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ABSTRACT OF THE DISSERTATION

On Using Multiperspective Color and Thermal Infrared Videos to Detect People:

Issues, Computational Framework, Algorithms and Comparative Analysis

by

Stephen Justin Krotosky

Doctor of Philosophy in Electrical Engineering (Signal and Image Processing)

University of California, San Diego, 2007

Professor Mohan M. Trivedi, Chair

This is a study to investigate the fundamental problem of combining color and

infrared imagery in a unified feature framework that can then be applied to person de-

tection. In order to combine the imagery, the features of objects in the scene must be

registered. This is a challenge in color and infrared imagery, as corresponding features

appear very different in each image spectrum. Once registered it is also a challenge

to successfully combine the features to achieve improved detection over unimodal ap-

proaches. We investigate both these challenges in detail.

We present the related studies in multimodal image registration and categorize

the registration methodologies into four distinct sectors based on the assumptions about

scene configuration. We examine how these assumptions limit the generality of scenes

that can be analyzed and help motivate the development of an approach to registering

color and infrared imagery that is able to overcome these limitations.

In order to register multiple objects in a general scene, where objects can be

at different depths from the camera, stereo analysis is necessary to resolve the parallax

associated with the multiple views. We first examine state-of-the-art stereo algorithms

that are designed to handle correspondence matching for unmatched image data. We

definitively show that these approaches are unsuitable for finding correspondence in

cross-spectral stereo imagery, where a color and infrared camera are joined in a stereo

xix



pair. As an alternative, we propose a region-based approach to correspondence matching

that is able to successfully perform correspondence matching by relying on an initial

segmentation and disparity voting-based methodology to registering foreground objects

in the scene.

Extensive experimental evaluations of our proposed cross-spectral stereo reg-

istration algorithm are performed. We present experimental studies in registering people

in both indoor surveillance from a static camera and outdoor pedestrian detection from

a moving vehicle. We also offer a comparison of our approach to ground truth and

the current state of related studies, with both ideal and realistic initial segmentations.

We also experimentally validate the robustness of our approach by evaluating additional

data taken from different cameras in another environment. Finally, we show how our

approach to cross-spectral stereo registration can be used to track people in a 3D context.

Our study then focuses on studying how color and infrared imagery can be

used to improve person detection algorithms. In the context of pedestrian detection, we

first compare and evaluate how the disparity information from color stereo and infrared

stereo can be used to detect potential objects in the scene. The high success of the dis-

parity information from both modalities motivates a discussion of the color and infrared

features that can be extracted to further classify the potential objects into pedestrian and

non-pedestrian regions. This leads to our development of our experimental framework

that allows us to compare pedestrian classifiers that utilize all combinations of color,

infrared and disparity features. We also propose a trifocal framework consisting of a

color stereo camera rig combined with an infrared camera in order to quickly register

the multimodal data for our analysis.

We extend the analysis of multispectral and multiperspective approaches to

person detection in the context of surveillance. We further justify our trifocal approach

to registration by demonstrating its superiority over the planar homography approach in

terms of scene generality and robustness. The trifocal approach is able to register any

object in the scene that is able to be registered in stereo imagery. This allows general

scene configurations and also allows for a direct comparison to conventional monocular

xx



and unimodal stereo approaches. With this in mind, we present a framework for person

detection that can combine color, infrared and disparity features in a unified manner

and expands the robustness and accuracy of the method proposed in the previous chap-

ter. We then use this algorithmic framework to present a detailed comparison of person

detection using various combinations of color, infrared and disparity features. The anal-

ysis demonstrated that our unified trifocal framework easily outperforms both unimodal

stereo analysis and multimodal “tetravision” analysis that separately combines color and

infrared stereo analysis. We present extensive evaluation of the trifocal-based experi-

ments to illustrate the improved detection rates that can be achieved when incorporating

multispectral data in the detection framework.

xxi
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Introduction
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I.A Motivation

The analysis of people is a general topic of interest in many fields. Specific

interest lies in determining how people act and interact in “intelligent” environments.

Such spaces are equipped with sensors that can derive and maintain an awareness of the

events and activities that occur in the space. These types of spaces can include indoor

environments and buildings, as well as outdoor spaces, moving vehicles and any other

spaces that humans occupy.

Cameras and video networks make natural sensor systems for “looking” at

people. Intelligent environments need to support a wide and general set of person ac-

tions and interactions; video analysis and computer vision techniques provide a natural

framework for this. When analyzing people it is desirable to have a system that can

provide multi-level descriptions of the human activity, including tracking people in 3-D,

estimating their poses and identifying their interactions with the environment and others.

Each of these goals can be addressed with computer vision techniques.

When looking at people in this context, it is desirable to obtain as much in-

formation as possible to aid in accurately and robustly analyzing the scene. With this

in mind, a multi-perspective approach can be used when imaging the intelligent envi-

ronment. By viewing the scene from multiple perspectives, 3-D information can be

extracted from the scene making it easy to detect, track and analyze people in the scene.

Additionally, it is important to be able to distinguish people in the scene. There are

many techniques for analyzing people in color imagery, but those techniques, and color

imagery in general, are susceptible to lighting conditions. In order to provide robustness

to this, we would like to combine our color camera analysis with thermal imagery. The

thermal imagery will add to the robustness of the system by providing an additional way

of viewing the scene.

It is within this multimodal and multi-perspective framework that we wish to

explore person analysis.
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I.B Outline

In Chapter II, related studies in multimodal image registration are reviewed.

We categorize the registration methodologies into four distinct sectors based on the as-

sumptions about scene configuration. We examine how these assumptions limit the gen-

erality of scenes that can be analyzed and help motivate the development of an approach

to registering color and infrared imagery that is able to overcome these limitations.

Chapter III details our approach to multimodal image registration. We show

that in order to register multiple objects in a general scene, where objects can be at

different depths from the camera, stereo analysis is necessary to resolve the parallax

associated with the multiple views. We first examine state-of-the-art stereo algorithms

that are designed to handle correspondence matching for unmatched image data. We

definitively show that these approaches are unsuitable for finding correspondence in

cross-spectral stereo imagery, where a color and infrared camera are joined in a stereo

pair. As an alternative, we propose a region-based approach to correspondence matching

that is able to successfully perform correspondence matching by relying on an initial

segmentation and disparity voting-based methodology to registering foreground objects

in the scene.

In Chapter IV, we perform an extensive experimental evaluation of our pro-

posed cross-spectral stereo registration algorithm. We present experimental studies in

registering people in both indoor surveillance from a static camera and outdoor pedes-

trian detection from a moving vehicle. We also offer a comparison of our approach to

ground truth and the current state of related studies, with both ideal and realistic initial

segmentations. We also experimentally validate the robustness of our approach by eval-

uating additional data taken from different cameras in another environment. Finally, we

show how our approach to cross-spectral stereo registration can be used to track people

in a 3D context.

The next two chapters shifts focus from the problem of registering color and

infrared imagery to studying how color and infrared imagery can be used to improve
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person detection algorithms. In Chapter V explore using color and infrared imagery

for detecting people in the context of pedestrian detection. We first compare and eval-

uate how the disparity information from color stereo and infrared stereo can be used

to detect potential objects in the scene. The high success of the disparity information

from both modalities motivates a discussion of the color and infrared features that can

be extracted to further classify the potential objects into pedestrian and non-pedestrian

regions. This leads to our development of our experimental framework that allows us to

compare pedestrian classifiers that utilize all combinations of color, infrared and dispar-

ity features. We also propose a trifocal framework consisting of a color stereo camera

rig combined with an infrared camera in order to quickly register the multimodal data

for our analysis. We will explore this trifocal framework and classification architecture

much further in Chapter VI.

Chapter VI continues our analysis of multispectral and multiperspective ap-

proaches to person detection in the context of surveillance. We further justify our trifo-

cal approach to registration by demonstrating its superiority overthe planar homography

approach in terms of scene generality and robustness. The trifocal approach is able to

register any object in the scene that is able to be registered in stereo imagery. This

allows general scene configurations and also allows for a direct comparison to conven-

tional monocular and unimodal stereo approaches. With this in mind, we present a

framework for person detection that can combine color, infrared and disparity features

in a unified manner and expands the robustness and accuracy of the method proposed

in the previous chapter. We then use this algorithmic framework to present a detailed

comparison of person detection using various combinations of color, infrared and dis-

parity features. The analysis demonstrated that our unified trifocal framework easily

outperforms both unimodal stereo analysis and multimodal “tetravision” analysis that

separately combines color and infrared stereo analysis. We present extensive evaluation

of the trifocal-based experiments to illustrate the improved detection rates that can be

achieved when incorporating multispectral data in the detection framework.

Chapter VII summarizes the work and presents the concluding remarks.



Chapter II

Related Studies in Multiperspective

Image Registration

5
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II.A Introduction

A fundamental issue associated with multisensory vision is that of accurately

registering corresponding information and features from the different sensory systems.

This issue is exacerbated when the sensors are capturing signals derived from totally

different physical phenomena, such as color (reflected energy) and thermal signature

(emitted energy). Multimodal imagery applications for human analysis span a variety

of application domains, including medical [1], in-vehicle safety systems [2] and long-

range surveillance [3]. The combination of both types of imagery yields information

about the scene that is rich in color, depth, motion and thermal detail. Once registered,

such information can then be used to successfully detect, track and analyze movement

and activity patterns of persons and objects in the scene.

At the heart of any registration approach is the selection of the most relevant

similarity metric, which can accurately match the disparate physical properties mani-

fested in images recorded by multimodal cameras. Mutual Information (MI) provides an

attractive metric for situations where there are complex mappings of the pixel intensities

of corresponding objects in each modality, due to the disparate physical mechanisms that

give rise to the multimodal imagery [4]. Egnal has shown that mutual information is a

viable similarity metric for multimodal stereo registration when the mutual information

window sizes are large enough to sufficiently populate the joint probability histogram of

the mutual information computation [5]. Further investigations into the properties and

applicability of mutual information for windowed correspondence measure has been

done by Thevenaz and Unser [6]. Challenges lie in obtaining these appropriately sized

window regions for computing mutual information in scenes with multiple people and

occlusions, where a balanced tradeoff between larger windows for matching evidence

and smaller windows for registration detail is needed.

In this chapter, we provide a detailed overview of the current state of mul-

timodal registration and provide a comparative analysis of algorithms for registering

color and infrared image information. A discussion of the pros and cons of each ap-
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proach helps motivate the development of the cross-spectral stereo approach we will

discuss in subsequent chapters.

II.B Multimodal Registration Approaches: Comparative Analysis

of Algorithms

In a multimodal, multicamera setup, because each camera can be at a different

position in the world and have different intrinsic parameters, objects in the scene can

not be assumed to be located at the same position in each image. Due to these camera

effects, corresponding objects in each image may have different sizes, shapes, positions,

and intensities. In order to combine the information in each image, it is required that the

corresponding objects in the scene be aligned, or registered. Sensory measurements can

then be fused or features combined in a variety of ways that can fuel algorithms that take

advantage of the information provided from multiple and differing image sources [7].

Experiments in our previous work [2] have offered analysis and insight into the com-

monalities and uniqueness of the multimodal imagery. Multimodal image registration

approaches vary based on factors such as camera placement, scene complexity and the

desired range and density of registered objects in the scene. In order to better understand

the algorithmic details of the various multimodal registration techniques, it is important

to outline the underlying geometric framework for registration. Much of the multiple

view geometry properties derived in this paper are adapted from Hartley and Zisser-

man [8].

Given a two camera setup with camera center locations C and C ′, a 3D point

in space can be defined relative to each of the camera coordinate systems as P =

(X, Y, Z)T and P ′ = (X ′, Y ′, Z ′)T , respectively. The coordinate system transforma-

tion between P and P ′ is:

P ′ = RP + T (II.1)

where R is the matrix that defines the rotation between the two camera centers and
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T is the translation vector that represents the distance between them. Additionally, the

projection matrices for each camera are defined as K and K ′, where the projected points

on the image plane are the homogeneous coordinates p = (x, y, 1) and p′ = (x′, y′, 1).

Let π be a plane in the scene parameterized with N , the surface normal of the

plane and dπ is the distance from the camera center C. Then a point lies on that plane if

NT P = dπ. The homography induced by π is P ′ = HP P where:

HP = R− T
NT

dπ

(II.2)

Applying the projection matrices K and K ′, we have p′ = Hp, where H =

K ′HP K−1 giving

H = K ′(R− T
NT

dπ

)
K−1 (II.3)

This homographic transformation describes the transformation of points only

when the points lie on the plane π (e.g. NT P = dπ). When a point does not lie on this

plane, then an additional parallax component needs to be added to the transformation

equation to accommodate the projective depth of other points in the scene relative to the

plane π. It has been shown in [8] that the transformation that includes the additional

parallax term is:

p′ = Hp + δe′ (II.4)

where e′ is the epipole in C ′ and δ is the parallax relative to the plane π. The epipole is

the intersecting point between the image plane and the line containing the optical centers

of C and C ′. The equation in (II.4) has effectively decomposed the point correlation

equation into a term for the induced planar homography (Hp) and the parallax associated

with points that do not satisfy the planar homography assumption (δe′). It is within

this framework that we will describe the registration techniques used for multimodal

imagery. Figure II.1 illustrates the main approaches to multimodal image registration

that will be analyzed. Additionally, Table II.1 provides a summary of references utilizing

these approaches and indicates the assumptions, methods and limitations in each.
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(a) Infinite Homography

(b) Global (c) Stereo Geometric

(d) Partial Image ROI

Figure II.1: Geometric illustration of the four main approaches to multimodal image

registration.
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II.B.1 Infinite Homographic Registration

In O’Conaire et al. [9] and Davis & Sharma [3], it is assumed that the thermal

infrared and color cameras are nearly colocated and the imaged scene is far from the

camera, so that the deviation of pedestrians from the ground plane is negligible com-

pared to the distance between the ground and the cameras. Under these assumptions, an

infinite planar homography can be applied to the scene and all objects will be aligned in

each image.

The infinite planar homography, H∞, is defined as the homography that occurs

when the plane π is at infinity. An illustration of this type of registration geometry is

shown in Figure II.1(a). Starting from (II.3), we define

H∞ = lim
dπ→∞

H = K ′RK−1 (II.5)

When the plane is at infinity, the homography between points is only a rotation

R between the cameras and the internal projection matrices for each camera, K and

K ′. Similarly, from (II.4), Hartley and Zisserman [8] showed that the correspondence

equation for image points in an infinite homography is:

p′ = H∞p +
K ′t

Z
(II.6)

where Z = 1
δ

is the depth from C and K ′t = e′ is the epipole in C ′.

Infinite homographic registration techniques are used when the scene distance

is very far from the camera. When all observed objects are very far from C, then Z →∞

and the parallax effects will be negligible. Alternatively, when the cameras are nearly

colocated, i.e. t → 0, the parallax term also becomes negligible. In both cases the

correspondence equation becomes:

p′ = H∞p (II.7)

The use of an infinite planar homography is a an effective way of registering

the scene, but only when the scene that is being registered conforms to the homographic
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assumptions. This means that the scene must be very far from the camera so that an ob-

ject’s displacement from the ground plane will be negligible compared to the observation

distance. While this type of assumption is appropriate for long distance and overhead

surveillance scenes, this is not valid in situations where objects and people can be at

various depths whose difference is significant relative to their distance from the cam-

era. In these cases, the infinite homography assumption will not align all objects in the

scene. In addition, when the assumption of an infinite homography does hold, the lack

of a parallax term precludes any estimate of depth that could be used as a differentiator

for occluding objects.

II.B.2 Global Image Registration

Global approaches to registration can be used when further assumptions about

the movement and placement of objects and people in a scene are employed to make

the registration fit a specific model. The registration will be accurate when the scene

follows the specific model used, but can be grossly inaccurate when the imaged scene

does not fit the assumptions of the model.

The usual assumption of these techniques is that all objects lie on the same

plane in the scene. Often to enforce this assumption, only foreground objects are con-

sidered. Global image registration techniques make the assumption that δ, the measure

of difference from the homographic plane in (II.4), will be small for all objects in the

scene. However, in scenes where objects of interest are at different planes, only the

objects lying on the plane π that induces the homography will be registered. All other

objects that lie on different planes will be misaligned due to the second term δe′ in (II.4).

