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Abstract

Integrating grouped and ungrouped data: the point process case

by

Irma del Consuelo Hernández Magallanes

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor David R. Brillinger, Chair

Grouped data is a topic that goes back to the end of the nineteenth century at least. Kull-
dorff [34] refers to grouping as a special case of a more general kind of procedure, called
partial grouping. A partially grouped sample refers to the case where available information
is associated with a collection of disjoint sets partitioning a domain S. The sample space

is divided into non-overlapping sets as in S = B ∪ Ω where Ω =
(⋃J

j=1 Ωj

)
and the Ωj’s

are themselves non-overlapping. In some of these sets only the counts of observations are
recorded (grouped data) while the individual values of the observations falling in the other
sets are recorded (ungrouped data). This thesis focuses on spatially partially grouped data.

This work is motivated by an interest in modeling the locations and times of wildfire occur-
rences that happened in the Continental United States in the period from 1986 to 1996. The
data cover fires that occurred in federal and non-federal lands. The federal data consisted of
each fire’s point location (latitude and longitude) τi = (xi, yi) ∈ R2 where i = 1, . . . , I while
the non-federal fires were aggregated by county Ωj ∈ R2, N(Ωj) = nj where j = 1, . . . , J .

Wildfires occurrences can be considered as a point process in S. Brillinger, Preisler and
Benoit [5] approximate a point process by a binary process. We propose integrating the two
levels of aggregate data, points and counts, by modeling the fires as a binary (0, 1) process
on space Yl l = 1, . . . , L. The sample space is partitioned into small pixels arranged in a
regular two-dimensional grid. Each pixel either has a fire or not. The numbers of fires in each
non-overlapping set are assumed to be independent and to follow a Binomial distribution.

Under the assumption that the wildfire rate is a smooth varying function of space we pro-
pose a spatial smoothing method for partially grouped data. This smoother is based on local
regression using the binary process to approximate the partial grouped data.
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Based on the binary-valued approximation a logit model is used with the the National Fire
Danger Rating System fuel model as explanatory variables. The estimated probabilities are
included in a map with the associated uncertainty levels.
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Chapter 1

Introduction

This chapter describes the structure of the thesis and sets the scene.

Combination of data or sometimes called “combination of observations” is an old term for
the numerical analysis of data as stated by Cox. He considered that “combination of data”
encompasses the whole of the statistical analysis of data, with an implied emphasis on con-
densation and summarization. In this thesis we are mainly interested in combining data
when they are reported in different levels of aggregation. In particular, we are interested in
merging two levels of aggregate data namely individual points and aggregate counts in areas.

The work is motivated by the interest in modeling the locations and times of wildfire occur-
rences that happened in the Continental United States in the period from 1986 to 1997. The
data are provided by the US Forest Service, pulling together information organized by dif-
ferent institutions. The data cover fires that occurred in federal and non-federal lands. The
federal data consist of each fire’s point location (latitude and longitude) τi = (xi, yi) ∈ R2

where i = 1, . . . , I while the non-federal fires are aggregated by county Ωj ∈ R2, N(Ωj) = nj
where j = 1, . . . , J for a given time year t. In Fig 1.1, the regions where the grouped data
are colored in yellow while the red and blue dots are the fires’ point locations. This type of
set up, when both type of data are present I, J ≥ 1, is what Kulldorf [34] called a partially
grouped sample.

One of the strategies for handling data from different sources is to divide the data into sim-
pler subsections, analyze these separately and then in a second stage of the analysis, to merge
the conclusions from the component analysis. In this work, we look for developing a joint
analysis of the grouped and ungrouped data and provide a global analysis of the conditions
of the wildfire occurrences in the Continental United States.

We develop statistical methods that merges grouped and ungrouped data and will lead us
to do a risk assessment of wildfires when the data available are partially grouped following



2

Kulldorff’s definition. Brillinger [4] proposes that a risk analysis includes (i) estimation of
probabilities, (ii) determination of the distribution of damage and (iii) preparation of prod-
ucts such as formulas, graphics and hazard risk maps. In particular, as a result of this work
we generate a risk map based on a spatial smoothing method that incorporates the two
levels of aggregate data. We also propose a statistical model that will merge the counts and
spatial point process data. Based on this model we estimate probabilities and risk measures
of interest.

