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Abstract. 

   A method for recovering complex structure factors from many simultaneously excited Bragg 
beam intensities is described. The method is applied to simulated transmission electron 
diffraction data over a wide range of crystal thickness and beam energies. The method is based 
on iterated projections between structure and scattering matrices, which are related by a unitary 
transformation, which we invert. The algorithm removes multiple-scattering perturbations from 
diffraction data and might be extended to other fields, including X-ray and neutron diffraction 
and cryo-electron microscopy. Because coherent multiple scattering involves interference 
between Bragg beams, the method also solves the phase problem.  Unlike dynamical inversion 
from electron microscope images or ptychography data, the method, which starts with Bragg 
beam intensities, provides complex structure factors unaffected by focusing errors or resolution 
limitations imposed by lenses. We provide inversions from simulated data with 441 
simultaneously excited Bragg beams over a range of thickness and beam energy. We discuss the 
retrieval of chirality information from enantiomorphs, the efficient incorporation of symmetry 
information using the irreducible representation of the group of structure matrices, and the effect 
of HOLZ lines to provide three-dimensional information. 



 
 
1. Introduction. 

 
   The lack of reproducibility of transmission electron diffraction (TED) data has always been 
considered a weakness of the method by advocates of X-ray crystallography, limiting its status 
and popularity among crystallographers, despite impressive recent advances in protein electron 
nanocrystallography [1]. Where crystals less than a few tens of nanometers thick can be 
prepared, there has also been recent success solving inorganic structures by TED (2).  X-ray 
Bragg beam intensities measured on successive occasions from different specimens of the same 
crystal, differing in size, give closely similar intensity ratios, whereas for  electron diffraction 
small changes in crystal thickness causes large changes in Bragg beam intensities, as a result of 
multiple scattering. Kinematic electron scattering for light-element inorganics is limited to a few 
hundred angstroms in thickness or much less for heavier atoms. This sensitivity of TED to 
thickness has been turned to an advantage for the imaging of stacking faults and dislocation 
cores [3], and for imaging surface steps, crystal growth and oxidation, all using forbidden 
reflections [4]. The much stronger interaction of electrons has also made multiple scattering 
useful for space-group determination of nanocrystals by convergent-beam electron diffraction 
[5], and for distinguishing enantiomorphs (such as the hand of quartz [6]), an especially 
important problem in the drug industry, where this chiral determination problem has recently 
been addressed for pharmacological compounds by TED [7].    
   We have recently described [8] a method for recovering the same complex structure factors of 
a crystalline TEM sample from Bragg spot intensities over a very wide range of thickness and 
electron beam energy. This solution to the inversion problem of dynamical diffraction removes 
multiple scattering artifacts from diffraction data. It extends the range to small and much larger 
thickness of our earlier method, based on iterated projections [9, 10]. Because multiple scattering 
involves interference between coherent Bragg beams, this also solves the phase problem. Unlike 
alternative successful approaches based on STEM images [11] our method inputs far-field 
diffracted intensities, making our retrieved structure factor phases independent of the resolution 
imposed by the instrument, and of instrumental phases, due to focusing and aberrations. This 
provides a robust method which is also independent of sample movement (for a parallel-sided 
crystalline slab). In this paper we briefly review the method and discuss its experimental 
implementation, and the possibilities for using symmetry reduction to reduce the amount of data 
needed. 
    The inversion problem of multiple scattering has a long history (see [8, 5] for references). A 
general solution to this problem would have applications in many fields, from optical 
ptychography, to neutron diffraction and the weak low-order reflections, most sensitive to 
chemical bonding, in inorganic X-ray crystallography, where primary extinction (multiple 
scattering) is strongest. Its extension to non-periodic samples would increase the size of the 
macromolecules which can be faithfully imaged in cryo-EM, and so facilitate whole-cell 
imaging.  
 