If the distance of objects from the plane is small compared to the distance of

cameras from the plane, the parallax effects tend to zero and the homography accurately

describes the registration of objects in the scene at any depth. Works that have applied

this global registration technique operated either on the single plane or approximate

colocation assumption to allow for accurate scene registration. An illustration of this

type of registration is shown in Figure II.1(b).
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Irani and Anandan [10] used directional-derivative-energy operators to gener-

ate features from a Gaussian Pyramid of the visual and thermal infrared images and used

local correlation values for these features to obtain a global alignment for the multimodal

image pair. Alignment is done by estimating a parametric surface correspondence that

can estimate the registration alignment of the two images. Newton’s method is used to

iteratively search for the parametric transformation that maximizes the global alignment.

Coiras et al. [11] matches triangles formed from edge features in visual and

thermal infrared images to learn an affine transformation model for static images. The

global affine transformation that best maximizes the global edge-formed triangle match-

ing is searched from transformations obtained by matching individual formed triangles

in one image to other individual formed triangles in the second image.

Han and Bhanu [12] used the features extracted when a human walked in

a scene to learn a projective transformation model to register visual and IR images.

It is assumed that the person walking in the scene walks in a straight line during the

registration sequence. This enforces that the person is located within a single plane

throughout the sequence and ensures that the global projective transformation model

assumption holds. Feature points derived from foreground silhouettes in two pair of

images in the sequence are used as input into a Hierarchical Genetic Algorithm that

searches for the best global transformation.

Itoh et al. [13] used a calibration board to register colocated color and thermal

infrared cameras for use in a system that recognized hand movement for multimedia

production. The calibration board points were used to establish a quadratic transforma-

tion model between the color and thermal infrared images. Registration is only required

for a predefined workspace with a fixed range within the image scene and the calibration

board was placed to ensure registration in that region.

Similarly, Ye [14] used silhouette tracking and Hausdorff distance edge match-

ing to register visual and thermal infrared images. In this case, it is assumed that the

cameras are nearly colocated and that registration can be accomplished with a displace-

ment and scaling. The detected top points of foreground silhouettes are tracked using
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the motion associations with previously tracked points. The Hausdorff distance measure

is used to match edge features in each silhouette and estimate the scale and translation

parameters. The registration and tracking are then used and updated to provide simulta-

neous tracking and iterative registration.

Global image registration methods place some limiting assumptions on the

configuration of objects in the scene. Specifically, it is assumed that all registered objects

will lie on a single plane in the image and it is impossible to accurately register objects

at different observation depths, as the registration transform for each object will depend

on the varying perspective effects of the camera. This means that accurate registration

can only occur when there is only one observed object in the scene [12], or when all

the observed objects are restricted to lie at approximately the same distance from the

camera [13] [14]. The global alignment algorithms proposed by Irani & Anandan [10]

and Coiras et al. [11] do not account for situations where there are objects at different

depths or planes in the image. Both use the assumption that the colocation of the cameras

and the observed distances are such that the parallax effects can be ignored.

The primary limitation to global registration methods is that it is impossible to

register objects at different depths. Global methods effectively restrict the successfully

registered area to be a single plane in the image. When colocated cameras are used to

relax the single plane restriction, parallax effects become negligible, and the problem

becomes akin to infinite homographic methods.

II.B.3 Stereo Geometric Registration

When a stereo camera setup is used in combination with additional cameras

from other modalities, the images from each modality can be combined using the stereo

3D point estimates and the geometric relation between the stereo and multimodal cam-

eras. As demonstrated in Ju et al. [15], stereo cameras can give accurate 3D point

coordinates for objects in the image. If the remaining cameras are then calibrated to the

reference stereo pair, usually with a calibration board, then the pixels in those images

(thermal infrared) can be reprojected onto the reference stereo image. The resulting
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reprojection will be registered to the stereo reference image.

In this case, for a point p in the reference stereo image, an estimate of its

3D location P̂ is given from the calibrated stereo geometry parameters. Additionally,

the calibration of the left reference stereo image and the additional thermal infrared

modality give the rotation R and T between camera coordinates. This allows the change

of coordinate system to the thermal infrared reference frame, PTIR = RP̂ + T . The 3D

point can then be reprojected onto the infrared image plane.

pTIR = KTIRPTIR (II.8)

The thermal image point is then put into homogeneous form and the intensity

value at this location in the thermal infrared image can then be assigned to the point p in

the stereo reference image. Such a registration technique is illustrated in Figure II.1(c).

For the case of stereo geometric registration techniques, objects in a scene at

very different depths can be registered as long as the stereo disparity information is avail-

able for that object. If the stereo algorithm can provide dense and accurate stereo for the

objects in the scene, stereo geometric registration is a good way of quickly and effec-

tively registering the visual and infrared imagery. In the experiments of Ju et al. [15] the

observed object (head) was carefully placed into the scene and it was assumed that it was

the only object in the scene. Stereo data was captured using high resolution stereo cam-

eras in a fairly stable and well-conditioned scene. The resulting 3D stereo image was

dense and accurate in these conditions. However, experiments need to be conducted

to see how these environmental conditions can be relaxed. Namely, it is important to

examine how stereo geometric registration techniques perform in real world conditions,

where using standard resolution cameras in environments of poor lighting, poor textures

and occlusions can affect the quality and reliability of the 3D reprojection registration

technique.

Multiple stereo camera approaches to stereo geometric have been investigated

by Bertozzi et al. [16]. Using four cameras configured into two unimodal stereo pairs

that yield two separate disparity estimates, registration can occur in the disparity domain.
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While this approach yields redundancy and registration success, the use of four cameras

can be cumbersome both in physical creation, calibration and management, as well as

in data storage and processing.

II.B.4 Partial Image ROI Registration

An approach to registering objects at multiple depths is to use partial image

region-of-interest registration. The main assumption of this approach is that each indi-

vidual object in the scene is at a specific plane and that each plane can be individually

registered with a separate homography. For each of the i regions-of-interest Ω in the

image, if p ∈ Ωi then

p′ = Hip + δie
′ (II.9)

Again, it assumed that the parallax effects are negligible within each object, as each is

approximated to be a single planar object in the scene. As long as each Ωi satisfies this

assumption, the registration technique will be applicable. This is illustrated in Figure

II.1(d).

Chen et al. [17] proposed that the visual and infrared imagery be registered us-

ing a maximization of mutual information technique on bounding boxes that correspond

to detected objects in one of the modalities. It is assumed that corresponding regions can

be found by translation. It is also assumed that any scale difference is fixed and known

a priori. The matching bounding box is then searched for in the other modality using

a simplex method. This allows bounding boxes that correspond to objects at different

depths to be successfully registered.

Chen et al. assume that the bounding boxes representing a single object can

always be properly segmented and tracked in one of the modalities. The assumption

that bounding boxes will be properly segmented will often not hold, especially in un-

controlled scenes where the issues of lighting, texture and occlusions can produce seg-

mentation results that contain two or more merged objects at different depths. Using

bounding boxes that contain multiple objects will not register properly as the required

assumption that an ROI contains objects within a single plane will not hold.
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II.C Summary

In this chapter we have provided an analysis of the approaches to multimodal

image registration and detailed the assumptions, applicability and limitations of each.

We have shown how current approaches restrict registration to scenes that fall under

specific configurations that severely limit the general applicability of multimodal anal-

ysis. To generalize the registration to include objects that are different depths from the

camera, multiperspective elements must be used to account for the parallax in the scene.

It is in this multiperspective and multimodal domain that we will focus our efforts in the

subsequent chapters.

The text of this chapter, in part, is a reprint of the material as it appears in:

Stephen J. Krotosky and Mohan M. Trivedi, “Mutual Information Based Registration

of Multimodal Stereo Videos for Person Tracking” in Computer Vision and Image Un-

derstanding, Special Issue on Advances in Vision Algorithms and Systems Beyond the

Visible Spectrum, Vol. 106, Issues 2-3, May-June 2007. I was the primary researcher of

the cited material and the co-author listed in this publication directed and supervised the

research which forms a basis for this chapter.
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III.A Introduction

A fundamental issue associated with stereo vision is finding accurate and ro-

bust similarity measures that can be used to match correspondences across different sen-

sory systems. This issue is exacerbated when the capture devices yield image intensities

that are derived from totally different physical phenomena, such as color and infrared

imagery. While a multimodal stereo system has the potential to give information about

the scene that is rich in color, depth, motion and thermal detail, it is necessary to first

find similarity measures that resolve the multimodal stereo correspondences.

One such similarity measure, mutual information (MI), provides an attractive

metric for situations where there are complex mappings of the pixel intensities of corre-

sponding objects in each modality. Egnal has shown that mutual information is a viable

similarity metric for multimodal stereo registration when the mutual information win-

dow sizes are large enough to sufficiently populate the joint probability histogram of the

mutual information computation [5]. Further investigations into the properties and ap-

plicability of mutual information for windowed correspondence measure has been done

by Thevenaz and Unser [6]. Challenges for multimodal stereo imagery lie in appro-

priately applying mutual information similarity measures in a way that can efficiently

resolve the correspondence problem. We will investigate several methods for achieving

this, namely an energy minimization framework and a region and edge segment-based

multiprimitive framework.

This chapter presents the following contributions: In Section III.B, we give a

detailed analysis of current approaches to stereo matching that use mutual information in

an energy minimization framework. We experimentally demonstrate that these methods

cannot resolve the stereo correspondences when using true multimodal imagery. In Sec-

tion III.C we present our alternative approach to resolving the stereo correspondences

by focusing on matching region-based primitives. This approach is able to successfully

register multiple objects in the scene at significantly different depths from the camera.
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III.B Cross-Spectral Stereo using Mutual Information

Recently, algorithms have been developed that utilize mutual information to

solve the stereo correspondence between two images. Using mutual information to mea-

sure the similarity of potential correspondences is attractive because it is inherently ro-

bust to differences in intensities between two corresponding points. Egnal [5] is his-

torically attributed with proposing the idea of using mutual information as a stereo cor-

respondence matching feature, yet results were of relatively low quality until Kim et

al. [21] and subsequently Hirschmüller [22] demonstrated very successful stereo dispar-

ity generation by using mutual information in an energy minimization context. They

have shown how the mutual information measure gives good results even when the im-

ages are synthetically altered by an arbitrary intensity transformation. We investigate

whether these mutual information based stereo algorithms can resolve the correspon-

dence problem for true multimodal imagery with the same success achieved for synthet-

ically altered imagery.

We have chosen to utilize the algorithm developed by Hirschmüller [22] in an-

alyzing the use of mutual information with energy minimization for solving multimodal

stereo correspondences. This choice is based on the fact that this algorithm is the mu-

tual information-based approach that performed best on the Middlebury College Stereo

Evaluation [23]. Its use of mutual information is identical to that of Kim et al. [21] and

the two algorithms differ only in how the energy function is minimized, with Kim using

the global optimization of Graph Cuts while Hirschmüller utilizes a faster hierarchical

approach called Semi-Global Matching.

To compute mutual information in this framework, Kim et al. adapted the

mutual information computation to fit within the energy minimization framework. We

re-derive this computational framework here for convenience. The mutual information

(MI) between two images IL and IR is defined as:

MIL,R = HL + HR −HL,R (III.1)
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where HL and HR are the entropies of the two images and HL,R is the joint entropy

term. These entropies are defined as:

HL = −
∫

PL(l) log PL(l)dl (III.2)

HL,R = −
∫ ∫

PL,R(l, r) log PL,R(l, r)dldr (III.3)

where P is the probability distribution of intensities for a given image (L) or image

pair (L, R), respectively. In order to put the entropy terms into the energy minimization

framework, Kim approximated the H as a sum of terms based on each pixel pair p in

the imagery:

HL,R =
∑

p

hL,R(Lp, Rp) (III.4)

The joint entropy, hL,R is computed performing Parzen estimation (2D convo-

lution with Gaussian g(l, r)) and approximating the probability distribution PL,R as the

normalized 2D histogram of corresponding pixels from image pair IL and IR.

hL,R = − 1

n
log(PL,R(l, r)⊗ g(l, r))⊗ g(l, r) (III.5)

Similarly, the entropy term is:

hL = − 1

n
log(PL(l)⊗ g(l))⊗ g(l) (III.6)

From this, Kim redefined mutual information as:

MIL,R =
∑

p

miL,R(Lp, Rp) (III.7)

miL,R(l, r) = hL(l) + hR(r)− hL,R(l, r) (III.8)

It is this mi term that both Kim [21] and Hirschmüller [22] use in their iterative

stereo algorithm cost functions. We experiment with the stereo algorithm proposed by

Hirschmüller for a variety of multimodal imagery, including color pairs, synthetically

altered color pairs and paired color/infrared imagery.
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(a) Color Imagery

(b) Posterized Color Imagery

(c) Synthetically Altered Color Imagery

(d) Infrared Imagery

(e) Color and Infrared Imagery

Figure III.1: Mutual Information Stereo Examples: Disparity results from Mutual Infor-

mation based stereo algorithm for different input images. Notice how disparity values

are reasonable even for highly altered inputs, but the algorithm fails for natural multi-

modal image sets.
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Figure III.1 shows the results of the Semi-Global Matching algorithm using

mutual information proposed in [22] for different test images. The first row shows the

results for two matched color stereo pairs. Notice how the resulting disparity image

provides dense and quality estimates for the entire image. For each object in the scene,

there is a silhouette of disparity that fits logically with the scene. Depth order is main-

tained throughout and the overall disparity image appears similar to those reported in

the stereo matching literature [23]. These results are expected and are on par with the

quality of disparity results reported in the original paper. The results in the second row

show the disparity image when the right image is posterized to 8 intensity levels. The

results in the third row show when the right image is synthetically altered with an arbi-

trary transform. In this case, the transform is quite complex and the intensity transform

is not one-to-one, y = 128(cos(x/15) ·x/255+1). Each of these disparity images gives

dense and accurate estimates that are very similar to the original unaltered stereo pair.

This assessment corroborates with other stereo results for synthetically altered imagery

reported in [21] and [22]. Additionally, the fourth row shows successful stereo matching

when using two infrared images.

The final row, Figure III.1(e), shows the results when the same algorithm is

applied to multimodal stereo imagery. The resulting disparity image yields completely

invalid results and the algorithm cannot resolve any of the correct correspondences.

The people in the infrared image are clearly visible and we as humans would have no

problem finding the corresponding person from the color image. The transform between

color and thermal, while different from the synthetic transform, does not appear to be

markedly worse, although some details, especially in the background regions, are lost.

The question remains, what is fundamentally different about the infrared imagery that

prevents the correct determination of correspondence values?

To try to answer this question, we need a deeper analysis of the underlying mu-

tual information optimization scheme. At the initialization of the energy minimization

algorithms, a random disparity map is chosen to initialize the probability distribution

that is used to compute the mutual information terms. At this point, it is expected that
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the mutual information, denoted mi in [22] and D in [21], will appear relatively uncor-

related and give a low mutual information score. As the algorithmic iterations progress,

it is desired that the mi values approach a maximum and the 2D mi plot follows the

true intensity relation between the left and right images. For example, for the matched

color stereo pair, the mi values lie along a line with negative unit slope when the correct

disparity correspondences are found.