At first, we work on developing a robust smoothed estimate of the intensity rate of the
wildfire locations point process in the Continental United States. This smoother combines
the two levels of aggregate data by approximating them with a binary-valued process. Using
the binary-valued process, the total number of events in non-overlapping regions N(Ωj) are
modeled as Binomial and the spatial point process τi = (xi, yi) by Bernoulli random vari-
ables. As the wildfire intensity rate is assumed to vary smoothly in space, a locally weighted
likelihood analysis is employed. This has been shown to be a pertinent estimation technique
[1, 2]. By including weights, the local variation and the grouping effect are considered in
the model. The maps of these smoothers provide a useful tool for exploratory data analy-
sis as they are one of the effective ways to convey the behaviour of the spread of wildfires [16].

For planning purposes, the Forest Service managers require estimates of the probability of a
wildfire occurrence at a particular location and time. Using the binary-valued approximation
to a partially grouped sample, a logit transform is employed to forecast locations of future
wildfire occurrences in the Continental United States at time t. This model is appropriate
for including explanatory variables that have been found to be of importance in the study of
wildfire namely fuels, season, topography, weather conditions [6]. We fit our model with a
locally weighted likelihood approach and include the fuels [6] and time explanatory variables.
We estimate the model by the iteratively reweighted least squares (IRWLS) implemented in
the R function glm(). We provide pertinent standard errors.

In the rest of this chapter we provide a description of the data used in this project. Also some
notations, definitions and concepts are set down. The rest of the document is structured as
follows: chapter 2 includes a literature review of the statistical methods for working with
grouped univariate and bivariate data. We also include the extension of the statistical esti-
mators to the partially grouped case. In chapter 3 different smoothing methods for grouped
data are included and explored in the wildfire data. We propose a smoother that merges
grouped and ungrouped data using a binary process approximation to the point process
case. The smoother is based on a weighted likelihood approach where the weights provide
the grouped effect and borrow information from the neighbouring counties. In Chapter 4 a
weighted logit regression is used to model the wildfires under the partially grouped scheme.
We used as an explanatory variable the fuel model referred in [6]. We proposed using two
different smoothing parameters , one for the regions where the actual positions and other
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USDA Forest Service General Technical Report RMRS-GTR-87. 2002. 39

Figure 1.1: The fire data locations are grouped by county in the yellow regions while the red
and blue dots are individual fire points locations. The map is included in the “Development
of Coarse-Scale Spatial Data for Wildland Fire and Fuel Management” [47]
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for the regions where data is grouped. A model assessment and a robust estimation are also
included. In Chapter 5 we propose a risk analysis integrated by three parts: a) a smoother
that is used as an exploratory data analysis to detect wildfire patterns and higher risk re-
gions; b) estimates of the probability wildfire occurrence in the proximity of location (x, y)
and the uncertainty associated to these estimates. In Chapter 6 we include the contributions
and future work.

1.1 The data

The National Fire Occurrence database is a database of natural and human-caused fire
occurrences for the years 1986-1996. It includes federal data from the USDA Forest Ser-
vice and four Department of Interior (DOI) agencies: Bureau of Land Management (BLM),
Bureau of Indian Affairs (BIA), National Park Service (NPS), and U.S. Fish and Wildlife
Service (FWS). It also includes non-federal data from all conterminous states except Nevada.

Federal Fire Occurrence Database - The USDA Forest Service and the Department of
the Interior Agencies submitted fire occurrence data in latitude and longitude coordinates.
The project “Development of Coarse-Scale Spatial Data for Wildland Fire and Fuel Man-
agement” generated GIS coverage from the latitude-longitude coordinates.