2. Formulation of problem 
 
Our approach is based on the scattering matrix defined by Niehrs, Sturkey [12] Fujimoto [13] 
and studied in detail for the purposes of inversion twenty years ago by Allen et al [14] and 



Spence [15]. (For a review of dynamical theory, see [16]). Here, our earlier algorithm [9] is 
extended to small thickness (where the Bragg intensities do not carry phase information) by 
using the "charge-flipping" algorithm [16],  and to very large thickness by identifying and 
eliminating a previous source of instability in the forward calculation, and several other 
important developments. The charge-flipping algorithm, developed for phasing X-ray diffraction 
data, is akin to solvent-flattening methods, which drives the density to zero between atoms in 
crystals, since these consist mostly of empty space. It has been applied to solving inorganic 
nanocrystals by electron diffraction (where the potential, rather than the charge density is driven 
to zero) using the kinematic convergent beam (KCBED) method in recent work [17].  
   Sturkey's scattering matrix S gives the complex Bragg beam amplitudes φ diffracted by a thin 
slab of crystal of thickness t traversed by a high-energy collimated electron beam as entries in a 
column vector φ, where  φ = S φo. Here for an incident beam φo travelling along the symmetric 
zone-axis direction, φo  contains zeros expect for unity in the central position, and  
 
  S = exp (2 π i A t )        1  
     
  
In this case, φo then picks out the central column of S (of order N) as the observable diffraction 
pattern. Moving the unity value in φo picks out other columns of A which describe diffraction 
from tilted orientations ([18]) with new incident beam directions differing by Bragg conditions, 
all of which must be recorded experimentally to fill out S. The structure matrix A of order N 
contains entries σ Vg/(2 π) = 1/(2 ξg) = Ug/(2K) in off-diagonal positions, where the wanted 
structure factors Vg  (in volts) or Ug (potential energy terms in A) are the Fourier coefficients of 
the scattering potential V(r)) . (ξg is an extinction distance, K ~ 1/λ'  a corrected beam 
wavevector and σ = 2 π m |e| λ /h2 with m the relativistic electron mass. The diagonal of A 

contains known excitation errors Sg = (-2Kt∙g – g2)/2K. Here Kt = 0 if the symmetric zone axis 
pattern is the central column (for lattice vectors g = g (h,k,l)). These excitation errors define the 
diffraction conditions and kinetic energy (beam wavelength λ and direction).  For example, for 
N= 3 we have 
 
  
 

     A = (1/2K)  �2��� �� ������ 0 ������ ��� 2����
        2 

 
 
Backscattering and polarization (important for the X-ray problem) are neglected in this scalar 
theory. The inversion problem consists in finding A, given the magnitude of the entries in S 
(Bragg beam intensities) and the diagonal of A (excitation errors). In the absence of absorption, 
equation 1 is a unitary transformation, which we aim to invert. If t is re-interpreted as time, then 
equation 1 gives the time-evolution operator in time-dependent quantum mechanics. Our 
algorithm includes a mean absorption coefficient on the diagonal, requiring repeated re-
normalisation of S.   



    If imaging or ptychography are used to provide data [11,19], so that the complex entries in S 
are known, inversion is relatively straightforward using the logarithm of S. Then the known 
diagonal of A and its symmetries (including symmetry across the anti-diagonal) can be used to 
resolve the problem of branch cuts in the multi-valued complex logarithm function [14].  This 
also allows forward and reverse iterative computation [9] for the methods of non-convex 
optimization based on iterated projections [8] from measured intensities. It is remarkable that the 
thickness of the sample need not to be known. The principle of logarithmic inversion can be 
simply understood as follows. The eigenvalues λ of S and γ of A are related by 
 
    λi = exp (2π i γi t).     3. 
 
so that 
    ln λi = i (θi + 2niπ) = 2 π i γi t    4 
 
With just two beams (to show the principle of the method)  we have 
 

    
 

 =    2	� � �� ��/2���/2� 0 �    =    C����� � 2����� 00 ���� � 2������ ���   5 

         
   This gives a set of linear equations between the diagonals on either side in equation 5, which 
may be solved for the branch indices ni, assuming the excitation errors Sg  and complex S are 
known (e.g. from imaging experiments), and hence its eigenvalues  λ  and θi  in the range -π/2 to 
π/2.  In general there are (N2-1)/2 real unknown parameters in hermitian A, which also has anti-
diagonal symmetry. This symmetry may be further increased by crystal symmetries. One 
requires as many linear equations as unknown values of n(i).  
 
