and optimized tDFG for Fig 7.4(c). Besides the basic associative, commutative, and

distributive rules, two transformations are widely applicable (see the Appendix for a full list

of transformation rules):

∙ Tensor Expansion: We can merge two mvs with the same distance and dimension but

on slightly different patterns. In Fig 7.6, A0:[0,M-2)x[0,N-2) and A3:[1,M-1)x[0,N-2)

are both shifted to the right by 1 and can be merged into one mv on the expanded tensor

[0,M-1)x[0,N-2).

∙ Reuse Common Comp.: We can also reuse common computations. In Fig 7.6,

instead of multiplying by 𝐶0 four times, we can reuse the result by shifting it to where

it is needed in the lattice.

167

C1 C2

+
dim=1
dist=1

3x3 2D Conv
for i in [0, M‐2)
 for j in [0, N‐2)
 v0 = C0*A[i][j]
 + C1*A[i][j+1]
 + C0*A[i][j+2];
 v1 = C1*A[i+1][j]
 + C2*A[i+1][j+1]
 + C1*A[i+1][j+2];
 v2 = C0*A[i+2][j]
 + C1*A[i+2][j+1]
 + C0*A[i+2][j+2];
 B[i][j] = v0+v1+v2;
 j++;
 i++;

Original Tensor Dataflow Graph (tDFG)

A0
A0=A[0,M‐2)x[0,N‐2)

A1 A2

+
+

A3 A4 A5

+
+

A6

mv

A7 A8

mv

+
+

dim=1
dist=‐1

+
mvdim=1

dist=1

+

Optimized tDFG

C0 C1 C0

mv mv

C1 C2 C1 C0 C1 C0

v0 v1 v2

A

+

mv

+
+

C0
v0 v1v2

mv

+

dim=0
dist=1mv

Tensor expansion/
common expr reuse/...

mv

A=A[0,M)x[0,N)

C1

dim=0
dist=1

dist=‐1
dim=1

dim=0
dist=‐1mv mvmv

Figure 7.6: Example of Optimized tDFG

Hybrid In-/Near- Memory

tDFG is also general and flexible to support hybrid in/near memory execution by embedding

streams.

Embedding Streams in tDFG Some streams/ops in the tDFG are not unrolled into

tensors, e.g. alias, non-hyperrectangle accesses, etc. Keeping streams in the tDFG enables

data to be read or written in a strided affine pattern or an indirect pattern, providing a better

setup for tensor computation (e.g. a stream performs an indirect access and lays out the

data in a tensor format). We allow up to three dimensions for affine access and dependent

one-level indirect access (see the access pattern in Fig 7.5). A stream node can produce:

∙ Normal Values: Load and reduce streams generate normal values (non-tensor) con-

sumed by the core or other streams. E.g. the reduction in Fig 7.4(b) is split into two

nodes: a tensor compute node to perform partial in-memory reduction, and a stream

node to perform the final reduction, as in-memory computing is inefficient for the final

rounds.

168

∙ Tensor Values: Store streams produce a new tensor with the bounding hyperrectangle

of all touched lattice cells. Semantically, this can be as large as the entire accessed array,

e.g. an indirect stream updates a subset of the elements. However, in implementation,

this is just updating an existing tensor and does not allocate a new one. In Fig 7.4(c),

stream Bi is not unrolled due to low parallelism, and stream m writes the division result

into a tensor m, which is later consumed by in-memory computing.

Supporting Irregularity Hybrid in-/near-memory execution enables infinity stream to

handle some forms of irregularity, i.e. streams in tDFG can have irregular access patterns

(e.g. A[B[i]]). For example, in kmeans, in-memory computes the closest centroid for each

point using tensor operations, while near-memory performs the indirect update to recalculate

centroids’ coordinates. For future work, the tDFG can also be extended with control flow

and predication to handle control irregularity.

ISA Interface

Both the sDFG and tDFG for each relevant program region are encoded in the binary, to

enable a dynamic choice between near-memory and in-memory respectively. Fig 7.7 shows

the compiled Fig 7.4(c) with both DFGs and data layout hints.

Infinity Stream Configuration The inf cfg instruction marks the beginning of infinity

stream regions, and passes in the runtime parameters (e.g. constant values). This triggers

the runtime library to read in the configuration and configure the microarchitecture (de-

tails in §7.3 and §7.4). As in prior work [31], near-stream computations are compiled into

conventional functions in the native ISA. A pointer to this function is stored in the sDFG.

Layout Hints for Tiling We add layout hints into the configuration to help the runtime

quickly make good decisions about tiling: e.g. which dimensions the array would be shifted

along (favoring tiling along those dimensions), as well as which arrays are used for the same

169

Data moves along
some dim 0/1.

/akk

// Init arrays.
inf_array(A, 4, N, N);
...
// Computation.
for k in [0, N-1)
 akk = A[k][k];
 bk = B[k];
 inf_cfg(0x404,akk,...);
 inf_end();

(c) Gaussian Elim

Bi

Akj

Aij

Runtime
params.

Reuse
by N-k-1

-=m*bk -=m*sAkj

/akkAik

Bi m

Write to
m

-=m*bk

Eliminate the
whole loop.

tDFG Config.

Hints: N > f(…)

In-Mem Cfg.

Near-Mem Cfg.

Trigger tDFG when done.

Choose in-/near-mem at runtime.

Near-stream
computation.

Declare an array: vaddr,
elem_size, array_size.

Near-Mem Configuration

Akj

bc

m

bc

...

In-Mem Configuration

Data Moves:
A: dim0 broadcast

A: dim1 broadcast Aik

Figure 7.7: Example of Compiled Infinity Stream Program

computation (and should be bitline-aligned). The compiler generates the layout hints by

analyzing the tDFG’s data movement patterns. The runtime also requires the array sizes,

which are passed in using the inf array API. Fig 7.7 demonstrates using inf array to

declare a 2D array A[N][N], where the infinity stream configuration defines that array A is

broadcast in both dimensions. The runtime combines this information and picks a suitable

data layout to reduce the traffic (see §7.3). Currently, we manually insert inf array calls

in the initialization phase.

tDFG Backend Compilation To generate a tDFG configuration, the backend compiler

serializes the tDFG and allocates values to wordlines (once for each SRAM array size in the

fat binary). In this work, we use a straightforward approach of scheduling instructions in

topological order, and using a local register allocation scheme [228]. Though there are few

effective registers (e.g. 8 32-bit registers in a 256-wordline SRAM array), no register spilling

was observed in the studied workloads. Fusing multiple physical SRAM arrays into a larger

virtual array with more registers is possible but left for future work.

170

Outer Prod. (Inf‐S)Tiled Inner Prod. (Base)

for mm in [0,T,M)
 for nn in [0,T,N)
 for kk in [0,T,K)
 for m in [0,1,T)
 for n in [0,1,T)
 s = 0;
 for k in [0,1,T)
 s += A[mm+m][kk+k]
 * Bt[nn+n][kk+k];
 C[mm+m][nn+n] += s;

(a) Matrix Mul Amk

bc

C

Bkn

+
C

dim=0 dim=1
bc

Tensor DFG (tDFG)

for k in [0,1,K)
 for m in [0,1,M)
 for n in [0,1,N)
 C[m][n] += A[m][k]
 * B[k][n];
 ❶ Broadcast Amk, Bkn

to the entire C.

CAmk

Bkn

❷ Acc. in C.

Figure 7.8: Programming GEMM for Infinity Stream

Programming Infinity Stream

Due to its special execution model, programmers face different trade-offs when programming

an in-memory system, with tiling and dataflow being the two major design choices.

Tiling Since in-L3 computing flattens the memory hierarchy, it becomes unnecessary to tile

for L1/L2 caches at the programming interface. The runtime will handle the tiling across

SRAM arrays using microarchitecture support. E.g., Fig 7.8 shows the baseline 2-level tiled

code for matrix multiplication mm, while infinity stream’s implementation has no tiling with

only 3 loop levels.

Inner vs. Outer Product Another critical design choice is the dataflow. In-core com-

puting usually favors inner product as it accumulates the result in the register (see Fig 7.8).

However, as in Fig 7.2, in-memory computing does not handle reduction well as the data

parallelism is halved after each round of reduction, and prefers outer product to convert

the reduction to element-wise operations. In Fig 7.8, during each round of k, one column

of A[] and one row of B[] is broadcast to the entire C[], followed by multiplication and

accumulation. We evaluate both dataflow choices in §7.7.

171

A13
dim=0
dist=1

A[0,4)x[0,3)

A00 A01 A02 A03

A10 A11 A12

A20 A21 A22 A23

A30 A31 A32 A33

00 01 10 11 02 03 12 13 20 21 30 31 22 23 32 33

00 10 01 02 11 12 20 30 21 22 31 32

Reserved

Way 0 Way 0Bank 0 Bank 1

tA0

mv

 CMD Bitlines Tiles
0 sh 0:2:2 0:2:2 +1 / 0
1 sh 1:2:2 0:2:2 -1 / 1
2 sh 0:2:2 1:2:2 +1 / 0

Lowering

BL./Tile
Distance

Pattern: start[:stride:count]+ Moved
Elements

Way 1

Tile 0

Tile 2

x2 x2

x2 x2

x2 x2

Right shift column [0,4) by 1.

Tile 1

Tile 3

tA0

Figure 7.9: Moving a Tensor in Tiled Layout (View in Color)

Best Practice Programmers should choose outer product or a similar dataflow that exposes

more parallelism for inner loops and move reduction to outer loops. Also, there is no need

to tile for private caches as in-memory computing is performed at L3. As in standard

practice, programmers should still tile for L3 to provide a suitable working set for in-memory

computing.

7.3 Runtime Support

The tDFG is neutral to hardware details and input sizes to maintain compatibility. Instead,

a runtime library manages the transposed data layout, lowers the tDFG into in-memory

commands, and decides between in-/near-memory computing, described as follows.

Transposed Data Layout

The transposed data layout is left to runtime as it requires information that is usually

unavailable at compile time, e.g. input sizes, SRAM array sizes, NoC bandwidth, etc.

A trivial data layout would treat the data structure as a 1D array and map elements to

contiguous bitlines. However, tensors are often shifted/broadcast along higher dimensions.

172

Therefore, to reduce data traffic across SRAM arrays, the data layout within an SRAM is

modified through tiling. Here, a tile is defined by the data dimensions mapped to one SRAM

array. In Fig 7.9 we consider a 4-bit-wide SRAM array, where a 4x4 2D software array is

split into 4 2x2 tiles, and mapped to SRAM arrays (some SRAMs belong to ways reserved for

conventional cache). We only transform the data layout through tiling at the SRAM array

level, as it captures most of the traffic reduction benefits, and keeps the mapping between

physical address and bitlines simple. Applying further data-layout tiling at a coarser level

could further reduce data traffic.

Tiling Constraints Assume an N-dimensional 𝑆0 × ...× 𝑆𝑁−1 array with 𝐿 elements per

cache line, 𝐵 bitlines per SRAM array and 𝑊 SRAM arrays per L3 bank used for in-memory

computing. The tile size 𝑇0 × ...× 𝑇𝑁−1 must ensure that:

1.
∏︀𝑁−1

𝑖=0 𝑇𝑖 = 𝐵: Each tile occupies all bitlines in one SRAM array. This simplifies the

logic for intra-tile data movement.

2. 𝑇0 ×𝑊 mod 𝐿 = 0: For dimension 0 (continuous in address space), tiled elements at

each L3 bank (𝑇0×𝑊) aligns with elements per cache line (𝐿). This ensures that each

line is mapped to only one L3 bank.

The runtime gets the array’s element size and shape from the inf array API, and

searches for a valid tile size meeting the constraints. If none is found, the array is not

transposed and in-memory computing is disabled. Notice that the array size is not required

to align to tile size; boundary tiles with unused bitlines require special handling (see §7.3

and §7.4). In addition, it checks that the array’s innermost dimension aligns to the cache

line (𝑆0 mod 𝐿 = 0). Along with constraint 2, this guarantees a transposed cache line is

not split across L3 banks, and is still accessible by normal requests (with longer latency to

transpose back, see §7.4). This rarely fails for large arrays, as they are often padded for

cache line alignment.

173

When multiple arrays are used by the same computation, e.g. the input and output array

of 2D convolution, the runtime picks one primary array (the output or the reduced array)

and uses its tile size for others. Using the same tile sizes eases the complexity to align tensors

at runtime.

Tiling Heuristics The runtime picks one valid tile size using hints in the configuration.

Shifts favor a close-to-square tile size, as it keeps most traffic within the same tile. For

reduction, a larger tile size on the reduced dimension allows more rounds of in-memory

reduction. Broadcast reads favors a smaller innermost tile size if it can spread one row to

more L3 banks to avoid the hotspot. When tensors are used for multiple kinds of data

movement, we prioritize by the order of reduction, shift, and broadcast, as reduction is

usually more expensive due to low compute intensity, while broadcast is inexpensive, as it

can reuse the read data. The runtime can pick the best data layout for each program phase.

Our heuristic is within 2% of an oracle configuration (see §7.7).

JIT Lowering tDFG

The runtime also lowers the tDFG into in-memory commands. In Fig 7.9, an example mv

node (right shift columns [0, 3) by 1) is lowered through the following steps.

1. Tensor Decomposition As tensors may not align to the tile boundary (e.g. moving

a subregion of the array), they are decomposed into smaller ones to separately handle those

tiles at the boundary. Alg 2 recursively decomposes an 𝑁 -D tensor along the tile boundary

at each dimension. For the start and end position 𝑝0, 𝑞0 of dimension 0, it identifies their

respective tile boundaries [𝑎, 𝑏), [𝑐, 𝑑) such that 𝑝0 ∈ [𝑎, 𝑏), 𝑞0 ∈ [𝑐, 𝑑), {𝑎, 𝑏, 𝑐, 𝑑} mod 𝑡0 ≡ 0

(line 3-4). Depending on the relative positions of 𝑝0 and 𝑞0, it decomposes the 1D tensor

[𝑝0, 𝑞0) into one to three new ones: additional subtensors for the head and/or tail if 𝑝0 and/or

𝑞0 do not align with the tile boundary. For multiple dimensions, we take the cross product of

all decomposed tensors (line 8-18). When the tensor aligns with the tile boundary in every

174

Algorithm 2: Decompose Tensor
Input: A 𝑁 -dim tensor 𝐴 = [𝑝0, 𝑞0)× ...× [𝑝𝑁−1, 𝑞𝑁−1) where 𝑝𝑖 < 𝑞𝑖

Input: A list of tile size of each dim 𝑡𝑠 = [𝑡0, ..., 𝑡𝑁−1]

Result: A list of decomposed tensors 𝑟𝑒𝑡 initialized as []

1 if N ¿ 0 then // Decompose dimension 0

2
//

0 𝑎𝑝0 𝑏 𝑐 𝑞0 𝑑
.

head middle tail

3 𝑎← ⌊𝑝0

𝑡0
⌋ × 𝑡0, 𝑏← ⌊𝑝0+𝑡0−1

𝑡0
⌋ × 𝑡0 // Align 𝑝0 to tile boundary

4 𝑐← ⌊ 𝑞0𝑡0 ⌋ × 𝑡0, 𝑑← ⌊ 𝑞0+𝑡0−1
𝑡0

⌋ × 𝑡0 // Align 𝑞0 to tile boundary

5 // Recursively decompose remaining dimensions

6 𝑟𝑠← Decompose([𝑝1, 𝑞1)× ...× [𝑝𝑁−1, 𝑞𝑁−1), [𝑡1, ..., 𝑡𝑁−1])

7 forall 𝐴′ ← 𝑟𝑠 do // Construct final decomposed tensors

8 if b ¡= c then // 𝑎 ≤ 𝑝0 < 𝑏 ≤ 𝑐 ≤ 𝑞0 < 𝑑

9 if 𝑎 < 𝑝0 then

10 𝑟𝑒𝑡 += [𝑝0, 𝑏)×𝐴′ // Head interval

11 if 𝑏 < 𝑐 then

12 𝑟𝑒𝑡 += [𝑏, 𝑐)×𝐴′ // Possible middle interval

13 else

14 𝑟𝑒𝑡 += [𝑎, 𝑐)×𝐴′ // 𝑝0 aligns with 𝑎

15 if 𝑐 < 𝑞0 then

16 𝑟𝑒𝑡 += [𝑐, 𝑞0)×𝐴′ // Add possible tail interval

17 else // 𝑎 = 𝑐 ≤ 𝑝0 < 𝑞0 < 𝑏 = 𝑑

18 𝑟𝑒𝑡 += [𝑝0, 𝑞0)×𝐴′ // Same tile, no decomposition

19 else // No more dimension to decompose

20 𝑟𝑒𝑡 += 𝐴

dimension, no decomposition is needed.

For example in Fig 7.9, A[0,4)x[0,3) is decomposed into two subtensors AL[0,4)x[0,2)

made of full tile 0 and 2, and AR[0,4)x[2,3) made of partial tile 1 and 3. Since dimension 0

is perfectly aligned, the original range [𝑝0 = 0, 𝑞0 = 4) is kept (line 13). For dimension 1, the

range [𝑝1 = 0, 𝑞1 = 3) means the tail is not aligned (𝑡1 = 2 =⇒ 𝑞1 mod 𝑡1 ̸≡ 0). Therefore

175

dimension 1 is decomposed into [𝑝1 = 0, 2) and [2, 𝑞1 = 3). The cross product between

decomposed dimensions 0 and 1 yields two subtensors [0, 4)× [0, 2) and [0, 4)× [2, 3).

2. Intra-/Inter-Tile Shifts Alg 3 lowers a decomposed mv node into intra-/inter-tile shift

commands. Each shift command takes five arguments: 1) a tensor 𝐴, 2) a shift dimension 𝑘,

3) a shift mask that selects the bitlines to shift, and 4,5) the inter-/intra-tile shift distances

that indicate the direction and number of tiles/bitlines to shift (intra-tile shifts always have

0 inter-tile shift distance). Depending on whether the shift distance aligns with the tile

boundary (𝑑𝑖𝑛𝑡𝑟𝑎 == 0), we may generate an inter-array shift command and optionally

an extra intra-array shift command (line 5-12). Notice that not all shift commands will

necessarily generate traffic, as the intersection of the shift mask and the tensor may be the

empty set. Such shift commands are filtered out later (ommitted in Alg 3).

As an example, in Fig 7.9, shifting AL[0,4)x[0,2) to the right by one requires one intra-

tile shift to move the column 0 (CMD 0, Alg 3 line 6), and one inter-tile shift to move the

column 1 across the tile boundary (CMD 1, Alg 3 line 8). Each command has the bitline/tile

pattern generated by intersecting the tensor with the shift mask. These patterns are ap-

plied to bitlines/tiles, specified using the start[:stride:count]+ format. E.g. CMD 1 has

bitline pattern 1:2:2 and tile pattern 0:2:2, therefore shifts bitline 1, 3 of tile 0, 2 (red

arrow). These patterns are expanded into masks by the hardware when executed (see §7.4).

Activated wordlines are also encoded, but are omitted in Fig 7.9 for simplicity. Shift com-

mands also have the bitline/tile distance to determine the destination bitline/tile. Similarly,

AR[0,4)x[2,3) is shifted to the right by one intra-tile shift (CMD 2, Alg 3 line 6), but requires

no inter-tile shift (skipped Alg 3 line 8). The runtime ensures data is not shifted beyond the

array boundary by checking the tensor size and the shift distance.

3. Map to L3 Banks Some commands, e.g. those for boundary tiles, may be skipped

by some banks. The runtime intersects the commands’ tile pattern and the tiles mapped to

each L3 bank. If the intersection is empty, the command can be skipped at that L3 bank.

