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Abstract

We propose a novel framework for the analysis of learning al-
gorithms that allows us to say when such algorithms can and
cannot generalize certain patterns from training data to test
data. In particular we focus on situations where the rule that
must be learned concerns two components of a stimulus being
identical. We call such a basis for discrimination an identity-
based rule. Identity-based rules have proven to be difficult or
impossible for certain types of learning algorithms to acquire
from limited datasets. This is in contrast to human behaviour
on similar tasks. Here we provide a framework for rigorously
establishing which learning algorithms will fail at generalizing
identity-based rules to novel stimuli. We use this framework
to show that such algorithms are unable to generalize identity-
based rules to novel inputs unless trained on virtually all possi-
ble inputs. We demonstrate these results computationally with
a multilayer feedforward neural network.
Keywords: phonology; learning algorithms; symmetries; con-
nectionism

Introduction
Suppose a subject is asked to learn an artificial language in
which all words consist of two letters. They are told that CC,
AA, HH, EE, and RR are all examples of valid words in the
language but that GA, EH, RA, ER, MG are not valid words.
Now suppose that the learner is asked whether YY and YZ
could be valid words in the language. Presumably they will
say that YY could be a valid word in the language whereas
YZ could not be. The obvious feature that all the valid words
have in common is that they consist of two identical letters.
This feature is not shared by the invalid words. We say in this
case that the learners have learned an identity-based rule, and
are able to generalize the rule to novel inputs.

We do not know if this exact experiment has ever been per-
formed, but there have been analogous tests in the phonolog-
ical domain (Berent, Marcus, Shimron, & Gafos, 2002; Gal-
lagher, 2013). In artificial language learning tasks, human
subjects are sensitive to identity relations between segments,
and are able to generalize them to novel inputs. This kind
of effect is not specific to language though: consider a task
where subjects are presented with pictures of pairs of socks,
and are asked to say whether they form a matching pair.

Surprisingly, given how obvious the above pattern is to hu-
man learners, many computer models of learning are not able
to learn identity-based rules like those implicit in the data
above, without being presented with nearly all possible in-
puts. These computational learners may give the same rating

to both the forms YY and YZ, since neither of them have any
similarity to the training words in a manner that is deemed
relevant by the algorithms. Important classes of such algo-
rithms include basic connectionist algorithms (Rumelhart &
McClelland, 1988) and the “Plain” (Baseline version) of the
UCLA Phonotactic Learner (Hayes & Wilson, 2008). There
are ways to modify these algorithms to perform better on such
tasks, for example, by introducing copying (Colavin, Levy, &
Rose, 2010), special representations of identical segments in
the input (Gallagher, 2013), or weight sharing across connec-
tions as is done in convolutional neural networks (LeCun &
Bengio, 1995).

There are many informal arguments given for why the ba-
sic versions of these algorithms cannot learn identity-based
rules. Such algorithms are unable to generalize “outside the
training space” (Marcus, 2003), or “do not instantiate vari-
ables” (Berent, 2012). Though these terms describe a gen-
uine limitation of such algorithms, they suffer the drawback
of not being defined formally. Even though computational
learners themselves are clearly defined, whether a particular
algorithm is able to learn identity relations or instantiate vari-
ables is impossible to determine precisely since the criterion
for these conditions is not formalized. Our present goal is to
provide a rigorous framework for these informal statements
about algorithms, and to provide criteria for when an algo-
rithm cannot generalize identity-based rules to novel inputs.

In the following we define learning algorithms, symmetries
of sets of words, and what it means for an algorithm to be in-
variant under a symmetry. In our main result we show that
if an algorithm is invariant under some symmetry, and the
training data is invariant under the same symmetry, then the
algorithm cannot learn a grammar that is not invariant under
that symmetry. As an application, we demonstrate a symme-
try that identity-based rules are not invariant under, and then
show that a wide class of algorithms are invariant under it.
This means that such algorithms cannot learn identity-based
grammars with invariant training data, in contrast to human
performance on analogous tasks. We then demonstrate how
feed-forward neural networks suffer from these limitations,
independent of the number of hidden layers in the network.