    Each column of S contains the complex amplitudes of a complete two-dimensional diffraction 
pattern, with the axial zone axis pattern as the central column, and tilted patterns in the other 
columns. It follows that inversion from a single diffraction pattern is not possible. The beam tilts 
needed to fill the other columns require a reciprocal lattice vector to be added to Kt for each 
successive column, corresponding to the second-order Bragg condition for the first tilt, as 
explained in detail in [15] (equation 14). The first-order Bragg condition is satisfied by Kt = - g/2 
[16]. These tilted diffraction patterns, in columns in S must be measured experimentally using 
different incident beam directions. We discuss below the reduction in the amount of data needed 
if crystal symmetries are present. 
   The relationship between the three Miller indices defining reciprocal lattice vectors g and the 
two-dimensional indices of matrices A and S can be understood from the small thickness (single 
scattering) limit, which allows a first-order expansion of equation 1, where the Miller indices of 
S are given by the corresponding entries in A. The crystallographic indices of the central column 
of S and A (provided by the zone-axis indexed experimental pattern) equal those of the diagonal, 
which fix the indices of all other entries, as in equation 2. This is exactly analogous to one-
electron band structure theory for crystal electrons, with A the Hamiltonian matrix. As in that 



case, diagonal terms describe kinetic energy, while off-diagonal terms describe potential energy, 
Bloch waves are periodic in k-space, as are their eigen-energies, according to a three-
dimensional Brillouin zone construction. Our TED Brillouin zone for Kt is two-dimensional. 
   
    Assume that the excitation errors on the diagonal of A are arranged symmetrically, with zero 
at the center of the matrix. If the inversion process commenced with the filling of S (not A), this 
would require assignment of Miller indices to S. The Miller indices for the entries in columns of 
S are equal to the corresponding entries in A for a small-thickness expansion of the exponential. 
The indexing sequence along the diagonal fixes all indices throughout the matrix, and is the same 
as that down the central column.  
   Each column of S contains the complex Bragg amplitudes for a two-dimensional diffraction 
pattern for some incident beam direction. This direction is defined by the one excitation error in 
the corresponding column of A, which in turn defines a value of Kt which can therefore be used 
to label each column in S. For symmetrically arranged excitation errors on the diagonal of A, the 
column observed experimentally in S is always the central column, even for a tilted beam 
calculation with different excitation errors on the diagonal. As shown elsewhere [15], because of 
the eigenvector periodicity relations given below, tilting the beam so that the scattering vector 
2Kt satisfies the Bragg condition brings the column labelled Kt in S into the central observable 
condition. In the systematics case (where a line of Bragg reflections is excited) it will be seen 
that the scattering matrices evaluated with excitation errors for Kt=ng(100) (reflection 2Kt at 
Bragg condition) is identical to that for Kt=0 with different (symmetric) excitation errors on the 
diagonal of A, except for a shift of all entries by n places down and across in S. In both cases 
only the central column is observable. The equality of these columns in S when computed using 
different excitation errors can be understood in several ways. The form of the excitation errors (a 
function of (Kt-g) ) under tilting is such that a tilt causes them all to move along the diagonal, 
apart from an unimportant constant term (phase shift). This permutates the rows and columns of 
S. 
   A succession of tilted patterns therefore provides all the magnitudes needed to fill S. In the 
systematics orientation, adding a reciprocal lattice vector to Kt (initially zero in the symmetric 
orientation) excites every second Bragg reflection. Because of the periodicity relations, these 
orientations excite identical Bloch waves inside the crystal, which nevertheless generate different 
diffracted intensities as a result of matching this total wavefield to the slab boundary conditions. 
The periodicity relationships for eigenvectors and eigenvalues follow from the fact that the 
Bloch waves (but not the total wavefunction matched to boundary conditions) are periodic in 
reciprocal space (but not in real space), with the period of a two-dimensional Wigner-Seitz cell 
for Kt. Bloch's theorem, (from Floquet) allows Bloch-wave solutions of the wave equation inside 
the crystal 
 

            ���� ������, �� = ∑ ������ 	������� exp�2	�	%	 ������ � &� ∙ ��    6 

 
After tilting, a reciprocal lattice vector h is added to Kt, and this becomes  
 
  													���� ������ − ), �� = ∑ �*���* 	������ − )� exp�2�%	 ������ − )	 � +� ∙ ��   7 

 



For these to be equal for all Kt, the coefficients multiplying the exponential must be equal, so 
that with l = g + h,  we must have   [20]  
 

   ����� ������� = �&,)��� ������ − )�    8 

 
In addition, it can be shown that [21] 
 

   -������ − )� = 	-������� � �&   9 

 
reflecting the well-known periodicity of the dispersion surfaces in many-beam dynamical theory.  
 