176

Algorithm 3: Compile mv to Shift Commands
Input: A 𝑁 -dim tensor 𝐴 = [𝑝0, 𝑞0)× ...× [𝑝𝑁−1, 𝑞𝑁−1) where 𝑝𝑖 < 𝑞𝑖

Input: Tile size 𝑡𝑘 of move dimension 𝑘 and move distance 𝑑

Result: A list of shift commands 𝑟𝑒𝑡 initialized as []

1 𝑑𝑖𝑛𝑡𝑒𝑟 ← ⌊ abs(𝑑)𝑡𝑘
⌋ // Inter-tile shift distance

2 𝑑𝑖𝑛𝑡𝑟𝑎 ← abs(𝑑) mod 𝑡𝑘 // Intra-tile shift distance

3 𝑑𝑖𝑛𝑡𝑟𝑎 ← 𝑡𝑘 − 𝑑𝑖𝑛𝑡𝑟𝑎 // Complement of 𝑑𝑖𝑛𝑡𝑟𝑎

4 // Shift(tensor, dim, mask, inter tile dist, intra tile dist)

5 if 𝑑 > 0 then // Shift forward

6 𝑟𝑒𝑡 += Shift(𝐴, 𝑘, [0, 𝑑𝑖𝑛𝑡𝑟𝑎), 𝑑𝑖𝑛𝑡𝑒𝑟, 𝑑𝑖𝑛𝑡𝑟𝑎)

7 if 𝑑𝑖𝑛𝑡𝑟𝑎 > 0 then

8 𝑟𝑒𝑡 += Shift(𝐴, 𝑘, [𝑑𝑖𝑛𝑡𝑟𝑎, 𝑡𝐾), 𝑑𝑖𝑛𝑡𝑒𝑟 + 1,−𝑑𝑖𝑛𝑡𝑟𝑎)

9 else if 𝑑 < 0 then // Shift backward

10 if 𝑑𝑖𝑛𝑡𝑟𝑎 > 0 then

11 𝑟𝑒𝑡 += Shift(𝐴, 𝑘, [0, 𝑑𝑖𝑛𝑡𝑟𝑎),−(𝑑𝑖𝑛𝑡𝑒𝑟 + 1), 𝑑𝑖𝑛𝑡𝑟𝑎)

12 𝑟𝑒𝑡 += Shift(𝐴, 𝑘, [𝑑𝑖𝑛𝑡𝑟𝑎, 𝑡𝐾),−𝑑𝑖𝑛𝑡𝑒𝑟,−𝑑𝑖𝑛𝑡𝑟𝑎)

In Fig 7.9, since CMD 0 operates on tile 0 (mapped to L3 bank 0) and tile 1 (mapped to L3

bank 1), it is mapped to both L3 banks.

Other tDFG Nodes Element-wise compute nodes do not move the data and can skip

step 2, but still needs step 1 and 3 to handle the boundary tiles and to be mapped to L3

banks. The compute commands also encode the opcode and the wordlines of the operands

and result. Reduction nodes are lowered into a sequence of interleaving compute and intra-

tile shift commands to fully reduce each tile on the reduced dimension. Broadcast nodes are

handled similarly to move nodes, with the broadcast destination encoded.

Synchronization All commands are synchronous at L3 banks (i.e. do not issue until the

previous one finished) except inter-tile shifts, which are considered finished when all data

movement within the L3 bank and the inter-bank packets are injected into the NoC (but

may before they arrive at the destination L3 bank). Therefore, the runtime inserts a sync

177

command between an inter-tile shift command and the consuming command, which serves

as a global memory barrier, ensuring that data movements before the sync command are

visible to commands after the sync command. (i.e. arrived at the destination bitline). A

sequence of pure intra-tile shift and compute commands require no synchronization.

Reducing JIT Overheads Being on the critical path of offloading, JIT lowering can incur

significant overheads. Thus, we co-design the software and hardware for JIT performance:

∙ Division of labor: The static compiler handles register allocation and scheduling

(see §7.2), so the JIT compiler only needs to map the scheduled tDFG according to the

tiled data layout and lower into bit-serial commands. This is possible by scheduling

for common SRAM array sizes (256x256 and 512x512), forming a fat binary similar

to CUDA. Note that our fat binary does not expose any microarchitecture beyond the

SRAM array sizes, and we believe there will only be a small handful that are useful

over many generations of hardware.

∙ Memoization: We reuse JIT results when the same tDFG is re-executed with the

same parameters by adding a small hardware cache (see §7.4) for intermediate reuses

and software memorization for longer-term reuses. This is particularly useful for iter-

ative algorithms (e.g. stencils).

∙ Array dimension specialization: While our JIT compiler can handle higher di-

mensional arrays, we specialize for common 1-3D arrays by leveraging C++ templates.

This enables the compiler to unroll the loop and eliminate expensive recursion (e.g.

Alg 2 recursively decomposes the tensor according to the tile boundary).

With these optimizations, we reduced JIT lowering time by more than 1000×, and it

takes 12% of overall runtime (see §7.7). We believe additional optimizations could further

reduce the overhead, e.g.:

178

∙ Phase overlapping: We can overlap JIT compiling with the data preparing phase

(to fetch and transpose data, see §7.4), or lowering for future regions as the core is

waiting for the current region to finish.

∙ Hardware implementation: We can broadcast commands after step 2 to all L3

banks and let the hardware skip those not applied to its local tiles, eliminating step 3

(the most time-consuming one as it is 𝑂(𝑁𝑏𝑎𝑛𝑘 ×𝑁𝑐𝑚𝑑)) in software.

In-/Near-Memory Decision

The runtime also decides between in-/near-memory computing by evaluating the following

condition:

𝑁𝑒𝑙𝑒𝑚 ×𝑁𝑜𝑝

𝑇𝑃𝑐𝑜𝑟𝑒

> Σ𝑖𝐿𝑎𝑡𝑜𝑝𝑖 +𝑁𝑛𝑜𝑑𝑒 × 𝐿𝑎𝑡𝐽𝐼𝑇 (7.2)

The LHS models the latency of a core at peak throughput, and the RHS captures the

in-memory computing delay (first term, no 𝑁𝑒𝑙𝑒𝑚, as computation is fully parallelized) and

the JIT time (second term). The compiler generates aggregate information as hints in the

configuration, e.g. # of each op, so that the runtime can make a quick decision without

analyzing the tDFG. Other platform-specific parameters can be obtained by querying the

hardware or profiling offline. This is just a basic and conservative heuristic (assuming peak

core performance), but is sufficient for the studied workloads.

7.4 Microarchitecture Extensions

Fig 7.10 overviews infinity stream’s microarchitecture, with stream engines (SECORE/SEL3)

handling offloaded near-memory streams, layout override tables (LOT) recording transposed

data layout, and tensor controllers (TCcore/TCL3) executing in-memory commands and syn-

chronizing with the core.

179

SEcore
TCcore

L1 $

SEL3 TCL3

Core
L2 $

Ta
g
s

LO
T

LOT

Layout
Override
Table

Bit‐Serial
Cmd.

...

...

...

...

❶ In‐memory reduce ‐>
partial results in SRAMs.

❷ Near‐memory streams reduce
partial results ‐> final value

v0

v1

v2

v3
Tensor
Transpose
Unit

L3
Tags

TTU

...

L3 Way i

...

Figure 7.10: Infinity Stream Microarchitecture

Near-Memory Computing

We adopt near-memory computing 𝜇arch support from NSC [31] to execute streams at the

L3 stream engine (SEL3). Streams read/write data directly from L3 banks and forward

operands to consuming streams without going back to the core for computing. Streams

automatically migrate to the L3 bank where the next data is mapped, with coarse-grained

flow control messages (i.e. sync every N cache lines between SECORE and SEL3) to reduce

coordination.

In-Memory Computing

During in-memory computing mode, the microarchitecture needs to manage the transposed

data layout (LOT and TCcore), execute the in-memory commands (TCL3), and synchronize

with the core (TCcore and TCL3). We assume the SRAM arrays are enhanced to support

bit-serial logic and shifts, as well as a buffered H tree to enable efficient broadcast, similar

to [20, 21].

Transposed Data Layout The layout override table (LOT, Table 7.1) tracks the trans-

posed arrays initialized by the runtime (up to 3D, so higher-dim arrays should have some

180

Field Bits Description Field Bits Description

base 48 Base phys. addr. end 48 End phys. addr.

size 8 Element size. dim 2 Array dim (max 3).

Si 32 Array size (3×). Ti 32 Tile size (3×).

wl 10 Start wordline. trans 2 Transpose state.

Table 7.1: Layout Override Table (LOT)

dimensions fused). It tracks the physical address, as the L2 and L3 caches are indexed by

physical addresses. This requires the array to be contiguous in physical address space (with

huge pages or special malloc functions). Directly mapping virtual addresses to bitlines is

possible by extending the page table and TLB for transposed pages, but is beyond this work.

Map Physical Address ⇔ Bitlines The LOT essentially overrides how physical ad-

dresses are mapped to SRAM arrays. For transposed data structures, the physical address

is subtracted by base and divided by size to get the element index, which is used to find

the containing tile and coordinates within that tile. Since tiles are mapped contiguously

to SRAM arrays, it is straightforward to locate the actual bitline and wordlines. Reverse

mapping from bitlines to physical addresses is similar.

Prepare Transposed Data Before in-memory computing, TCcore prepares the data in

transposed format by first issuing flush requests to the L3 cache controller to reserve the

cache ways used for in-memory computing (we use 16 ways).

The trans field in LOT (initialized to 0) indicates whether the data is currently cached in

transposed layout. If trans=0, TCcore offloads a load stream to fetch the data into transposed

format, and sets trans=2 when finished. During this process, TCcore sets trans=1, and any

core requests to that physical range is blocked. These load streams are executed in SEL3

to avoid the traffic overheads between L2 and L3. Our design uses a tensor transpose unit

(TTU) to convert between transposed and normal format, similar to prior works [20, 21].

181

Execute Commands After the data is prepared, TCcore sends out commands in a small

command cache (2kB) to TCL3 at mapped L3 banks. Commands are generated by the

runtime (see §7.3) or reused if the same region is executed multiple times. TCL3 is a micro-

controller to convert the command’s bitline and tile pattern to masks for its local tiles and

broadcast commands to SRAM arrays. For inter-tile shifts, it generates the control signals

to configure the H tree to shift or broadcast the data, and packs the bits into NoC packets if

the destination tile is mapped to another L3 bank. For compute commands, it first broad-

casts constant operands (if any) to bitlines, and configures the SRAM arrays to perform the

bit-serial computation (using algorithms from prior work [21]). Since commands are long

latency (𝑛2 +5𝑛 for n-bit integer multiply), TCL3 can preprocess the next command to hide

the processing latency.

Synchronization For sync commands, TCL3 reports to the other TCL3 the # of packets

sent there since the last sync, and the total sent packets to TCcore. Therefore, the receiving

TCL3 knows how many packets to expect and can report back to TCcore when all packets

arrived. After hearing back from all TCL3s, TCcore checks that # of sent/received packets

matches before broadcasting a message to clear the barrier.

Delayed Release of Transposed Data To release the transposed data, TCcore offloads a

special store stream to evict data to the memory, which releases the reserved cache ways. To

capture the reuse across program regions, e.g. iterative algorithms, TCcore delays releasing

the data until any of the following conditions:

∙ The number of normal requests to the transposed data exceeds a threshold (we use

100k), suggesting that it is now used for in-core/near-mem computing.

∙ The L3 miss rate exceeds a threshold, suggesting releasing the reserved ways to reduce

the pressure on the L3.

∙ A timer expires (we use 100k cycles).

182

Fused In-/Near-Memory Computing

One key advantage of infinity stream is to enable normal core/stream accesses to the trans-

posed data, which allows cores/streams to be unaware of the data layout, providing flexibility

across paradigms.

Coherence Tiling constraints in §7.3 guarantees that transposed cache lines are still

mapped to a single (but maybe different) L3 bank. Therefore, the coherence state can

be tracked in the newly mapped L3 bank, enabling accesses to transposed data structures

using normal requests when in-memory computing is not used. Before in-memory computing

starts, TCcore evicts any dirty copies in private caches to ensure the data in L3 is up-to-date.

During in-memory computing, cores are disabled from accessing the data structure by block-

ing the requests from private caches (setting trans in LOT to 1). However, streams at SEL3

can still read and write transposed data, as the dependence between stream and tensor

operations is guaranteed through the dataflow graph and synchronization. E.g. the final

reduce stream is not offloaded until the partial in-memory reduce is synchronized at TCcore.

Similarly, if a tensor is generated by a store stream, the dependent in-memory computation

will not start until that stream completes.

Context Switch As in [31], context switches in near-memory computing are delayed until

all streams reach a synchronization point (every few cache lines). Similarly, during in-

memory computing, context switches are delayed until TCcore completes a sync command so

that all computation and data movement is committed. The progress of streams (including

iteration number) and in-memory computing progress (commands), as well as the LOT, are

saved as part of architectural state. The OS may flush transposed data so that LLC space

can be reclaimed.

183

7.5 Implementation Limitations

Our implementation of infinity stream has some limitations that can be relaxed in future

works: 1. While it is possible to share the L3 to enable in-memory computing in a multi-

program scenario, we allow only one thread to reserve the L3 for in-memory computing

at a time by locking the LOT. 2. We assume the input data is already tiled to fit in the

L3. Otherwise, in-memory computing is disabled. Future work could support automatically

tiling at runtime. 3. We currently do not support register spilling because all studied kernels

can fit in the available registers. Register spilling can be implemented by a stream writing

back and loading from the DRAM.

7.6 Methodology

Compiler and Runtime We extend the open-sourced LLVM-based near-stream computing

compiler [31] to unroll sDFGs into tDFGs as described in §7.2. For tDFG optimization, we

define the tDFG rewrite rules in the egg library [229] to explore the e-graph (see Appendix

for details). Optimized tDFGs are serialized back to the x86 backend in LLVM (extended

with infinity stream instructions). The compiler inserts calls to a C++ runtime library to

JIT compile tDFGs and manage the data layout.

Simulator We use gem5-20 [107] for execution-driven, cycle-level simulation, extended with

partial AVX-512 support. The L3 cache is extended to model the transposed data layout

and in-memory bit-serial computation.

Parameters and Configurations Table 7.2 lists system parameters. In total, it has 4M

bitlines and provides massive parallelism for in-memory computing. The Base OOO cores

use advanced L1 and L2 prefetchers [110]. For near-memory computing, Near-L3 offloads

streams and the associated computation to SEL3. For infinity stream, we evaluate three

configurations:

184

System 2.0GHz, 8x8 Cores

OOO8 CPU 64 IQ, 72 LQ, 56 SQ+SB

(8-issue) 348 Int/FP RF, 224 ROB

Func. Units 8 Int ALU/SIMD (1-cycle)

4 Int Mult/Div (3/12-cycle)

4 FP ALU/SIMD (4-cycle)

4 FP Div (12-cycle)

L1 D/I TLB 64-entry, 8-way

L2/SEL3 TLB 2k/1k-entry, 16-way, 8-cycle

L1 I/D Cache 32KB, 8-way, 2-cycle

Priv. L2 Cache 256KB, 16-way, 16-cycle

Replacement Bimodal RRIP, 𝑝 = 0.03

L1 Bingo Prefetcher 8kB PHT, 2kB region

L2 Stride Prefetcher 16 streams, 16 pf./stream

NoC 32B 1-cycle link, 8x8 Mesh

5-stage router, multicast

X-Y routing, 16 mem. ctrls

Shared 20 cycles, MESI

L3 $ Static NUCA, 1kB interleave

256x256 SRAM array (8kB)

5-level H tree, 64B total BW.

16 arrays per way, 18 ways

64 banks, total 144MB

DRAM 3200MHz DDR4 25.6 GB/s

SECORE 2kB FIFO, 12 streams

SEL3 768 streams, 64kB buf.

4-cycle compute init. lat.

LOT 16 regions

Table 7.2: System and 𝜇arch Parameters

∙ In-L3 invokes a runtime JIT library to manage the data layout and lower tDFG into

bit-serial commands to compute with L3 SRAMs, but no near-memory computing

support.

∙ Inf-S adds near-memory computing to In-L3 by offloading sDFG to the SEL3.

∙ Inf-Sno JIT assumes that input and hardware parameters are known, so tDFG is pre-

compiled (no runtime lowering).

Benchmarks We evaluate 13 dense fp32 OpenMP workloads, compiled with -O3 and

vectorized by AVX-512 for Base and Near-L3. For infinity stream, a single-thread scalar

version is sufficient, as streams are spatially unrolled to all bitlines. Table 7.2 summarizes

the input data sizes and the major data movement (tensor shift vs. tensor broadcast) and

185

Benchmark Move Cmp. Parameters

stencil1d Shift Elem 4M-entry, 10-iter

stencil2d Shift Elem 2k×2k, 10-iter

stencil3d Shift Elem 512×512×16∖

10-iter

dwt2d Shift Elem 2k×2k

gauss elim BC Elem 2k×2k

conv2d Shift Elem 2k×2k

conv3d BC Elem H/W=256,K=∖

3×3, I/O=64

mm/in BC Rdc M/N/K=2k

mm/out BC Elem Same

kmeans/in BC Rdc 32k-point,dim=128,128-center

kmeans/out BC Elem Same

gather mlp/in BC Rdc M=32k,∖

gather mlp/out BC Elem N/K=128

Table 7.3: Workloads (BC: Broadcast)

Krnl. 𝐾, 𝑁 , 𝑟, [𝑑𝑖𝑚𝑠]

SA1 512, 32, 0.2, [64, 64, 128]

SA2 128, 64, 0.4, [128, 128, 256]

SA3 1, 128, Inf, [256, 512, 1024]

SA4 512, 16, 0.1, [32, 32, 64]

SA5 512, 32, 0.2, [64, 64, 128]

SA6 512, 128, 0.4, [64, 96, 128]

SA7 128, 16, 0.2, [64, 64, 128]

SA8 128, 32, 0.4, [128, 128, 256]

SA9 128, 128, 0.8, [128, 128, 256]

FCx3 1, 1, /, [512, 256, 10]

SSG SA1 → SA2 → SA3 → FCx3

MSG [SA4, SA5, SA6] →

[SA7, SA8, SA9] →

SA3 → FCx3

Table 7.4: PointNet++

computation patterns (element-wise vs. reduction) for each benchmark.

Some benchmarks have different implementations, e.g. inner product vs. outer product

for mm. We pick the best implementation for each configuration when comparing the perfor-

mance and energy efficiency, and provide a detailed sensitivity study of the preferences of

different paradigms in §7.7.

We also perform an end-to-end study on PointNet++ [230], a popular hierarchical neural

network for point cloud classification and segmentation, in §7.7.

186

sten
cil1

d
sten

cil2
d
sten

cil3
d
dwt

2d

gau
ss_e

lim
con

v2d
con

v3d mm
kme

ans

gath
er_m

lp

geo
mea

n.
0
2
4
6
8

10
Sp

ee
du

p 16.410.9

Base Near-L3 In-L3 Inf-S Inf-Sno JIT

Figure 7.11: Overall Speedup

7.7 Evaluation

Overall Performance Fig 7.11 shows the overall speedup over Base, and Fig 7.12 shows

the NoC utilization and traffic breakdown. The NoC traffic is categorized as the traffic of the

coherence control messages (control), the traffic of moving data around (data), and the traffic

of all the control messages to manage the offloaded computation, e.g. flow control for streams

and synchronization for in-memory computing. For benchmarks with multiple dataflow

designs (mm, kmeans, gather mlp), we pick the best implementation for each configuration

(see below for a detailed comparison between dataflow choices). Overall, Near-L3 achieves

2.0× speedup and 29% traffic reduction by offloading streams near L3 banks, but may hurt

the performance as it is unable to capture the reuse; e.g. for kmeans Near-L3 introduces

2.6× extra NoC traffic.

By leveraging massive parallelism in bitlines, In-L3 achieves 2.1× speedup over Near-

L3. However, without near-memory computing support, In-L3 failed to realize the full po-

tential of near-data computing, e.g. in kmeans, both aggregation and centroid recomputation

are executed by the core and not offloaded. On the other hand, by enabling hybrid in-/near-

memory computing, Inf-S yields another 24% speedup over In-L3 (2.6× over Near-L3),

and 90% NoC Traffic reduction over Base. To understand the benefit of traffic reduction,

Fig 7.13 shows the detailed traffic breakdown for Inf-S, adding the intra-/inter-tile shift

187

stencil1
d
stencil2

d
stencil3

d
dwt2d

gauss_e
lim

conv2d
conv3d mm

kmeans

gather_m
lp avg.

0.0
0.2
0.4
0.6
0.8
1.0

No
C

Ho
ps

 &
 U

til
.

1.383.55

Base Near-L3 Inf-S

NoC Util.
Offload
Data
Control

Figure 7.12: NoC Traffic Breakdown (Bar) and Util. (Dot)

stencil1
d

stencil2
d

stencil3
d
dwt2d

gauss_e
lim

conv2d
conv3d

mm/in
mm/out

kmeans/in

kmeans/out

gather_m
lp/in

gather_m
lp/out

avg.
0.0
0.2
0.4
0.6
0.8
1.0

By
te

s x
 H

op
s In-L3-Intra-Tile

In-L3-Inter-Tile
NoC-Inter-Tile
NoC-Offload
NoC-Data
NoC-Control

Figure 7.13: Inf-S Traffic Breakdown

traffic. Notice that some inter-tile shift traffic goes through the NoC if the destination tile is

not mapped to the same L3 bank, and is shown separately from NoC-Data as NoC-Inter-Tile.