Formal Definitions
We consider a set W , which we call the set of words, con-
taining all well-formed inputs. We stress that in the linguis-
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tic case W consists of both words that are good (grammati-
cal) and words that are bad (ungrammatical). In what follows
we will consider words to be strings of letters, but individual
words can be anything, such as strings of segments or feature
bundles.

To fix ideas, in what follows we will often consider a par-
ticular example of a set of words: we let W̃ be the set of all
two letter words, where the letters are capitals taken from the
English alphabet, such as AA or MG.

We define the training data D to be a collection of word-
rating pairs 〈w,r〉 where w is a word in W and r is a number
interpreted as a rating of how “good” w is. For example,
using the word set W̃ , a dataset D might consist of

〈CC,1〉, 〈AA,1〉, 〈EE,1〉, 〈GA,0〉, 〈EH,0〉, 〈RA,0〉. (1)

This dataset says that CC, AA, and EE have rating 1 (and thus
are good words) and that GA, EH, and RA have rating 0 (and
thus are bad words). Alternatively, in a training task where
only good words are given to the learner, D might consist
only of good words paired with the rating 1. But there are
other possibilities: words could be paired with a rating given
by their prevalence in a corpus, for example.

To formally define a learning algorithm, consider what a
learning algorithm such as the UCLA Phonotactic Learner
(Hayes & Wilson, 2008) does. First, a collection of data D is
input to the algorithm and used to choose a set of parameters
p in a model. We can formalize this as p = A (D). Once
we have p, given any new input w the algorithm outputs a
score, which we can formalize as f (p,w). Typically, the com-
putation of p from D is computationally intensive whereas
once we have p, the score f (p,w) is cheap to evaluate. This
matches our experience of human behaviour where learning
a language occurs over long periods of time, whereas judge-
ments of the well-formedness of novel words are readily pro-
duced by adult speakers.

Here we will abstract away issues of parameter setting and
computational effort and just view an algorithm as a map that
takes a set of training data D and an input w and outputs a
rating. We consider the map L given by

L (D,w) = f (A (D),w).

Specifically, a learning algorithm L is a map that takes train-
ing data D and word w and outputs a score L (D,w). The
interpretation is that this score is what you would get if you
used the data D to train the algorithm and then used the re-
sulting computational model to evaluate the word w.

We note that we interpret both the ratings coupled with
words in the training data D and the scores output by the al-
gorithm L as measures of the goodness of a word. This is
natural, since we expect the algorithm to give good scores to
words that have high ratings in the training data. However,
ratings and scores are distinct in general; for example, ratings
in D could be how common a word is in a corpus and scores
from L could be intended to model how well-formed a word
is on a scale from 0 to 1.

We define a symmetry σ to be a bijective map from the set
of words W to itself; in other words, a map such that σ(w)
is in W for all w in W , and for all v in W there is an u in W
such that σ(u) = v. As an example of a symmetry, let σ̃ be
the map from W̃ to itself given by

σ̃(XY) = YX, (2)

for any letters X, Y. Thus the symmetry σ̃ reverses the order
of letters in two-letter words.

We introduce symmetries in order to analyze algorithms:
we are not claiming that they have any psychological or lin-
guistic reality. Indeed, as far as we know all maps that are nat-
urally occurring phonological processes are not symmetries.
For one thing, most phonological maps satisfy σ(σ(x)) =
σ(x) for all x (also known as idempotency (Magri, 2015)).
But this can only happen with a symmetry if σ(x) = x for all
x, meaning that σ does nothing.

A word w is invariant under a symmetry σ if σ(w) = w. To
apply a symmetry to a set of training data, we say that σ just
acts on each word in every word-rating pair in the data set,
but does not change the rating of that word. So if the word-
rating pair 〈w,r〉 is in D, then the pair 〈σ(w),r〉 is in σ(D).
For example, if we applied σ̃ (as defined in (2)) to the dataset
in (1) we would get the dataset

〈CC,1〉, 〈AA,1〉, 〈EE,1〉, 〈AG,0〉, 〈HE,0〉, 〈AR,0〉.