  3. The N-Phaser algorithm – simulation results. 

 
  Our method [8] iterates between complex S and A.  Computational trials suggest that three 
constraints are then sufficient to define a "unique" solution, in the sense that multiple solutions 
are related by an origin shift in the recovered potential. This shift appears as a similarity 
transform on S, leaving eigenvalues unchanged. The search is non-convex. The three constraints 
are the symmetry constraints on A, its known diagonal, and the known magnitudes of the 
elements of S. The algorithm starts with a random 2D potential V(r), then iterates between S and 
A while repeatedly imposing these constraints on each. For each current estimate of S, phases are 
retained and magnitudes replaced with experimental values. Elements of A related by intrinsic 
and crystal symmetries are replaced by their symmetry-averaged values. An earlier version used 
an optimizer to iterate between the set of all A with correct symmetry and diagonal, and that of S 
with correct magnitudes [9]. This failed at small thickness (as expected, since kinematic 
intensities are not sensitive to structure factor phases), converged at moderate thickness (where 
multiple coherent scattering provides phasing) and failed at large thickness for reasons not 
understood at the time. This failure has now been understood to be due to the extreme sensitivity 
of λ in forward calculations to small changes in γ at large t >> 1/γ, leading to numerical 
instability. Equation 3 then cannot be used to reliably obtain λ from γ. We now avoid this by 
using an optimizer to obtain λ from the known magnitudes and eigenvectors of the current 
estimate of S, as shown in the flow chart of the algorithm given in figure 1. Thickness is not 
needed but may be refined in the flipping section. At moderate and small thickness, a modified 
algorithm is used which includes the charge-flipping algorithm, and uses logarithmic inversion 
discussed above with the known diagonal of A to determine the branch indices for the 
multivalued complex logarithm function. An optimizer is then not used. A number of other 
subtleties arise, such as the manner in which S is repeatedly made unitary, which are discussed in 
[8] and its Supplementary Information. 
 



 
 
Figure 1.  Flow chart of the version of the algorithm which determines the eigenvalues of S from 
the magnitudes of entries in S and its eigenvectors to avoid numerical instabilities at large 
thickness in the forward calculation.  A second algorithm for moderate and small thickness uses 
logarithmic inversion. More detailed flow charts of both algorithms are given in [8]. To simplify 
notation, here we have included the factors of σ/2π in the definition of Vg above. In 
computations, the entries in A should be those of equation 2. 
 
  Numerical trials have succeeded in recovering the potential for both GaAs and Spinel from 
simulated data over a range of beam energies from 100 kV to 1 MeV and thicknesses from 10nm 
to 1000 nm.  Figure 2 shows reconstruction from the single-parameter Spinel crystal structure 
(with 71 atoms in the cubic cell) along the high-symmetry [100] direction using 441 beams. 
Because of this symmetry (as discussed below), it was found possible to obtain good 
reconstructions without requiring the large tilts needed to fill all the outer column of S, reducing 
the maximum tilt angle from 57 to 19 mrad. In these simulations, it was found that many entries 
in S were not needed, and could be left floating, greatly reducing the amount of data needed. For 
example, for Spinel, with N = 441 (and correlation coefficient 0.96), we were able to obtain a 



reconstruction using only N = 221 with correlation coefficient 0.93.  This symmetry in the 
diffraction patterns reduces correspondingly the number of linear equations in 3 which also 
express crystal symmetry. The same differences between Miller indices on the diagonal of A 

(which fix the position of off-diagonal entries) occur more than once, for example. 
 
 

 

 
 
Figure 2.  Recovery of Spinel crystal potential projected along [100] from 441 beam dynamical 
TED simulated diffraction pattern (LHS) compared with recovery using only 221 columns of the 
S matrix, greatly reducing the range of tilted diffraction patterns needed. Beam energy 300 kV, 
thickness 100nm. No flipping was used. Eigenvalues of S obtained from its magnitudes and 
eigenvectors. 200 iterations, about ten minutes on a laptop. Below, the spinel structure MgAl2O4. 
 
  Table 1 summarizes reconstructions from the acentric GaAs structure under many conditions, 
with thickness ranging from 10nm to 1000 nm (one micron), and beam energy from 100 kV to 1 
MeV. Cases where λ is obtained from A by logarithmic inversion or (at the largest thickness 
where this is not possible) from the magnitudes of S are shown, together with and without use of 
the flipping algorithm. Because the random starts results in different origins and complex 
structure factors for the reconstructions, we show the Pearson correlation coefficient between the 
original ground truth potential V(r) used to simulate the diffraction data and the recovered 
potential. Thickness estimates are also shown compared to actual thickness when λ is computed 
logarithmically from A.  In summary, only at 1 MeV for a thicknesses of 100nm and one micron 



is it not possible to obtain a correlation coefficient above 0.9.  Here the algorithm starts to fail at 
high beam energy as all the excitation errors become negligible due to the very flat Ewald 
sphere, and the system of linear equations relating branch cuts to the diagonal of A becomes 
homogeneous, so that these cannot be determined. 
 