By choosing a reasonable tile size, Inf-S converts most of the data movement into intra-tile

shifts, leveraging the massive parallelism to shift bitlines within each SRAM array.

Cycle Breakdown Fig 7.14 breaks down the cycles of Inf-S into transferring and trans-

posing data from/to DRAM (DRAM), lowering tDFG to commands (JIT Lower), moving

tensors (Move), bit-serial in-memory computing (Compute), final reduction of the in-memory

partial results (Final Reduce), hybrid in-/near-memory computing (Mix), as well as pure

188

stencil1
d

stencil2
d

stencil3
d
dwt2d

gauss_e
lim
conv2d

conv3d
mm/in

mm/out

kmeans/in

kmeans/out

gather_m
lp/in

gather_m
lp/out

avg.
0.0
0.2
0.4
0.6
0.8
1.0

Cy
cle

/O
p.

 R
at

io In-Mem Op
Near-Mem
Mix
Final Reduce
Compute
Move
JIT Lower
DRAM

Figure 7.14: Inf-S Cycle Breakdown

near-memory computing (Near-Mem). Overall, in-memory computing takes 88% of total

cycles, with 26%, 32%, and 19% spent on DRAM transfer, computing, and tensor moving

respectively. 4.9% of cycles are spent waiting for the final reduction from near-memory

streams, e.g. mm inner. Transposing is cheap when there is high reuse, e.g. gauss elim

and mm. Dots in Fig 7.14 indicates the percentage of ops offloaded to bitlines – nearly all

computation (99%) are performed in-memory.

JIT Overheads As shown in Fig 7.14, JIT lowering contributes 11% of the total run-

time, and can be more than 50% when we cannot reuse the lowered commands (51% for

gauss elim), or when a high-dimensional tensor is not aligned to the tile size and requires

more commands to handle boundary tiles (50% for stencil3d). If all input sizes and hard-

ware parameters are known at compile time, the compiler could precompile the tDFG into

commands without invoking the JIT runtime. Inf-Sno JIT in Fig 7.11 represents such a

configuration and yields another 19% speedup over Inf-S. The average JIT time is 220us (𝜎

449us), with gauss elim as the outlier (1616us) as the tensor is shrinking every time. We

believe by overlapping JIT lowering with DRAM fetching and command execution, as well

as applying more advanced software optimizations, the overheads would be further reduced.

Dataflow Choices Fig 7.15 shows the speedup of inner and outer product versions of

189

mm kmeans gather_mlp geomean.
0

1

2
Sp

ee
du

p 4.44.63.16.0

Base-In-Opt Base-Out Near-L3-In Near-L3-Out Inf-S-In Inf-S-Out

Figure 7.15: Inner vs. Outer Product Dataflow

stencil2d dwt2d
gauss_elimconv2d

mm/in
mm/out

kmeans/in
kmeans/out

gather_mlp/in

gather_mlp/out avg.
0
1
2
3
4
5
6
7

Ra
tio

-- 9.0 -- 11.2
-- 9.1 -- 11.2

16x16 16x16

64x4 16x16 4x64 64x4 2x128 4x64 2x128 4x64

16x16 32x8
128x2 16x16 2x128 64x4 2x128 4x64 2x128 8x32

1x256 2x128 ... 128x2 256x1 Inf-S Best

Near-Mem
Mix
Final Reduce
Compute
Move
JIT Lower
DRAM

Figure 7.16: Cycle Breakdown vs. 2D Tile Size

mm, kmeans, and gather mlp on different paradigms, normalized to a tiled inner product

version for Base. As expected, Base favors the inner product implementation, as it could

accumulate the result in the register file. Near-L3 generally suffers as it cannot explore the

data reuse when offloaded to L3, and favors the outer product version, as the dataflow allows

the stream engine to partially recognize the broadcast pattern and save some data traffic

(similar to [32]). For Inf-S, the outer product is a clear win, as it exposes the maximal data

parallelism in the inner loops, and avoids the inefficient in-memory reduction. Overall, it

achieves 4.4× speedup over Base. Therefore we implement tiled inner product for Base and

outer product for Near-L3 and Inf-S.

Data Layout Fig 7.16 shows the cycle breakdown of all 2D benchmarks with various

190

256
128 64 32 16 8 4 2 1

X Tile Size

1
2
4
8

16
32
64

128
256

Y
Ti

le
 S

ize
1.01.71.81.41.3

1.01.71.91.51.3
1.01.71.81.51.6

1.01.71.81.61.3
1.01.71.71.21.2

1.01.61.21.3
1.01.01.1

0.81.1
0.7

Z = 256 / X / Y

stencil3d

256
128 64 32 16 8 4 2 1

X Tile Size

1.01.11.72.31.91.51.1
1.01.11.82.52.11.61.1

1.01.21.92.62.11.61.0
1.01.22.02.72.01.4

1.01.22.02.51.7
1.11.21.82.1

1.01.11.6
1.01.0

0.9
Z = 256 / X / Y

conv3d

Figure 7.17: Inf-S Speedup vs. 3D Tile Size (Default as Bold)

tiling sizes, annotated with the best and default tile size chosen by the runtime. Similarly,

Fig 7.17 shows the speedup vs. 3D tiling sizes. For benchmarks with shift data movement,

e.g. stencils and dwt2d, picking a balanced tile size (16× 16 for 2D arrays) usually yields

close to optimal performance. When tensors are broadcast, e.g. gauss elim and mm, having

a smaller innermost tile size helps avoid the hotspot of reading the source row from a single

L3 bank. When reduction is needed, a larger tile size at the reduced dimension increases the

computation density for in-memory computing and improves the performance. For example,

for kmeans/in and gather mlp/in, since the size of the reduced dimension is 128, tiling

by 128 allows pure in-memory reduction to produce the final results in each SRAM array

(hence no Final Reduce bar). Overall, our heuristic achieves within 2% of an oracle, and

yields 34% speedup over no tiling (laying the innermost dimension continuously) across all

2D/3D benchmarks.

Energy and Area The energy breakdown for the SRAM arrays and H tree were obtained

from CACTI [185] (22nm) where compute only involves the SRAM arrays while tDFG mv

node uses both. Fig 7.18 shows the energy efficiency over Base. Inf-S yields better energy

191

stencil1d
stencil2d

stencil3d dwt2d
gauss_elimconv2d

conv3d mm
kmeans

gather_mlp
geomean.

2−1
20
21
22
23
24

En
er

gy
 E

ff.

Base Near-L3 In-L3 Inf-S Inf-Sno JIT

Figure 7.18: Overall Energy Efficiency

efficiency for workloads with less reuse by converting NoC traffic into intra-tile shifts. Overall,

In-L3 and Inf-S achieve 1.5× and 2.4× energy efficiency over Near-L3 respectively.

Most of the area overhead comes enhancing existing SRAM caches for compute: addi-

tional sense amps and write drivers so every bitline can compute, an extra decoder to read

two wordlines simultaneously, and the compute logic. Our area model consists of the overall

CPU area reported by McPAT [50] (22nm), the in-memory compute overhead from Neural

Cache’s [20] die analysis 2, and near-memory support logic [31]. After adding additional

logic for in-memory compute (66.75mm2) and near-memory support (28.16mm2), the whole

chip area overhead is 6.52%.

Case Study of PointNet++ To better understand the benefit of infinity stream on real

applications, we perform an end-to-end study on PointNet++ [230], a widely applied hier-

archical neural network for point cloud applications. The basic component of PointNet++

is set abstraction (SA), which consists of the following stages:

∙ Furthest Sample: Iteratively picks 𝐾 centroids (points) from the input point cloud.

For iteration 𝑘 + 1, the new centroid is the furthest point from the 𝑘 prior centroids,

with the first one randomly selected.

2We determine the subcircuit area with COFFE [231].

192

Inf-S
In-L3

Near-L3
Base

(a
)

SS
G

SA1 SA2 SA3 FCx3

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Inf-S
In-L3

Near-L3
Base

(b
)

M
SG

MSG1.SA4
MSG1.SA5

MSG1.SA6

MSG2.SA7
MSG2.SA8

MSG2.SA9
SA3

FCx3

Furthest Sample Ball Query Gather MLP Layer Aggregate

In Core Near L3 In L3

Figure 7.19: Timeline of PointNet++ SSG/MSG Classifier

∙ Ball Query: Searches for 𝑁 neighbor points within radius 𝑟 of each centroid. If less

than 𝑁 neighbors are found, the first neighbor is duplicated to fill the remaining spots.

∙ Gather: Performs an indirect gather to collect neighbors’ feature vectors. Generates

a matrix of (𝐾 ×𝑁)×𝐷𝑖𝑛 where 𝐷𝑖𝑛 is the dimension of the input feature vector.

∙ MLP: Feeds the gathered matrix into a 3-layer MLP. All layers use ReLU as the

activation function. The output matrix is (𝐾×𝑁)×𝐷𝑜𝑢𝑡 where 𝐷𝑜𝑢𝑡 is the dimension

of the last MLP layer.

∙ Aggregate: Reduces the neighbors’ feature vectors by taking the max value of each

dimension. Outputs a matrix of 𝐾 ×𝐷𝑜𝑢𝑡.

To perform point cloud classification or segmentation, the authors proposed two network

architectures:

∙ Single Scale Grouping (SSG): Multiple SAs are chained with previous output

centroids being sampled and grouped by the next SA. This is usually followed by a few

193

fully-connected (FC) layers to produce the final scores for classification.

∙ Multiple Scale Grouping (MSG): To better adapt to various sampling densities,

multiple SAs with different radii are applied simultaneously to the input, with their

output feature vectors concatenated as the final output. Similar to SSG, this can be

chained and followed by more SA/FC layers.

We evaluate both SSG and MSG for classification inference. Table 7.4 lists the detailed

parameters of all SAs and the network structure of SSG/MSG, taken from [230]. The input

point cloud contains 4k randomly generated points, normalized to [0, 1).

Fig 7.19(a) shows the normalized timeline of PointNet++ SSG, broken into different

stages with the texture indicating where the computation is executed (in-core, near-L3 cache,

or in-L3 SRAM). For SSG, the MLP layers are relatively small with high reuse in the private

cache, and with AVX-512 and OpenMP, it only takes 48% of the total runtime in Base.

This also limits the potential for in-memory computing, e.g. for the first MLP layer in SA1,

the amount of data parallelism can only fill 1/4 of the available bitlines, falling short to

amortize the long compute latency of bit-serial operation. Therefore, In-L3 only yields a

10% speedup over Base.

On the other hand, furthest sampling takes 46% of the total runtime. This is because

it is an iterative algorithm without sufficient work in each iteration to amortize the syn-

chronization overhead of OpenMP. Also, the working set cannot fit in the private L1 cache,

yielding a high miss rate and hurting the performance. These characteristics make it a good

candidate for near-memory computing, which achieves 3.1× speedup for sampling, and 31%

performance improvement for Near-L3 over Base.

Fig 7.19(b) shows a similar normalized timeline for PointNet++ MSG. In MSG, sampling

is less of a bottleneck as the sampled centroids are shared between SAs within the same MSG.

Also, MSG uses larger MLP layers, increasing the data parallelism. This makes in-memory

computing more favorable, and In-L3 achieve 37% speedup over Base (12% for Near-L3).

194

Finally, by leveraging the fused compiler/ISA/runtime abstraction, Inf-S can flexibly

execute the kernel in the core, near the L3 cache, or in the L3 SRAM. The runtime can

avoid offloading small MLP layers to in-memory computing as it hurts the performance, e.g.

SA3 and FC layers. Overall, it achieves the highest performance (1.69× and 1.93× over

Base for SSG and MSG respectively).

Key Takeaway: Inf-S fuses the benefits of in-/near-memory computing, unlocking the

full potential of near-data processing.

7.8 Related Work

In-memory Computing for CPU Caches Prior works also augment CPUs for computing

in on-chip SRAM caches. Compute cache [149] enables in-memory computation for CPU

cache SRAMs, but only supports the less general bit-parallel layout, single-dimension bit-

level vector ops (as opposed to multi-dim tensor level). GenPIM adds NVM-based in-memory

computing to a general purpose core [232]. Inhale and Sealer enable in-memory encryption at

L1 [233, 234]. Neither of the above implements a high-level compiler. Duality cache proposes

a bit-serial in-memory approach for CPUs codesigned for CUDA programming [21]. None

of these enables portable/transparent support for in-cache computing.

Improving Near-Data Programmability Various near-data approaches have developed

techniques to improve programmability. PEI enables programming through instruction in-

trinsics [14]. SnackNoC [4], Active Routing [16] and Dist-DA [2] specify computation offloads

with dataflow graphs. Tesseract uses remote function calls [10]. Livia uses single-cache-line

accessing functions [27]. Our work relies on stream abstractions, i.e. long-term memory ac-

cess patterns, which have been applied both in general purpose processors [63, 28, 32, 31, 29]

and accelerators architectures [112, 174, 113, 114, 235, 236].

Other near-data programming models are nearly transparent to the programmer. Several

195

are limited to thread-level near-data decisions, programmed with CUDA or OpenMP [11,

12, 143, 142]. Other works enable transparent near-data at a finer grain, but have other

limitations, like OmniCompute [3] (only for short RMW instruction chains), EMC [115]

(only for address gen.), and Near-stream computing [31]. These cannot be naively applied

to enable programmability for PIM, because they do not manage data transposition or

guarantee bitline-level alignment.

In-Memory Foundations Prior works have explored bit-parallel in-memory computing,

primarily for bulk bitwise ops [149, 23, 237, 238]. We adopt the bit-serial approach for this

work, which enables broader support for more operations, including floating point.

DRAM devices have been the target of both in-memory [23, 168, 239, 240, 241, 242, 243]

and near-memory processing [244, 245, 246]. In-DRAM computing provides more parallelism,

while in-SRAM computing limits modifications to the CPU. We choose SRAM as the first

step due to the trend towards large LLCs and the fact that many algorithms are already

tiled for the LLC. However, infinity stream can be applied to both cases, as the abstraction

(tDFG) is neutral to the hardware, and the JIT runtime can be extended for in-DRAM

computing (e.g. triple-row activation). The memory controller also needs to be extended to

support streams. Similar to DMA, coherence could be maintained by evicting cache lines

from SRAM.

This work relies heavily on prior efforts to develop the paradigm and circuits of in-SRAM

computing devices, including for bit-serial integer [247] and floating point ops [21, 248, 249].

Our contribution is about architecture support for these existing technologies.

Recent works have also proposed offloading to multiple hierarchy levels, leveraging proper-

ties like data density (SISA [24]), cache presence (Livia [27]), or offline analysis (MLILP [25]).

None of them enable portable in-memory computing from a general-purpose language.

Domain-Specialization A variety of prior in-memory accelerators are domain-specialized.

Many focus on ML [20, 168, 250, 251, 252, 253], while others target graph processing, mining,

196

and physics simulation [10, 24, 254, 255]. Many broader workloads are prime candidates for

in-memory computation with infinity stream. For example, several key data center work-

loads have been adapted to bitvector parallelism. BitWeaving’s [256] database column scan

produces a comparison bitmask by organizing data to facilitate bit-serial digital compar-

ison. BitFunnel [257] filters documents with a bloom filter, independently computed by

determining the hash indices in memory and constructing the bitvector near memory.

7.9 Summary

Infinity stream is a new approach that makes in-memory computing programmer-friendly:

We proposed an execution model that fuses in-/near-memory, using an IR called the tensor

dataflow graph (tDFG) to capture parallelism, reuse, and layout optimizations; we built an

optimizing compiler and JIT-approach to enable long-term portability without sacrificing

performance, with a microarchitecture that transparently orchestrates data management

and performs data-layout transforms at runtime. Our optimizations provide integer-factor

improvement for data processing for only a modest area overhead. More broadly, we believe

that rethinking how to compute throughout the memory hierarchy will be critical for enabling

extreme system scaling.

197

CHAPTER 8

Conclusion

This dissertation explores a promising direction to continue the performance and energy effi-

ciency scaling of general-purpose processors: to adopt general, flexible and unified near-data

computing with high-level stream abstractions. We have demonstrated that with memory

accesses and computations abstracted as streams and near-stream computations, we can

orchestrate data and computation seamlessly and dramatically reduce the communication

overheads. Such near-stream computing paradigm can provide more than 2× performance

and 76% on-chip network traffic reduction.

In addition, this work also uncovers serval key findings. First, a broad range of programs’

memory accessing and computing behaviors can be represented by our highly expressive

streams and near-stream computations with only well-known compiler analysis and minimal

programmer hints, making them suitable candidates to enable general near-data computing.

Second, co-optimizing the data layout and data structure is the key to fully realizing the

potential benefits of near-data computing. Third, with more and more non-conventional

near-data computing substrates, streams provide a unified abstraction to enable hybrid ex-

ecution and harness the power of a more heterogeneous near-data computing system.

Table 8.1: Characterization of This Work

NDC Work Yr. ABST. Near Where Substrate Domain Program Data Layout

Goal Unified All All General Trans. Automatic

SSP [28] ’19 Stream Core FU Prefetching Trans. Oblivious

Stream Floating [32] ’21 Stream LLC FU Prefetching Trans. Oblivious

198

NSC [31] ’22 Stream LLC Local Core General Trans. Oblivious

Infinity Stream [30] ’23 Stream Multi.1 Multi.2 General Pragma Scratchpad

Affinity Alloc [33] ’23 Stream LLC FU General API Automatic

Finally, this dissertation presents five different near-data computing proposals, each with

unique tradeoffs and summarized in Table 8.1. Starting from address generation and perfect

prefetching in the core (SSP [28]) and the LLC (stream floating [32]), we extend streams with

near-stream computations and offload them to LLC (near-stream computing [31]) and enable

hybrid near-LLC and in-LLC computing (infinity stream [30]). The latest work provides an

automatic framework to optimize the data layout (affinity alloc [33]). Most importantly,

they all leverage a unified and general abstraction: stream, with near-stream computation.

This fundamentally eliminates the overhead of translating across different abstractions while

retaining the potential to customize according to different scenarios.

We believe this dissertation is just the beginning of enabling general, flexible and unified

near-data computing, and we conclude by discussing the implications of this work and future

research directions.

Implications

Beyond the promising performance and energy efficiency potential, the broad impact of this

work lies in three dimensions: 1. Industry product applicability; 2. Paradigm shift from

purely in-core computing to general near-data computing for processor design. 3. Informed

and flexible data and computation orchestration through the entire system.

Industry Impact In this work, we take a step-by-step approach to leverage high-level

stream semantics to improve the system: started with a stream-specialized processor that can

1In-site LLC and Near LLC controller.

2In-situ SRAM bitline and near LLC FU (stream engine).

199

perfectly prefetch stream data, followed by a stream-aware cache system that can remotely

generate the address and proactively stream back the data, and finally add the in-cache

near-stream computing support. This path is already proven to be a feasible route for

industry adoption. For example, the latest H100 GPU from Nvidia added a Tensor Memory

Accelerator (TMA) [258], which can be configured with up to a 5D stream pattern and

prefetches the tensor into the private cache. Another example is the new Data Streaming

Accelerator (DSA) introduced by Intel in their fourth generation Xeon processors [259],

which can free the core from data movement and transformation tasks.

As major chip manufacturers continue to scale up their products, it is foreseeable that

future designs will embrace more and more near-data computing. For example, both Intel

and AMD have shifted from a monolithic chip to a chiplet design to continue the scaling of

the number of cores. However, communication bandwidth between chiplets is much more

scarce, and near-data computing becomes even more appealing as it fundamentally reduces

data movements.

General-Purpose Core Design Our design fundamentally breaks the conventional in-core

computing paradigm and shifts to general and flexible near-data computing. Unlike previous

near-data computing techniques, the key to our approach is the novel stream abstraction

that explicitly expresses high-level long-term program behaviors. This could inspire future

general-purpose core design to rethink the ISA abstraction and microarchitecture beyond

the conventional von Neumann architecture.

We also note that our evaluation unveils some breaking new tradeoffs for general-purpose

core design. With near-data computing, a smaller in-order core could outperform a wider

out-of-order core on certain workloads. Also, with the stream pattern exposed, the core

pipeline can be tailored to exploit more memory parallelism with fewer hardware resources,

e.g. LSQ entries, MSHRs, etc. Stream-aware cache policies could also effectively avoid

thrashing and improve cache utilization. Overall, the new design space is huge and full of

unexplored opportunities.