Non-federal Fire Database Non-federal fire records were received from all lower 48 except
Nevada, which are composed primarily of federal land. The quality and completeness of the
data received varied by state and the specifications can be looked at the reference [47].

1.1.1 The pilot study

To begin, we carry out a study to predict wildfire risk for the year 1990 at a pilot group of
5 contiguous states: Minnesota (MN), North Dakota (ND), South Dakota (SD), Wisconsin
(WI) and Iowa (IA). We work with five states in order to develop computer routines and
insights more easily. In the months to come we will turn to the case of the whole Continental
Unites States. The general setting of our problem is provided as Figure 1.2. We define the
sample space S ∈ R2 as the region formed by the union of these 5 states plus their adjacent
states Table 1.1. The sample space S is divided into non-overlapping sets as in S = B ∪Ω.

B includes the federal regions while Ω =
(⋃J

j=1 Ωj

)
includes the non-federal regions. The

Ωj’s stand for the counties (which are also non-overlapping).

One of the reasons for selecting this pilot group is that the counties are seen to be laid out
quite regularly. Also this sample set contains a variety of federal and non-federal regions.
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Figure 1.2: Wildfire occurrences recorded in 1990 for the sample space S. The data grouped
by county correspond to the states where 1 is reported in the third column of Table 1.1,

Ω =
(⋃J

j=1 Ωj

)
with J = 462.
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No. state observations counties
1 Illinois 1 102
2 Iowa 1 99
3 Michigan 0 88
4 Minnesota 0 88
5 Missouri 1 115
6 Montana 0 56
7 Nebraska 1 93
8 North Dakota 1 53
9 South Dakota 0 66
10 Wisconsin 0 77
11 Wyoming 0 23

Table 1.1: The 11 states included in the sample space S. The third column is 0 when data
is ungrouped and 1 when grouped. The fourth column shows the number of counties per
state.

1.2 Exploratory data analysis

In Figure 1.2 the federal regions that are shown to be more affected by wildfire occurrences
in 1990 are: a) west regions of Montana and Wyoming b) north-west part of South Dakota
and c) north-east part of Minnesota. We jitter the data to have a better display of the
fires and for the estimations done in the following chapters. In non-federal regions the data
is displayed numerically and it is difficult to identify those areas which are more prone to
wildfire occurrence.

The choropleth map in Figure 1.3 plot the square root of the total number of fires for each
county, in both the ungrouped and grouped cases appear. It can be seen that there are two
counties in south-west South Dakota that seem to have a larger number of fires. Also the
adjacent regions to Lake Superior are more affected by wildfire occurrences, as happens also
in the west side of Montana. As this map does not include variables like the area of each
county, it could mislead the interpretation of wildfire occurrences.

The density plots of Figures 1.4, 1.5 and the boxplots of Figure 1.6 are for the square root of
the total number of fires per county and are divided in two classes of states: the ungrouped
and grouped cases. In both cases, the distribution of the total number of fires seems to
be skewed to the right. Combining these plots with the choropleth map, we note that the
distributions for states with a larger number of fires are less skewed to the right and have
less outliers.

The area covered by each fire is available in km2 and the boxplots in Figure 1.7 provide
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fires grouped by county in 1990, for the states included in the pilot group.
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and for non-federal regions in 1990.
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their logarithmic transformation. It seems that the majority of fires have a size of less than
1 km2. The fires reported in the state regions seems to be larger than in the federal regions.
Illinois and Iowa do not report the area.

1.3 Background

We will employ a probability space (S,F ,P) where S is the sample space, F is a σ-algebra
and P is a probability measure. The real line (−∞,∞) is represented by R and the n-
dimensional real Euclidean space by Rn. The points of Rn will be represented by an ordered
set of real-valued coordinates y = (y1, . . . , yn).

Random Variable (r.v.) A real valued function X(·) defined on the space (S,F ,P) is
called a random variable if the set {s : X(s) < x} ∈ F ∀x ∈ R.