We say that a dataset D is invariant under a symmetry σ

if σ(D) has precisely the same word-rating pairs as D. The
simplest way for data D to be invariant under a symmetry σ is
if each word in each word-rating pair in D is invariant under
σ . But there are other ways. For example, the symmetry σ̃

leaves the data

〈BB,1〉, 〈GG,2〉, 〈EE,0〉

invariant because the words BB,GG,EE are all invariant un-
der σ̃ . On the other hand the data

〈BG,1〉, 〈GB,1〉, 〈EA,2〉, 〈AE,2〉

is also invariant under σ̃ , but in this case the individual words
are not invariant, it is just that w and σ(w) always have the
same rating in this data set.

We say an algorithm L is invariant under σ if
L (σ(D),σ(w)) = L (D,w) for all D and w. In words, the
rating that the algorithm gives to w when trained on D is the
same that the algorithm gives to σ(w) when trained on σ(D).

Our main result is a simple consequence of these defini-
tions.

Theorem 1 If algorithm L and training data D are invariant
under symmetry σ then

L (D,w) = L (D,σ(w)),

for all w in W. In other words, the algorithm L gives the
same rating to w and σ(w) when trained on D.
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Proof. We have

L (D,w) = L (σ(D),σ(w)) = L (D,σ(w))

where the first equality follows from the invariance of L un-
der σ , and the second inequality follows from the invariance
of D under σ . �

Example: Consider a language containing 10 letters, each
letter having a sonority value between 1 and 5 according to
the following table. (Sonority is an abstract phonological
variable, roughly corresponding to how close a segment is
to a vowel.) Words in the language consist of only two let-

Table 1: Segments in a Hypothetical Language

segments sonority
A O 5
W Y 4
M N 3
V Z 2
B D 1

ters. Suppose that all words in the language have increasing
or constant sonority. So, BA, MO, ZW, BD could all be words
in the language, but AD, AN, and WV could not be. Consider
the letter reversing symmetry σ̃ given in (2). If you apply σ̃

to an ungrammatical word (e.g. AB) you get a grammati-
cal word (BA). If you apply σ̃ to a grammatical word with
increasing sonority you get an ungrammatical word. Words
with two letters of the same sonority give you back another
word with letters of the same sonority.

Now suppose you have a learning algorithm L that is in-
variant under σ̃ . This means that if you take a data set D,
train the algorithm on it, and then use the algorithm to evalu-
ate word w, you will get the same result if you train the algo-
rithm on σ̃(D) (in which all the words are reversed) and then
use the algorithm to evaluate σ̃(w), which is just the reversal
of w.

Suppose we give the algorithm data D that is invariant un-
der σ̃ . For simplicity we assume that D consists only of gram-
matical words each assigned the rating 1. In this case, the
only way D can be invariant under σ̃ is if all the words in D
have constant sonority, and for every such word XY in D, YX
is also in D. Can the algorithm correctly learn the generaliza-
tion that words in the language must have increasing or level
sonority from this data set?

Theorem 1 shows that it cannot, as follows. According to
the theorem, L (D,w) = L (D, σ̃(w)). All we need to do is
let w equal a word of increasing sonority, such as BA, to see
that the algorithm with training data D gives the same score
to BA and AB. Since the first is grammatical and the second is
ungrammatical, the algorithm clearly has not learned the cor-
rect rule governing grammaticality in the language. This is
pretty commonsensical: one way to think of it is that there is
nothing in the algorithm or the training data to make the algo-

rithm prefer AB to BA, since both the algorithm and the train-
ing data are invariant under σ̃ , and BA = σ̃(AB). Of course,
this is not necessarily a defect of the algorithm L ; if some
words with increasing or decreasing sonority were included
in D, then D would not be invariant under σ̃ , and L could
learn the grammar.

In the next section we will give a less straightforward ex-
ample, allowing us to formalize the idea of identity-based
rules for learning algorithms.