200

Data and Computation Orchestration This work also demonstrates that achieving

an informed and efficient data and computation orchestration requires deep coordination

throughout the entire system stack. For example, to systematically optimize the data layout

for near-data computing requires an extended allocator interface to capture the data affinity

requirement, a runtime library to perform data placement and manage allocated data, as

well as OS and microarchitecture extensions to support customizable data mapping from the

virtual address space to the physical cache banks. More importantly, many optimizations

require software codesigns to fully exploit the underlying system. This work provides some

initial attempts to break the information gap across various system levels and enable system-

level data and computation orchestration.

Open Questions and Future Directions

While this work attains substantial performance improvements, it also opens up many pos-

sible future directions to enable heterogeneous, efficient and secure near-data computing.

Embracing Heterogeneity and Disaggregation This work on hybrid near-cache and

in-cache computing already demonstrates the power of a heterogeneous near-data computing

system, in which computation is flexibly offloaded to suitable computing substrates with a

unified abstraction. There is huge potential in this direction as the system continues to scale

up with more and more computing and memory resources connected. For example, AMD

adopts chiplet architectures with vertically stacked L3 caches, providing massive on-chip

storage (768MB for EPYC 7773X) and making near-cache computing even more attrac-

tive. When the data can not fit in the on-chip storage, it is natural to further decouple

compute logic into the memory hierarchy, i.e. DRAM, persistent memory, or even storage.

These memory resources also become more and more disaggregated to provide more flex-

ible provisioning of memory capacity and bandwidth shared between multiple hosts, but

come at the price of higher latency and limited bandwidth for remote accesses, which could

201

also benefit from near-data computing. The compute substrates can also be heterogeneous,

from general-purpose CPU and GPU architectures to more domain-specific accelerators and

low-level in-memory computing using bitline operations.

It is certainly challenging to adopt near-data computing on such a heterogeneous and

massive system: how to optimize the data layout to balance parallelism and locality, how

to dynamically schedule computation to the efficient substrate, and most importantly, how

to design a unified program abstraction that fuses all these paradigms and eases the pain of

massive adoption. It certainly requires full-stack codesign from user applications, runtime

libraries to architectural interfaces and microarchitectural details to tackle these challenges

and realize these opportunities. Based on our previous success on on-chip near-data com-

puting, I believe our approach is promising to efficiently tackle these challenges and enable

a more heterogeneous near-data computing system.

Fully Utilized General Purpose Architectures While the compute throughput in gen-

eral architectures is constantly increasing, they are severely underutilized due to inefficiencies

in the memory hierarchy and core pipelines. For example, high-end GPUs from Nvidia in

2023 (H100) provide 12.1× more tensor operation throughput, but only 2.5× memory capac-

ity and 2.2× memory bandwidth compared to prior models in 2018 (V100). To improve the

performance and energy efficiency, architects introduce many domain specific accelerators,

e.g. TPU from Google, with explicit dataflow to improve utilization of the compute units.

Interestingly, there are some high-level similarities between today’s general-purpose pro-

cessors and accelerators: they both employ a tiled design with cores or processing elements

(PEs) connected with an on-chip network. But when we zoom in, they are very different in

terms of orchestration of data and computation – general-purpose processors usually man-

ages the data implicitly with caches, while accelerators usually explicitly dictate how data

is moved and reused by mapping a dataflow graph.

This work already demonstrates that explicitly encoding the access pattern in the memory

202

abstraction unlocks new opportunities for data orchestration. This could eventually creating

a spatial accelerator overlay on general architectures, significantly improving the utilization

of existing computing resources and avoiding data movement back and forth between general-

purpose processors and accelerators.

Security and Near-Data Computing While my previous research focuses more on im-

proving the generality, performance and energy efficiency of near-data computing, security is

an inevitable challenge, and at the same time opportunity, for the wide adoption of near-data

computing. On the one hand, with more and more information and logic being offloaded

and flown across the entire system, we need to be extremely careful to avoid introducing new

side channels. On the other hand, near-data computing may help to improve security. For

example, a wide range of attacks exploits the on-chip resources such as caches, prefetchers,

interconnects, etc. If sensitive computation is offloaded off-chip and performed near mem-

ory, all these attacks are naturally defended. Near-data computing could also help efficiently

encrypt and decrypt data on the fly, providing higher security without impeding the perfor-

mance. There are many open and exciting questions about the intersection between security

and near-data computing.

Supporting General-Purpose Programs It is still an open question to efficiently sup-

port near-data computing for general-purpose programs. Many prior works simply offload

the thread, which is still essentially compute-centric and does not align well with the nature

of distributed computing for near-data computing. Near-stream computing can schedule

streams independently at different locations and enables efficient coordination, but still has

limited support for complex control flows. It is a challenging but rewarding direction to

map arbitrary general-purpose program to near-data computing and achieve maximal per-

formance and energy efficiency.

203

Final Thoughts

This work proves that explicit data access pattern and computation can be directly encoded

in the ISA and decoupled from the core pipeline, enabling general and flexible near-data

computing. The fundamental insight that data and computation should not be separated

but expressed, scheduled, and orchestrated together has a profound impact on future general-

purpose processor designs, and also sheds light on this promising path to continue the per-

formance and energy efficiency scaling.

204

APPENDIX A

NDC Related Works

Table A.1 characterizes recent near-data techniques related to this dissertation ordered by

where it performs the near-data computation (the near where column). Here we relate

them to each dimension of the design space of near-data computing in §1.1.

Table A.1: Characterization of Near-Data Approaches

Begin of Table (Trans.: Transparent)

NDC Work Yr. ABST. Near Where Substrate Domain Program Data Layout

Goal Unified All All General Trans. Automatic

Xulong Tang et al. [176] ’17 Thread Core Local Core General Trans. Oblivious

CDCS [1] ’15 Thread Core Local Core General Trans. Limited1

EM2 [216] ’15 Thread Core Local Core General Trans. Oblivious

Dist-DA [2] ’22 DFG LLC Core/CGRA General Trans. Oblivious

Omni-Compute [3] ’19 Inst. GPU LLC FU General Trans. Oblivious

SCU [260] ’19 Kernel GPU LLC ASIC Graph API Oblivious

SnackNoC [4] ’20 Kernel NoC Router FU Regular API Scratchpad

Fafnir [5] ’21 Kernel DRAM2 FU Gather API Manual

GenASM [6] ’20 Kernel DRAM ASIC Genomic API Scratchpad

CoNDA [165] ’19 Thread DRAM Core Graph/DB API Oblivious

GraphPIM [261] ’17 Inst. DRAM FU Graph API Manual

EMC [7] ’16 𝜇op Seq. DRAM FU Prefetching Trans. Oblivious

UPMEM [261] ’18 Kernel DRAM Core General API Manual

SimplePIM [262] ’23 Kernel DRAM Core General API Limited3

RecNMP [263] ’20 Inst. DRAM ASIC Recommend OpenCL Manual

1Only at page granularity.

2In interconnects of DDR ranks and channels.

3Only coarse-grained continuous arrays.

205

Continuation of Table A.1 (Trans.: Transparent)

NDC Work Yr. ABST. Near Where Substrate Domain Program Data Layout

Goal Unified All All General Trans. Automatic

MViD [264] ’20 Kernel DRAM FU SpMV API Manual

ABC-DIMM [265] ’21 Kernel DRAM FU Graph API Manual

DIMM-Link [266] ’23 Kernel DRAM FU General API Manual

TRiM [267] ’21 Kernel DDR Bank FU Recommend API Scratchpad

To PIM or Not [8] ’22 Thread DDR Bank Core General Trans. Oblivious4

MeNDA [9] ’22 Kernel DDR Rank ASIC Sparse LA5 API Manual

Newton [268] ’20 Kernel DDR Rank FU ML API Manual

Tesseract [10] ’15 Thread HMC Core Graph API Manual

Mondrian [137] ’17 Thread HMC Core DB API Manual

Active Memory Cube [142] ’15 Thread HMC Core General Pragma Manual

Byungchul Hong et al. [145] ’16 Kernel HMC FU LLT6 API Limited7

TOM [11] ’16 Thread HMC GPU Core General Trans. Limited8

GPU-PIM [12] ’16 Thread HMC GPU Core General Trans. Oblivious

Near-Data SIMD Unit [269] ’17 Thread HMC GPU Core General Trans. Oblivious

ABNDP [13] ’23 Thread HMC Core General API Oblivious9

PIM-Enabled Inst. [14] ’15 Inst. HMC FU General Trans. Oblivious

IMPICA [15] ’16 Kernel HMC ASIC Ptr-Chasing API Oblivious

NeuroStream [270] ’17 Kernel HMC Core CNN API Manual

Active Routing [16] ’19 Packet HMC FU Aggregation API Oblivious

Neurocube [160] ’16 Kernel HMC ASIC NN10 API Manual

Gearbox [17] ’22 Kernel HMC Bank ASIC Sparse LA11 API Manual

FANS [18] ’21 Kernel SSD FPGA Sorting API Manual

ASSASIN [19] ’22 Kernel SSD ASIC General12 API Oblivious

Summarizer [166] ’17 Kernel SSD Core General API Manual

4Customized physical address layout in DRAM.

5Sparse matrix transposition.

6Linked list traversal.

7Specific to linked lists.

8Specific to strided patterns on GPU.

9With DRAM-based cache to capture locality.

10Neural network.

11Sparse linear algebra, mainly SpMV and SpMSpV.

12Programs need to be transformed into streaming computing.

206

Continuation of Table A.1 (Trans.: Transparent)

NDC Work Yr. ABST. Near Where Substrate Domain Program Data Layout

Goal Unified All All General Trans. Automatic

GraFBoost [271] ’18 Kernel SSD FPGA Graph API Oblivious

GraphSSD [272] ’19 Inst. SSD ASIC Graph API Limited13

Neural Cache [20] ’18 Kernel In-LLC Bitline ML API Scratchpad

Duality Cache [21] ’19 SIMT In-LLC Bitline General Trans. Oblivious

Compute Cache [149] ’17 Inst. In-Cache14 Bitline Limited15 API Oblivious

PIM-DH [273] ’22 Kernel ReRAM Bitline Deep Hashing API Manual

Ben Feinberg et al. [274] ’18 Kernel ReRAM Bitline Sparse LA API Manual

FloatPIM [248] ’19 Kernel ReRAM Bitline CNN API Manual

SIMDRAM [242] ’21 Kernel In-DRAM Bitline General API Scratchpad

DUAL [22] ’20 Kernel In-DRAM Bitline Clustering API Manual

GraphiDe [275] ’19 Inst. In-DRAM Bitline Graph API Scratchpad

Ambit [23] ’17 Inst. In-HMC Bitline General API Scratchpad

SISA [24] ’21 Set Multi.16 Multi.17 Graph Mining API Manual

MLIMP [25] ’22 DFG Multi.18 Multi. GEMM/GNN API Scratchpad

NDC Compiler [26] ’21 Inst. Multi.19 FU General Trans. Oblivious

Livia [27] ’20 Kernel20 Multi.21 Core/FPGA General API Oblivious

SSP [28] ’19 Stream Core FU Prefetching Trans. Oblivious

Stream Floating [32] ’21 Stream LLC FU Prefetching Trans. Oblivious

NSC [31] ’22 Stream LLC Local Core General Trans. Oblivious

Infinity Stream [30] ’23 Stream Multi.22 Multi.23 General Pragma Scratchpad

Affinity Alloc [33] ’23 Stream LLC FU General API Automatic

13Do not optimize affinity between vertices and edge.

14It also adds FUs near cache controllers when there is no operand locality.

15Since data is not transposed, it only supports a limited set of operations.

16In-situ DRAM (SISA-PUM) and near DRAM controller (SISA-PNM).

17In-situ DRAM bitline for SISA-PUM, and small in-order cores for SISA-PNM.

18In-situ LLC, In-situ DRAM and ReRAM.

19NoC routers, LLC controllers, DRAM controllers, inside DRAM.

20Can only process a single cache line.

21LLC controllers and DRAM controllers

22In-site LLC and Near LLC controller.

23In-situ SRAM bitline and near LLC FU (stream engine).

207

Continuation of Table A.1 (Trans.: Transparent)

NDC Work Yr. ABST. Near Where Substrate Domain Program Data Layout

Goal Unified All All General Trans. Automatic

End of Table

∙ Offloading Location: Many works can be categorized as “near-memory computing”,

as they offload computation near the controller of the cache, DRAM, HMC, or SSD.

Emerging technologies such as in-situ bitline operation offers massive data parallelism

by directly turning the SRAM/DRAM arrays into vector units (labeled as In-X in

Table A.1). Also, we include those multi-core works that do not offload computation

from the core, but aim to schedule and migrate the computation among the cores to

improve the data locality (labeled as Core in Near Where column). These techniques

do not introduce new computing units, but reuse the existing cores. Some works

also support scheduling the computation among multiple locations, which offers more

flexibility.

∙ Computing Substrate: Different works also leverage different computing substrates

to perform the near-data operation. In-situ techniques simply use the SRAM/DRAM

bitlines, while those near-memory works varies from small general-purpose in-order

cores to fixed-function ASIC. In between we also have reconfigurable logic such as

FPGA/CGRA as well as tailored FUs that can be programmed to perform some pre-

defined compute primitives.

∙ Application Domain: Many prior works are specialized for a specific application do-

main, such as neural networks, GEMM, graph processing, graph mining, and database,

etc. These applications are usually memory intensive and can benefit the most from the

improved memory bandwidth of near-data computing. Other works strive to support

general near-data computation.

208

∙ Programming Model: Most prior works require manual programming using specific

APIs, or at least some pragma hints from the compiler. Clearly this poses significant

challenges for the broad adoption of near-data computing. Only a few works provide

programmer-transparency leveraging coarse-grained thread/SIMT abstraction as the

offloading unit. However, as discussed in §5.1, these coarse-grained abstractions fall

short of capturing the inherent distributed property of near-data computing and leads

to suboptimal performance.

∙ Data Layout: Finally, most works are either oblivious to the data layout and simply

abort near-data computing when there is not sufficient data locality, or require manual

data placement which is error-prone and tedious. Affinity alloc [33] is the first work to

systematically and automatically optimize the data layout to improve data affinity.

Goal and Our Work As shown in the top entry of Table A.1, an ideal near-data comput-

ing system should provide a unified and general abstraction across all available offloading

locations and computing substrates, while remaining transparent to programmers and auto-

matically optimizing the data layout. This is an ambitious goal. The bottom of Table A.1

lists our works, and each of them made some advancement across different dimensions. We

believe this dissertation is just the beginning of realizing general, flexible and unified near-

data computing.

209

APPENDIX B

tDFG Optimization

Here we discuss the rewrite rules and equality-graph approach to optimizing the tDFG.

Intuition A unique aspect of optimizing the tDFG is the need to reason about the tensor

domains (i.e. the hyperrectangle in lattice space). For example, two same element-wise

computations on tensor A[1, n) and A[0, n-1) can be merged into a single computation

on A[0, n), provided that the tensor size information is correctly tracked after we slightly

expanded the computed tensor. This cuts the computation by half. More generally, there

is a large transformation space with many equivalent tDFGs producing the same result,

and the compiler needs to efficiently search for the optimal tDFG with less data traffic and

computation. We first introduce the tDFG equivalence rules used to rewrite the tDFG,

followed by an optimized example and details in our implementation.

tDFG Equivalence Rules We define two tDFG nodes to be equivalent if they represent

the same result and share the same domain in the lattice space. To transform the tDFG, we

now formalize the tDFG equivalence rules, with these notations:

∙ T,C,M,B: Tensor, compute, move, and broadcast node respectively, with their defini-

tion and semantics in Fig 7.5 (page 165). Note that all these nodes produce a tensor,

while T constructs the input tensor from the input array.

∙ 𝐴,𝐵,𝐶: Arbitrary tensors in the tDFG, e.g. compute, move, broadcast node.

∙ 𝑖, 𝑗: Operated dimension, e.g. move, broadcast.

210

∙ 𝑝𝑖, 𝑞𝑖: Range of the 𝑖𝑡ℎ dimension [𝑝𝑖, 𝑞𝑖).

∙ 𝑓 : Computation applied to input tensors.

As a simple example, Eq. B.1a defines the associative rule for compute node, when the

operation 𝑓 is associative by itself, i.e. 𝑓(𝑓(𝑎, 𝑏), 𝑐) ⇔ 𝑓(𝑎, 𝑓(𝑏, 𝑐)). Similarly, Eq. B.1b

defines the commutative rule for compute node when the operation 𝑓 is commutative, e.g.

addition, multiplication. We can also define the distributive rule similar to 𝑎 × (𝑥 + 𝑦) ⇔

𝑎× 𝑥+ 𝑏× 𝑦 (Eq. B.1c).

C(𝑓,C(𝑓, 𝐴,𝐵), 𝐶)⇔ C(𝑓, 𝐴,C(𝑓,𝐵,𝐶)) (B.1a)

C(𝑓, 𝐴,𝐵)⇔ C(𝑓,𝐵,𝐴) (B.1b)

C(𝑓,C(𝑔, 𝐴),C(𝑔,𝐵))⇔ C(𝑔,C(𝑓, 𝐴,𝐵)) (B.1c)

Exchanging Compute and Move/Broadcast Eq. B.2a defines the commutative rule

to exchange a unary compute node and a move node. Recall that a move node shifts the

tensor along a certain dimension by some distance in the lattice space. Therefore, the move

operation can happen before or after the computation, i.e. it is commutative with compute

nodes. Similarly, when the compute node takes multiple operands, a move node is applied

to every input tensor. Also, Eq. B.2b shows the commutative rule for a compute node and

a broadcast node.

C(𝑓,M(𝐴, 𝑖, 𝑑𝑖𝑠𝑡))⇔ M(C(𝑓, 𝐴), 𝑖, 𝑑𝑖𝑠𝑡) (B.2a)

C(𝑓,B(𝐴, 𝑖, 𝑑𝑖𝑠𝑡, 𝑐𝑛𝑡))⇔ B(C(𝑓, 𝐴), 𝑖, 𝑑𝑖𝑠𝑡, 𝑐𝑛𝑡) (B.2b)

Expanding and Shrinking Tensor To reuse common computation results, it may be

necessary to expand a tensor. For example, C(𝑓,T(1, 𝑁)) and C(𝑓,T(0, 𝑁)) share common

211

results on the domain [1, 𝑁). However, they are not equivalent as the first computation is

applied to a slightly smaller tensor. If we can expand the first tensor to T(0, 𝑁), we can

reduce the operations from 2𝑁 − 1 to 𝑁 .

To maintain equivalence, an expanded tensor must be later shrunk to the original domain.

Therefore, we introduce a shrink node, S, which resizes the tensor along dimension 𝑖 to have

a new domain [𝑝𝑖, 𝑞𝑖).

Putting these together, Eq. B.3 shows the rule to expand a smaller tensor of size [𝑝𝑖, 𝑞𝑖) in

the 𝑖𝑡ℎ dimension into a larger tensor of size [𝑝′𝑖, 𝑞
′
𝑖), where 𝑝

′
𝑖 <= 𝑝𝑖 and 𝑞′𝑖 >= 𝑞𝑖. The shrink

node returns the output tensor to the original domain, hence it is equivalent to the original

tensor. Shrink nodes are only for tracking the tensor size information, and are lowered to a

nop by the JIT compiler (similar to how the 𝜑 nodes are not lowered to instructions in SSA

IR [37]). We omit shrink nodes in the paper for simplicity, as they are only needed during

optimization.

T(..., 𝑝𝑖, 𝑞𝑖, ...)⇔ S(𝑖, 𝑝𝑖, 𝑞𝑖,T(..., 𝑝′𝑖, 𝑞′𝑖, ...))

where 𝑝′𝑖 <= 𝑝𝑖, 𝑞
′
𝑖 >= 𝑞𝑖

(B.3)

Exchanging Shrink and Other Nodes A shrink node by itself is not sufficient to unlock

the optimization opportunities in the tDFG. We need to define how it interacts with other

tDFG nodes. Eq. B.4a is a straightforward rule that two shrink nodes on different dimensions

are commutable. When they operate on the same dimension, we can combine them into a

single shrink node by taking the intersection, as in Eq. B.4b.