 

 
Table 1.  Correlation coefficients between ground truth and recovered potential for GaAs [110] 
zone axis transmission electron diffraction patterns using different methods for various beam 
energies and sample thicknesses. 
 

 

 

4. Considerations for experimental implementation. 

 

  Long experience has shown that dynamical simulations match closely to elastically filtered 
convergent-beam electron diffraction patterns [5], giving confidence in this method when applied 
to experimental data if the S matrix can be accurately filled. Experimental tests using known 
inorganic structures are under way, using data collected on the ASU Titan 300 TEM/STEM 
fitted with Gatan spectrometer and CMOS detector, for the large dynamic range required.   
  This raises the question of the optimum data collection strategy for filling the matrix S from a 
series of tilted many-beam diffraction patterns, which frequently show high symmetry. For the Si 
[110] data we are collecting, the zone axis pattern contains two orthogonal mirror planes, so that 
it is only necessary to collect diffraction patterns with Kt tilted successively into every second-
order Bragg condition in one quadrant of the zone-axis pattern. The remainder can be generated 
by symmetry operations (which must include both the scattering vector and the crystal). 
Inversion symmetry is not assumed, since the random start assigns an arbitrary origin. 

Pearson Correlation Coefficients

10 nm 100 nm 1000 nm 10 nm 100 nm 1000 nm 10 nm 100 nm 1000 nm

100 kV 0.975 0.901 0.823 100 kV 0.463 0.732 0.559 100 kV 0.976 0.896 0.84

300 kV 0.971 0.889 0.8 300 kV 0.451 0.4 0.582 300 kV 0.974 0.858 0.84

1000 kV 0.971 0.837 0.574 1000 kV 0.997 0.64 0.434 1000 kV 0.971 0.812 0.697

Computes lambda from A Computes lambda from A Computes lambda from A

Thickness fixed Thickness fixed Computes thickness

Flipping No flipping Flipping

10 nm 100 nm 1000 nm 10 nm 100 nm 1000 nm

100 kV 0.956 0.947 0.956 100 kV 0.456 0.971 0.93

300 kV 0.9 0.973 0.958 300 kV 0.289 0.968 0.961

1000 kV 0.815 0.695 0.67 1000 kV 0.968 0.736 0.774

Computes lambda from S magnitudes Computes lambda from S magnitudes

Flipping No Flipping

Computed Thickness

10 nm 100 nm 1000 nm

100 kV 10.2 30.2 1180

300 kV 10.3 100.6 1196.8

1000 kV 11.4 99.7 200

Computes lambda from A

Computes thickness

Flipping



  More generally, a systematic approach to symmetry reduction would be based on finding the 
irreducible representation of the subgroup of the crystal space group which contains the 
symmetries of the scattering vector. This allows a matrix T to be found as described elsewhere 
[22] which, through a similarity transform, transforms A to block-diagonal form, reducing the 
dimension of the problem, the number of eigenvectors and eigenvalues, and the number of 
diffraction patterns needed. Powers of A are also diagonalized by T, so this matrix also block-
diagonalizes S. Crystal space groups may be determined by the methods of convergent-beam 
diffraction [5].    
  Our analysis depends crucially on the validity of equations 4 and 5 for the periodicity of Bloch 
waves in K-space. However, these results depend on infinite summations, and become an 
approximation if the sum is truncated, as for a limited number of beams. The resulting error can 
be estimated by comparing a simulations for the symmetrical orientation (Kt=0) with those for a 
different Bragg condition and value of Kt, using different excitation errors on the diagonal, as 
given in section 2. The central column in a tilted computation with excitation errors 
corresponding to a particular value of Kt is compared with the unobserved intensities in the 
column labelled Kt for the symmetrical orientation. These predicted Bragg beam intensities agree 
well with a large number of beams. However, our simulations show that significant errors up to 
20% occur on some beams if N < 10.  
 