Figure III.2 shows the mi plot for a pair of non-corresponding and correspond-

ing regions for color-color (a), color-posterized (b), color-altered color (c) infrared-

infrared (d) and color-infrared (e) imagery. The first pair of images of each row can

be thought of as starting from an initially random disparity image where most (or all) of

the correspondences are incorrect. In this case, the resulting mi plot shows intensities

that are not well correlated as noted by its large spread across the image 2D mi his-

togram. For the color-color, color-posterized, color-altered color and infrared-infrared

cases, when we choose corresponding image regions, the mi plot shows the well cor-

related image intensity transform, as expected. However, for the case of corresponding

color-infrared images, the mi value does not reduce to some easily discernable trans-

form. In fact, the intensities for the corresponding multimodal regions appear just as

uncorrelated as the intensities for the non-corresponding regions. This indicates that

using these types of energy minimization algorithms is not possible with color and in-

frared stereo imagery. This uncorrelatedness of the color and thermal imagery means

that it is difficult to predict the intensity of an infrared pixel given a corresponding color

intensity. Because of this, the use of mutual information as an energy minimization term

is not appropriate. The mutual information energy term (mi values) needs to be mini-

mized, yet cannot because the uncorrelation between color and thermal image intensities

produces similarly large values for both good and bad matches.
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(a) Color-Color MI Transform

(b) Color-Posterized Color MI Transform

(c) Color-Altered Color MI Transform

(d) Infrared-Infrared MI Transform

(e) Color-Infrared MI Transform

Figure III.2: mi plots for non-corresponding and corresponding image regions.
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III.C Multimodal stereo using primitive matching

We have demonstrated that current state-of-the-art stereo algorithms cannot

utilize mutual information to effectively solve the multimodal stereo correspondence

problem. It is important to now seek out alternative features and approaches that may

give some way of obtaining correspondences in the scene. To achieve any success in

stereo correspondence matching with multimodal imagery, it is imperative to first iden-

tify features that are universal to both the color and thermal imagery. While it is clear

that there is little commonality associated with the intensities across color and thermal

imagery, the example multimodal stereo pair in Figure III.4 suggests that there is some

clear commonality on a region (object) level and on edges associated with these region

boundaries. For example, skin tone regions in the color image correspond well to bright

intensity regions on the infrared image. In general, the silhouettes associated with the

people in the scene have similar sizes, shapes and edge boundaries in each modality.

Prior to the success and proliferation of windowed correlation-based approaches

to the traditional stereo correspondence problem, many researchers attempted to solve

the correspondences between two images by utilizing region based primitives. As it

is apparent that regions share strong commonality across the multimodal imagery, it

is natural to investigate and apply the lessons of primitive-based stereo matching in a

multimodal context. Seminal works in multiprimitive stereo, such as the approach de-

veloped by Marapane [24], will serve as guide for our investigation and development

of a framework for a multimodal stereo algorithm. We will describe an approach to

region-based matching in Section III.C.1.

In order to analyze the multimodal imagery and offer a direct comparison to

both unimodal color and unimodal infrared stereo setups, we have designed a testbed

capable of generating the three separate, yet synchronized, stereo imagery. Utilizing

a two color, two infrared system and a four-input frame grabber, we are able to ob-

tain synchronized uncompressed streams from each camera. The cameras have been

arranged and aligned carefully on a metal frame that supports variable baselines and
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Figure III.3: Experimental Testbed

easy addition, removal and adjustment of each camera ( Figure III.3). The cameras can

be calibrated using a single calibration board to yield rectification parameters for color,

thermal and multimodal stereo pairs. Once calibrated, it is quite simple and quick to

conduct experiments in a manner that can yield frame-by-frame comparison of results

across individual stereo rigs.

III.C.1 Region-based Cross-Spectral Stereo Matching using Disparity Voting

Resolving stereo correspondences through regions is one of the classical ap-

proaches to utilizing image features for image matching. Traditionally, works such as

those by Marapane [25] and Cohen et al. [26] use image segmentation to obtain re-

gions and can achieve a coarse disparity estimate. Usually this sort of approach is one

part of a larger stereo matching algorithm with the coarse disparity map used to guide

refinements at finer detail. More recently, approaches that use the concept of over-

segmentation have been applied to stereo imagery [27], [28]. By over-segmenting the

image into very small regions, matching can be done in a progressive manner similar to

pixel-based energy minimization functions. These over-segmentation approaches rely

on the intensity similarity properties of unimodal stereo imagery and are therefore not

readily extendable to the multimodal case. The challenge in applying region-based ap-

proaches to multimodal imagery lies in finding region segmentation that yields small
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(a) Left Color (b) Left Infrared

(c) Right Color (d) Right Infrared

Figure III.4: Example raw captured imagery from testbed.

enough regions to allow for a fine level of disparities while maintaining large enough

regions to allow for reliable and robust matching.

Our registration algorithm [20] addresses the registration of objects at dif-

ferent depths in relatively close range surveillance scenes. It eliminates the need for

perfectly segmented bounding boxes by relying on reasonable initial foreground seg-

mentation and using a disparity voting algorithm to resolve the registration for occluded

or malformed segmentation regions. This approach gives robust registration disparity

estimation with statistical confidence values for each estimate. Figure VI.3 shows a

flowchart outlining our algorithmic framework. Individual modules are described in the

subsequent sections.
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Figure III.5: Flowchart of disparity voting approach to multimodal image registration.
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Multimodal Image Calibration

A minimum camera solution for registering multimodal imagery in these short

range surveillance situations would be to use a single camera from each modality, ar-

ranged in a stereo pair. Unlike colocating the cameras, arranging the cameras into a

stereo pair allows objects at different depths to be registered. To perform this type

of registration, it is desirable to first calibrate the color and thermal infrared cameras.

Knowing the intrinsic and extrinsic calibration parameters transforms the epipolar lines

to lie along the image scanlines, enabling disparity correspondence matching to be a

one-dimensional search. Calibration can be performed using standard techniques, such

as those available in the Camera Calibration Toolbox for Matlab [29]. The toolbox as-

sumes input images from each modality where a calibration board is visible in the scene.

In typical visual setups, this is simply a matter of placing a checkerboard pattern in front

of the camera. However, due to the large differences in visual and thermal imagery,

some extra care needs to be taken to ensure the calibration board looks similar in each

modality. A solution is to use a standard calibration board and illuminate the scene with

high intensity halogen bulbs placed behind the cameras. This effectively warms the

checkerboard pattern, making the visually dark checks appear brighter in the thermal

imagery. Placing the board under constant illumination reduces the blurring associated

with thermal diffusion and keeps the checkerboard edges sharp, allowing for calibration

with subpixel accuracy. An example pair of images in the visual and thermal infrared

domain and the subsequently calibrated and rectified image pair is shown in Figure III.6.

Image Acquisition and Foreground Extraction

The acquired and rectified image pairs are denoted as IL, the left color image,

and IR, the right thermal image. Due to the high differences in imaging characteristics,

it is very difficult find to correspondences for the entire scene. Instead, registration is

focused on the pixels that correspond to foreground objects of interest. Naturally then,

it is desirable to determine which pixels in the frame belong to the foreground. In this

step, only a rough estimate of the foreground pixels is necessary and a fair amount of
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(a) Color Image (b) Thermal Image

(c) Rectified Color Image (d) Rectified Thermal Image

Figure III.6: Multimodal Stereo Calibration using a heated calibration board to allow

for a visible checkerboard pattern in thermal imagery
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(a) Color (b) Color Segmentation

(c) Thermal (d) Thermal Segmentation

Figure III.7: Image acquisition and foreground extraction for color and thermal imagery.

false positives and negatives is acceptable. Any “good” segmentation algorithm could

potentially be used with success. The corresponding foreground images are FL and

FR, respectively. Additionally, the color image is converted to grayscale for mutual

information based matching. Example input images and foreground maps are shown in

Figure III.7.

Correspondence Matching using Maximization of Mutual Information

Once the foreground regions are obtained, the correspondence matching can

begin. Matching occurs by fixing a correspondence window along one reference image

in the pair and sliding the window along the second image to find the best match. Let

h and w be the height and width of the image, respectively. For each column i ∈

0 . . . w, let WL,i be a correspondence window in the left image of height h and width M

centered on column i. The width M that produces the best results can be experimentally

determined for a given scene. Typically, the value for M is significantly less than the
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width of an object in the scene. Define a correspondence window WR,i,d in the right

image having height h∗, the largest spanning foreground distance in the correspondence

window, and centered at a column i + d, where d is a disparity offset. For each column

i, a correspondence value is found for all d ∈ dmin . . . dmax.

Given the two correspondence windows WL,i and WR,i,d, we first linearly

quantize the image to N levels such that

N ≈
√

Mh∗/8 (III.9)

where Mh∗ is the area of the correspondence window. The result in (III.9) comes from

Thevenaz and Unser’s [6] suggestion that this equation is reasonable to determine the

number of levels needed to give good results for maximizing the mutual information

between image regions.

Now we can compute the quality of the match between the two correspon-

dence windows by measuring the mutual information between them. The mutual infor-

mation between two image patches is defined as

I(L, R) =
∑
l,r

PL,R(l, r) log
PL,R(l, r)

PL(l)PR(r)
(III.10)

where PL,R(l, r) is the joint probability mass function (pmf) and PL(l) and PR(r) are

the marginal pmf’s of the left and right image patches, respectively.

The two-dimensional histogram, g, of the correspondence window is utilized

to evaluate the pmf’s needed to determine the mutual information. The histogram g is

an N by N matrix so that for each point, the quantized intensity levels l and r from the

left and right correspondence windows increment g(l, r) by one. Normalizing by the

total sum of the histogram gives the probability mass function

PL,R(l, r) =
g(l, r)∑
l,r g(l, r)

(III.11)

The marginal probabilities can be easily determined by summing PL,R(l, r)

over the appropriate dimension.
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PL(l) =
∑

r

PL,R(l, r) (III.12)

PR(r) =
∑

l

PL,R(l, r) (III.13)

Now that we are able to determine the mutual information for two generic

image patches, let’s define the mutual information between two specific image patches

as Ii,d where again i is the center of the reference correspondence window and i + d is

the center of the second correspondence window. For each column i, we have a mutual

information value Ii,d for d ∈ dmin . . . dmax. The disparity d∗i that best matches the two

windows is the one that maximizes the mutual information

d∗i = arg max
d

Ii,d (III.14)

The process of computing the mutual information for a specific correspon-

dence window is illustrated in Figure III.8. An example plot of the mutual information

values over the range of disparities is also shown. The red box in the color image is a

visualization of a potential reference correspondence window. Candidate sliding corre-

spondence windows for the thermal image are visualized in green boxes.

Disparity Voting with Sliding Correspondence Windows

We wish to assign a vote for d∗i , the disparity that maximizes the mutual in-

formation, to all foreground pixels in the reference correspondence window. Define

a disparity voting matrix DL of size (h,w, dmax − dmin + 1), the range of disparities.

Then given a column i, for each image pixel that is in the correspondence window and

foreground map, (u, v) ∈ (WL,i ∩ FL), we add to the disparity voting matrix at

DL(u, v, d∗i ).

Since the correspondence windows are M pixels wide, pixels in each column

in the image will have M votes for a correspondence matching disparity value. For each

pixel (u, v) in the image, DL can be thought of as a distribution of matching dispari-

ties from the sliding correspondence windows. Since it is assumed that all the pixels
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(a) Color Image (b) Thermal Image
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(c) Mutual Information (d) Disparity Voting Matrix

Figure III.8: Mutual Information for Correspondence Windows.
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attributed to a single person are at the same distance from the camera, a good match

should have a large number of votes for a single disparity value. A poor match would be

widely distributed across a number of different disparity values. Figure III.8(d) shows

the disparity voting matrix for a sample row in the color image. The x-axis of the image

is the column number i of the input image. The y-axis of the image is the range of

disparities d = dmin . . . dmax, which can be experimentally determined based on scene

structure and the areas in the scene where activity will occur. Entries in the matrix cor-

respond to the number of votes given to a specific disparity at a specific column in the

image. Brighter areas correspond to a higher vote tally.

The complementary process of correspondence window matching is also per-

formed by keeping the right thermal infrared image fixed. The algorithm is identical to

the one described above, switching the left and right denotations. The corresponding

disparity accumulation matrix is given as DR.

Once the disparity voting matrices have been evaluated for the entire image,

the final disparity registration values can be determined. For both the left and right

images, we determine the best disparity value and its corresponding confidence measure

as

D∗
L(u, v) = arg max

d
DL(u, v, d) (III.15)

C∗
L(u, v) = max

d
DL(u, v, d) (III.16)

For a pixel (u, v) the values of C∗
L(u, v) represent the number of times the

best disparity value D∗
L(u, v) was voted for. A higher confidence value indicates that

the disparity maximized the mutual information for a large number of correspondence

windows and in turn, the disparity value is more likely to be accurate than at a pixel with

lower confidence. Values for D∗
R and C∗

R are similarly determined. The values of D∗
R

and C∗
R are also shifted by their disparities so that they align to the left image:



38

D∗
S(u, v + D∗

R(u, v)) = D∗
R(u, v) (III.17)

C∗
S(u, v + D∗

R(u, v)) = C∗
R(u, v) (III.18)

Once the two disparity images are aligned, they can be combined. We exper-

imented with various combination approaches, including boolean OR and AND opera-

tions. Our experiments indicated that using an AND operation yielded the best overall

registration on our test examples. So for all pixels (u, v) such that C∗
L(u, v) > 0 and

C∗
S(u, v) > 0,

D∗(u, v) =

 D∗
L(u, v), C∗

L(u, v) ≥ C∗
S(u, v)

D∗
S(u, v), C∗

L(u, v) < C∗
S(u, v)

(III.19)

The resulting image D∗(u, v) is the disparity image for all the overlapping

foreground object pixels in the image. It can be used to register multiple objects in the

image, even at very different depths from the camera. Figure III.9 shows the result of

registration for the example frame carried throughout the algorithmic derivation. Figure

III.9(a) shows the computed disparity image D∗, while Figure III.9(b) shows the initial

alignment of the color and thermal images and Figure III.9(b) shows the alignment after

shifting the foreground pixels by the resulting disparity image. The thermal foreground

pixels are overlaid (in green) on the color foreground pixels (in purple).

The resulting registration in Figure III.9 is successful in aligning the fore-

ground areas associated with each of the three people in the scene. Each person in the

scene lies at a different distance from the camera and yields a different disparity value

that will align its corresponding image components.

III.D Summary

In this chapter we have detailed the issues and challenges in finding mea-

sures of similarity for solving stereo correspondences in multimodal imagery. While
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(a) Disparity Image (b) Unregistered (c) Registered

Figure III.9: The resulting disparity image D∗ from combining the left and right dispar-

ity images D∗
L and D∗

S as defined in (III.19).

recent energy minimization approaches have used mutual information to solve point-

wise stereo correspondences for a wide variety of synthetically altered imagery, our

experiments demonstrate that these approaches are unable to resolve the stereo corre-

spondences for the true multimodal nature of color and thermal images. We have shown

that because the intensities associated with color and thermal imagery are uncorrelated,

using mutual information as a similarity measure will not yield good disparity estimates

in an energy minimization framework.

We developed a method for analyzing region-based similarity and performed

extensive experiments that demonstrate the ability to provide robust disparity estimates

in multimodal imagery. The disparity voting algorithm we present can successfully

register multiple objects in the scene that lie at different depths from the camera. Such

scenes are common to person-centric vision applications such as surveillance [30] and

pedestrian detection [31], which we will explore in the next chapter. By describing

a general framework and providing a discussion of the issues and challenges inherent

in developing such a system, we have introduced a successful algorithm and laid the

groundwork for future research and advancement in multimodal stereo correspondence

matching.

The text of this chapter, in part, is a reprint of the material as it appears in:

Stephen J. Krotosky and Mohan M. Trivedi, “Mutual Information Based Registration

of Multimodal Stereo Videos for Person Tracking” in Computer Vision and Image Un-
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derstanding, Special Issue on Advances in Vision Algorithms and Systems Beyond the

Visible Spectrum, Vol. 106, Issues 2-3, May-June 2007 and Stephen J. Krotosky and

Mohan M. Trivedi, “Registration of Multimodal Imagery with Occluding Objects using

Mutual Information”, Applied Perception in Thermal Infrared Imagery, in press. I was

the primary researcher of the cited material and the co-author listed in these publications

directed and supervised the research which forms a basis for this chapter.
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IV.A Introduction

We evaluate the disparity voting registration algorithm using color and thermal

data for a variety of application scenarios. Oriented in the same direction with a baseline

of 10 cm, the cameras were placed so that the optical axis was approximately parallel

to the ground. This placement was used to satisfy the assumption that there would be

approximately constant disparity across all pixels associated with a specific person in the

frame. Placing the cameras in this sort of position is a reasonable thing to do, and such

a position is appropriate for many applications including surveillance and pedestrian

detection.

IV.B Indoor Surveillance Experiments

Video was captured as up to four people moved throughout an indoor environ-

ment designed to mimic an indoor surveillance scenario. For these specific experiments,

foreground segmentation in the visual imagery was done using the codebook model pro-

posed by Kim, et al. [32]. In the thermal imagery, the foreground is obtained using an

intensity threshold under the assumption that the people in the foreground are hotter

than the background. This approach provided reasonable segmentation in each image.