S(𝑖, 𝑝𝑖, 𝑞𝑖,S(𝑗, 𝑝𝑗, 𝑞𝑗, 𝐴))⇔ S(𝑗, 𝑝𝑗, 𝑞𝑗,S(𝑖, 𝑝𝑖, 𝑞𝑖, 𝐴))

when 𝑖 ̸= 𝑗 (B.4a)

S(𝑖, 𝑝𝑖, 𝑞𝑖,S(𝑖, 𝑝′𝑖, 𝑞′𝑖, 𝐴))⇔ S(𝑖,max(𝑝𝑖, 𝑝
′
𝑖),min(𝑞𝑖, 𝑞

′
𝑖), 𝐴) (B.4b)

212

A0 A1

+

dim=0
dist=1 mv mv

dim=0
dist=-1

A0 A1

+

dim=0
dist=1 mv mv

dim=0
dist=-1

mvmv

A0 A1

+

dim=0
dist=1

dim=0
dist=-1mvmv

A0 A1

+

dim=0
dist=1

dim=0
dist=-1

mvmv

A

+

dim=0
dist=1

dim=0
dist=-1

VV

s s

mvmv

A

+

dim=0
dist=1

dim=0
dist=-1

V

s s

mvmv

+

dim=0
dist=1

dim=0
dist=-1

s s

A

mvmv

+

dim=0
dist=1

dim=0
dist=-1

s s

A

VV

VVVVVV

VVVV

Apply Eq. 4a Apply Eq. 5 Apply Eq. 9

Figure B.1: Example of Applying Rewrites

Similarly, shrink node and move node on different dimensions are commutable (Eq. B.5a).

If they are on the same dimension, we can also apply a shrink node on the moved tensor

with the shifted domain [𝑝𝑖 + 𝑑𝑖𝑠𝑡, 𝑞𝑖 + 𝑑𝑖𝑠𝑡).

M(S(𝑖, 𝑝𝑖, 𝑞𝑖, 𝐴), 𝑗, 𝑑𝑖𝑠𝑡)⇔ S(𝑖, 𝑝𝑖, 𝑞𝑖,M(𝐴, 𝑗, 𝑑𝑖𝑠𝑡))

when 𝑖 ̸= 𝑗 (B.5a)

M(S(𝑖, 𝑝𝑖, 𝑞𝑖, 𝐴), 𝑖, 𝑑𝑖𝑠𝑡)⇔ S(𝑖, 𝑝𝑖 + 𝑑𝑖𝑠𝑡, 𝑞𝑖 + 𝑑𝑖𝑠𝑡,M(𝐴, 𝑖, 𝑑𝑖𝑠𝑡)) (B.5b)

This also applies to broadcast node and shrink node: they are commutable if on different

dimension (Eq. B.6a). When they are on the same dimension, we can combine them by

directly broadcasting to the shrunken region.

B(S(𝑖, 𝑝𝑖, 𝑞𝑖, 𝐴), 𝑗, 𝑑𝑖𝑠𝑡, 𝑐𝑛𝑡)⇔ S(𝑖, 𝑝𝑖, 𝑞𝑖,B(𝐴, 𝑗, 𝑑𝑖𝑠𝑡, 𝑐𝑛𝑡))

when 𝑖 ̸= 𝑗 (B.6a)

S(𝑖, 𝑝𝑖, 𝑞𝑖,B(𝐴, 𝑖, 𝑑𝑖𝑠𝑡, 𝑐𝑛𝑡))⇔ B(𝐴, 𝑖, 𝑝𝑖, 𝑞𝑖 − 𝑝𝑖) (B.6b)

Finally, a shrink node is also commutable with the compute node (Eq. B.7).

S(𝑖, 𝑝𝑖, 𝑞𝑖,C(𝑓, 𝐴))⇔ C(𝑓, S(𝑖, 𝑝𝑖, 𝑞𝑖, 𝐴)) (B.7)

Optimization Example Fig B.1 shows an example of applying our rewrite rules to discover

opportunities for reuse. The original tDFG first moves the input tensor A left and right by

213

one before applying a constant element-wise multiply to both tensors. Since in-memory

processing applies element-wise functions to all elements, we can save a redundant compute

by first performing the computation on the entirety of tensor A before realigning the result.

We begin with the original tDFG. By rule B.2a, we can commute the move and compute

nodes.

C(+,C(×𝑉,M(T(0, 𝑛− 2), 0, 1)),

C(×𝑉,M(T(2, 𝑛), 0,−1)))
Eq. 𝐵.2𝑎−−−−−→ C(+,M(C(×𝑉,T(0, 𝑛− 2)), 0, 1),

M(C(×𝑉,T(2, 𝑛)), 0,−1))

We can expand the two tensor Ts to the entire domain of array A with rule B.3. By

commuting the shrink S nodes and compute C nodes with rule B.7, we can discover a

common subexpression, indicating there is an opportunity for compute reuse.

Eq. 𝐵.3−−−−→ C(+,M(C(×𝑉, S(0, 0, 𝑛− 2,T(0, 𝑛))), 0, 1),

M(C(×𝑉, S(0, 2, 𝑛,T(0, 𝑛))), 0,−1))
Eq. 𝐵.7−−−−→ C(+,M(S(0, 0, 𝑛− 2,C(×𝑉,T(0, 𝑛))), 0, 1),

M(S(0, 2, 𝑛,C(×𝑉,T(0, 𝑛))), 0,−1))

Fig 7.6 (page 168) shows a more complicated example of optimized tDFG. To see how

the equivalence rules rewrite the program, first expand all the tensors to the full array, and

exchange the shift nodes to the final output of the tDFG (ommitted in Fig 7.6). Use Eq. B.1b

and Eq. B.1a to add v0 and v2 together. Since we are multiplying by a constant 𝐶0 and 𝐶1,

we can use distributive rule to swap the addition and multiplication. The optimized tDFG

reuses the computated results and avoids unnecessary data movements.

214

Equality Graphs We leverage equality graphs (e-graphs) to efficiently search the optimal

tDFG in the design space. Equality graphs represent all possible rewrites of an expression

tree. Given a rewrite rule 𝑒1 → 𝑒2 for two expressions 𝑒1, 𝑒2, an e-graph will apply it to all

matches in its underlying expression tree. These nondestructive updates are performed by

marking 𝑒1 and 𝑒2 as equivalent. Given a set of rewrite rules, all possible permutations of

the original expression tree are discovered by continuously applying them. The final tDFG

selection is based on architecture-informed cost metrics combining the estimated latency of

move vs. compute node, the amount of moved/broadcast data, as well as the number of

computations.

215

REFERENCES

[1] Nathan Beckmann, Po-An Tsai, and Daniel Sanchez. Scaling distributed cache hi-
erarchies through computation and data co-scheduling. In 2015 IEEE 21st Interna-
tional Symposium on High Performance Computer Architecture (HPCA), pages 538–
550, 2015.

[2] Saambhavi Baskaran, Mahmut Taylan Kandemir, and Jack Sampson. An architecture
interface and offload model for low-overhead, near-data, distributed accelerators. In
2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO), pages
1160–1177, 2022.

[3] Ashutosh Pattnaik, Xulong Tang, Onur Kayiran, Adwait Jog, Asit Mishra, Mahmut T
Kandemir, Anand Sivasubramaniam, and Chita R Das. Opportunistic computing in
gpu architectures. In Proceedings of the 46th International Symposium on Computer
Architecture, pages 210–223, 2019.

[4] Karthik Sangaiah, Michael Lui, Ragh Kuttappa, Baris Taskin, and Mark Hempstead.
Snacknoc: Processing in the communication layer. In 2020 IEEE International Sym-
posium on High Performance Computer Architecture (HPCA), pages 461–473, 2020.

[5] Bahar Asgari, Ramyad Hadidi, Jiashen Cao, Da Eun Shim, Sung-Kyu Lim, and Hye-
soon Kim. Fafnir: Accelerating sparse gathering by using efficient near-memory intel-
ligent reduction. In HPCA, 2021.

[6] D. S. Cali, G. S. Kalsi, Z. Bingöl, C. Firtina, L. Subramanian, J. S. Kim,
R. Ausavarungnirun, M. Alser, J. Gomez-Luna, A. Boroumand, A. Norion, A. Scibisz,
S. Subramoneyon, C. Alkan, S. Ghose, and O. Mutlu. Genasm: A high-performance,
low-power approximate string matching acceleration framework for genome sequence
analysis. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), 2020.

[7] Milad Hashemi, Eiman Ebrahimi, Onur Mutlu, Yale N Patt, et al. Accelerating de-
pendent cache misses with an enhanced memory controller. In 2016 ACM/IEEE 43rd
Annual International Symposium on Computer Architecture (ISCA), pages 444–455.
IEEE, 2016.

[8] Alexandar Devic, Siddhartha Balakrishna Rai, Anand Sivasubramaniam, Ameen Akel,
Sean Eilert, and Justin Eno. To pim or not for emerging general purpose processing
in ddr memory systems. In Proceedings of the 49th Annual International Symposium
on Computer Architecture, ISCA ’22, page 231–244, New York, NY, USA, 2022. Asso-
ciation for Computing Machinery.

216

[9] Siying Feng, Xin He, Kuan-Yu Chen, Liu Ke, Xuan Zhang, David Blaauw, Trevor
Mudge, and Ronald Dreslinski. Menda: A near-memory multi-way merge solution for
sparse transposition and dataflows. In Proceedings of the 49th Annual International
Symposium on Computer Architecture, ISCA ’22, page 245–258, New York, NY, USA,
2022. Association for Computing Machinery.

[10] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. A
scalable processing-in-memory accelerator for parallel graph processing. In 2015
ACM/IEEE 42nd Annual International Symposium on Computer Architecture (ISCA),
pages 105–117, 2015.

[11] Kevin Hsieh, Eiman Ebrahim, Gwangsun Kim, Niladrish Chatterjee, Mike O’Connor,
Nandita Vijaykumar, Onur Mutlu, and Stephen W Keckler. Transparent offloading
and mapping (tom): Enabling programmer-transparent near-data processing in gpu
systems. In 2016 ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA). IEEE Computer Society, 2016.

[12] A. Pattnaik, X. Tang, A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir, O. Mutlu,
and C. R. Das. Scheduling techniques for gpu architectures with processing-in-memory
capabilities. In 2016 International Conference on Parallel Architecture and Compila-
tion Techniques (PACT), 2016.

[13] Boyu Tian, Qihang Chen, and Mingyu Gao. Abndp: Co-optimizing data access and
load balance in near-data processing. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, Volume 3, ASPLOS 2023, page 3–17, New York, NY, USA, 2023. Association
for Computing Machinery.

[14] Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. Pim-enabled instruc-
tions: A low-overhead, locality-aware processing-in-memory architecture. In Proceed-
ings of the 42nd Annual International Symposium on Computer Architecture, ISCA
’15, page 336–348, New York, NY, USA, 2015. Association for Computing Machinery.

[15] Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu. Accelerating pointer chasing in 3d-
stacked memory: Challenges, mechanisms, evaluation. In 2016 IEEE 34th Interna-
tional Conference on Computer Design (ICCD), pages 25–32, 2016.

[16] Jiayi Huang, Ramprakash Reddy Puli, Pritam Majumder, Sungkeun Kim, Rahul Boy-
apati, Ki Hwan Yum, and Eun Jung Kim. Active-routing: Compute on the way for
near-data processing. In 2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 674–686. IEEE, 2019.

217

[17] Marzieh Lenjani, Alif Ahmed, Mircea Stan, and Kevin Skadron. Gearbox: A case
for supporting accumulation dispatching and hybrid partitioning in pim-based accel-
erators. In Proceedings of the 49th Annual International Symposium on Computer
Architecture, ISCA ’22, page 218–230, New York, NY, USA, 2022. Association for
Computing Machinery.

[18] Weikang Qiao, Jihun Oh, Licheng Guo, Mau-Chung Frank Chang, and Jason Cong.
Fans: Fpga-accelerated near-storage sorting. In 2021 IEEE 29th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM), pages 106–
114, 2021.

[19] Chen Zou and Andrew A. Chien. Assasin: Architecture support for stream computing
to accelerate computational storage. In 2022 55th IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), pages 354–368, 2022.

[20] Charles Eckert, Xiaowei Wang, Jingcheng Wang, Arun Subramaniyan, Ravi Iyer, Den-
nis Sylvester, David Blaauw, and Reetuparna Das. Neural cache: Bit-serial in-cache
acceleration of deep neural networks. In Proceedings of the 45th Annual International
Symposium on Computer Architecture, ISCA ’18, page 383–396. IEEE Press, 2018.

[21] Daichi Fujiki, Scott Mahlke, and Reetuparna Das. Duality cache for data parallel ac-
celeration. In Proceedings of the 46th International Symposium on Computer Architec-
ture, ISCA ’19, page 397–410, New York, NY, USA, 2019. Association for Computing
Machinery.

[22] Mohsen Imani, Saikishan Pampana, Saransh Gupta, Minxuan Zhou, Yeseong Kim,
and Tajana Rosing. Dual: Acceleration of clustering algorithms using digital-based
processing in-memory. In 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2020.

[23] Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali Boroumand,
Jeremie Kim, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and Todd C.
Mowry. Ambit: In-memory accelerator for bulk bitwise operations using commod-
ity dram technology. In 2017 50th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 273–287, 2017.

[24] Maciej Besta, Raghavendra Kanakagiri, Grzegorz Kwasniewski, Rachata Ausavarung-
nirun, Jakub Beránek, Konstantinos Kanellopoulos, Kacper Janda, Zur Vonarburg-
Shmaria, Lukas Gianinazzi, Ioana Stefan, Juan Gómez Luna, Jakub Golinowski,
Marcin Copik, Lukas Kapp-Schwoerer, Salvatore Di Girolamo, Nils Blach, Marek
Konieczny, Onur Mutlu, and Torsten Hoefler. Sisa: Set-centric instruction set ar-
chitecture for graph mining on processing-in-memory systems. In MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO ’21, page
282–297, New York, NY, USA, 2021. Association for Computing Machinery.

218

[25] Daichi Fujiki, Alireza Khadem, Scott Mahlke, and Reetuparna Das. Multi-layer in-
memory processing. In 2022 55th IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pages 920–936, 2022.

[26] Mahmut Taylan Kandemir, Jihyun Ryoo, Xulong Tang, and Mustafa Karakoy. Com-
piler support for near data computing. In Proceedings of the 26th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’21, page
90–104, New York, NY, USA, 2021. Association for Computing Machinery.

[27] Elliot Lockerman, Axel Feldmann, Mohammad Bakhshalipour, Alexandru Stanescu,
Shashwat Gupta, Daniel Sanchez, and Nathan Beckmann. Livia: Data-centric com-
puting throughout the memory hierarchy. In Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’20, page 417–433, New York, NY, USA, 2020. Association for
Computing Machinery.

[28] Zhengrong Wang and Tony Nowatzki. Stream-based memory access specialization
for general purpose processors. In Proceedings of the 46th International Symposium on
Computer Architecture (ISCA), pages 736–749, New York, NY, USA, 2019. Association
for Computing Machinery.

[29] Zhengrong Wang, Christopher Liu, and Tony Nowatzki. Infinity stream: Enabling
transparent and automated in-memory computing. IEEE Computer Architecture Let-
ters, 21(2):85–88, 2022.

[30] Zhengrong Wang, Christopher Liu, Aman Arora, Lizy John, and Tony Nowatzki. Infin-
ity stream: Portable and programmer-friendly in-/near-memory fusion. In Proceedings
of the 28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3, ASPLOS 2023, page 359–375, New York,
NY, USA, 2023. Association for Computing Machinery.

[31] Zhengrong Wang, Jian Weng, Sihao Liu, and Tony Nowatzki. Near-stream computing:
General and transparent near-cache acceleration. In 2022 IEEE International Sympo-
sium on High-Performance Computer Architecture (HPCA), pages 331–345, 2022.

[32] Zhengrong Wang, Jian Weng, Jason Lowe-Power, Jayesh Gaur, and Tony Nowatzki.
Stream floating: Enabling proactive and decentralized cache optimizations. In 2021
IEEE International Symposium on High-Performance Computer Architecture (HPCA),
pages 640–653, 2021.

[33] Zhengrong Wang, Christopher Liu, Nathan Beckmann, and Tony Nowatzki. Affinity
alloc: Taming not-so near-data computing. In 2023 56th IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2023.

219

[34] James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. Spec cpu2017: Next-
generation compute benchmark. In Companion of the 2018 ACM/SPEC International
Conference on Performance Engineering, ICPE ’18, page 41–42, New York, NY, USA,
2018. Association for Computing Machinery.

[35] S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia, S. Belongie, and M. B.
Taylor. Sd-vbs: The san diego vision benchmark suite. In 2009 IEEE International
Symposium on Workload Characterization (IISWC), pages 55–64, Oct 2009.

[36] Shelby Thomas, Chetan Gohkale, Enrico Tanuwidjaja, Tony Chong, David Lau, Sat-
urnino Garcia, and Michael Bedford Taylor. Cortexsuite: A synthetic brain benchmark
suite. In IISWC, pages 76–79, 2014.

[37] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. In CGO ’04, pages 75–88.

[38] Chen-Han Ho, Sung Jin Kim, and Karthikeyan Sankaralingam. Efficient execution of
memory access phases using dataflow specialization. In Proceedings of the 42nd Annual
International Symposium on Computer Architecture, ISCA ’15, pages 118–130, New
York, NY, USA, 2015. ACM.

[39] Naveen Vedula, Arrvindh Shriraman, Snehasish Kumar, and William N Sumner. Na-
chos: Software-driven hardware-assisted memory disambiguation for accelerators. In
2018 IEEE International Symposium on High Performance Computer Architecture
(HPCA), pages 710–723. IEEE, 2018.

[40] Ruke Huang, Alok Garg, and Michael Huang. Software-hardware cooperative mem-
ory disambiguation. In High-Performance Computer Architecture, 2006. The Twelfth
International Symposium on, pages 244–253. IEEE, 2006.

[41] James E. Smith. Decoupled access/execute computer architectures. In Proceedings of
the 9th Annual Symposium on Computer Architecture, ISCA ’82, pages 112–119, Los
Alamitos, CA, USA, 1982. IEEE Computer Society Press.

[42] Neal Clayton Crago and Sanjay Jeram Patel. Outrider: Efficient memory latency
tolerance with decoupled strands. In Proceedings of the 38th Annual International
Symposium on Computer Architecture, ISCA ’11, pages 117–128, New York, NY, USA,
2011. ACM.

[43] Kenneth C. Yeager. The MIPS R10000 superscalar microprocessor. IEEE Micro,
16(2):28–40, 1996.

[44] Ilhyun Kim and Mikko H Lipasti. Understanding scheduling replay schemes. In Soft-
ware, IEE Proceedings-, pages 198–209. IEEE, 2004.

220

[45] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi,
Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sar-
dashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill,
and David A. Wood. The gem5 simulator. SIGARCH Comput. Archit. News, 2011.

[46] Yakun Sophia Shao, Brandon Reagen, Gu-Yeon Wei, and David Brooks. Aladdin:
A pre-rtl, power-performance accelerator simulator enabling large design space ex-
ploration of customized architectures. In Proceeding of the 41st Annual International
Symposium on Computer Architecuture, ISCA ’14, pages 97–108, Piscataway, NJ, USA,
2014. IEEE Press.

[47] Y. S. Shao, S. L. Xi, V. Srinivasan, G. Y. Wei, and D. Brooks. Co-designing accelerators
and soc interfaces using gem5-aladdin. In 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 1–12, Oct 2016.

[48] Tony Nowatzki and Karthikeyan Sankaralingam. Analyzing behavior specialized accel-
eration. In ACM SIGARCH Computer Architecture News, volume 44, pages 697–711.
ACM, 2016.

[49] T. Nowatzki, V. Govindaraju, and K. Sankaralingam. A graph-based program repre-
sentation for analyzing hardware specialization approaches. IEEE Computer Architec-
ture Letters, 14(2):94–98, July 2015.

[50] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen, and
Norman P. Jouppi. Mcpat: an integrated power, area, and timing modeling framework
for multicore and manycore architectures. In MICRO ’09.

[51] Jamison D Collins, Hong Wang, Dean M Tullsen, Christopher Hughes, Yong-Fong Lee,
Dan Lavery, and John P Shen. Speculative precomputation: Long-range prefetching
of delinquent loads. In Computer Architecture, 2001. Proceedings. 28th Annual Inter-
national Symposium on, pages 14–25. IEEE, 2001.

[52] Amir Roth and Gurindar S Sohi. Speculative data-driven multithreading. In Proceed-
ings HPCA Seventh International Symposium on High-Performance Computer Archi-
tecture, pages 37–48. IEEE, 2001.

[53] Craig Zilles and Gurindar Sohi. Execution-based prediction using speculative slices.
ACM SIGARCH Computer Architecture News, 29(2):2–13, 2001.