Identity-Based Rules
We now use the above result to show that certain algorithms
cannot learn identity-based rules unless trained on words con-
taining virtually all letters in the alphabet. That is, the algo-
rithm cannot extend the identity-based rules to words contain-
ing letters that it has not explicitly been trained on. This is in
sharp contrast to human learners who are able to generalize
identify-based rules (in the phonological context, for exam-
ple) to segments they have not encountered before(Berent et
al., 2002).

We return to the example at the beginning of the paper: W̃
is the set of all words consisting of two letters. We stipulate
that grammatical words are those consisting of two identical
letters and all other words are ungrammatical. Suppose we
want the algorithm to learn this grammar, but train it on data
omitting any words containing the letters Y and Z. What al-
gorithms will not be able to learn the correct grammar under
these conditions?

Define the symmetry σ of W by the following:

σ(X1Y ) = X1Z, σ(X1Z) = X1Y, σ(X1X2) = X1X2,

for all letters X1,X2, with X2 not equal to Y or Z. In other
words, if the second segment is Y , σ changes it to Z, if the
second segment is Z, σ changes it to Y , and if the second
segment is neither, then the word is unchanged.

Now suppose our training data D contains no words with
either segments Y or Z as the second segment. D may contain
both grammatical words (e.g. CC) with rating 1 and ungram-
matical words (e.g. CE) with rating 0. Then D is invariant
under σ . Theorem 1 shows that if the algorithm L is also
invariant under σ then it will give the same rating to w and
σ(w) for any word W when trained on D. In that case we
would have that it gives the same rating to the words YY and
Y Z, showing that it cannot learn the identity based grammar.

Below we provide an example of an algorithm invariant
under this symmetry. But in general we informally argue that
any algorithm that does not in some way explicitly check for
identity between the letters, or somehow enforce a similar
treatment of those two letters in processing, cannot correctly
learn that YY is a more well formed word than Y Z, if it is
never given words with a second letter Y or Z as training data.

Randomized Algorithms
Many algorithms for learning use randomness at some point
in their operation. It may either be in the computation that
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takes the input data to the parameters p (for example, by
which order the input words are used) or in the map from
the parameters and a new input word to a word score s. In
the former case p = A (D) is a random function of D; in the
latter s = f (p,w) is a random function of p and w. In either
case, this leads to L (D,w) being random for any fixed D and
w.

Under these conditions, it is unlikely that invariance of the
form described above will hold. Instead we now define in-
variance of L under σ to be

EL (σ(D),σ(w)) = EL (D,w),

where E denotes expectation. (If X is a random variable, EX
is approximately what we would get if we took the average of
a large number of samples of X .)

We now get the same result as before. This is a strictly
stronger result than Theorem 1, since a deterministic algo-
rithm is just a special case of a randomized algorithm.

Theorem 2 If random algorithm L and training data D are
invariant under symmetry σ then

EL (D,w) = EL (D,σ(w)),

for all w in W. In other words, the algorithm L gives on
average the same rating to w and σ(w) when trained on D.

Proof. We have

EL (D,w) = EL (σ(D),σ(w)) = EL (D,σ(w))

where the first equality follows from the invariance of L un-
der σ , and the second inequality follows from the invariance
of D under σ . �

Experiments
We demonstrate the consequences of our theorems in a com-
putational experiment where we use a deep neural network
to learn the grammar described in our introduction. The net-
works are trained using data in which two-letter words with
two identical letters are good, and two-letter words with two
different letters are bad. The network is then asked to as-
sess novel words containing segments it has not seen in the
training set. Randomness enters into the training of these net-
works in various places and so Theorem 2 is the relevant re-
sult in this case. Consequently, we do not compare individual
trainings of the network on the novel stimuli. For each novel
stimulus we train the network numerous times and take the
average score over all the trainings. It is these scores that are
compared between stimuli.

Task and Dataset
Before discussing the neural network learners that were
tested, we describe the dataset and task that was required of
them. As before, our set of words W consisted of all two let-
ter words with letters running from A to Z. The training set
consisted of the 24 words AA, BB, . . ., XX paired with rating

1, along with 48 randomly generated words with mismatched
segments taken from the list A, . . . , X, each paired with rating
0.