In cases where segmentation can only be obtained for one modality, the disparities can

be computed with only that modality as the reference, at the cost of less robustness. We

will show successful registration for examples of varying segmentation quality. The goal

was to obtain registration results for various configurations of people including different

positions, distances from camera, and levels of occlusion.

Examples of successful registration are shown in Figure IV.1. Columns (a)

and (b) show the input color and thermal images, while column (c) illustrates the initial

registration of the objects in the scene and column (d) shows the resulting registration

overlay after the disparity voting has been performed. These examples show the reg-

istration success of the disparity voting algorithm in handling occlusion and properly

registering multiple objects at widely disparate depths from the camera.
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(a) Color (b) Infrared (c) Unregistered (d) Registered

Figure IV.1: Registration results using Disparity Voting Algorithm for example frames.
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(a) Well Aligned (b) Partially Aligned (c) Misaligned

Figure IV.2: Examples of good and bad registration alignment in our evaluation. Bad

alignments are highlighted in red.

Table IV.1: Registration Results for Disparity Voting Algorithm with Multiple People in

a Scene

No. Objects No. Frames
in Frame Correct Total Frames % Correct

1 55 55 100.00 %
2 171 172 99.42 %
3 1087 1111 97.84 %
4 690 720 95.83 %

Total 2003 2058 97.33 %

We have analyzed the registration results of our disparity voting algorithm for

more than 2000 frames of captured video. To evaluate the registration, we define a cor-

rect frame as when the color and infrared data corresponding to each foreground object

in the scene were visibly aligned. If one or more objects in the scene are not visibly

aligned, then the registration is deemed incorrect for the entire frame. We evaluate an

object as aligned by examining the alignment of body parts such as the head and limbs

where the amount of overlay can be visibly seen. We enforce that all parts of the person

be aligned and any missing or misalignment is deemed as unaligned. Figure IV.2 shows

examples of good and bad alignments in our evaluation. Table VI.1 shows the results of

this evaluation. The data is broken down into groups based on the number of objects in

the scene.

This analysis shows that when there was no visible occlusion in the scene, reg-

istration was correct 100% of the time. We further break down the analysis to consider



45

Table IV.2: Registration Results for Disparity Voting Algorithm with Multiple People in

a Scene: Frames with Occlusion

No. Objects No Frames
in Frame Correct Total Frames % Correct

2 51 52 98.08 %
3 653 677 96.45 %
4 581 611 95.09 %

Total 1285 1340 95.90 %

only the frames where there are occluding objects in the scene. Under these conditions,

the registration success of the disparity voting algorithm is shown in Table VI.2. The

registration results for the occluded frames are still quite high, with most errors occur-

ring during times of near total occlusion.

IV.C Outdoor Pedestrian Detection Experiments

To obtain segmentation in a moving vehicle for pedestrian detection, we need

to modify the algorithm slightly to achieve the initial segmentation. We use an optical

flow-based approach to detect moving pedestrians in the scene [33]. Our experiments

have shown this approach is relatively robust at low speeds (< 10mph) and could be

adapted for higher speeds with egomotion estimation. Low speed analysis is useful in a

variety of driving scenarios, including parking lots, residential and shopping areas, and

starting or stopping at a traffic signal. Additionally, while stationary pedestrians pose a

segmentation issue for optical flow techniques, we expect static objects can be identified

through long term tracking of the scene.

Given the optical flow estimates for motion in the horizontal mu and vertical

mv directions as well as occluded regions mocc, we estimate foreground regions F where

there is motion in either the horizontal or vertical direction and no occlusion as shown

in (IV.1). Morphological operations smooth the estimate.

F =
(
(|mu| > 0) ∪ (|mv| > 0)

)
∩ (mocc = 0) (IV.1)
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Table IV.3: Cross-Spectral Stereo Registration of Pedestrian Regions

# Peds Peds Correct Total % Correct
1 126 145 86.9%
2 805 942 85.5%
3 633 744 85.1%
4 96 108 88.9%

Total 1690 1939 87.2%

We analyzed the ability of the cross-spectral stereo correspondence matching

algorithm to match pedestrian regions in an outdoor experimental environment. Exper-

iments were conducted at mid-afternoon on a sunny day from a camera mounted to our

moving LISA-P test vehicle. The goal was to obtain successful correspondence match-

ing for various configurations of people including different positions, distances from

the camera and levels of occlusion. We evaluate the success of the correspondence al-

gorithm by visually inspecting the alignment of the corresponding color and infrared

pedestrian regions. If the regions are visually well-aligned, then the correspondence is

considered correct. If the regions are misaligned, missing or only partially aligned, the

correspondence is deemed incorrect. Table VI.1 summarizes the results for our experi-

ments and Figure IV.3 shows examples of correct correspondence matching. Additional

experiments [31] demonstrate the robustness of the approach to different capture devices

and environmental conditions.

One challenge associated with this approach to cross-spectral stereo lies in the

vertical artifacts generated from the multiple voting windows. The resulting registration

disparities often have hard vertical edges in disparity discontinuities. This is especially

evident when there are occluding pedestrians in the scene, as there is an inherent dispar-

ity discontinuity that is forced to be a vertical edge. Figure IV.4 illustrates an example

of this artifacting error. Despite these errors, we are still able to identify two distinct

obstacle regions. Additionally, it is possible that even good registration results can be

off by a pixel in either direction because of the integer-only disparity matching of our

approach. By incorporating an approach with subpixel accuracy, the registration and its
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(a) Color (b) Infrared (c) Unaligned (d) Aligned

Figure IV.3: Cross-Spectral Stereo Registration Results for Pedestrian Detection
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(a) Color (b) Infrared (c) Disparity (d) Aligned

Figure IV.4: Disparity discontinuity errors in cross-spectral stereo analysis due to arti-

facting arising from windowed correspondence matching.

ability to produce depth estimates will be more robust.

The requirement of an initial segmentation, while necessary for success in this

algorithm, is limiting in several aspects. First, segmentation is a challenging task and

the result can often be noisy or can easily over or under estimate the true object bound-

aries, leading to registration errors. The motivation behind the initial segmentation is

to provide some regions appropriately sized for matching features in the color and in-

frared imagery. However, the very idea of an initial segmentation precludes registration

estimates for regions not within the segmentation boundaries. Clearly a better approach

would be to register the features in the whole image without the segmentation require-

ment. Achieving this is an open research challenge that we are actively pursuing. We

feel that a multi-feature matching approach that can integrate structural feature match-

ing, such as edges, with pixel or area based matching may yield improved results.

IV.D Accuracy Evaluation using Ground Truth Disparity Values

In order to demonstrate the accuracy of our disparity voting algorithm (DV) in

handling occlusions, we offer a quantitative comparison to ground truth. It is our con-

tention that the disparity voting algorithm will provide good registration results during

occlusions, when initial segmentation gives regions that contained merged objects. Our

disparity voting algorithm makes no assumptions about the assignment of pixels to in-

dividual objects, only that a reasonable segmentation can be obtained. We demonstrate



49

(1)

(2)

(3)

(a) Ground Truth (b) BB Disparity (c) DV Disparity

Figure IV.5: Comparison of Bounding Box (BB) approach to the proposed Disparity

Voting algorithm for ground truth segmentation.

that the disparity voting registration can successfully register all objects in the scene

even through occlusions. We will also show the results for bounding box approaches

(BB) [17] for completeness.

We generate the ground truth by manually segmenting the regions that corre-

spond to foreground for each image. We then determine the ground truth disparity by

individually matching each manually segmented object in the scene. This ground truth

disparity image allows us to directly and quantitatively compare the registration success

of the disparity voting algorithm and the bounding box approach. By comparing the

registration results to the ground truth disparities, we are able to quantify the success of

each algorithm and show that the disparity voting algorithm outperforms the bounding

box approach for occluding object regions.

Figure IV.5 illustrates the ground truth disparity comparison tests. Column (a)

shows the ground truth disparity, column (b) shows the disparity generated using the
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Figure IV.6: Plots of |∆D| from ground truth for each example in Figure IV.5. Bounding

Box errors for an example row are plotted in dotted red, while errors in Disparity Voting

registration are plotted in solid blue.

bounding box (BB) algorithm, and column (c) shows the disparity generated using the

disparity voting (DV) algorithm. Figure IV.6 plots the absolute difference in disparity

values (|∆ Disparity|) from the ground truth for each corresponding row in Figure IV.5.

The BB results are plotted in dotted red, while the DV results are plotted in solid blue.

Notice how the two algorithms perform identically to ground truth in the first row, as

there are no occlusion regions. The subsequent examples all have occlusion regions

and the DV approach more closely follows ground truth than the BB approach. The

BB registration results have multiple objects registered at the same depth though the

ground truth shows that they are at separate depths. Our disparity voting algorithm is

able to determine the distinct ground truth disparities for different objects and the |∆

Disparity| plots show that the DV algorithm is quantitatively closer to the ground truth,

and with most registration errors within one pixel of ground truth with larger errors

usually occurring only in small portions of the image. On the other hand, when errors

occur in the bounding box approach, the resulting disparity offset error is large and

occurs for the entire scope of the erroneously registered object.
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IV.E Comparative Study of Registration Algorithms with Non-Ideal

Segmentation

We perform a qualitative evaluation using the real segmentations generated

from codebook background subtraction in the color image and intensity thresholding

in the thermal image. These common segmentation algorithms only give foreground

pixels and make no attempt to discern the structure of objects in the scene. Figure IV.7

illustrates several examples that compare the registration results of the disparity voting

and bounding box algorithms. Notice how the disparities for the bounding box (BB)

algorithm in row (5) are constant for the entire occlusion region even though the objects

are clearly at very different disparities. The disparity results for our disparity voting

algorithm in row (6) show distinct disparities in the occlusion regions that correspond

to the appropriate objects in the scene. Visual inspection of rows (7) and (8) show that

the resulting registered alignment from the disparity values is more accurate for the DV

approach.

Figure IV.8 shows the registration alignment for each algorithm in closer detail

for a selection of frames. Notice how the disparity voting approach is able to align each

object in the frame, while the bounding box approach has alignment errors due to the

fact that the segmentation of the image yielded bounding boxes that contained more than

one object. Clearly, disparity voting is able to handle the registration in these occlusion

situations and the resulting alignment appears qualitatively better than the bounding box

approach.

IV.F Robustness Evaluation

We demonstrate the robustness of our algorithm by applying it to another set

of data taken of a different scene with a different set of cameras. For these experiments,

we have up to 6 people move through an approximately 6m x 6m environment. The

cameras are arranged with a 10 cm baseline and are calibrated and rectified as described

in Section III.C.1. Again, segmentation is performed using the codebook background
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(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Figure IV.7: Comparison of BB algorithm to the proposed Disparity Voting (DV) algo-

rithm for a variety of occlusion examples using non-ideal segmentation: (1) the color

image, (2) the color segmentation, (3) the thermal image, (4) the thermal segmentation,

(5) the BB Disparity Image, (6) the DV Disparity Image, (7) the BB Registration, (8)

the DV Registration.
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(a) BB Registration

(b) DV Registration

Figure IV.8: Details of registration alignment errors in the bounding box registration

approach and corresponding alignment success for the Disparity Voting (DV) Algorithm

for several occlusion examples using non-ideal segmentation.

model for the color imagery and intensity thresholding for the thermal imagery. Corre-

spondence window sizes and threshold values were kept constant from past experiments.

Figure IV.9 shows successful registration for example frames containing an

increasing number of people in the scene. Column (c) of the figure shows distinct levels

of alignment disparity for each person in the scene and column (e) shows the resulting

registered alignment. Notice how the disparity voting algorithm is able to properly de-

termine the disparities necessary to align the color and thermal image in situations with

multiple people and multiple levels of occlusion. Figure IV.10 shows detailed examples

of the registration alignment. Note how image features, especially facial region, appear

well aligned in the images.
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(a) Color (b) Thermal (c) Disparity (d) Unregistered (e) Registered

Figure IV.9: Examples illustrating the robustness of the disparity voting algorithm in

registering multiple people in a scene. Each row contains an increasing number of

people. Column (e) illustrates the registration using disparity voting. It is a marked

improvement over the initial, unregistered image in column (d).



55

Figure IV.10: Detailed examples of successful registration alignment using disparity

voting.

IV.G Multimodal Video Analysis for Person Tracking: Basic Frame-

work and Experimental Study

We have shown that the disparity voting algorithm for multimodal registra-

tion is a robust approach to estimating the alignment disparities in scenes with multiple

occluding people. The disparities generated from the registration process yield values

that can be used to differentiate the people in the room. It is with this in mind that we

investigate the use of multimodal disparity as a feature for tracking people in a scene.

Tracking human motion using computer vision approaches is a well-studied

area of research and a good survey by Moeslund and Granum [34] gives lucid insight

into the issues, assumptions and limitations of a large variety of tracking approaches.

One approach, disparity based tracking, has been investigated for conventional color

stereo cameras and has proven quite robust in localizing and maintaining tracks through

occlusion, as the tracking is performed in 3D space by transforming the stereo image

estimates into a plan-view occupancy map of the imaged space [35]. We wish to explore

the feasibility of using such approaches to tracking with the disparities generated from

disparity voting registration. An example sequence of frames in Figure IV.11 illustrates

the type of people movements we aim to track. The sequence has multiple people oc-

cupying the imaged scene. Over the sequence, the people move in a way where there

are multiple occlusions of people at different depths. The registration disparities that are
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used to align the color and thermal images can be used as a feature for tracking people

through these occlusions and maneuvers.

Figure IV.12 shows an algorithmic framework for multimodal person tracking.

In tracking approaches, representative features are typically extracted from all available

images in the setup [36]. Features are used to associate tracks from frame to frame

and the output of the tracker is often used to guide subsequent feature extraction. All

of these algorithmic modules are imperative for reliable and robust tracking. For our

initial investigations, we will focus on the viability of registration disparity as a tracking

feature.

In order to determine the accuracy of the disparity estimates for tracking, we

first calibrate the scene. This is done by having a person walk around the testbed area,

stopping at preset locations in the scene. At each location we measure the disparity

generated from our algorithm and use that as ground truth for analyzing the disparities

generated when there are more complex scenes with multiple people and occlusions.

Figure IV.13(a) is the variable baseline multimodal stereo rig and Figure IV.13(b) shows

the ground truth disparity range for the testbed from the calibration experiments captured

with this rig.

To show the viability of registration disparity as a tracking feature in a multi-

modal stereo context, we compare ground truth positional estimates to those generated

from the disparity voting algorithm. Lateral position information for each track was

hand segmented by clicking on the center point of the person’s head in each image. This

is a reasonable method, as robust head detection algorithms for head detection could be

implemented for both color and thermal imagery (skin-tone, hot spots, head template

matching). Approaches such as vertical projection or v-disparity could also be used to

determine the locations of people in the scene. Ground truth disparity estimates were

generated by visually determining the disparity based on the person’s position relative to

the ground truth disparity range map as shown in Figure IV.13. Experimental disparities

were generated using the disparity voting algorithm with the disparity of each person

determined from disparity values in the head region. A moving average of 150 ms was
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(a) Frame 0 (b) Frame 20

(c) Frame 40 (d) Frame 60

(e) Frame 80 (f) Frame 100

(g) Frame 120 (h) Frame 140

Figure IV.11: Example Input Sequence for Multiperson Tracking Experiments. Notice

occlusions, scale, appearance and disparity variations.
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Figure IV.12: Algorithmic Flowchart for Multiperson Tracking

(a) Multimodal Stereo Rig (b) Disparity Range for Testbed

Figure IV.13: (a) Variable Baseline Multimodal Stereo Rig (b) Experimentally Deter-

mined Disparity Range for Testbed. The disparities were computed by determining the

disparities for a single person standing at predetermined points in the imaged scene.
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used to smooth instantaneous disparity estimates.

Figure IV.14 shows the track patterns and ground truth for the example se-

quence in Figure IV.11. The ground truth is plotted in solid colors for each person in the

sequence, while the disparity estimates from the disparity voting algorithm are shown

in corresponding colored symbols with dotted lines connecting the estimates. Figure

IV.14(a) is a representation of the tracks, illustrating a “plan-view”-like representation

of the movements and disparity changes of the people in the testbed. Figure IV.14(b)

shows a time varying version of the same data, with the frame number plotted in the

third dimension.