[54] Sushant Kondguli and Michael Huang. Bootstrapping: Using smt hardware to im-
prove single-thread performance. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS ’19, pages 687–700, New York, NY, USA, 2019. ACM.

221

[55] M. Annavaram, J. M. Patel, and E. S. Davidson. Data prefetching by dependence
graph precomputation. In Proceedings 28th Annual International Symposium on Com-
puter Architecture, pages 52–61, June 2001.

[56] Jaejin Lee, Changhee Jung, Daeseob Lim, and Yan Solihin. Prefetching with helper
threads for loosely coupled multiprocessor systems. IEEE Transactions on Parallel
and Distributed Systems, 20(9):1309–1324, 2009.

[57] Weifeng Zhang, Dean M Tullsen, and Brad Calder. Accelerating and adapting precom-
putation threads for effcient prefetching. In High Performance Computer Architecture,
2007. HPCA 2007. IEEE 13th International Symposium on, pages 85–95. IEEE, 2007.

[58] Alok Garg and Michael C Huang. A performance-correctness explicitly-decoupled
architecture. In Proceedings of the 41st annual IEEE/ACM International Symposium
on Microarchitecture, pages 306–317. IEEE Computer Society, 2008.

[59] Timothy Sherwood, Erez Perelman, and Brad Calder. Basic block distribution analysis
to find periodic behavior and simulation points in applications. In Proceedings of the
International Conference on Parallel Architectures and Compilation Technique, pages
3–14, September 2001.

[60] Brucek Khailany, William J Dally, Ujval J Kapasi, Peter Mattson, Jinyung Namkoong,
John D Owens, Brian Towles, Andrew Chang, and Scott Rixner. Imagine: Media
processing with streams. IEEE micro, 21(2):35–46, 2001.

[61] Silviu Ciricescu, Ray Essick, Brian Lucas, Phil May, Kent Moat, Jim Norris, Michael
Schuette, and Ali Saidi. The reconfigurable streaming vector processor (rsvp). In
Proceedings of the 36th Annual IEEE/ACM International Symposium on Microarchi-
tecture, MICRO 36, pages 141–, Washington, DC, USA, 2003. IEEE Computer Society.

[62] Lisa Wu, Andrea Lottarini, Timothy K. Paine, Martha A. Kim, and Kenneth A. Ross.
Q100: The architecture and design of a database processing unit. In Proceedings of the
19th International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’14, pages 255–268, New York, NY, USA, 2014.
ACM.

[63] Tony Nowatzki, Vinay Gangadhar, Newsha Ardalani, and Karthikeyan Sankaralingam.
Stream-dataflow acceleration. In Proceedings of the 44th Annual International Sympo-
sium on Computer Architecture, ISCA ’17, pages 416–429, New York, NY, USA, 2017.
ACM.

[64] Nathan Clark, Amir Hormati, and Scott Mahlke. Veal: Virtualized execution accelera-
tor for loops. In Proceedings of the 35th Annual International Symposium on Computer
Architecture, ISCA ’08, pages 389–400, Washington, DC, USA, 2008. IEEE Computer
Society.

222

[65] Gabriel Weisz and James C Hoe. Coram++: Supporting data-structure-specific mem-
ory interfaces for fpga computing. In 25th International Conference on Field Pro-
grammable Logic and Applications (FPL), pages 1–8, Sept 2015.

[66] Nandita Vijaykumar, Abhilasha Jain, Diptesh Majumdar, Kevin Hsieh, Gennady
Pekhimenko, Eiman Ebrahimi, Nastaran Hajinazar, Phillip B Gibbons, and Onur
Mutlu. A case for richer cross-layer abstractions: Bridging the semantic gap with
expressive memory. In 2018 ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA), pages 207–220. IEEE, 2018.

[67] Nandita Vijaykumar, Eiman Ebrahimi, Kevin Hsieh, Phillip B Gibbons, and Onur
Mutlu. The locality descriptor: A holistic cross-layer abstraction to express data
locality in gpus. ISCA, 2018.

[68] L. Kurian, P. T. Hulina, and L. D. Coraor. Memory latency effects in decoupled
architectures with a single data memory module. In [1992] Proceedings the 19th Annual
International Symposium on Computer Architecture, pages 236–245, May 1992.

[69] Lizy Kurian John, Vinod Reddy, Paul T Hulina, and Lee D Coraor. Program balance
and its impact on high performance risc architectures. In High-Performance Computer
Architecture, 1995. Proceedings., First IEEE Symposium on, pages 370–379. IEEE,
1995.

[70] T. J. Ham, J. L. Aragón, and M. Martonosi. DeSC: Decoupled supply-compute
communication management for heterogeneous architectures. In 2015 48th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 191–203,
Dec 2015.

[71] Venkatraman Govindaraju, Chen-Han Ho, Tony Nowatzki, Jatin Chhugani, Nadathur
Satish, Karthikeyan Sankaralingam, and Changkyu Kim. Dyser: Unifying func-
tionality and parallelism specialization for energy-efficient computing. IEEE Micro,
32(5):38–51, September 2012.

[72] Nathan Clark, Manjunath Kudlur, Hyunchul Park, Scott Mahlke, and Krisztian Flaut-
ner. Application-specific processing on a general-purpose core via transparent instruc-
tion set customization. In MICRO, 2004.

[73] A. Sharifian, S. Kumar, A. Guha, and A. Shriraman. Chainsaw: Von-neumann accel-
erators to leverage fused instruction chains. In 2016 49th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO), pages 1–14, Oct 2016.

[74] Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Garcia, Vladyslav
Bryksin, Jose Lugo-Martinez, Steven Swanson, and Michael Bedford Taylor. Conser-
vation Cores: Reducing the Energy of Mature Computations. In ASPLOS ’10.

223

[75] S. Kumar, N. Sumner, V. Srinivasan, S. Margerm, and A. Shriraman. Needle: Leverag-
ing program analysis to analyze and extract accelerators from whole programs. pages
565–576, Feb 2017.

[76] Nathan Goulding-Hotta, Jack Sampson, Ganesh Venkatesh, Saturnino Garcia, Joe
Auricchio, Po-Chao Huang, Manish Arora, Siddhartha Nath, Vikram Bhatt, Jonathan
Babb, et al. The greendroid mobile application processor: An architecture for silicon’s
dark future. IEEE Micro, 31(2):86–95, 2011.

[77] Michael Pellauer, Yakun Sophia Shao, Jason Clemons, Neal Crago, Kartik Hegde,
Rangharajan Venkatesan, Stephen W. Keckler, Christopher W. Fletcher, and Joel
Emer. Buffets: An efficient and composable storage idiom for explicit decoupled data
orchestration. In Proceedings of the Twenty-Fourth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, ASPLOS ’19,
pages 137–151, New York, NY, USA, 2019. ACM.

[78] Jean-Loup Baer and Tien-Fu Chen. An effective on-chip preloading scheme to reduce
data access penalty. In Proceedings of the 1991 ACM/IEEE conference on Supercom-
puting, pages 176–186. ACM, 1991.

[79] Xiangyao Yu, Christopher J Hughes, Nadathur Satish, and Srinivas Devadas. Imp:
Indirect memory prefetcher. In Proceedings of the 48th International Symposium on
Microarchitecture, pages 178–190. ACM, 2015.

[80] Stephen Somogyi, Thomas F Wenisch, Anastassia Ailamaki, Babak Falsafi, and An-
dreas Moshovos. Spatial memory streaming. In ACM SIGARCH Computer Architec-
ture News, volume 34, pages 252–263. IEEE Computer Society, 2006.

[81] Thomas F. Wenisch, Stephen Somogyi, Nikolaos Hardavellas, Jangwoo Kim, Anastas-
sia Ailamaki, and Babak Falsafi. Temporal streaming of shared memory. SIGARCH
Comput. Archit. News, 33(2):222–233, May 2005.

[82] Stephen Somogyi, Thomas F. Wenisch, Anastasia Ailamaki, and Babak Falsafi. Spatio-
temporal memory streaming. In Proceedings of the 36th Annual International Sympo-
sium on Computer Architecture, ISCA ’09, pages 69–80, New York, NY, USA, 2009.
ACM.

[83] Akanksha Jain and Calvin Lin. Linearizing irregular memory accesses for improved
correlated prefetching. In Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 247–259. ACM, 2013.

[84] Norman P Jouppi. Improving direct-mapped cache performance by the addition of a
small fully-associative cache and prefetch buffers. ACM SIGARCH Computer Archi-
tecture News, 18(2SI):364–373, 1990.

224

[85] Timothy Sherwood, Suleyman Sair, and Brad Calder. Predictor-directed stream
buffers. In Proceedings of the 33rd Annual ACM/IEEE International Symposium on
Microarchitecture, MICRO 33, pages 42–53, New York, NY, USA, 2000. ACM.

[86] David Callahan, Ken Kennedy, and Allan Porterfield. Software prefetching. In ACM
SIGARCH Computer Architecture News, volume 19, pages 40–52. ACM, 1991.

[87] N. Kohout, Seungryul Choi, Dongkeun Kim, and D. Yeung. Multi-chain prefetching:
effective exploitation of inter-chain memory parallelism for pointer-chasing codes. In
Proceedings 2001 International Conference on Parallel Architectures and Compilation
Techniques, pages 268–279, 2001.

[88] Seungryul Choi, Nicholas Kohout, Sumit Pamnani, Dongkeun Kim, and Donald Ye-
ung. A general framework for prefetch scheduling in linked data structures and its
application to multi-chain prefetching. ACM Trans. Comput. Syst., 22(2):214–280,
May 2004.

[89] M. Kharbutli and Y. Solihin. Counter-based cache replacement and bypassing algo-
rithms. IEEE Transactions on Computers, 57(4):433–447, April 2008.

[90] Jayesh Gaur, Mainak Chaudhuri, and Sreenivas Subramoney. Bypass and insertion
algorithms for exclusive last-level caches. In Proceedings of the 38th Annual Interna-
tional Symposium on Computer Architecture, ISCA ’11, pages 81–92, New York, NY,
USA, 2011. ACM.

[91] Yingying Tian, Sooraj Puthoor, Joseph L. Greathouse, Bradford M. Beckmann, and
Daniel A. Jiménez. Adaptive gpu cache bypassing. In Proceedings of the 8th Workshop
on General Purpose Processing Using GPUs, GPGPU-8, pages 25–35, New York, NY,
USA, 2015. ACM.

[92] M. Chaudhuri, J. Gaur, N. Bashyam, S. Subramoney, and J. Nuzman. Introducing
hierarchy-awareness in replacement and bypass algorithms for last-level caches. In 2012
21st International Conference on Parallel Architectures and Compilation Techniques
(PACT), pages 293–304, Sep. 2012.

[93] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, Simon C. Steely, and Joel Emer.
Adaptive insertion policies for high performance caching. In Proceedings of the 34th
Annual International Symposium on Computer Architecture, ISCA ’07, pages 381–391,
New York, NY, USA, 2007. ACM.

[94] H. Liu, M. Ferdman, J. Huh, and D. Burger. Cache bursts: A new approach for
eliminating dead blocks and increasing cache efficiency. In 2008 41st IEEE/ACM
International Symposium on Microarchitecture, pages 222–233, Nov 2008.

225

[95] X. Xie, Y. Liang, Y. Wang, G. Sun, and T. Wang. Coordinated static and dynamic
cache bypassing for gpus. In 2015 IEEE 21st International Symposium on High Per-
formance Computer Architecture (HPCA), pages 76–88, Feb 2015.

[96] Fabian Schuiki, Florian Zaruba, Torsten Hoefler, and Luca Benini. Stream semantic
registers: A lightweight risc-v isa extension achieving full compute utilization in single-
issue cores. arXiv preprint arXiv:1911.08356, 2019.

[97] Yuze Chi, Jason Cong, Peng Wei, and Peipei Zhou. Soda: stencil with optimized
dataflow architecture. In 2018 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pages 1–8. IEEE, 2018.

[98] Intel. Intel virtualization technology for directed i/o, architecture specification. June
2019.

[99] AMD. Amd i/o virtualization technology (iommu) specification. December 2016.

[100] ARM. Arm system memory management unit architecture specification smmu archi-
tecture version 3.0 and version 3.1. 2017.

[101] Y. Hao, Z. Fang, G. Reinman, and J. Cong. Supporting address translation for
accelerator-centric architectures. In 2017 IEEE International Symposium on High Per-
formance Computer Architecture (HPCA), pages 37–48, 2017.

[102] A. Moshovos, G. Memik, B. Falsafi, and A. Choudhary. Jetty: filtering snoops for re-
duced energy consumption in smp servers. In Proceedings HPCA Seventh International
Symposium on High-Performance Computer Architecture, pages 85–96, 2001.

[103] Valentina Salapura, Matthias Blumrich, and Alan Gara. Improving the accuracy of
snoop filtering using stream registers. In Proceedings of the 2007 Workshop on MEm-
ory Performance: DEaling with Applications, Systems and Architecture, MEDEA ’07,
pages 25–32, New York, NY, USA, 2007. ACM.

[104] Jason Zebchuk, Elham Safi, and Andreas Moshovos. A framework for coarse-grain
optimizations in the on-chip memory hierarchy. In Proceedings of the 40th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 40, pages 314–
327, Washington, DC, USA, 2007. IEEE Computer Society.

[105] Andreas Moshovos. Regionscout: Exploiting coarse grain sharing in snoop-based co-
herence. SIGARCH Comput. Archit. News, 33(2):234–245, May 2005.

[106] Jason Power, Arkaprava Basu, Junli Gu, Sooraj Puthoor, Bradford M. Beckmann,
Mark D. Hill, Steven K. Reinhardt, and David A. Wood. Heterogeneous system coher-
ence for integrated cpu-gpu systems. In Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO-46, 2013.

226

[107] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico Am-
slinger, Matteo Andreozzi, Adrià Armejach, Nils Asmussen, Srikant Bharadwaj, Gabe
Black, Gedare Bloom, Bobby R. Bruce, Daniel Rodrigues Carvalho, Jeronimo Castril-
lon, Lizhong Chen, Nicolas Derumigny, Stephan Diestelhorst, Wendy Elsasser, Marjan
Fariborz, Amin Farmahini-Farahani, Pouya Fotouhi, Ryan Gambord, Jayneel Gandhi,
Dibakar Gope, Thomas Grass, Bagus Hanindhito, Andreas Hansson, Swapnil Haria,
Austin Harris, Timothy Hayes, Adrian Herrera, Matthew Horsnell, Syed Ali Raza
Jafri, Radhika Jagtap, Hanhwi Jang, Reiley Jeyapaul, Timothy M. Jones, Matthias
Jung, Subash Kannoth, Hamidreza Khaleghzadeh, Yuetsu Kodama, Tushar Krishna,
Tommaso Marinelli, Christian Menard, Andrea Mondelli, Tiago Mück, Omar Naji,
Krishnendra Nathella, Hoa Nguyen, Nikos Nikoleris, Lena E. Olson, Marc Orr, Binh
Pham, Pablo Prieto, Trivikram Reddy, Alec Roelke, Mahyar Samani, Andreas Sand-
berg, Javier Setoain, Boris Shingarov, Matthew D. Sinclair, Tuan Ta, Rahul Thakur,
Giacomo Travaglini, Michael Upton, Nilay Vaish, Ilias Vougioukas, Zhengrong Wang,
Norbert Wehn, Christian Weis, David A. Wood, Hongil Yoon, and Éder F. Zulian.
The gem5 simulator: Version 20.0+. In CoRR, volume abs/2007.03152, 2020.

[108] Niket Agarwal, Tushar Krishna, Li-Shiuan Peh, and Niraj K. Jha. Garnet: A de-
tailed on-chip network model inside a full-system simulator. 2009 IEEE International
Symposium on Performance Analysis of Systems and Software, pages 33–42, 2009.

[109] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang-Ha
Lee, and Kevin Skadron. Rodinia: A benchmark suite for heterogeneous computing. In
Proceedings of the 2009 IEEE International Symposium on Workload Characterization
(IISWC), IISWC ’09, page 44–54, USA, 2009. IEEE Computer Society.

[110] M. Bakhshalipour, M. Shakerinava, P. Lotfi-Kamran, and H. Sarbazi-Azad. Bingo
spatial data prefetcher. In 2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 399–411, Feb 2019.

[111] Seth Pugsley. 3rd data prefetching championship. June 2019.

[112] Vidushi Dadu, Jian Weng, Sihao Liu, and Tony Nowatzki. Towards general purpose
acceleration by exploiting common data-dependence forms. In Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO ’52, page
924–939, New York, NY, USA, 2019. Association for Computing Machinery.

[113] J. Weng, S. Liu, Z. Wang, V. Dadu, and T. Nowatzki. A hybrid systolic-dataflow
architecture for inductive matrix algorithms. In 2020 IEEE International Symposium
on High Performance Computer Architecture (HPCA), pages 703–716, 2020.

[114] J. Weng, S. Liu, V. Dadu, Z. Wang, P. Shah, and T. Nowatzki. Dsagen: Synthesizing
programmable spatial accelerators. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), pages 268–281, 2020.

227

[115] Milad Hashemi, Eiman Ebrahimi, Onur Mutlu, Yale N Patt, et al. Accelerating de-
pendent cache misses with an enhanced memory controller. In 2016 ACM/IEEE 43rd
Annual International Symposium on Computer Architecture (ISCA), pages 444–455.
IEEE, 2016.

[116] An-Chow Lai, Cem Fide, and Babak Falsafi. Dead-block prediction & dead-block corre-
lating prefetchers. In Proceedings 28th Annual International Symposium on Computer
Architecture, pages 144–154. IEEE, 2001.

[117] Zhigang Hu, Stefanos Kaxiras, and Margaret Martonosi. Timekeeping in the memory
system: predicting and optimizing memory behavior. In Proceedings 29th Annual
International Symposium on Computer Architecture, pages 209–220. IEEE, 2002.

[118] Samira Manabi Khan, Yingying Tian, and Daniel A Jimenez. Sampling dead block
prediction for last-level caches. In 2010 43rd Annual IEEE/ACM International Sym-
posium on Microarchitecture, pages 175–186. IEEE, 2010.

[119] Andreas Sembrant, Erik Hagersten, and David Black-Schaffer. The direct-to-data
(d2d) cache: Navigating the cache hierarchy with a single lookup. In Proceeding of
the 41st Annual International Symposium on Computer Architecuture (ISCA), pages
133–144, Piscataway, NJ, USA, 2014. IEEE Press.

[120] Moinuddin K Qureshi, Aamer Jaleel, Yale N Patt, Simon C Steely, and Joel Emer.
Adaptive insertion policies for high performance caching. ACM SIGARCH Computer
Architecture News, 35(2):381–391, 2007.

[121] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely, Jr., and Joel Emer. High per-
formance cache replacement using re-reference interval prediction (rrip). SIGARCH
Comput. Archit. News, 38(3):60–71, June 2010.

[122] Aamer Jaleel, William Hasenplaugh, Moinuddin Qureshi, Julien Sebot, Simon
Steely Jr, and Joel Emer. Adaptive insertion policies for managing shared caches.
In Proceedings of the 17th international conference on Parallel architectures and com-
pilation techniques, pages 208–219, 2008.

[123] L. Cheng, J. B. Carter, and D. Dai. An adaptive cache coherence protocol optimized
for producer-consumer sharing. In 2007 IEEE 13th International Symposium on High
Performance Computer Architecture, pages 328–339, 2007.

[124] Abdullah Kayi and Tarek El-Ghazawi. An adaptive cache coherence protocol for chip
multiprocessors. In Proceedings of the Second International Forum on Next-Generation
Multicore/Manycore Technologies, IFMT ’10, New York, NY, USA, 2010. Association
for Computing Machinery.

[125] Alan L. Cox and Robert J. Fowler. Adaptive cache coherency for detecting migratory
shared data. SIGARCH Comput. Archit. News, 21(2):98–108, May 1993.

228

[126] H̊akan Grahn and Per Stenström. Evaluation of a competitive-update cache coherence
protocol with migratory data detection. Journal of Parallel and Distributed Comput-
ing, 39(2):168 – 180, 1996.

[127] Guru Venkataramani, Christopher J. Hughes, Sanjeev Kumar, and Milos Prvulovic.
Deft: Design space exploration for on-the-fly detection of coherence misses. ACM
Trans. Archit. Code Optim., 8(2), June 2011.

[128] Guru Venkataramani, Christopher J. Hughes, Sanjeev Kumar, and Milos Prvulovic.
Deft: Design space exploration for on-the-fly detection of coherence misses. ACM
Trans. Archit. Code Optim., 8(2), June 2011.