To assess the ability of the learner to generalize to novel
inputs, after training we tested it on the words

YY, ZZ, XY, YZ, XZ, ZY,

where X ∈ {A,B, . . . ,X} were randomly selected. For each
learner, the experiment was independently repeated 40 times
with different random seeds.

Encodings. We distinguish two different representations
for the segments A to Z, namely the localist and distributed
encodings. Both of these representations use a fixed length
bit string. However, while localist codes (also known as 1-of-
k encoding) are constrained to include a single non-zero bit,
distributed codes can be any arbitrary combination of k bits,
for some fixed k. Distributed encodings are a much more
compact representation of data; indeed, for the same string-
length k, we can represent an exponentially large number of
segments 2k. The experiment was run on both types of encod-
ing with k = 26. When distributed encoding was used, codes
for each letter were randomly generated each repetition, so
the exact encoding of the segment X, for instance, is almost
certainly different between two repetitions of a given run.

Neural Network Learners

We tested our theoretical findings on the most popular model
in the machine learning literature today: the artificial neu-
ral network. The words were fed into the neural network
by simply concatenating the two 26-bit codes of their let-
ters. We experimented with many different architectures,
ranging from one to three hidden layers, and from 256 to
1024 units per layer, with tanh nonlinearities for all hidden
units. We trained the models via backpropagation using an
iterative quasi-Newton gradient descent algorithm called the
limited memory Broyden-Fletcher-Goldfarb-Shanno method
(L-BFGS), with a maximum of 100 iterations. Both the neu-
ral network and its optimization are implemented in torch
(Collobert, Bengio, & Mariéthoz, 2002).

Results

We present results for the case of each hidden layer having
256 units, as the results are similar for more units per hidden
layer. In Figure 1, for the localist encoding, we plot the av-
erage score output by the neural network for each of the test
words above, for 1, 2, and 3 hidden layers. In addition, the
averaged training scores are reported in the top two bars of
each panel.
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Figure 1: Scores for various words for the network with lo-
calist encoding for 1, 2, and 3 hidden layers.

Figure 2: Scores for various words for the network with dis-
tributed encoding for 1, 2, and 3 hidden layers.
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Looking at the top plot in the figure, showing the results
for one hidden layer, the words YY and ZZ get scores of
around 0.3 in contrast to the score of near 1 given for the well-
formed input AA. The networks are unable to determine that
YY and ZZ are grammatical. Likewise, the other test words
with differing segments and containing the segments Y or Z
have scores ranging from approximately 0.3 to 0.5. The net-
works are not able to distinguish between grammatical and
ungrammatical words in this case.

The ability of the networks to generalize to novel inputs is
not improved by adding further hidden layers. The second
and third plots in Figure 1, corresponding to two and three
hidden layers, show very similar results to the first. To within
statistical accuracy, the scores for YY, ZZ, YZ, and ZY are all
the same. The networks are not able to discriminate between
grammatical and ungrammatical words when the words in-
cluded the novel segments Y and Z.

This poor performance is perhaps not surprising for the lo-
calist encoding, as observed by Marcus (Marcus, 2003): in
the localist encoding, introducing new segments correspond
to activating new input units that were never active during
training, and therefore whose weights never changed from
their random initializations. However, in Figure 2 we show
that the poor performance remains true in the case of dis-
tributed representations. In the first plot, we show the results
for a single hidden layer. The networks give a rating higher
than 0.5 for both YY and ZZ, which is higher than the score
given by the localist networks, but the same high rating is
given to the words YZ and ZY. A similar pattern is repeated
for the two and three-layer case. The networks are not able to
discriminate between grammatical and ungrammatical words
containing novel segments, even when distributed representa-
tions are used.

Discussion

That connectionist networks are unable to generalize what are
sometimes called “algebraic” rules to novel inputs is not a
new observation (Marcus, 2003; Berent, 2012). Our contri-
bution has been to give a formalized description and proof
of this phenomenon. Furthermore, our results and computer
experiments reinforce that Deep Learning, in the form of the
ability to train connectionist networks with multiple hidden
layers, does not alone overcome these limitations.
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