The plots in Figure IV.14 show that the disparities generated from the dispar-

ity voting registration reasonably follow the ground truth tracks. As the green tracked

person moves behind and becomes occluded by the blue tracked person, we see that the

disparities generated when he re-emerges from the occlusion are in line with the ground

truth disparities and can be used to re-associate the track after the occlusion.

Errors from ground truth are particularly apparent when people are further

from the camera. This is because of the non-linearity of the disparity distribution. There

are more distinct disparities nearer to the camera. As you move deeper in the scene in

Figure IV.13, the change in disparity for the same change in distance is much less. At

these distances, errors of even one disparity shift are very pronounced. Conventional

stereo algorithms typically used approaches that give subpixel accuracy, but the current

implementation of our disparity voting algorithm only gives pixel level disparity shifts.

While this may be acceptable for registration alignment, refinement steps are necessary

to make disparity a more robust tracking feature. Approaches that use multiple prim-

itives [24], such as edges, shapes, and silhouettes, etc., could be used to augment the

accuracy of the disparity voting algorithm. Additionally, using multiple tracking fea-

tures could provide additional measurements that can be used to boost the association

accuracy.
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periment

Figure IV.14: Tracking results showing close correlation between ground truth (in solid

colors) and disparity tracked estimates (in dotted colors). Each color shows the path of

one person in the sequence.
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IV.H Summary

Multimodal imagery applications for human analysis span a variety of appli-

cation domains, including medical [1], in-vehicle safety systems [2] and person de-

tection [37]. Often, the registration algorithms these types of systems employ do not

operate on data that has multiple objects and multiple depths that are significant relative

to their distance from the camera. It is in this realm, including close-range surveil-

lance [30] and pedestrian detection applications [31], that we believe disparity voting

registration techniques and corresponding tracking algorithms will prove useful.

In this chapter we analyzed our method for registering multimodal images

with occluding objects in the scene. By using the disparity voting approach, an analysis

of over 2000 frames yielded a registration success rate of over 97%, with a 96% success

rate when considering only occlusion examples. We have also shown relatively high

success in outdoor environments when good segmentation is more difficult to achieve.

Additionally, ground truth accuracy evaluations illustrate how the disparity voting algo-

rithm provides accurate registration for multiple people in scenes with occlusion. Com-

parative studies show the improvements upon the accuracy and robustness of previous

bounding box techniques in both a quantitative and qualitative manner. We have pre-

sented a framework for tracking and have shown promising experimental studies that

suggest that disparity voting results can be used as a feature that will allow for the dif-

ferentiation of people in a scene and give accurate tracking associations in complex

scenes with multiple people and occlusions.

The text of this chapter, in part, is a reprint of the material as it appears in:

Stephen J. Krotosky and Mohan M. Trivedi, “Mutual Information Based Registration

of Multimodal Stereo Videos for Person Tracking” in Computer Vision and Image Un-

derstanding, Special Issue on Advances in Vision Algorithms and Systems Beyond the

Visible Spectrum, Vol. 106, Issues 2-3, May-June 2007 and Stephen J. Krotosky and

Mohan M. Trivedi, “On Color, Infrared and Multimodal Stereo Approaches to Pedes-

trian Detection”, IEEE Trans. On Intelligent Transportation Systems, in press. I was the
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primary researcher of the cited material and the co-author listed in these publications

directed and supervised the research which forms a basis for this chapter.
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V.A Introduction

Pedestrian safety is a problem of global significance. Of the 1.17 million

yearly worldwide traffic fatalities, 65% are pedestrian related [38]. In fully industrial-

ized nations, pedestrian safety remains a high priority, with pedestrian fatalities account-

ing for 10.9% of all traffic deaths in the United States [39] and fatalities in Britain twice

as likely for pedestrians than vehicle occupants [40]. In rapidly industrializing coun-

tries, pedestrian fatalities are overwhelmingly more costly in both proportion and sheer

volume. Pedestrian and bicyclist fatalities in India were 80,000 in 2001, an estimated

60-80% of the total traffic deaths for that year [41]. Similarly, pedestrians and bicyclists

accounted for 50% of all traffic related deaths in China in 1994 [42].

Naturally, such an important concern to public safety has received significant

attention from all aspects of the research community. Specifically, ongoing computer

vision research is making strides to detect and track pedestrians from both moving ve-

hicles and the static transportation infrastructure. Typically, these approaches to pedes-

trian detection make use of visual or infrared imagery [43] in both monocular and stereo

camera configurations.

The choice of visual or infrared imagery is significant, as each provides dis-

parate, yet complementary information about a scene. Visual cameras capture the reflec-

tive light properties of objects in the scene, while infrared cameras are sensitive to the

thermal emissivity properties of the same objects. Features extracted from each type of

modality can be used to determine the presence of pedestrians in a scene. Additionally,

by pairing each approach, their combination provides a level of features beyond what

is readily obtained from the human visual system. Namely, the combination of visual

and infrared imagery can provide the color, depth, motion, and thermal properties that

can be used to more accurately detect, track and ensure pedestrian safety. Additionally,

multiple camera systems have been incorporated into pedestrian detection approaches.

The use of two or more cameras allows for the accurate depth estimates crucial to the

task of pedestrian detection and collision mitigation.
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This chapter presents research toward the development of a multimodal, multi-

perspective system that can extract the depth and features necessary for robust pedestrian

detection. We design a four camera experimental testbed consisting of two color and two

infrared cameras for capturing and analyzing the various configuration permutations for

pedestrian detection. Using this testbed, we perform comparative experiments of stereo-

based detection approaches using unimodal color and infrared imagery and demonstrate

the high obstacle detection rate achievable with stereo imagery. From these comparative

experiments, we provide a detailed analysis of the features and properties of color and

infrared imagery that are used to classify detected obstacles into pedestrian regions.

This analysis leads to our proposal of a multimodal trifocal framework con-

sisting of a stereo pair of color cameras coupled with a single infrared camera. Using

a calibrated three camera setup allows for accurate and robust registration of color, dis-

parity and infrared features using the properties of the trifocal tensor. Under this frame-

work, we demonstrate that the combination of color, disparity and infrared information

can yield significant gains in pedestrian detection compared to detectors trained on only

unimodal or stereo features.

V.B Related Research

Our focus on pedestrian detection is concerned with the methodologies and

challenges of conventional camera systems. Specifically, we will review studies that

utilize color and infrared imagery in single and multicamera configurations. For a more

comprehensive review of computer vision based approaches to pedestrian detection, we

refer the reader to a recent survey paper by Gandhi and Trivedi [44].

Single camera approaches were initially investigated to identify and localize

pedestrians in a scene. To find pedestrians in crowded and varied scenes with changing

backgrounds, typically a trained set of features that can identify pedestrian regions is

extracted from the imagery. In color imagery, common features include Haar wavelet

[45] or Gabor filter [46] responses, component-based gradient responses [47], image
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contours with Mean Field models [48], Implicit Shape Models [49] and local receptive

fields [50].

Similarly, features also need to be extracted from monocular infrared camera

approaches. Typically the features extracted from infrared imagery are selected for their

relation to the unique thermal signature of humans that enables straightforward segmen-

tation. Such features that attempt to model this property include thermal hotspots [51],

body model templates [52], shape independent multidimensional histograms, inertial

and contrast base features [53] and Histograms of Oriented Gradients [54].

The features extracted from monocular imagery are then typically used in a

classification scheme using many positive and negative examples of pedestrians. The

most common approach to classification is to use a support vector machine (SVM) [45,

47,48,50,51,54,55]. Additional approaches to classification include template matching

[52, 56], convolutional neural networks [57] and Chamfer distance matching [49].

Despite the success of pedestrian detection approaches in monocular imagery,

a single camera approach still has difficulty in one area critical to a fully realized pedes-

trian detection system: accurate and reliable depth estimates. To achieve this, a multi-

camera systems is necessary, typically arranged in a stereo vision configuration. Vis-

ible light stereo systems [58–60] utilized the properties of dense stereo matching to

robustly identify candidate pedestrian regions and accurately determine their distance

from the camera setup. Infrared stereo camera systems have also followed that combine

the benefits of infrared features with the powerful depth estimation inherent in stereo

vision [56, 61]. Additionally, a four camera system combining the separate approaches

of color stereo and infrared stereo systems has been investigated [16]. In typical stereo

camera systems for pedestrian detection, depth estimates are used to obtain a set of ob-

stacle regions that are then further analyzed using monocular image features for pedes-

trian candidate generation.
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V.C Stereo-based Pedestrian Detection

A fundamental step to analyzing pedestrians is to detect obstacles in the scene

and localize their position in 3D space. A stereo camera setup is often used to obtain

depth estimates of objects in the scene. A wide variety of algorithms can be imple-

mented to obtain dense and accurate depth estimates from matching correspondences in

calibrated and rectified stereo pairs [23].

The disparity images derived from stereo analysis are then used to generate

a list of candidate pedestrian regions in the scene. We adapt a classical approach to

obstacle detection in stereo imagery proposed by Labayrade et al. [62] that utilizes the

concept of v-disparity to identify potential obstacles in the scene. Essentially, v-disparity

is a histogram of the disparity image that counts the occurrence of disparity values for

each row in the image. This histogram is very useful when the camera is relatively

parallel to the imaged scene and objects appear at distinct planes in the disparity domain

as the v-disparity information can be used to detect the ground plane in the scene and

isolate regions that contain obstacles. Variations of this approach to detecting objects in

stereo imagery have been implemented in [16, 59, 60].

V.C.1 Disparity-based Obstacle Detection

Our goal is to provide a framework for a comparative analysis of color and

infrared stereo imagery for pedestrian detection. We have chosen to use the relatively

simple v-disparity approach to obstacle detection so that it can be implemented for both

color and infrared stereo imagery without modification or specialization. To that end,

we examine the ability of each to generate stereo disparities and determine obstacle

areas in the scene. This comparison of low-level detection accuracy will then lead to

an evaluation of each camera type’s potential for higher level obstacle classification and

analysis. Figure V.1 shows a flowchart of the obstacle detection algorithm.
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Figure V.1: Flowchart of stereo disparity-based obstacle detection algorithm.
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(a) Color (b) Infrared

Figure V.2: Example disparity images from color and infrared stereo input images.

Dense Stereo Matching

As a first step, it is necessary to perform dense stereo matching to yield dis-

parity estimates of the imaged scene. We elect to use the correspondence matching

algorithm developed by Konolige [63] for its ease of use and reliable disparity genera-

tion with both color and infrared stereo imagery. Example disparity images generated

using this approach are shown in Figure V.2.

U- and V-Disparity Image Generation

The u- and v-disparity images are histograms that accumulate the number of

pixels at a given disparity value, d, for each column or row in the image, respectively.

For example, the v-disparity image is constructed so that for each row v in the disparity

image D, the corresponding row in the v-disparity image is the histogram of those dis-

parities in that row. The resulting v-disparity histogram image indicates the density of
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(a) Color (b) Infrared

Figure V.3: Example u-disparity images from color and infrared stereo input images.

(a) Color w/ Ground Plane (b) Infrared w/ Ground Plane

Figure V.4: Example v-disparity images from color and infrared stereo input images

along with the detected ground plane.

disparities for each image row v, while the u-disparity image shows the density of dis-

parities for each image column u. Figure V.3 shows an example u-disparity image for

color and infrared stereo imagery, and Figure V.4 shows the corresponding v-disparity

images generated from the color- and infrared-based stereo disparity maps in Figure V.2.

Notice how the u-disparity images in Figure V.3 show three distinct horizontal

regions of high disparity density corresponding to the three pedestrians in the scene.

It is these regions we wish to detect in order to help build candidate pedestrian areas.

The image spanning high density region at the top of the u-disparity image indicates

the background disparities of the image and can be detected and filtered from process-

ing. Similarly the v-disparity images in Figure V.4 show vertical peaks of high density

for both the background plane and the range of disparities in D containing pedestrians.

These regions will also need to be detected to generate pedestrian candidates. Addi-
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tionally, there is a distinct downward sloping trend for the lowest image point for each

disparity in the v-disparity image. It has been shown that this phenomenon can be used

to estimate the ground plane of the image [62].

Ground Plane Estimation

To derive an estimate of the line indicating the ground plane, we must first

extract candidate points on that line. For each column corresponding to a disparity d in

the v-disparity image, we select the lowest pixel location whose value is above a given

threshold as a candidate point in the ground plane. If there is no value that exceeds that

threshold of a given disparity, then that disparity is omitted from the list of candidate

points. Once the candidate points are obtained, the ground plane is estimated by fitting

the candidate points to a line with a robust linear regression scheme that uses weighted

least squares that iteratively reweights at each iteration using the bisquare weighting

function. Figure V.4(b) and Figure V.4(d) show the v-disparity images for color and in-

frared stereo imagery with the candidate ground plane points in red and the fitted ground

plane estimate plotted in cyan. Because we are using a dense stereo correspondence al-

gorithm with robust point candidate generation and linear least squares fitting, we are

able to reliably estimate the ground plane with both color and infrared stereo imagery.

Candidate Bounding Box Generation

Bounding box candidates can be extracted by first identifying regions-of-interest

in the u- and v-disparity images. Regions in the u-disparity image can be extracted by

scanning along the rows of the image, corresponding to a given disparity value. Regions

are identified as continuous spans along the row where the histogram value in the u-

disparity image exceeds a given threshold. Figure V.5(a)(b) shows the extracted regions

in green on the u-disparity image. Regions are also extracted in the v-disparity image by

scanning the columns corresponding to disparity values d and summing the histogram

value above the ground plane in that column. If this sum is greater than a threshold, then

the region-of-interest is selected that spans from the ground plane to a maximum height
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Figure V.5: Region-of-interest generation in u- and v-disparity images with color and

infrared stereo input images. (a) Color u-disparity, (b) Infrared u-disparity, (c) Color

v-disparity, (d) Infrared v-disparity

in the image where the histogram entry exceeds a given threshold. Figure V.5(c)(d)

shows the extracted regions in green on the v-disparity image.

Candidate bounding boxes are then determined by associating the regions-of-

interest in the u- and v-disparity images based on their disparity values. For a given

disparity d, the width of the bounding boxes at that disparity are determined by the

regions found in the u-disparity image and the height is correspondingly derived from

the regions in the v-disparity image. Bounding boxes associated with the background

regions that are obviously too large are removed. The resulting bounding box candidates

are shown in green in Figure V.6.

Candidate Filtering and Merging

As shown in Figure V.6, there are often multiple overlapping candidate bound-

ing boxes generated in the previous step. This usually arises because the disparities

associated with a single pedestrian span a range of multiple values, especially if the

pedestrian is closer to the camera. We merge overlapping bounding box candidates if

their overlap is significant and the disparities associated with the bounding boxes are
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(a) Color (b) Infrared

Figure V.6: Example bounding box candidates with color and infrared stereo input im-

ages.

close. The resulting final selection of pedestrian candidate bounding boxes is shown in

Figure V.7. Notice how the multiple bounding box candidates have merged into three

appropriate bounding boxes associated with the correct pedestrians in the scene.

V.C.2 Experimental Framework and Testbed

We establish a framework for experimenting and analyzing pedestrian detec-

tion approaches for color and infrared stereo imagery. This framework needs to facilitate

a direct, side-by-side comparison of the data coming from color and infrared stereo im-

agery. To that end, we have designed a custom rig consisting of a matched color stereo

pair and a matched infrared stereo pair. The two pairs have been arranged so that their

imaged scenes are as consistent as possible. The two pairs have identical baselines and

the corresponding cameras in the color and infrared pairs are positioned as close as pos-

sible so as to maintain the same approximate fields of view. Additionally, lenses for the

color cameras were selected to best match the fixed zoom of the infrared cameras. All

four cameras are arranged in a single row and care was taken in aligning the pitch, roll

and yaw of the cameras to maximize the similarity in field of view. Calibration data was

obtained by placing a standard checkerboard pattern in front of the rig and illuminating
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(a) Color (b) Infrared

Figure V.7: Example of the final selection of pedestrian candidates after bounding box

merging with color and infrared stereo input images.
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Figure V.8: Experimental testbed: Two color cameras and two infrared cameras ar-

ranged in stereo pairs and mounted to the front of the LISA-P testbed.

it with high intensity halogen bulbs so the checks could be viewed in both the color and

infrared imagery. Once obtained, standard calibration techniques are used to obtain the

intrinsic and extrinsic parameters of the cameras in the rig.