[129] H. Abdel-Shafi, J. Hall, S. V. Adve, and V. S. Adve. An evaluation of fine-grain
producer-initiated communication in cache-coherent multiprocessors. In Proceedings
Third International Symposium on High-Performance Computer Architecture, pages
204–215, 1997.

[130] M. Musleh and V. S. Pai. Automatic sharing classification and timely push for cache-
coherent systems. In SC ’15: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 1–12, 2015.

[131] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt. Feedback directed prefetching: Improv-
ing the performance and bandwidth-efficiency of hardware prefetchers. In 2007 IEEE
13th International Symposium on High Performance Computer Architecture, pages 63–
74, 2007.

[132] Sam Ainsworth and Timothy M Jones. Software prefetching for indirect memory
accesses. In 2017 IEEE/ACM International Symposium on Code Generation and Op-
timization (CGO), pages 305–317. IEEE, 2017.

[133] Anant Vithal Nori, Jayesh Gaur, Siddharth Rai, Sreenivas Subramoney, and Hong
Wang. Criticality aware tiered cache hierarchy: a fundamental relook at multi-level
cache hierarchies. In 2018 ACM/IEEE 45th Annual International Symposium on Com-
puter Architecture (ISCA), pages 96–109. IEEE, 2018.

[134] Sam Ainsworth and Timothy M Jones. An event-triggered programmable prefetcher
for irregular workloads. ACM SIGPLAN Notices, 53(2):578–592, 2018.

[135] S. Xu, T. Bourgeat, T. Huang, H. Kim, S. Lee, and A. Arvind. Aquoman: An analytic-
query offloading machine. In 2020 53rd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2020.

[136] Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric
Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ran-
ganathan, and Onur Mutlu. Google workloads for consumer devices: Mitigating data

229

movement bottlenecks. In Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS
’18, 2018.

[137] M. Drumond, A. Daglis, N. Mirzadeh, D. Ustiugov, J. Picorel, B. Falsafi, B. Grot,
and D. Pnevmatikatos. The mondrian data engine. In 2017 ACM/IEEE 44th Annual
International Symposium on Computer Architecture (ISCA), 2017.

[138] Ivan Fernandez, Ricardo Quislant, Eladio Gutiérrez, Oscar Plata, Christina Giannoula,
Mohammed Alser, Juan Gómez-Luna, and Onur Mutlu. Natsa: A near-data processing
accelerator for time series analysis. In 2020 IEEE 38th International Conference on
Computer Design (ICCD). IEEE, 2020.

[139] Mingyu Gao, Grant Ayers, and Christos Kozyrakis. Practical near-data processing
for in-memory analytics frameworks. In 2015 International Conference on Parallel
Architecture and Compilation (PACT). IEEE, 2015.

[140] Mingyu Gao and Christos Kozyrakis. Hrl: Efficient and flexible reconfigurable logic for
near-data processing. In 2016 IEEE International Symposium on High Performance
Computer Architecture (HPCA). Ieee, 2016.

[141] Lifeng Nai, Ramyad Hadidi, Jaewoong Sim, Hyojong Kim, Pranith Kumar, and Hye-
soon Kim. Graphpim: Enabling instruction-level pim offloading in graph computing
frameworks. In 2017 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pages 457–468, 2017.

[142] R. Nair, S. F. Antao, C. Bertolli, P. Bose, J. R. Brunheroto, T. Chen, C. . Y. Cher,
C. H. A. Costa, J. Doi, C. Evangelinos, B. M. Fleischer, T. W. Fox, D. S. Gallo,
L. Grinberg, J. A. Gunnels, A. C. Jacob, P. Jacob, H. M. Jacobson, T. Karkhanis,
C. Kim, J. H. Moreno, J. K. O’Brien, M. Ohmacht, Y. Park, D. A. Prener, B. S.
Rosenburg, K. D. Ryu, O. Sallenave, M. J. Serrano, P. D. M. Siegl, K. Sugavanam,
and Z. Sura. Active memory cube: A processing-in-memory architecture for exascale
systems. IBM Journal of Research and Development, 59(2/3), 2015.

[143] Po-An Tsai, Changping Chen, and Daniel Sanchez. Adaptive scheduling for systems
with asymmetric memory hierarchies. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 2018.

[144] A. Farmahini-Farahani, J. H. Ahn, K. Morrow, and N. S. Kim. Nda: Near-dram
acceleration architecture leveraging commodity dram devices and standard memory
modules. In 2015 IEEE 21st International Symposium on High Performance Computer
Architecture (HPCA), pages 283–295, 2015.

230

[145] Byungchul Hong, Gwangsun Kim, Jung Ho Ahn, Yongkee Kwon, Hongsik Kim, and
John Kim. Accelerating linked-list traversal through near-data processing. In Proceed-
ings of the 2016 International Conference on Parallel Architectures and Compilation,
PACT ’16, New York, NY, USA, 2016. Association for Computing Machinery.

[146] Lingxi Wu, Rasool Sharifi, Marzieh Lenjani, Kevin Skadron, and Ashish Venkat. Sieve:
Scalable in-situ dram-based accelerator designs for massively parallel k-mer matching.
In Proceedings of the 48th Annual International Symposium on Computer Architecture,
ISCA ’21, page 251–264. IEEE Press, 2021.

[147] Mark C. Jeffrey, Suvinay Subramanian, Maleen Abeydeera, Joel Emer, and Daniel
Sanchez. Data-Centric Execution of Speculative Parallel Programs. In Proceedings of
the 49th annual IEEE/ACM international symposium on Microarchitecture (MICRO-
49), October 2016.

[148] Maleen Abeydeera and Daniel Sanchez. Chronos: Efficient speculative parallelism for
accelerators. In Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, ASPLOS ’20,
2020.

[149] Shaizeen Aga, Supreet Jeloka, Arun Subramaniyan, Satish Narayanasamy, David
Blaauw, and Reetuparna Das. Compute caches. In 2017 IEEE International Sym-
posium on High Performance Computer Architecture (HPCA), pages 481–492. IEEE,
2017.

[150] Joao Mario Domingos, Nuno Neves, Nuno Roma, and Pedro Tomás. Unlimited vector
extension with data streaming support. In Proceedings of the 48th Annual Interna-
tional Symposium on Computer Architecture, ISCA ’21, page 209–222. IEEE Press,
2021.

[151] Nishil Talati, Kyle May, Armand Behroozi, Yichen Yang, Kuba Kaszyk, Christos Vasi-
ladiotis, Tarunesh Verma, Lu Li, Brandon Nguyen, Jiawen Sun, John Magnus Morton,
Agreen Ahmadi, Todd Austin, Michael O’Boyle, Scott Mahlke, Trevor Mudge, and
Ronald Dreslinski. Prodigy: Improving the memory latency of data-indirect irregular
workloads using hardware-software co-design. In 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA), pages 654–667, 2021.

[152] Mario Nemirovsky and Dean M Tullsen. Multithreading architecture. Synthesis Lec-
tures on Computer Architecture, 8(1):1–109, 2013.

[153] Ashish Panwar, Sorav Bansal, and K. Gopinath. Hawkeye: Efficient fine-grained os
support for huge pages. In Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS
’19, page 347–360, New York, NY, USA, 2019. Association for Computing Machinery.

231

[154] Luis Ceze, James Tuck, Pablo Montesinos, and Josep Torrellas. Bulksc: Bulk en-
forcement of sequential consistency. In Proceedings of the 34th Annual International
Symposium on Computer Architecture, ISCA ’07, page 278–289, New York, NY, USA,
2007. Association for Computing Machinery.

[155] Vijay Nagarajan, Daniel J. Sorin, Mark D. Hill, and David A. Wood. A primer on
memory consistency and cache coherence, second edition. Synthesis Lectures on Com-
puter Architecture, 15(1):1–294, 2020.

[156] Shang Li, Zhiyuan Yang, Dhiraj Reddy, Ankur Srivastava, and Bruce Jacob. Dram-
sim3: A cycle-accurate, thermal-capable dram simulator. IEEE Comput. Archit. Lett.,
19(2):106–109, jul 2020.

[157] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik, and A. Choudhary.
Minebench: A benchmark suite for data mining workloads. In ISWC ’06, pages 182–
188.

[158] Scott Beamer, Krste Asanović, and David Patterson. The gap benchmark suite, 2017.

[159] Xinfeng Xie, Zheng Liang, Peng Gu, Abanti Basak, Lei Deng, Ling Liang, Xing Hu,
and Yuan Xie. Spacea: Sparse matrix vector multiplication on processing-in-memory
accelerator. In HPCA, 2021.

[160] Duckhwan Kim, Jaeha Kung, Sek Chai, Sudhakar Yalamanchili, and Saibal Mukhopad-
hyay. Neurocube: A programmable digital neuromorphic architecture with high-
density 3d memory. In 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA), pages 380–392, 2016.

[161] J. Liu, H. Zhao, M. A. Ogleari, D. Li, and J. Zhao. Processing-in-memory for energy-
efficient neural network training: A heterogeneous approach. In 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), 2018.

[162] M. Zhang, Y. Zhuo, C. Wang, M. Gao, Y. Wu, K. Chen, C. Kozyrakis, and X. Qian.
Graphp: Reducing communication for pim-based graph processing with efficient data
partition. In 2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2018.

[163] Youwei Zhuo, Chao Wang, Mingxing Zhang, Rui Wang, Dimin Niu, Yanzhi Wang,
and Xuehai Qian. Graphq: Scalable pim-based graph processing. In Proceedings of
the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, 2019.

[164] Christina Giannoula, Nandita Vijaykumar, Nikela Papadopoulou, Vasileios
Karakostas, Ivan Fernandez, Juan Gómez-Luna, Lois Orosa, Nectarios Koziris, Geor-
gios Goumas, and Onur Mutlu. Syncron: Efficient synchronization support for near-
data-processing architectures. In HPCA, 2021.

232

[165] Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan, Brandon Lucia,
Rachata Ausavarungnirun, Kevin Hsieh, Nastaran Hajinazar, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu. Conda: Efficient cache coherence support for
near-data accelerators. In Proceedings of the 46th International Symposium on Com-
puter Architecture, ISCA ’19, 2019.

[166] Gunjae Koo, Kiran Kumar Matam, Te I, H. V. Krishna Giri Narra, Jing Li, Hung-Wei
Tseng, Steven Swanson, and Murali Annavaram. Summarizer: Trading communica-
tion with computing near storage. In Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO-50 ’17, page 219–231, New
York, NY, USA, 2017. Association for Computing Machinery.

[167] Daichi Fujiki, Scott Mahlke, and Reetuparna Das. In-memory data parallel processor.
In Proceedings of the Twenty-Third International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS ’18, page 1–14, New
York, NY, USA, 2018. Association for Computing Machinery.

[168] Shuangchen Li, Dimin Niu, Krishna T Malladi, Hongzhong Zheng, Bob Brennan, and
Yuan Xie. Drisa: A dram-based reconfigurable in-situ accelerator. In 2017 50th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 288–301.
IEEE, 2017.

[169] M. C. Jeffrey, S. Subramanian, C. Yan, J. Emer, and D. Sanchez. A scalable ar-
chitecture for ordered parallelism. In 2015 48th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 228–241, Dec 2015.

[170] Suvinay Subramanian, Mark C. Jeffrey, Maleen Abeydeera, Hyun Ryong Lee, Vic-
tor A. Ying, Joel Emer, and Daniel Sanchez. Fractal: An execution model for fine-
grain nested speculative parallelism. In Proceedings of the 44th Annual International
Symposium on Computer Architecture, ISCA ’17, 2017.

[171] M. C. Jeffrey, V. A. Ying, S. Subramanian, H. R. Lee, J. Emer, and D. Sanchez.
Harmonizing speculative and non-speculative execution in architectures for ordered
parallelism. In 2018 51st Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pages 217–230, 2018.

[172] Victor A Ying, Mark C Jeffrey, and Daniel Sanchez. T4: Compiling sequential code
for effective speculative parallelization in hardware. In 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA), pages 159–172. IEEE,
2020.

[173]

233

[174] Vidushi Dadu, Sihao Liu, and Tony Nowatzki. Polygraph: Exposing the value of
flexibility for graph processing accelerators. In Proceedings of the 48th Annual Inter-
national Symposium on Computer Architecture, ISCA ’21, page 595–608. IEEE Press,
2021.

[175] Mohsen Imani, Saikishan Pampana, Saransh Gupta, Minxuan Zhou, Yeseong Kim,
and Tajana Rosing. Dual: Acceleration of clustering algorithms using digital-based
processing in-memory. In 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 356–371, 2020.

[176] Xulong Tang, Orhan Kislal, Mahmut Kandemir, and Mustafa Karakoy. Data move-
ment aware computation partitioning. In Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO-50 ’17, page 730–744, New
York, NY, USA, 2017. Association for Computing Machinery.

[177] Anurag Mukkara, Nathan Beckmann, and Daniel Sanchez. Whirlpool: Improving dy-
namic cache management with static data classification. In Proceedings of the Twenty-
First International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’16, page 113–127, New York, NY, USA, 2016. As-
sociation for Computing Machinery.

[178] Amd epyc 7773x, 2023.

[179] M. Orenes-Vera, E. Tureci, D. Wentzlaff, and M. Martonosi. Dalorex: A data-local
program execution and architecture for memory-bound applications. In 2023 IEEE
International Symposium on High-Performance Computer Architecture (HPCA), pages
718–730, Los Alamitos, CA, USA, mar 2023. IEEE Computer Society.

[180] Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire, and Dejan Kostić. Make the most
out of last level cache in intel processors. In Proceedings of the Fourteenth EuroSys
Conference 2019, EuroSys ’19, New York, NY, USA, 2019. Association for Computing
Machinery.

[181] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark D. Hill, and Michael M. Swift.
Efficient virtual memory for big memory servers. SIGARCH Comput. Archit. News,
41(3):237–248, June 2013.

[182] Vasileios Karakostas, Jayneel Gandhi, Furkan Ayar, Adrián Cristal, Mark D. Hill,
Kathryn S. McKinley, Mario Nemirovsky, Michael M. Swift, and Osman Ünsal. Redun-
dant memory mappings for fast access to large memories. In Proceedings of the 42nd
Annual International Symposium on Computer Architecture, ISCA ’15, page 66–78,
New York, NY, USA, 2015. Association for Computing Machinery.

[183] Hamza Rihani, Peter Sanders, and Roman Dementiev. Multiqueues: Simple relaxed
concurrent priority queues. In Proceedings of the 27th ACM Symposium on Parallelism

234

in Algorithms and Architectures, SPAA ’15, page 80–82, New York, NY, USA, 2015.
Association for Computing Machinery.

[184] Scott Beamer, Krste Asanović, and David Patterson. Direction-optimizing breadth-
first search. In Proceedings of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis, SC ’12, Washington, DC, USA, 2012. IEEE
Computer Society Press.

[185] Rajeev Balasubramonian, Andrew B Kahng, Naveen Muralimanohar, Ali Shafiee, and
Vaishnav Srinivas. Cacti 7: New tools for interconnect exploration in innovative off-
chip memories. ACM Transactions on Architecture and Code Optimization (TACO),
14(2):14, 2017.

[186] Benedek Rozemberczki and Rik Sarkar. Twitch gamers: a dataset for evaluating
proximity preserving and structural role-based node embeddings, 2021.

[187] Julian McAuley and Jure Leskovec. Learning to discover social circles in ego networks.
In Proceedings of the 25th International Conference on Neural Information Processing
Systems - Volume 1, NIPS’12, page 539–547, Red Hook, NY, USA, 2012. Curran
Associates Inc.

[188] Mahbod Afarin, Chao Gao, Shafiur Rahman, Nael Abu-Ghazaleh, and Rajiv Gupta.
Commongraph: Graph analytics on evolving data. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2, ASPLOS 2023, page 133–145, New York, NY, USA,
2023. Association for Computing Machinery.

[189] Guanyu Feng, Zixuan Ma, Daixuan Li, Shengqi Chen, Xiaowei Zhu, Wentao Han,
and Wenguang Chen. Risgraph: A real-time streaming system for evolving graphs to
support sub-millisecond per-update analysis at millions ops/s. In Proceedings of the
2021 International Conference on Management of Data, SIGMOD ’21, page 513–527,
New York, NY, USA, 2021. Association for Computing Machinery.

[190] Anand Padmanabha Iyer, Qifan Pu, Kishan Patel, Joseph E. Gonzalez, and Ion Sto-
ica. TEGRA: Efficient Ad-Hoc analytics on evolving graphs. In 18th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 21), pages 337–355.
USENIX Association, April 2021.

[191] Xiaolin Jiang, Chengshuo Xu, Xizhe Yin, Zhijia Zhao, and Rajiv Gupta. Tripoline:
Generalized incremental graph processing via graph triangle inequality. In Proceedings
of the Sixteenth European Conference on Computer Systems, EuroSys ’21, page 17–32,
New York, NY, USA, 2021. Association for Computing Machinery.

[192] Xiaogang Shi, Bin Cui, Yingxia Shao, and Yunhai Tong. Tornado: A system for real-
time iterative analysis over evolving data. In Proceedings of the 2016 International

235

Conference on Management of Data, SIGMOD ’16, page 417–430, New York, NY,
USA, 2016. Association for Computing Machinery.

[193] Prashant Pandey, Brian Wheatman, Helen Xu, and Aydin Buluc. Terrace: A hierar-
chical graph container for skewed dynamic graphs. In Proceedings of the 2021 Interna-
tional Conference on Management of Data, SIGMOD ’21, page 1372–1385, New York,
NY, USA, 2021. Association for Computing Machinery.

[194] Wole Jaiyeoba and Kevin Skadron. Graphtinker: A high performance data structure
for dynamic graph processing. In 2019 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 1030–1041, 2019.

[195] Changkyu Kim, Doug Burger, and Stephen W. Keckler. An adaptive, non-uniform
cache structure for wire-delay dominated on-chip caches. In Proceedings of the 10th
International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS X, page 211–222, New York, NY, USA, 2002. Association
for Computing Machinery.

[196] Sangyeun Cho and Lei Jin. Managing distributed, shared l2 caches through os-level
page allocation. In 2006 39th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO’06), pages 455–468, 2006.

[197] Nikos Hardavellas, Michael Ferdman, Babak Falsafi, and Anastasia Ailamaki. Reactive
nuca: Near-optimal block placement and replication in distributed caches. SIGARCH
Comput. Archit. News, 37(3):184–195, June 2009.

[198] Manu Awasthi, Kshitij Sudan, Rajeev Balasubramonian, and John Carter. Dynamic
hardware-assisted software-controlled page placement to manage capacity allocation
and sharing within large caches. In 2009 IEEE 15th International Symposium on High
Performance Computer Architecture, pages 250–261, 2009.

[199] Mainak Chaudhuri. Pagenuca: Selected policies for page-grain locality management in
large shared chip-multiprocessor caches. In 2009 IEEE 15th International Symposium
on High Performance Computer Architecture, pages 227–238, 2009.

[200] Lei Jin and Sangyeun Cho. Sos: A software-oriented distributed shared cache man-
agement approach for chip multiprocessors. In 2009 18th International Conference on
Parallel Architectures and Compilation Techniques, pages 361–371, 2009.

[201] Nathan Beckmann, Po-An Tsai, and Daniel Sanchez. Scaling distributed cache hi-
erarchies through computation and data co-scheduling. In 2015 IEEE 21st Interna-
tional Symposium on High Performance Computer Architecture (HPCA), pages 538–
550, 2015.

236

[202] Nathan Beckmann and Daniel Sanchez. Jigsaw: Scalable software-defined caches.
In Proceedings of the 22Nd International Conference on Parallel Architectures and
Compilation Techniques, PACT ’13, pages 213–224, Piscataway, NJ, USA, 2013. IEEE
Press.

[203] Nathan Beckmann, Po-An Tsai, and Daniel Sanchez. Scaling distributed cache hi-
erarchies through computation and data co-scheduling. In 2015 IEEE 21st Interna-
tional Symposium on High Performance Computer Architecture (HPCA), pages 538–
550. IEEE, 2015.

[204] Po-An Tsai, Nathan Beckmann, and Daniel Sanchez. Jenga: Software-defined cache
hierarchies. In Proceedings of the 44th Annual International Symposium on Computer
Architecture, ISCA ’17, pages 652–665, New York, NY, USA, 2017. ACM.

[205] Po-An Tsai, Nathan Beckmann, and Daniel Sanchez. Nexus: A new approach to
replication in distributed shared caches. In 2017 26th International Conference on
Parallel Architectures and Compilation Techniques (PACT), pages 166–179, 2017.

