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Introduction
Traumatic brain injury (TBI) is a leading cause of death and 

disability in the US, particularly in those under age 40, and ~2% 
of the US population is living with a post-TBI associate syndrome 
and disorders, based on CDC reports. It is recently concerned that 
individuals living with TBI take an increased risk for developing 
several long-term health problems. An early study found that any 
history of brain injury increases the risk of developing Alzheimer’s 
Disease (AD) and other dementia, and severe head trauma doubles 
the risk of developing AD dementia [1, 2]. Also, there is evidence 
that TBI may lower the age of onset of any dementia or AD [3], 
particularly in people with high rates of TBI, such as US and other 
veterans [4]. Today, it has been accepted that TBI may cause chronic 
traumatic encephalopathy (CTE), and some researchers have 
accepted that TBI as one of the AD risks may lead to AD development 
[5], but other researchers thought it is still exclusive [6]. In this 
review, we reviewed various pathological similarities between 
TBI and Alzheimer’s Disease and Related Dementia (ADRD), which 
supports the view that TBI as one of AD risks may cause ADRD.

TBI may cause ADRD since its secondary injury mechanisms have 
several similarities with AD initiation. TBI results from an outward 
physical force that leads to immediate mechanical disturbance 
of brain tissue and follows by secondary injury events. Generally, 
secondary injuries occur in minutes to days, including oxidative 
stress, excitotoxin, calcium-influx, apoptosis, necrosis, hemorrhage, 
hypoxia, inflammation, etc. [7]. The principal pathologies seen in 
AD are amyloid beta (Aβ)-contained plaques and neurofibrillary 
tangles (NFTs) containing hyper-phosphorylated tau (p-tau) 
protein. In AD development, Aβ is reported to trigger NMDA- 
mediated Ca2+ influx, excitotoxicity; to exacerbate aging-related 
increases in oxidative stress; and to impair energy metabolism [8];  

 
while TBI secondary injuries immediately cause excitotoxicity, Ca2+ 
influx, oxidative stress, etc. Moreover, oxidative stress alone can 
cause synapse disfunction and neuron death, leading to cognitive 
deficits [9], and oxidative stress can be seen in AD pathology via tau 
hyper-phosphorylation. Further, some primary kinases, including 
extracellular receptor kinase (ERK), calmodulin-dependent 
protein kinase (CaMKII), glycogen synthase kinase 3β (GSK3β) and 
cAMP response element-binding protein (CREB), are dynamically 
associated with oxidative stress-mediated abnormal hyper p-tau. 
It suggests that alteration of these kinases could exclusively be 
involved in the pathogenesis of AD. Consistently, those primary 
kinases have also involved in the pathogenesis of TBI [10-12], 
although there are differences in the pathogenesis of TBI and AD.

Epidemiological studies have shown that TBI is a risk factor 
for tauopathies [1, 3, 13], one of the two major pathological 
hallmarks of human AD. Usually, the tauopathies include tau 
hyperphosphorylation and aggregation. After a TBI event, p-tau 
and neurofibrillary tangles (NFTs) can be detected as early as 6 h 
[14, 15]. While others examined p-tau expression in post-mortem 
brains many years after a TBI [16]. It has been found that NFTs levels 
elevated in approximately 30% individual’s post-mortem who had 
a surviving moderate to severe TBI, indicating the relationship 
between tau aggregation and a single TBI [16]. Sometimes, the 
pathological tau occurs in regions distant to the injury local that are 
synaptically connected, suggesting dissemination of tau aggregates 
[15]. Overall, TBI as a risk factor for tauopathies may induct both 
of tau hyperphosphorylation and aggregation. Most importantly, 
TBI has been suggested as a risk factor of AD from tauopathies by 
triggering disease onset and facilitating its progression, when tau 
deposition in areas vulnerable in aging and later mature areas in 
development [15].
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Apolipoprotein E4 (ApoE4) is one of common genetic 
components between TBI and AD because it is closely related 
to neurogenesis-dysfunction and dementia. ApoE has three 
genotypes: 2, 3, and 4. Basically, ApoE4 is the most associated 
genetic risk factor for the development of AD and is expressed in 
more than half of the patients. However, it is estimated to be only 
20% of the population. The presence of one or two ApoE4 alleles is 
increasing the AD risk by 3 or 12 folds, respectively [17], and also 
shifting the age of onset of dementia to a younger age [18]. Recent 
results suggest that ApoE4 is related to memory loss and overall 
cognitive dysfunction in patients with a history of mild TBI, but it 
does not affect people without neurotrauma [19].

Moreover, other researchers have proposed that ApoE4 alleles 
may be synergistic with TBI in increasing the risk for developing 
AD [20, 21]. Compared to other genotypes, ApoE4 is harmful in 
this process, as it inhibits neurite outgrowth, disturbs neuronal 
cytoskeleton, gathers amyloid β protein [22, 23], and markedly 
aggravate tau-mediated degeneration [24]. Therefore, it is 
another important similarity between TBI and AD, and a possible 
therapeutic target [25, 26].

Impaired adult hippocampal neurogenesis (AHN) were found in 
both TBI and AD animals [27, 28] and AD patients [29], which is one 
of the potential causes of dementia. AHN means that the additional 
new-born neurons are generated throughout life, and it is one of the 
unique phenomena of the adult mammalian brain and confers the 
plasticity of the entire hippocampus circuity. By studying the brains 
of AD patients, the number and maturation of these new-born 
neurons declined progressively with the progression of AD, which 
provides evidence a potentially relevant mechanism underlying 
memory deficits in AD [29]. Consistent with this study, our previous 
study also showed that TBI impaired AHN, may lead to learning and 
memory deficits in rats [27].

Notably, ApoE is mainly expressed in astrocytes and secreted 
into the intercellular space that regulates other cells. It is also 
present in certain type I neural stem cells and neurons. Most 
importantly, ApoE is known to regulate postnatal neurogenesis in 
the hippocampus [30], whereas ApoE4 impairs AHN following TBI 
[31].

However, it is unclear that what are the relationships among 
TBI, AHN, ApoE4, and AD onset.

Given that TBI and ADRD involve many similarities, including 
secondary injury, tauopathies, ApoE4 and AHN, people after TBI 
may lead to ADRD and have long time healthy problems, especially 
those who TBI will cause tauopathies appearing in AD vulnerable 
areas. This may also give us more chances to study AD initiation and 
find novel therapeutic targets.
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