Once aligned, the rig was mounted to the grill of the LISA-P testbed described

in Trivedi et al. [2] and [64]. The LISA-P is a Volkswagen Passat equipped with the

computing, power, and cabling requirements necessary to synchronously capture and

save the four simultaneous camera streams of our custom rig. Figure VI.8 shows the

four camera rig properly arranged and mounted on the LISA-P. The two color cameras

are gray while the infrared cameras are black.

V.C.3 Experimental Analysis of Disparity-based Obstacle Detection in Color and

Infrared Stereo Imagery

Experiments were conducted where pedestrians would walk in front of the

LISA-P testbed. The experiments included multiple pedestrians in the scene with vary-

ing degrees of depth, complexity and occlusion. The experimental data was captured

simultaneously with the color and infrared stereo cameras to allow for direct compari-
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son of the approaches. The captured data was analyzed using the disparity-based obsta-

cle detection algorithm in Section V.C.1 and detection was determined successful if a

bounding box correctly overlaid a corresponding pedestrian region. The bounding box

must encapsulate the torso and head of a person and extend to the person’s footage re-

gion. The bounding box must also not overestimate the person size by more than 10%.

If two candidate bounding boxes associated with two separate pedestrians merged into

a single bounding box after the merge process, we still consider the detection correct,

yet note it as a “merge error” ( Figure V.9). We reason that errors associated with a

lack of sophistication of our chosen merging algorithm should not adversely affect the

detection rate, as our desire is to evaluate the effectiveness of color and infrared stereo

disparities to identify pedestrian areas and not the robustness of the merging procedure.

This is also a fair assessment when using pedestrian detection for collision mitigation,

as finding all the critical areas in the scene is given priority over discerning merged

bounding boxes. Therefore, false negatives were counted only when a bounding box

does not properly identify a pedestrian region ( Figure V.10) and false positives were

counted when a bounding box enclosed an area where no pedestrian existed. Still, had

we incorporated the merge errors, the total detection rate would decrease by only 1%

for color and 1.4% for infrared analysis. Table V.1 shows the compiled results of the

comparative experiments and Figure V.11 shows additional examples for both color and

infrared stereo inputs.

V.D Analysis of Stereo-based Pedestrian Detection

Our comparative experiments in Section V.C with stereo-based pedestrian de-

tection for color and infrared imagery indicate a very high level of detection accuracy

and low false positive rate in the both modalities. However, a deeper analysis of the

experiments is necessary to truly understand and evaluate the success of these experi-

ments.

We first note that although the analysis was performed on synchronously cap-
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Table V.1: Results of experimental comparison between color and infrared stereo im-

agery for disparity-based obstacle detection.

# Peds Peds False Merge
Modality in Frame Correct % Correct Positives Errors

Color

1 758 / 758 100.0% 0 0
2 2376 / 2388 99.5% 2 7
3 1525 / 1526 99.9% 0 35
4 377 / 380 99.2% 1 6

Total 5036 / 5052 99.6% 3 48

Infrared

1 880 / 899 97.9% 1 0
2 2257 / 2287 98.7% 4 14
3 1231 / 1244 98.9% 0 43
4 123 / 124 99.2% 1 10

Total 4491 / 4554 98.6% 6 67

(a) Color (b) Infrared

Figure V.9: Example of merged pedestrian candidates with color and infrared stereo

input images.
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(a) Color (b) Infrared

Figure V.10: Example of missed pedestrian candidates with color and infrared stereo

input images.
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Figure V.11: Example of the final selection of pedestrian candidates with color and

infrared stereo input images.
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tured video, the pedestrian counts in Table V.1 differ for color and infrared imagery.

The difference arises from the slight displacement in position of the color and infrared

stereo cameras as well as the slightly smaller field of view of the infrared cameras. Only

pedestrians that are fully visible in the image are considered, so there are many cases

where a pedestrian is visible in the color image, but not seen in the infrared image. At

30fps, these instances quickly add up when comparing detections on a frame-by-frame

basis. However, we feel that given the high number of examples, the detection rates can

be compared even if the actual tallies differ in the color and infrared imagery.

The experiments yielded such a high rate of detection accuracy because our

analysis equated low level obstacle detection with the higher level analysis of pedestrian

determination. That is to say, since the experiments did not include non-pedestrian ob-

stacles, such as other vehicles or bicyclists, a detection of any obstacle region is assumed

to be a pedestrian. For the scope of our experiments, this sort of assumption is appro-

priate, as we are interested in evaluating the ability of color and infrared dense stereo

correspondences to be used in low level pedestrian detection. In that respect, our exper-

iments demonstrate that color and infrared stereo disparities both achieve high rates of

low level obstacle detection, an imperative first step towards robust pedestrian detection

and collision mitigation.

However, in real world driving scenarios, low level obstacle detection, while

an imperative initial step, is not sufficient for pedestrian detection. Detected obstacles

can include a variety of objects found in common driving scenes other than pedestrians,

such as parked and moving vehicles, trees, buildings, parking meters and other spuri-

ous candidates in the scene. Additional processing is necessary to filter the detected

obstacles into appropriate pedestrian and non-pedestrian regions.

In the disparity image domain, it is possible to filter some of the detected ob-

stacles based on the bounding box features of typical pedestrian obstacles (e.g. Bertozzi

et al. [16]). Bounds on pedestrian bounding box features such as size, disparity and as-

pect ratio can be learned or heuristically selected to filter out bounding boxes associated

with other objects in the scene. However, the success of such filtering techniques can



81

prove unreliable, as it will not filter non-pedestrian bounding boxes that fall within the

selected bounds of pedestrian candidates. Additionally, the selection of appropriately

robust bounds is a challenging task, as bounding box sizes can vary with pedestrian

pose and disparity fidelity. To achieve more reliable detection of pedestrian candidates,

it is necessary to analyze other features of the imagery in addition to the stereo disparity

estimates.

As mentioned in Section V.B, features that have been used for color image-

based pedestrian classification include Haar wavelet responses [45], Gabor filter re-

sponses [46], Sobel edge responses [59], Implicit Shape Models with Chamfer distance

matching [49], image contours with Mean Field models [48], and local receptive fields

for support vector machine classification [50].

Infrared features for classification typically include features that identify the

specific thermal characteristics of the scene, including hotspots [51], warm element and

head template matching [56], body model templates [52], shape independent multidi-

mensional histograms, inertial and contrast base features [53] and Histograms of Ori-

ented Gradients [54].

Obstacle detection using stereo disparities derived from color or infrared im-

agery is highly accurate with low false positive rates. However, this level of detection is

still too primitive to be used for real world pedestrian detection as it can include obsta-

cles not associated with pedestrians or other critical regions. To supplement and filter

these obstacle candidates, specific features of color or infrared imagery can be extracted

and analyzed to determine the true pedestrian regions in the scene. Although both color

and infrared imagery have been used to identify pedestrians in a scene, it is unclear

which camera system is preferred. Because of the underlying differences in the physical

processes that give rise to color and infrared imagery, the two modalities yield disparate

information about the scene.

While a justification can be made for the use of either approach, a more in-

teresting proposition would be to use both modalities in concert to obtain all sets of

available features in color and thermal imagery. Naturally a detection architecture that
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incorporates more features has a higher potential for detection accuracy than one with

a lesser feature set. For example, the thermal “hotspots” of humans that often make

pedestrians easily segmentable can be used together with the fine level of color image

detail that has proven useful for tasks as challenging as detecting articulated poses for

classifying human interactions [65].

Although it is possible to incorporate the advantages of stereo color and in-

frared analyses by separately combining the two camera systems and pedestrian detec-

tion [16], it is costly and cumbersome to incorporate a four camera solution from both

a computational and vehicle integration standpoint. A more economical and desirable

solution would be to combine the benefits of color, disparity and infrared imagery in

an integrated detection framework. In Section V.E, we propose a multimodal trifocal

framework consisting of a stereo pair of color cameras coupled with a single infrared

camera. Using a calibrated three camera setup allows for accurate and robust registration

of color, disparity and infrared features using the properties of the trifocal tensor. We

use this robust registration to design a pedestrian detector that integrates color, disparity

and infrared features to yield increased detection rates over detectors using unimodal or

stereo-based features.

V.E Multimodal Trifocal Framework for Pedestrian Detection

The benefits of color, disparity and infrared image features can be incorpo-

rated using a three camera approach consisting of a standard color stereo rig paired

with a single infrared camera. This trifocal framework, illustrated in Figure V.12, al-

lows disparity estimates obtained through dense color stereo correspondence matching

to register corresponding image pixels in the infrared imagery. This can be done quickly

and efficiently by using the trifocal tensor – the set of matrices that relates the corre-

spondences between the three images.

The trifocal tensor can be estimated by minimizing the algebraic error of point

correspondences as described in Hartley and Zisserman [8]. These point correspon-
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Figure V.12: Flowchart of trifocal tensor approach to pedestrian detection for color

stereo and infrared framework.
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(a) Color (b) Disparity (c) Aligned Infrared

Figure V.13: Example of registered color, disparity and infrared imagery using trifocal

tensor.

dences can be obtained for all three images using the same calibration board and tech-

niques used for stereo calibration. We obtain images where the calibration is visible in

each of the three views of the multimodal trifocal framework. While only seven point-

point-point correspondences are required to compute the trifocal tensor, in practice, as

with stereo calibration, many more correspondences are used to smooth errors in the

estimates. The resulting trifocal tensor is written as T = [T1, T2, T3], where Ti is a 3x3

matrix for the ith image in the set. From this tensor notation, standard two-view geom-

etry parameters, such as fundamental matrices F , epipoles e and projection matrices P

can be evaluated.

Additionally, using the trifocal tensor notation, given a point correspondence

x′ ↔ x′′, we can estimate the point transfer to the third image point x using the following

method:

[x′]×(
∑

i

xiTi)[x
′′]× = 03×3 (V.1)

Dense stereo correspondence matching gives x′ ↔ x′′ correspondences for a

large portion of the scene and the trifocal tensor technique is able to register infrared

pixels at these valid disparity regions. The resulting point transfers are all aligned to the

color reference image. An example set of aligned images is shown in Figure VI.4.



85

(a) Positive Samples (b) Negative Samples

Figure V.14: Selection of positive and negative samples used for training pedestrian

detectors. Each sample consists of color, disparity and infrared images.

V.E.1 Experimental Evaluation of Pedestrian Detection using Color, Disparity

and Infrared Image Features

To determine the effect of using multimodal features for pedestrian detection,

we use the trifocal framework to register the color, disparity and infrared imagery into a

single five-channel multispectral image. The single alignment of all image data allows

for fast and easy generation of positive and negative samples. Using the same testbed

from Sec. VI.E.1, we are able to design pedestrian detectors that make use of various

combinations of color, disparity and image features. To train the detectors, positive

pedestrian samples are manually annotated in the five-channel multispectral image. For

each positive sample, 10 negative samples are generated by moving the positive bound-

ing box to a random non-overlapping position in the test image. All samples are resized

to a common size (24x60 pixels) as shown in Figure V.14.

For each sample, features need to be extracted that can be used for training the

detectors. We elect to use Histograms of Oriented Gradients (HOG) similar to those pro-

posed by Dalal and Triggs [66]. For each of the color, disparity and infrared images, we

compute a XxY xΘ element histogram, where X , Y and Θ are the number of histogram

bins in width, height and gradient orientation, respectively. For our experiments, we use

4x4x8 element histograms, resulting in a 128 element feature vector for each image in

the sample. The selection of this feature descriptor is based on the notion that gradient
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Table V.2: Pedestrian detection rate for 5% false positive rate.

Color 86.74%
Disparity 71.45%
Infrared 74.10%
Color+Disparity 86.58%
Disparity+Infrared 83.31%
Color+Infrared 84.40%
Color+Disparity+Infrared 91.89%

information will play a role in determining the presence of a pedestrian in a sample.

While we do not claim that this is the best or optimal feature for detecting pedestrians in

color, disparity or infrared imagery, HOG features have been shown to experimentally

outperform similar features for detecting pedestrians [67] so we feel they are sufficient

to evaluate how the combination of multispectral image features can improve detection

accuracy.

Once the features have been computed, we train the pedestrian detector using

a support vector machine (SVM) with a radial basis function as the kernel type [68]. We

wish to use the SVM to derive a pedestrian detector for all combinations of color, dispar-

ity and infrared features. We train each SVM using 865 annotated positive samples (and

8650 negative samples) collected from video obtained while driving the LISA-P testbed

in store parking lots and local roads in La Jolla, California. Similarly, to evaluate each

detector, we use a test set of 641 positive samples and 6410 negative samples obtained

from a different set of videos obtained while driving the LISA-P in La Jolla. Pedestri-

ans in the training and testing sets range from approximately 3 to 30 meters from the

vehicle. The resulting ROC curves for each detector are plotted in Figure V.15 and the

detection rates given a 5% false positive rate are shown in Table V.2.

Clearly, the detector that uses the combination of color, disparity and infrared

features performs better than all other detectors by a significant margin. By integrat-

ing the features, we exploit the complementary nature of multimodal imagery yielding

more than 5% increase in detection for a fixed 5% false positive rate. This indicates that

incorporating multimodal features increases the robustness of detecting pedestrians. Ad-
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Figure V.15: ROC for pedestrian detection. The combination of color, disparity and

infrared features performs the best.

ditionally, it can be anticipated that detection rates will be even higher in practice, as the

negative samples were drawn from random portions of the image and likely would be

filtered out by the initial object identification algorithm described in Section V.C.

We also note that the combinations of color+infrared and color+disparity do

not outperform the detector trained on color alone. We suspect this is because the gra-

dient based features used are not ideal for discriminating pedestrians from background

in the low contrast disparity and infrared domains. This is evident when examining

the performance of the detectors trained on only disparity or infrared images. It seems

that given the relatively low number of positive samples, the addition of disparity or

infrared adds more noise to the detector. It’s all the more interesting then, that the

color+disparity+infrared trained detector performs so well. The discriminant gains from

combining all features greatly outweighs the noise added from using non-ideal gradient

features. We anticipate even greater gains in detection accuracy could be achieved by

combining each image spectrum using more discriminant features.
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V.F Summary

The use of multimodal and multiperspective imagery has helped researchers

take large steps towards achieving accurate and robust pedestrian detection. The depth

estimates obtainable from vehicle mounted stereo imagery give a straightforward ap-

proach to extracting obstacle regions from the scene. We have outlined such an algo-

rithm for obstacle detection in stereo imagery and have provided comparative experi-

ments to gauge the detection rates achievable with color and infrared stereo imagery.

Our analysis indicates that color and infrared-based stereo disparities are capable of

highly accurate pedestrian detection (> 98%) with low false positives (� 1%).

Given the high detection rates obtainable from color and infrared stereo im-

agery, the selection of an appropriate camera system for pedestrian detection turns to

the consideration of each modality’s ability to further classify detected obstacles into

pedestrian and non-pedestrian regions. Because the physical processes that give rise

to color and thermal imagery are disparate, the extractable features from color and in-

frared imagery are also very different and largely unique to each modality. As previous

approaches have demonstrated the usefulness of features from both color and infrared

imagery for classifying pedestrian regions, we suggest that a complementary system

that utilizes all the available features of color and infrared imagery is most desirable.

Specifically, we propose a multimodal trifocal solution to obtain the color, depth and

infrared features desirable for pedestrian detection.

The multimodal trifocal solution, consisting of a color stereo rig paired with a

single infrared camera allows for accurate and robust registration of pixels in each im-

age. Using the color stereo aspect, we can achieve the same high level of obstacle region

identification as in the unimodal case. However, we demonstrate that integrating color,

disparity and infrared features for training a pedestrian detector yields improved accu-

racy over detectors that utilize only unimodal or stereo features. From a cost-benefit

perspective, we suggest that the multimodal trifocal framework is likely the best ap-

proach, as it can achieve the benefits of multimodality seen in higher camera solutions,
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yet achieves robustness beyond what is capable in two camera cross-spectral solutions.

Future areas for investigation include a more extensive evaluation of feature selection

in color, disparity and infrared imagery. Additionally, an integrated object candidate

generation and pedestrian detection algorithm using the multimodal trifocal framework

would be useful for evaluating the robustness of pedestrian detection in various lighting

and environmental conditions.