[206] B.M. Beckmann and D.A. Wood. Managing wire delay in large chip-multiprocessor
caches. In 37th International Symposium on Microarchitecture (MICRO-37’04), pages
319–330, 2004.

[207] Bradford M. Beckmann, Michael R. Marty, and David A. Wood. Asr: Adaptive se-
lective replication for cmp caches. In 2006 39th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’06), pages 443–454, 2006.

[208] Haakon Dybdahl and Per Stenstrom. An adaptive shared/private nuca cache parti-
tioning scheme for chip multiprocessors. In 2007 IEEE 13th International Symposium
on High Performance Computer Architecture, pages 2–12, 2007.

[209] Z. Chishti, M.D. Powell, and T.N. Vijaykumar. Distance associativity for high-
performance energy-efficient non-uniform cache architectures. In Proceedings. 36th
Annual IEEE/ACM International Symposium on Microarchitecture, 2003. MICRO-
36., pages 55–66, 2003.

[210] Z. Chishti, M.D. Powell, and T.N. Vijaykumar. Optimizing replication, communica-
tion, and capacity allocation in cmps. In 32nd International Symposium on Computer
Architecture (ISCA’05), pages 357–368, 2005.

[211] Javier Merino, Valentin Puente, and Jose A. Gregorio. Esp-nuca: A low-cost adap-
tive non-uniform cache architecture. In 2010 16th International Symposium on High-
Performance Computer Architecture (HPCA’10), pages 1–10, 2010.

[212] Brian C. Schwedock and Nathan Beckmann. Jumanji: The case for dynamic nuca
in the datacenter. In 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 665–680, 2020.

237

[213] Yaosheng Fu, Tri M Nguyen, and David Wentzlaff. Coherence domain restriction on
large scale systems. In 2015 48th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 686–698. IEEE, 2015.

[214] Ali Sedaghati, Milad Hakimi, Reza Hojabr, and Arrvindh Shriraman. X-cache: A
modular architecture for domain-specific caches. In Proceedings of the 49th Annual
International Symposium on Computer Architecture, ISCA ’22, page 396–409, New
York, NY, USA, 2022. Association for Computing Machinery.

[215] Po-An Tsai, Yee Ling Gan, and Daniel Sanchez. Rethinking the memory hierarchy
for modern languages. In Proceedings of the 51st Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO-51, page 203–216. IEEE Press, 2018.

[216] Keun Sup Shim, Mieszko Lis, Omer Khan, and Srinivas Devadas. The execution mi-
gration machine: Directoryless shared-memory architecture. Computer, 48(9):50–59,
sep 2015.

[217] Gilead Posluns, Yan Zhu, Guowei Zhang, and Mark C. Jeffrey. A scalable architecture
for reprioritizing ordered parallelism. In Proceedings of the 49th Annual International
Symposium on Computer Architecture, ISCA ’22, page 437–453, New York, NY, USA,
2022. Association for Computing Machinery.

[218] Marcelo Orenes-Vera, Esin Tureci, David Wentzlaff, and Margaret Martonosi. Massive
data-centric parallelism in the chiplet era, 2023.

[219] Vidushi Dadu and Tony Nowatzki. Taskstream: Accelerating task-parallel workloads
by recovering program structure. In Proceedings of the 27th ACM International Con-
ference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’22, page 1–13, New York, NY, USA, 2022. Association for Computing Ma-
chinery.

[220] Quan M. Nguyen and Daniel Sanchez. Fifer: Practical acceleration of irregular appli-
cations on reconfigurable architectures. In MICRO-54: 54th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, MICRO ’21, page 1064–1077, New York,
NY, USA, 2021. Association for Computing Machinery.

[221] Quan M. Nguyen and Daniel Sanchez. Phloem: Automatic acceleration of irregular ap-
plications with fine-grain pipeline parallelism. In 2023 IEEE International Symposium
on High-Performance Computer Architecture (HPCA), pages 1262–1274, 2023.

[222] Mahmut Taylan Kandemir, Xulong Tang, Hui Zhao, Jihyun Ryoo, and Mustafa
Karakoy. Distance-in-time versus distance-in-space. In Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design and Implemen-
tation, PLDI 2021, page 665–680, New York, NY, USA, 2021. Association for Com-
puting Machinery.

238

[223] Shafiur Rahman, Nael Abu-Ghazaleh, and Rajiv Gupta. Graphpulse: An event-
driven hardware accelerator for asynchronous graph processing. In 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 908–921,
2020.

[224] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi. Graphicionado: A
high-performance and energy-efficient accelerator for graph analytics. In 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages
1–13, Oct 2016.

[225] Daichi Fujiki, Xiaowei Wang, Arun Subramaniyan, and Reetuparna Das. In-/near-
memory computing. Synthesis Lectures on Computer Architecture, 16:1–140, 08 2021.

[226] Charles Gregory Nelson. Techniques for Program Verification. PhD thesis, Stanford,
CA, USA, 1980. AAI8011683.

[227] Robert Nieuwenhuis and Albert Oliveras. Proof-producing congruence closure. In
Proceedings of the 16th International Conference on Term Rewriting and Applications,
RTA’05, page 453–468, Berlin, Heidelberg, 2005. Springer-Verlag.

[228] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Princi-
ples, Techniques, and Tools (2nd Edition). Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2006.

[229] Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock,
and Pavel Panchekha. Egg: Fast and extensible equality saturation. Proc. ACM
Program. Lang., 5(POPL), jan 2021.

[230] Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, NIPS’17, page 5105–5114, Red
Hook, NY, USA, 2017. Curran Associates Inc.

[231] Sadegh Yazdanshenas, Kosuke Tatsumura, and Vaughn Betz. Don’t forget the
memory: Automatic block ram modelling, optimization, and architecture explo-
ration. In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, FPGA ’17, page 115–124, New York, NY, USA, 2017.
Association for Computing Machinery.

[232] Mohsen Imani, Saransh Gupta, and Tajana Rosing. Genpim: Generalized processing
in-memory to accelerate data intensive applications. In 2018 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pages 1155–1158, 2018.

[233] Jingyao Zhang and Elaheh Sadredini. Inhale: Enabling high-performance and energy-
efficient in-sram cryptographic hash for iot. In 2022 IEEE/ACM International Con-
ference On Computer Aided Design (ICCAD), pages 1–9, 2022.

239

[234] Jingyao Zhang, Hoda Naghibijouybari, and Elaheh Sadredini. Sealer: In-sram aes
for high-performance and low-overhead memory encryption. In Proceedings of the
ACM/IEEE International Symposium on Low Power Electronics and Design, ISLPED
’22, New York, NY, USA, 2022. Association for Computing Machinery.

[235] Sihao Liu, Jian Weng, Dylan Kupsh, Atefeh Sohrabizadeh, Zhengrong Wang, Licheng
Guo, Jiuyang Liu, Maxim Zhulin, Rishabh Mani, Lucheng Zhang, Jason Cong, and
Tony Nowatzki. Overgen: Improving fpga usability through domain-specific overlay
generation. In 2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 35–56, 2022.

[236] Graham Gobieski, Souradip Ghosh, Marijn Heule, Todd Mowry, Tony Nowatzki,
Nathan Beckmann, and Brandon Lucia. Riptide: A programmable, energy-minimal
dataflow compiler and architecture. In 2022 55th IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), pages 546–564, 2022.

[237] Shuangchen Li, Cong Xu, Qiaosha Zou, Jishen Zhao, Yu Lu, and Yuan Xie. Pinatubo:
A processing-in-memory architecture for bulk bitwise operations in emerging non-
volatile memories. In 2016 53nd ACM/EDAC/IEEE Design Automation Conference
(DAC), pages 1–6, 2016.

[238] Jisung Park, Roknoddin Azizi, Geraldo F. Oliveira, Mohammad Sadrosadati, Rakesh
Nadig, David Novo, Juan Gómez-Luna, Myungsuk Kim, and Onur Mutlu. Flash-
cosmos: In-flash bulk bitwise operations using inherent computation capability of nand
flash memory. In 2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 937–955, 2022.

[239] Xin Xin, Youtao Zhang, and Jun Yang. Roc: Dram-based processing with reduced
operation cycles. In 2019 56th ACM/IEEE Design Automation Conference (DAC),
pages 1–6, 2019.

[240] Fei Gao, Georgios Tziantzioulis, and David Wentzlaff. Computedram: In-memory
compute using off-the-shelf drams. In Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO ’52, page 100–113, New York,
NY, USA, 2019. Association for Computing Machinery.

[241] Fei Gao, Georgios Tziantzioulis, and David Wentzlaff. Fracdram: Fractional values in
off-the-shelf dram. In 2022 55th IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), pages 885–899, 2022.

[242] Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, João Dinis Ferreira,
Nika Mansouri Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan Gómez-
Luna, and Onur Mutlu. Simdram: A framework for bit-serial simd processing using

240

dram. In Proceedings of the 26th ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, ASPLOS ’21, page 329–345,
New York, NY, USA, 2021. Association for Computing Machinery.

[243] Xiangjun Peng, Yaohua Wang, and Ming-Chang Yang. Chopper: A compiler infras-
tructure for programmable bit-serial simd processing using memory in dram. In 2023
IEEE International Symposium on High-Performance Computer Architecture (HPCA),
pages 1275–1288, 2023.

[244] David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm, Kimberly Kee-
ton, Christoforos Kozyrakis, Randi Thomas, and Katherine Yelick. A case for intelli-
gent ram. IEEE Micro, 17(2):34–44, mar 1997.

[245] C. Kozyrakis, J. Gebis, D. Martin, S. Williams, I. Mavroidis, S. Pope, D. Jones,
D. Patterson, and K. Yelick. Vector IRAM: A Media-oriented Vector Processor with
Embedded DRAM. In 12th Hot Chips Conference, August 2000.

[246] Sukhan Lee, Shin-haeng Kang, Jaehoon Lee, Hyeonsu Kim, Eojin Lee, Seungwoo
Seo, Hosang Yoon, Seungwon Lee, Kyounghwan Lim, Hyunsung Shin, Jinhyun Kim,
O Seongil, Anand Iyer, David Wang, Kyomin Sohn, and Nam Sung Kim. Hardware
architecture and software stack for pim based on commercial dram technology : Indus-
trial product. In 2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA), pages 43–56, 2021.

[247] Supreet Jeloka, Naveen Bharathwaj Akesh, Dennis Sylvester, and David Blaauw. A
28 nm configurable memory (tcam/bcam/sram) using push-rule 6t bit cell enabling
logic-in-memory. IEEE Journal of Solid-State Circuits, 51(4):1009–1021, 2016.

[248] Mohsen Imani, Saransh Gupta, Yeseong Kim, and Tajana Rosing. Floatpim: In-
memory acceleration of deep neural network training with high precision. In Proceed-
ings of the 46th International Symposium on Computer Architecture, ISCA ’19, page
802–815, New York, NY, USA, 2019. Association for Computing Machinery.

[249] Jingcheng Wang, Xiaowei Wang, Charles Eckert, Arun Subramaniyan, Reetuparna
Das, David Blaauw, and Dennis Sylvester. A 28-nm compute sram with bit-serial
logic/arithmetic operations for programmable in-memory vector computing. IEEE
Journal of Solid-State Circuits, 55(1):76–86, 2020.

[250] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu Wang,
and Yuan Xie. Prime: A novel processing-in-memory architecture for neural network
computation in reram-based main memory. In Proceedings of the 43rd International
Symposium on Computer Architecture, ISCA ’16, page 27–39. IEEE Press, 2016.

[251] Weitao Li, Pengfei Xu, Yang Zhao, Haitong Li, Yuan Xie, and Yingyan Lin. Timely:
Pushing data movements and interfaces in pim accelerators towards local and in time

241

domain. In Proceedings of the ACM/IEEE 47th Annual International Symposium on
Computer Architecture, ISCA ’20, page 832–845. IEEE Press, 2020.

[252] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian,
John Paul Strachan, Miao Hu, R. Stanley Williams, and Vivek Srikumar. Isaac: A
convolutional neural network accelerator with in-situ analog arithmetic in crossbars.
In Proceedings of the 43rd International Symposium on Computer Architecture, ISCA
’16, page 14–26. IEEE Press, 2016.

[253] Saransh Gupta, Mohsen Imani, Harveen Kaur, and Tajana Simunic Rosing. Nnpim:
A processing in-memory architecture for neural network acceleration. IEEE Trans.
Comput., 68(9):1325–1337, sep 2019.

[254] Guohao Dai, Tianhao Huang, Yuze Chi, Jishen Zhao, Guangyu Sun, Yongpan Liu,
Yu Wang, Yuan Xie, and Huazhong Yang. Graphh: A processing-in-memory architec-
ture for large-scale graph processing. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 38(4):640–653, 2019.

[255] Bagus Hanindhito, Ruihao Li, Dimitrios Gourounas, Arash Fathi, Karan Govil, Dimi-
tar Trenev, Andreas Gerstlauer, and Lizy John. Wave-pim: Accelerating wave simula-
tion using processing-in-memory. In Proceedings of the 50th International Conference
on Parallel Processing, ICPP ’21, New York, NY, USA, 2021. Association for Com-
puting Machinery.

[256] Yinan Li and Jignesh M. Patel. Bitweaving: Fast scans for main memory data pro-
cessing. In Proceedings of the 2013 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’13, page 289–300, New York, NY, USA, 2013. Association
for Computing Machinery.

[257] Bob Goodwin, Michael Hopcroft, Dan Luu, Alex Clemmer, Mihaela Curmei, Sameh
Elnikety, and Yuxiong He. Bitfunnel: Revisiting signatures for search. In Proceedings
of the 40th International ACM SIGIR Conference on Research and Development in In-
formation Retrieval, SIGIR ’17, page 605–614, New York, NY, USA, 2017. Association
for Computing Machinery.

[258] Nvidia. Nvidia H100 tensor core gpu architecture, 2022.

[259] Intel. Intel data streaming acceleartor architecture specification, 2022.

[260] Albert Segura, Jose-Maria Arnau, and Antonio González. Scu: A gpu stream com-
paction unit for graph processing. In Proceedings of the 46th International Symposium
on Computer Architecture, ISCA ’19, page 424–435, New York, NY, USA, 2019. Asso-
ciation for Computing Machinery.

[261] Fabrice Devaux. The true processing in memory accelerator. In 2019 IEEE Hot Chips
31 Symposium (HCS), pages 1–24, 2019.

242

[262] Jinfan Chen, Juan Gómez-Luna, Izzat El Hajj, Yuxin Guo, and Onur Mutlu. Sim-
plepim: A software framework for productive and efficient processing-in-memory. In
Proceedings of the 2023 International Conference on Parallel Architectures and Com-
pilation, PACT ’23, New York, NY, USA, 2023. Association for Computing Machinery.

[263] Liu Ke, Udit Gupta, Benjamin Youngjae Cho, David Brooks, Vikas Chandra, Utku
Diril, Amin Firoozshahian, Kim Hazelwood, Bill Jia, Hsien-Hsin S. Lee, Meng Li,
Bert Maher, Dheevatsa Mudigere, Maxim Naumov, Martin Schatz, Mikhail Smelyan-
skiy, Xiaodong Wang, Brandon Reagen, Carole-Jean Wu, Mark Hempstead, and Xuan
Zhang. Recnmp: Accelerating personalized recommendation with near-memory pro-
cessing. In Proceedings of the ACM/IEEE 47th Annual International Symposium on
Computer Architecture, ISCA ’20, page 790–803. IEEE Press, 2020.

[264] Byeongho Kim, Jongwook Chung, Eojin Lee, Wonkyung Jung, Sunjung Lee, Jaewan
Choi, Jaehyun Park, MinbokWi, Sukhan Lee, and Jung Ho Ahn. Mvid: Sparse matrix-
vector multiplication in mobile dram for accelerating recurrent neural networks. IEEE
Trans. Comput., 69(7):955–967, jul 2020.

[265] Weiyi Sun, Zhaoshi Li, Shouyi Yin, Shaojun Wei, and Leibo Liu. Abc-dimm: Allevi-
ating the bottleneck of communication in dimm-based near-memory processing with
inter-dimm broadcast. In 2021 ACM/IEEE 48th Annual International Symposium on
Computer Architecture (ISCA), pages 237–250, 2021.

[266] Zhe Zhou, Cong Li, Fan Yang, and Guangyu Sun. Dimm-link: Enabling efficient inter-
dimm communication for near-memory processing. In 2023 IEEE International Sym-
posium on High-Performance Computer Architecture (HPCA), pages 302–316, 2023.

[267] Jaehyun Park, Byeongho Kim, Sungmin Yun, Eojin Lee, Minsoo Rhu, and Jung Ho
Ahn. Trim: Enhancing processor-memory interfaces with scalable tensor reduction
in memory. In MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO ’21, page 268–281, New York, NY, USA, 2021. Association
for Computing Machinery.

[268] Mingxuan He, Choungki Song, Ilkon Kim, Chunseok Jeong, Seho Kim, Il Park,
Mithuna Thottethodi, and T. N. Vijaykumar. Newton: A dram-maker’s accelerator-
in-memory (aim) architecture for machine learning. In 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 372–385, 2020.

[269] Gwangsun Kim, Niladrish Chatterjee, Mike O’Connor, and Kevin Hsieh. Toward stan-
dardized near-data processing with unrestricted data placement for gpus. In Proceed-
ings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’17, New York, NY, USA, 2017. Association for Computing
Machinery.

243

[270] Erfan Azarkhish, Davide Rossi, Igor Loi, and Luca Benini. Neurostream: Scalable
and energy efficient deep learning with smart memory cubes. IEEE Transactions on
Parallel and Distributed Systems, 29(2):420–434, 2018.

[271] Sang-Woo Jun, Andy Wright, Sizhuo Zhang, Shuotao Xu, and Arvind. Grafboost:
Using accelerated flash storage for external graph analytics. In Proceedings of the 45th
Annual International Symposium on Computer Architecture, ISCA ’18, page 411–424.
IEEE Press, 2018.

[272] Kiran Kumar Matam, Gunjae Koo, Haipeng Zha, Hung-Wei Tseng, and Murali An-
navaram. Graphssd: Graph semantics aware ssd. In 2019 ACM/IEEE 46th Annual
International Symposium on Computer Architecture (ISCA), pages 116–128, 2019.

[273] Fangxin Liu, Wenbo Zhao, Yongbiao Chen, Zongwu Wang, Zhezhi He, Rui Yang, Qi-
dong Tang, Tao Yang, Cheng Zhuo, and Li Jiang. Pim-dh: Reram-based processing-
in-memory architecture for deep hashing acceleration. In Proceedings of the 59th
ACM/IEEE Design Automation Conference, DAC ’22, page 1087–1092, New York,
NY, USA, 2022. Association for Computing Machinery.

[274] Ben Feinberg, Uday Kumar Reddy Vengalam, Nathan Whitehair, Shibo Wang, and
Engin Ipek. Enabling scientific computing on memristive accelerators. In 2018
ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA),
pages 367–382, 2018.

[275] Shaahin Angizi and Deliang Fan. Graphide: A graph processing accelerator leveraging
in-dram-computing. In Proceedings of the 2019 on Great Lakes Symposium on VLSI,
GLSVLSI ’19, page 45–50, New York, NY, USA, 2019. Association for Computing
Machinery.

244

	Introduction
	Existing Near-Data Computing
	Near-Stream Computing
	Contributions
	Organization

	Stream Basics
	Stream Characterization
	Decoupled-Stream ISA
	Near-Stream Computing Abstraction
	Compiler Support

	Stream-Specialized Processors
	Stream Specialization Overview
	SSP Microarchitecture Extensions
	Stream-Aware Policies
	Methodology
	Evaluation
	Related Work
	Summary

	Proactive and Decentralized Stream-Aware Cache Optimizations
	Motivation and Overview
	Stream Floating Design
	Coherence and Consistency
	Methodology
	Evaluation
	Related Work
	Summary

	Near-Stream Computing
	Motivation and Overview
	In-Core Near-Stream Computing
	Near-Stream Computing
	Synchronization-Free Optimization
	Methodology
	Evaluation
	Additional Related Work
	Summary

	Affinity Alloc: Taming Not-So Near-Data Computing
	Motivation and Overview
	Affine Data Layout
	Irregular Data Layout
	Methodology
	Evaluation
	Discussion
	Related Work
	Summary

	In-/Near-Memory Computing Fusion
	Background and Overview
	Infinity Stream Abstraction
	Runtime Support
	Microarchitecture Extensions
	Implementation Limitations
	Methodology
	Evaluation
	Related Work
	Summary

	Conclusion
	NDC Related Works
	tDFG Optimization
	References