5. Future developments. 

 

  Experience with phasing X-ray and electron data [17] shows the power of using higher 
dimensions when using phasing methods based on atomicity, such as flipping, where the density 
is driven to zero in the space between atoms, and higher dimensionality increases that space 
(volume). The flipping method thus works far better in 3D rather than 2D.  Since curvature of the 
Ewald sphere provides higher-order reflections, which provide three-dimensional information 
about the potential, we can expect their inclusion in this algorithm to improve phasing. The 
inclusion of these reflections in the algorithm is straightforward, using the re-normalization 
approach described elsewhere [5].  
   If HOLZ reflections are not included, the large tilts needed to fill S will eventually be limited 
by the incursion into the diffraction pattern of these HOLZ lines and Bragg spots. A simple 
construction [8] shows that the resolution limit, for a crystal with period c along the beam 

direction, is d = 	√λ	c	, or a 2 angstrom resolution limit for a protein crystal with period c = 160 
angstroms at 200 kV.  
  The inclusion of a full 2D absorption potential has yet to be considered - here we include only 
the mean absorption on the diagonal. For a non-centrosymmetric crystal this might contribute 
additional small real and imaginary parts to every complex structure factor, which must be 
retrieved. This may be possible, since we note that in [23], logarithmic inversion from such a 
scattering matrix A with absorption is demonstrated. 
    The ability to distinguish enantiomorphs, or the "hand" of a chiral crystal by TED by taking 
advantage of multiple scattering was first demonstrated for inorganic crystals (such as quartz)  
long ago, using the CBED method [6].  Hand refers to the sense of rotation of a helix. Single 
scattering conditions do not allow this distinction, however the dynamical diffraction patterns are 
sensitive to hand. Since right-handed alpha-helices are a basic structural unit of all proteins, 
protein crystals cannot have inversion symmetry (unless combined with artificially produced 
mirror-related left-handed types within the same crystal).  In the drug industry, a failure to create 



small molecules with the correct hand can have disastrous consequences for patients, and the 
ability to distinguish enantiomers in pharmaceutical nanocrystals by TED using multiple 
scattering has recently been demonstrated [24].  
 
The ability to reconstruct the correct enantiomorph from the magnitudes of the scattering matrix 
depends highly on the thickness of the crystal. At small thickness, the data is dominated by 
single scattering, which is not sensitive to chirality. In this case, either "support" (left or right 
handed) of vacuum space around atoms is equally likely to be reconstructed, and will be 
consistent with Bragg intensities. At the other extreme, the inversion algorithm is also not 
sensitive to chirality at very large thickness, where the eigenvalues λ of S are computed from its 
eigenvectors and magnitudes to avoid the previously mentioned instability when computing λ 
from γ. In this case, the N-phaser algorithm (along with any inversion algorithm seeking to avoid 
the eigenvalue instability) essentially seeks a pair (A, S) where S has the correct magnitudes, A 
satisfies the structure matrix symmetry constraints and has the correct diagonal entries, and A 

and S share the same eigenvectors (but not necessarily the same eigenvalues).  
 
To understand this chiral ambiguity in the inversion, define A and Am to be the structure matrices 
of the correct and mirror enantiomorphs, with eigenvalue decompositions A = CΓC* and Am = 
CmΓmCm*. Due to the time-reversal property of the Fourier transform and Hermitian symmetry 
of A, we have that Am = AT =	A2, where A2 is the entry-wise conjugation of A. Hence, Cm = C2 but 
Γm = Γ since the eigenvalues are real. Consequently, the corresponding scattering matrices can 
be expressed as S = exp(2π i A t) = C exp(2π i  Γ t) C* and Sm = exp (2π i Am t) = C2 exp(2π i Γ 
t)	C2*. Note that both S and its conjugate S3  = C2 exp(-2π i Γ t)	C2* have the same magnitudes, and 
that S3	has the same eigenvectors as Am. Consequently, the large thickness algorithm will accept 
the pair (Am, S3) as a valid solution. However, at intermediate thickness, with a moderate amount 
of coherent multiple scattering, the eigenvectors λ can instead be stably computed from γ via the 
complex exponential and the inversion is able to reveal the correct hand of the crystal. In this 
case, due to the absence of the eigenvalue instability, one can instead enforce that A and S have 
both the same eigenvectors and eigenvalues. Then the pair (Am, S3) will not be accepted as a valid 
solution, as Am and S3 have different eigenvalues.  
 
   The extension of this method to non-periodic samples, important for single-particle cryo-EM 
and the study of defects in inorganic crystals, is under consideration. 
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