These multimodal and multiperspective approaches provide useful insight into

the overall active safety paradigm. Pedestrian safety is just one of many aspects of the

driving environment that needs to be monitored in order to enhance safety in the vehicle

and surrounding areas [64]. The multimodal feature set extractable from the multimodal

trifocal solution could provide for a robust and unified framework for detecting pedes-

trians and other obstacles in the vehicle surround [69]. Additionally these features can

be used for higher level driver intent analysis such as lane changing [70], turning [55]

and braking [71].

The text of this chapter, in part, is a reprint of the material as it appears in:

Stephen J. Krotosky and Mohan M. Trivedi, “On Color, Infrared and Multimodal Stereo

Approaches to Pedestrian Detection”, IEEE Trans. On Intelligent Transportation Sys-

tems, in press. I was the primary researcher of the cited material and the co-author listed

in this publication directed and supervised the research which forms a basis for this

chapter.
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VI.A Introduction

This chapter presents a methodology for analyzing multimodal and multiper-

spective systems for person surveillance. Using an experimental testbed consisting of

two color and two infrared cameras, we can accurately register the color and infrared

imagery for any general scene configuration so the scope of multispectral analysis can

be expanded beyond the specialized long-range surveillance experiments of previous

approaches to more general scene configurations common to unimodal approaches.

We design an algorithmic framework for detecting people in a scene that can

be generalized to include color, infrared and/or disparity features. Using a combination

of histogram of oriented gradient (HOG) features from the color and infrared domains,

we train a support vector machine to detect people in the scene. Additionally we learn

the relationship between person size and depth in the scene to create a disparity-based

detector. We assume that the visual and disparity trained detectors can be treated in-

dependently and probabilistically combine their outputs to create an overall detection

score.

Within this framework, we train person detectors using color stereo and in-

frared stereo features. We also analyze tetravision-based detectors that combine the

detector outputs from separately trained color stereo and infrared stereo features. Ad-

ditionally, we incorporate the trifocal tensor in order to combine the color and infrared

features in a unified detection framework, doing so for both the color stereo + single

infrared and infrared stereo + single color cases. We use these trained detectors for an

experimental evaluation of video sequences captured with our designed test bed.

Our evaluation definitively demonstrates the performance gains achievable

when using the trifocal framework to combine color and infrared features in a unified

framework. Both of the trifocal setups outperform their unimodal equivalents, as well

as the tetravision based analysis. Our experiments also demonstrate how the trained de-

tector generalizes well to different scenes and can provide robust input to an additional

tracking framework.
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VI.B Related Research

Person analysis in multispectral and multiperspective imagery is a relatively

new area of research in computer vision. Analysis that incorporates a comparison be-

tween color and infrared imagery for person analysis has been relatively sparse and

limited in scope and generality.

Typical studies have looked at person detection by treating color and infrared

separately. For example, Zhang et al. [67] compared different image features in color

and infrared monocular imagery for training a support vector machine. However, no di-

rect comparison of the detection rates of color and thermal imagery was presented. Ran

et al. [72] also looked at separately using color and thermal imagery to detect periodic

motion to indicate pedestrians in the scene. The main goal of these studies is to show

the extensibility and adaptation of color image analysis techniques on infrared imagery.

Other studies have examined person detection as a fusion of color and infrared

imagery. Davis and Sharma [3] have constructed a data set of color and infrared videos.

The data set provides for a frame-by-frame comparison of the color and infrared imagery

and also allows for the registration of the two videos as the view conforms to a planar

homography assumption. This data set has allowed for the development of algorithms

that combine the color and thermal imagery for improved background subtraction [73]

[9] and person detection and tracking [74].

The planar homographic assumption is a convenient way to register the color

and infrared imagery. However, the assumption is also severely limiting in the types of

scenes that can be analyzed with multiperspective imagery. Because it is assumed that

all objects can be aligned with a single planar homographic transformation, the scene

must be in a special configuration to achieve this assumption. Typically this means that

all objects are sufficiently far from that camera that they satisfy the infinite homographic

assumption. While this provides a method of registration, other scenes where people can

be at multiple distances from the camera, such as those commonly analyzed in monoc-

ular and stereo imagery cannot be analyzed in the planar homographic framework. Our
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previous studies [20] have elucidated the ways that multispectral and multi-perspective

data can be registered and have shown ways to register color and infrared imagery for

any general scene configuration.

The most effective way to register color and thermal imagery for any general

scene context is to incorporate stereo imagery whose depth estimates can account for the

parallax inherent in any multiperspective scene. Bertozzi et al. [16] [56] has designed a

four camera “tetravision” system to analyze people in color and infrared stereo imagery.

Detection is performed separately in the color stereo and infrared stereo domains. The

detection results are then fused by associating the detected bounding boxes from each

modality based on their 3D location in the scene.

We have introduced a trifocal approach to person detection with color and

thermal imagery [37]. By incorporating stereo depth estimates from a single modality

we can register the second modality accurately using the trifocal tensor. This framework

gives a method for combining the color and infrared features to design a unified multi-

spectral classifier that can be used to improve the accuracy and robustness of unimodal

detection frameworks.

VI.C Trifocal Tensor vs. Homography

The trifocal approach to combining color and infrared imagery allows us to

compare a wider range of data than has previously been analyzed in the literature.

Typical approaches that combine color and infrared for analyzing pedestrians focus on

scenes where objects appear very far away from the camera, such as those from the

IEEE OTCBVS WS Series Bench [3]. This allows for straightforward registration using

a planar homography assumption, yet limits the depths of field that can be analyzed.

This means analysis must be confined to a restricted plane-of-interest in the scene, or

the cameras must be placed to ensure that all areas in the scene will comply with the

homography.

Figure VI.1 shows the differences in fields-of-view between (a) typical planar
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(a) Typical Data in Planar Homographic Framework

(b) Typical Data in our Trifocal Framework

Figure VI.1: Comparison of viable field of view for combining color and infrared im-

agery for (a) for planar homography, and (b) our trifocal approach.
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Figure VI.2: Range of scales at which people can be seen in trifocal framework.

homographic and (b) our trifocal approach to color and infrared analysis. Notice how

people in the planar homographic imagery are all very far away from the camera and at a

similar scale. This is a requirement of the planar homographic approach and puts severe

limits on the types of scenes that can be fully analyzed within this framework. The

typical data from the trifocal framework is much more general and complex. People can

be at a broad range of scales and distances from the cameras. As long as depth estimates

for an image region can be obtained, we can register the relevant pixels of objects at any

general position in the scene.

Figure VI.2 illustrates the large range of scales that can be obtained in the

trifocal framework. It is a challenge to design a person classifier that is able to handle

such a broad range of scales as the extracted features need to be relatively invariant to

these scale changes. The incorporation of this scale range also greatly increases the

number of candidates to consider, thereby increasing the potential for false positives.

VI.D Algorithmic Framework

We wish to explore how the incorporation of color, infrared and disparity fea-

tures affect the classification and false positive rates of a person detection system. To do

so, we establish a framework for registering the multimodal imagery and extracting fea-

tures from this imagery that can be used to learn to detect people in a scene. Figure VI.3
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shows the algorithmic flow of this framework. We describe the details of our framework

in the following sections.

VI.D.1 Image Registration with Trifocal Tensor

We use a three camera approach, consisting of a unimodal stereo pair (color

or infrared) combined with a single camera of the second modality. We use the disparity

estimates from the stereo imagery to register corresponding pixels in the third image

with the trifocal tensor – the set of matrices relating the correspondences between the

three images. The multimodal trifocal registration algorithm is identical to the one de-

scribed in Section V.E. Figure VI.4 shows an example set of registered trifocal imagery

for these experiments.

VI.D.2 Annotation

Now that we are able to accurately register all three modalities, we can extract

positive and negative samples for classification. Positive samples need to be annotated

from video sequences. Bounding boxes for all people in the scene were annotated. For

consistency in classification, all bounding boxes maintain a 2:5 aspect ratio. Negative

samples can then be generated by translating the corresponding bounding box for a per-

son to a non-person region in the scene. Additional negative samples are generated by

selecting smaller sub-regions of the selected pedestrian region. Although annotation

needs to be done once for a single trifocal setup, it is necessary to repeat the annotation

for both the color stereo and infrared stereo frameworks, as they have slightly different

fields-of-view. Care was taken to ensure that samples were annotated from identical

people at identical frames in both cases to limit variability in the training. Addition-

ally, only non-occluded pedestrians were included in the training set. We expect the

classifier will still be able to handle occlusion without explicitly training for it and our

experimental evaluation will validate this assumption. Figure VI.5 shows example posi-

tive samples annotated in color and infrared reference imagery. For each sample, we can

simultaneously extract the reference image patch, its disparity image and the reprojected
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Figure VI.3: Algorithmic framework for person detection with color, infrared and dis-

parity image features.
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(a) Color Reference (b) Infrared Reference

(c) Color Disparity (d) Infrared Disparity

(e) Registered Infrared (f) Registered Color

Figure VI.4: Examples of using the trifocal tensor to register a third image to a stereo

pair. The left column shows an infrared image registered to a color stereo pair and the

right column shows a color image registered to an infrared stereo pair.
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(a) Color Samples (b) Infrared Samples

Figure VI.5: Example positive samples of people extracted from (a) color stereo refer-

ence images and (b) infrared stereo reference images. The top row shows the reference

sample, the middle row shows the disparity sample and the bottom row shows the re-

projected image sample.

image data to create the combined sample triplet.

VI.D.3 Image Features

Once annotated, we must extract features that will be able to differentiate the

positive and negative samples. For the color and infrared images, we elect to extract

Histograms of Oriented Gradients (HOG) features similar to those proposed by Dalal

and Triggs [66]. These features attempt to encode the relevance of edges in terms of

their orientation and spatial position and have been increasingly utilized in many recent

person classification publications [54] [67]. We resize each of the color and infrared

image samples to a common size and compute an X×Y ×Θ element histogram, where

X , Y and Θ are the sizes of histogram bins in width, height and gradient orientation,

respectively.
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For the disparity image, we initially considered extracting HOG features as

well. Our initial results indicated this was valid, as the ROC curves showed that the clas-

sifier trained on color, infrared and disparity HOG features outperformed those trained

on just color and infrared. Figure VI.6 shows the ROC curves for classifiers trained

on variations of color, infrared and disparity HOG features. Figure VI.6(a) shows the

ROC curves for the color stereo reference and Figure VI.6(b) shows the ROC curve for

the infrared color reference. The combination of color, infrared and disparity performs

the highest when evaluating cropped samples in a cross-validation framework. This is

a misleading result, though, as the ROC is constructed only by classifying annotated

image patches. When the same classifier is applied to find people in novel images, the

resulting regions include many false positives, often more than the number of people in

the scene.

This performance drop-off is likely due to a combination of factors. First, it is

likely that the HOG features are inappropriate for disparity imagery. They are designed

to capture edge properties of an image patch, yet for many positive samples of people,

there are few to no edges in the disparity image. This is especially true for people close

to the background, where their difference in disparity from the background is small.

While adding these HOG disparity features can provide some additional differentiabil-

ity when classifying the carefully cropped and annotated image patches, the features

actually give false positives when classifying novel images, especially at regions near

true person regions.

To find an alternative, we further examine the disparity imagery to find features

that help to differentiate people from the background and other objects in the scene.

We notice that there is a linear correlation between the size of the bounding box that

encloses the person and the median of the disparity inside that region. Figure VI.7

shows the relationship between the bounding box height and the median disparity and

the least-squares linear fit of the data.

This line is parameterized as Ax + By + C = 0, where (A, B, C) are the pa-

rameters of the line, x is the image height and y is the median disparity. For a candidate
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Figure VI.6: ROC curves showing the combination of color, disparity and infrared fea-

tures when using HOG features for all modalities
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Figure VI.7: Linear relation of bounding box height and median disparity for positive

samples of people. The data points are plotted in blue and the least-squares linear fit is

plotted in red.
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bounding box, we can then compute its distance from this ideal line as

∆L =
|Ax + By + C|√

A2 + B2
(VI.1)

VI.D.4 Learning and Classification

While the single disparity feature could potentially be added to the color and

infrared HOG features, it is likely that its power for classification would be lost in the

hundreds of HOG features generated for each sample. Since ∆L arises from a different

modality and attempts to model a completely different physical property, it is appro-

priate to treat these features independently. We build one classifier for the visual HOG

features and another classifier for the disparity feature. Each classifier’s result can than

be probabilistically combined to determine the final classification.

We train a person classifier using the HOG features from the color and/or

infrared imagery using a support vector machine (SVM) using radial basis function

kernels [68]. We use cross-validation during training to give probability estimates that a

bounding box contains a person, p(Person|HOG).

We model the disparity-based classification as being normally distributed around

the distance ∆L from the line learned in Figure VI.7. We compute the probability that

a region contains a person given the ∆L as

p(Person|∆L) = erfc(
∆L√
2σ

) (VI.2)

where erfc is the complementary error function and σ is the standard deviation control

parameter of the modeled Gaussian.

By making an independence assumption, we can construct the final classifica-

tion probability as

p(Person) = p(Person|HOG)p(Person|∆L) (VI.3)

The additional benefit of using these features in two separate classifiers is that

the relatively fast disparity classifier can be used to reduce the number of bounding



104

boxes that need to be evaluated for the slower HOG-based classifier. For example, there

are potentially on the order of 106 evaluations. In practice, we have found that this can

be reduced by two orders of magnitude to 104 by only considering bounding boxes with

high probability from the disparity classifier.

VI.E Experimental Framework

VI.E.1 Experimental Testbed and Image Acquisition

We need to establish a framework for experimenting and analyzing person

surveillance detection approaches that will facilitate a direct, frame-by-frame compar-

ison of the various approaches that combine color and infrared stereo imagery. We

designed a custom rig, shown in Figure VI.8, consisting of a matched color stereo pair

and a matched infrared stereo pair. The two pairs share identical baselines and have

been aligned in pitch, roll and yaw to maximize the similarities in field of view. Such

a rig will allow us to compare Color Stereo, Infrared Stereo, Trifocal Color Stereo +

Infrared (CSI), Trifocal Infrared Stereo + Color (ISC), and Tetravision approaches to

person detection. A four-input video capture card is used to acquire the images and a

time-stamping synchronization routine is used to best align the asynchronously captured

video sequences.

Calibration data was obtained by illuminating a checkerboard pattern with

high intensity halogen bulbs so the checks would be visible in both color and infrared

imagery and standard calibration techniques could be applied to obtain the intrinsic

and extrinsic parameters of the cameras. Color stereo and infrared stereo calibration

was obtained from the matched calibration points using the Matlab Camera Calibration

Toolbox [29]. The same point sets are also used to estimate the trifocal tensor for the

trifocal CSI and ISC cases.
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Figure VI.8: Experimental testbed: Two color cameras and two infrared cameras ar-

ranged in stereo pairs and mounted to the front of the LISA-P testbed.

VI.E.2 Data Set and Training

Videos were collected over several days in the scene shown in Figure VI.4.

Twenty-one sequences of 352x240, 30 fps video were collected of different people mov-

ing throughout the environment at different times of day in an attempt to capture a wide

range of illumination, position, occlusion and density conditions. Of those sequences,

nineteen were used for annotation and training, while the remaining two were reserved

as test sets. The two separate test videos were selected for their challenging and dense

scenes and the fact that the people in the scene were not in the other videos. Cross-

validation was not used in these experiments, as the resulting detections were evaluated

by a human operator and increasing the number of test sequences would make the evalu-

ation unmanageable. For each sequence, we compute color stereo, trifocal CSI, infrared

stereo, and trifocal ISC variants of the original data using the dense disparity generation

described in [63] with the trifocal tensor.
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Annotation of Color Stereo and Trifocal CSI Data

When using the color stereo as the base reference image, we annotated 1654

positive samples of people in the scene. The positive samples range over 21 scales from

6-46 pixels wide. For each positive sample we attempt to obtain 10 negative samples

by randomly translating the bounding box to a non-person region in the scene. We

also obtain an additional 5 negative samples by randomly selecting a subregion of the

positive bounding box as a negative sample. If a negative sample cannot be generated

after a maximum number of iterations due to a dense scene, or if the subregion is smaller

than the smallest person scale, we do not include that negative sample. In all, 22520

negative samples were gathered for training.

Annotation of Infrared Stereo and Trifocal ISC Data

We made every attempt to include identical samples for using the infrared

stereo as reference as in the color stereo case. However, due to the slightly different

fields of view, this was not always possible. Positive and negative samples were gener-

ated in the same manner as the color stereo case, resulting in 1425 positive and 19533

negative samples. We do maintain the same scale range of 6-46 pixels in bounding box

width.

For training, the color and infrared parts of each sample are resized to 24× 60

pixels. A 6 × 15 × 8 dimensional HOG feature is computed for each of the color and

infrared parts of the sample and used to train SVM classifiers with radial basis function

(RBF) kernels. We use cross-validation of the training samples to obtain probability esti-

mates for the classifiers. SVM classifiers are obtained for each of the four combinations

of color and infrared imagery.

The training data is also used to learn the bounding box height-to-disparity

function used to classify people in the disparity domain. We obtain a linear estimate of

the function for both the color stereo and infrared stereo cases.
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VI.F Experimental Evaluation

We analyze the reserved test sequences from the 21 training sequences. The

sequences include various people moving through the scene with other moving objects

including other vehicles and a dog. Detection was determined a success if the appropri-

ately sized bounding box encapsulated the person in the scene. Naturally, false positives

arose when bounding boxes did not encapsulate a person region and missed detection

occurred when a person was not found by the classifier.

VI.F.1 Comparison

The sequences were evaluated for the color stereo, trifocal CSI, infrared stereo,

and trifocal ISC. Additionally, we compare our trifocal approaches to the tetravision

approach proposed by Bertozzi et al. [16]. The tetravision approach utilizes a four

camera rig where color stereo and infrared stereo are analyzed independently and their

detections combined to determine the overall detection. We apply this philosophy in our

analysis by combining the results from our color stereo and infrared stereo using logical

AND and OR operations on the bounding boxes.

Figure VI.9 shows the ROC curves for a sampled portion of the entire se-

quence. Plotted data points were generated by analyzing each classifier’s detection/false

positive rate when the detection probability threshold was set at 80, 85, 90, and 95

percent. Figure VI.10 shows example results of person detection using each of the com-

pared approaches. In these examples, the detection probability was fixed at 90%.

Clearly, the two trifocal classifiers outperform the single modality classifiers

by a large margin. For a false positive rate of 1 per frame, the multimodal classifiers

increase the detection rate by over 45%, from 0.65 to almost 0.95. These are impressive

gains, and while different feature selection and data profiles could yield more modest

gains, there is clearly a substantial benefit in incorporating color and infrared features

to create a superior discriminator of people in a scene. It is also clear that incorporating

the color and infrared features for classification in this trifocal approach is better suited
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Figure VI.9: ROC curve of person detection using color/infrared SVM with disparity-

based classifiers.

to detecting pedestrians than the independent classification and merge philosophy of

the tetravision approach. Again, for a false positive rate of 1 per frame, we see an

increase in detection of almost 20%. Incorporating the multispectral features at the

classifier level will yield much more accurate detection than combining the detection

results independently.

Of note is that color stereo is outperformed by infrared stereo, yet trifocal CSI

performs better than trifocal ISC. While this may seem counterintuitive, a careful anal-

ysis can illuminate the cause for this swap in comparative performance. Since we use

the stereo disparities to initially thin the person candidates in the scene, it is not surpris-

ing to see the infrared stereo outperform the color stereo case. The disparity generation

algorithm we used [63] relies on windowed correlation matching, where highly textured

areas are more easily matched than areas of low texture. Since infrared imagery is inher-

ently low textured, the non-person regions produce fewer valid disparities, resulting in

fewer false positives. Similarly, the areas that contain people are likely to have valid dis-
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Figure VI.10: Example results of a frame-by-frame comparison of the person detection

results using different combinations of color, infrared and disparity features. Successful

detections are shown in red, false positives in yellow. Each row shows color stereo,

trifocal CSI, infrared stereo, trifocal ISC, tetravision OR and tetravision AND.
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parity estimates and will stand out in the imagery. The color imagery is often similarly

textured in person or non-person regions, so more candidates are generated, increasing

the potential for false positives.

However, the opposite is true when both the color and infrared is used in the

SVM classifier. In this case, the increased disparity resolution and accuracy from the

color stereo imagery allows for more accurate trifocal registration and improves the se-

lection of candidate person regions. This improved fidelity makes it easier for the color

and infrared trained SVM to differentiate person and non-person regions and yields the

higher performance shown in the ROC curves. We also expect that when the trifocal reg-

istered modality is not available (e.g. color at night or infrared during poor temperature

conditions), the detection rates will move towards their unimodal counterparts.

VI.F.2 Extended Analysis of Trifocal Detectors

We further focus our analysis on the top performing classifiers. Figure VI.11

shows successful detection results for example frames using the trifocal ISC framework.

Figure VI.12 shows examples of successful detection for example frames using the best

performing trifocal CSI framework. Notice how the framework yields accurate detection

across a wide range of person scales, from people very large and near to the foreground

to barely visible people deep in the background. These figures also demonstrate the

classifiers’ ability to suppress false positives from other objects in the scene, including

vehicles and dogs.

Table VI.1 expands the analysis of the best performing trifocal CSI classi-

fier by including several additional analyzed video sequences. The resulting analysis

reinforces the results of the comparative analysis in Figure VI.9, showing an overall

detection rate of 92.15% with 0.606 false positives per frame. This consistency further

emphasizes the benefits of utilizing the trifocal CSI framework.

While the resulting detection rate is relatively high, we also achieve a seem-

ingly high false positive rate of 0.606 false positives per frame (FPP). However, the

SVM was trained to minimize the number of false postives per evaluated candidate win-
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Figure VI.11: Good Results for Trifocal ISC

Figure VI.12: Good Results for Trifocal CSI
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Table VI.1: Person Detection for Trifocal CSI Framework at 90% Threshold

Video Sequence

1 2 3 4 Total

Total People 570 1240 810 425 3045

Total Frames 200 341 175 116 832

Detected People
535 1130 748 393 2806

93.86% 91.13% 92.35% 92.47% 92.15%

False Positives
103 209 151 43 506

0.515 0.613 0.863 0.371 0.606

Figure VI.13: Common false positive regions for trifocal CSI, shown in yellow.

dow sample (FPW). For each frame, we evaluate 352× 240× 21 windows in the image,

meaning our false positve rate per window (FPW) is 3.4 × 10−7. Figure VI.13 shows

examples of the false positives generated in our detection framework. The false posi-

tives in the images are shown in yellow. Our analysis has shown that an overwhelming

majority of the generated false positives are located in the areas shown in these exam-

ples. A refinement to our approach could be to bootstrap these and other repeated false

positives examples and retrain the SVM to achieve a lower false positive rate.

VI.F.3 Testing in different environments

Experiments were also conducted in another environment to test the trained

person classifier’s robustness to variations in scene perspective, background, density

and lighting conditions. Data was collected in a new, outdoor environment that included

multiple pathways through a grassy mall. Six video sequences were collected over sev-

eral hours from two distinct perspectives that allowed for the capture of the natural
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(a) Trifocal CSI (b) Trifocal ISC

Figure VI.14: Detection in crowded scene.

movement of people in the environment. In general, these sequences were denser in

numbers of people than the initial experiments.

The sequences were evaluated for the best performing trifocal-based classifiers

in the initial tests. The SVM classifiers used to evaluate the sequences were identical

to those in the original tests. The disparity-based classifier was retrained to account for

the change in disparity-to-bounding box size function in the new perspective. This can

be done quickly by annotating a handful of new examples and estimating the new best

linear fit.

Figure VI.14 shows an example of one of the densest frames in the test se-

quence, where 13 people occupy the scene. The trifocal CSI classifier is able to success-

fully detect every person with no false positives, while the trifocal ISC classifier detects

all but a single pedestrian, again with no false positive. We emphasize that no additional

samples were used to evaluate these sequences and many of the objects in the scene,

such as the grass, tree and foreground fencing have not been modeled explicitly by the

SVM classifiers. Figure VI.15 and Figure VI.16 show additional detection examples for

the trifocal ISC and CSI cases, respectively.

We compiled a comparison of the trifocal detection results for a test sequence

in Table VI.2. The results are on par with the original series of test sequences. We
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Figure VI.15: Additional Results for Trifocal ISC

Figure VI.16: Additional Results for Trifocal CSI



115

Table VI.2: Person Detection Comparison for Trifocal CSI and ISC at 90% Threshold

Classifier Type

Trifocal CSI Trifocal ISC

Total People 1019 995

Total Frames 130 130

Detected People
876 798

86.00% 80.20%

False Positives
107 90

0.860 0.692

do see a noticeable decrease in the per frame detection rate. This is likely due to the

incorporation of a new scene that has no support in the trained classifier. Additionally,

these new test sequences have, on average, twice as many people in the scene as the

original test sequences. This increases the occurrence of occlusion that can lead to a

missed detection of a person for an individual frame.

VI.F.4 Temporal Filtered Detection and Tracking

We believe that these per frame detection rates we achieve are really the lower

bound, and that increased performance can come from the temporal analysis of the per

frame detections. In our analysis, we consider a missed detection for any frame where

a person was not properly encapsulated by a bounding box. However a single missed

detection for a person in a given frame is usually corrected in the next few frames.

Such a missed detection can be thought of as a missing data sample in a larger tracking

framework.

Figure VI.17 shows a timelapsed image of a typical 60 frame sequence in our

experiments, where the start and end frames overlayed on each other. For each person in

the scene, we plot the correct per frame detections in solid dots (blue, cyan, red, magenta

and green, respectively) and plot the missed detections in yellow circles. This plot

demonstrates how the intermittent missed detections would not detract from an overall
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Figure VI.17: Time lapse display of typical experimental sequence with per frame de-

tection overlayed. Correct per frame detections are shown in colored dots and missed

detections are indicated as yellow circles.
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tracking framework. The solid dots for each person clearly indicate the path taken by

each person and the missed detections are relatively few. This means that the missed

detection rate is mostly due to intermittent missing data points for tracking rather than

being completely unable to detect a person in the scene. Temporal analysis is a crucial

aspect of algorithmic approaches to surveillance, as the movement and interaction of

objects in the scene can give fundamental insight to the situational analysis of the scene

[65]. We feel that our trifocal classification approach gives a natural and robust input to

common person tracking techniques such as Kalman [75] and Particle Filtering [76].

VI.G Summary

We have presented a methodology for analyzing multimodal and multiper-

spective systems for person surveillance. By incorporating an experimental testbed

consisting of two color and two infrared cameras, we are able to expand multispectral

color and infrared analysis beyond the specialized long-range surveillance experiments

of previous approaches to more general scene configurations common to unimodal ap-

proaches.

We presented an algorithmic framework for detecting people in a scene that

probabilistically combines a support vector machine trained on histogram of oriented

gradient (HOG) features extracted from color and infrared images with a detector based

on the relationship between person size and depth in the scene to create a disparity-based

detector. This framework was used to train person detectors for the various combinations

of color and infrared multiperspective imagery, including color stereo, infrared stereo,

tetravision and trifocal tensor configurations.

The trained detectors could then be used in an experimental evaluation of

video sequences captured with our designed test bed. The evaluation definitively demon-

strates the performance gains achievable when using the trifocal framework to combine

color and infrared features in a unified framework. Both of the trifocal setups outperform

their unimodal equivalents, as well as the tetravision based analysis. Our experiments
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also demonstrate how the trained detector generalizes well to different scenes and can

provide robust input to an additional tracking framework.

The text of this chapter, in part, is a reprint of the material as it appears in:

Stephen J. Krotosky and Mohan M. Trivedi, “Algorithmic Framework and Experimental

Evaluation for using Multiperspective Color and Infrared Features for Person Surveil-

lance”, IEEE Trans. on Circuits and Systems for Video Technology, submitted. I was

the primary researcher of the cited material and the co-author listed in this publication

directed and supervised the research which forms a basis for this chapter.
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Detecting and tracking people has attracted a lot of research interest in the

computer vision community. Traditionally, efforts had been made to do detection using

only monocular color 2D imagery. Efforts were pushed and eventually 3D and stereo

approaches were incorporated to help detect and track through difficult scenarios such

as occlusion and large scale variations. As thermal infrared imagery has become more

viable and affordable, algorithms have been developed to exploit its properties for de-

tecting people in both monocular and stereo imagery. More recent efforts have made

attempts to combine color and infrared analysis, but have been limited in both exper-

imental scope and scene generality. This dissertation has been devoted to expanding

these to achieve a general framework for multiperspective analysis of color and infrared

imagery by developing algorithms to 1) solve the problem of registering color and in-

frared imagery and 2) create a unified framework for detecting people in color and in-

frared multiperspective imagery.

We presented the related studies of multimodal image registration and catego-

rized the registration methodologies into four distinct sectors based on the assumptions

about scene configuration in order to examine how the current state of literature fails to

accommodate registration for general scene. We also examined state-of-the-art stereo

algorithms that are designed to handle correspondence matching for unmatched image

data and definitively show that these approaches are unsuitable for finding correspon-

dence in cross-spectral stereo imagery, where a color and infrared camera are joined in

a stereo pair. As an alternative, we propose a region-based approach to correspondence

matching that is able to successfully perform correspondence matching by relying on an

initial segmentation and disparity voting-based methodology to registering foreground

objects in the scene. This, we believe, is the first such algorithm capable of registering

color and infrared imagery using only two cameras. While our algorithm does not com-

pletely achieve the desired generality, we feel we have laid the groundwork for future

exploration and development by giving an extensive review of the issues and challenges

of registering the imagery and elucidating the desirable properties of features that could

help improve the generality of our approach.
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Extensive experimental evaluations of our proposed cross-spectral stereo reg-

istration algorithm were performed. We presented experimental studies in registering

people in both indoor surveillance from a static camera and outdoor pedestrian detec-

tion from a moving vehicle. We also offer a comparison of our approach to ground

truth and the current state of related studies, with both ideal and realistic initial segmen-

tations. We also experimentally validate the robustness of our approach by evaluating

additional data taken from different cameras in another environment. Finally, we show

how our approach to cross-spectral stereo registration can be used to track people in a

3D context. The experimental results demonstrated the ability of our algorithm to reg-

ister foreground objects in the scene and achieved a level of registration accuracy and

robustness better than current state-of-the-art approaches.

Our study then focused on studying how color and infrared imagery can be

used to improve person detection algorithms. In the context of pedestrian detection, we

first compared how the disparity information from color stereo and infrared stereo can

be used to detect potential objects in the scene. The high success of the disparity infor-

mation from both modalities motivated a discussion of the color and infrared features

that can be extracted to further classify the potential objects into pedestrian and non-

pedestrian regions. This lead to the development of our experimental framework that

allows us to compare pedestrian classifiers utilizing all combinations of color, infrared

and disparity features. We also propose a trifocal framework consisting of a color stereo

camera rig combined with an infrared camera in order to quickly register the multimodal

data for our analysis.

We extend the analysis of multispectral and multiperspective approaches to

person detection in the context of surveillance. We further justify our trifocal approach

to registration by demonstrating its superiority to the planar homography approach in

terms of scene generality and robustness. The trifocal approach is able to register any

object in the scene that is able to be registered in stereo imagery. This allows general

scene configurations and also allows for a direct comparison to conventional monocular

and unimodal stereo approaches. With this in mind, we present a framework for person
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detection that can combine color, infrared and disparity features in a unified manner and

expands the robustness and accuracy of the method proposed in the previous chapter.

We then use this algorithmic framework to present a detailed comparison of person

detection using various combinations of color, infrared and disparity features.

We have definitively demonstrated that our unified trifocal framework easily

outperforms both unimodal stereo analysis and multimodal “tetravision” analysis that

separately combines color and infrared stereo analysis and that such an approach is

currently the most effective and efficient way to achieve color and infrared analysis in

a general scene configuration. We present extensive evaluation of the trifocal-based

experiments to illustrate the improved detection rates that can be achieved when in-

corporating multispectral data in the detection framework. The trifocal framework we

developed could potentially be deployed in many person detection application realms

to improve the overall detection performance of current approaches including person

surveillance, pedestrian detection and intelligent environments.
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