A bivariate Poisson process A ⊆ R2 with intensity λ(x, y|θ), N(A), satisfies [49]:

1. For each Borel set A ⊆ R2, N(A) is Poisson distributed with parameter∫ ∫
A

λ(u, v|θ)dudv;

2. If A1, A2, . . . , Ak, . . . are disjoint Borel subsets of R2

N

(
∞⋃
k=1

Ak

)
=
∞∑
k=1

N(Ak)

In the context of the thesis, N(A) is the count of how many fires points lie in A ∈ F .

1.4 Maximum likelihood estimation

Referring to the notation employed by Davison [11], the likelihood function for θ, based on
the data y, is defined to be

L(θ) = f(y|θ), θ ∈ Θ

where f is the density of probability mass function of the data, regarded as a function of θ
for fixed y. When y = (y1, . . . , yn) is a collection of independent observations the likelihood
is
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Figure 1.7: Boxplots of the logarithmic transformation of the fire’s area in km2 for both
federal and non-federal regions in 1990.
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L(θ) = f(y|θ) =
n∏

i=1

f(yi|θ) (1.1)

The log-likelihood is

`(θ) = logL(θ) =
n∑
i=1

log f(yi|θ)

1.4.1 Large sample distribution

Next we provide some properties of maximum likelihood estimators under regularity condi-
tions. Suppose that we have a random sample Y1, . . . , Yn from a density f(y|θ) that satisfies
the regularity conditions [11]:

1. the true value θ0 of θ is interior to the parameter space Θ, which has finite dimension,
d, and is compact;

2. the densities defined by any two different values of θ are distinct;

3. there is a neighborhood N of θ0 within which the first three derivatives of the log-
likelihood with respect to θ exist almost surely, and for r, s, t = 1, . . . , p the quantity
n−1E [|∂3`(θ)/∂`r∂`s∂`t|] is uniformly bounded for θ ∈ N and

4. within N , the Fisher information matrix I(θ) defined by (1.2) is finite and positive
definite.

I (θ)rs = E

[
∂`(θ)

∂θr

∂`(θ)

∂θs

]
= E

[
−∂

2`(θ)

∂θrθs

]
, r, s = 1, . . . , p. (1.2)

Consistency of the m.l.e. [8]: let Y1, . . . , Yn be i.i.d f(y|θ) and let Equation (1.1) provide
the likelihood function. Suppose θ0 is the true value of θ. Let θ̂ denote the m.l.e. of θ0. Let
τ(θ) be a continuous function of θ. Under the regularity conditions (1-4) on f(y|θ) and hence
for L(θ), then for every ε > 0 and every θ ∈ Θ,

lim
n→∞

Pr
(
|τ(θ̂)− τ(θ0)|

)
≥ ε) = 0

Asymptotic efficiency of the m.l.e. [8]: let Y1, . . . , Yn be i.i.d f(y|θ), let θ̂ denote the
m.l.e. of θ, and let τ(θ) be a continuous function of θ0. Under the regularity conditions on
f(y|θ) and hence, L(θ),
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√
n
[
τ(θ̂)− τ(θ0)

]
→ N (0, v(θ0))

in distribution, where

v(θ0) =
[τ ′(θ0)]

I(θ0)

When θ ∈ Rd

τ ′(θ0)tI(θ0)−1τ ′(θ0) (1.3)
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Chapter 2

Grouped and partially grouped data:
models and methods

This chapter 2 includes a literature review of the statistical methods for working with grouped
univariate and bivariate data. We also include the extension of the statistical estimators to
the partially grouped case.

Grouped data is a topic that goes back to the end of the nineteenth century at least.
Haitovsky [23] (2006) presented a substantial historical review of the different approaches
that have been used with grouped data. He suggested that the literature on grouping data
can be divided into four broad categories:

1. Concerns relationships between moments or (other parameters) estimated from the
same data before and after grouping.

2. Making inferences from samples of grouped data (“grouped samples”) about the un-
grouped population.

3. Optimal grouping, for example when the researcher has control over the grouping of
the original data.

4. Estimation methods requiring grouping, either to improve an estimator’s properties or
as an estimation device.

In this chapter we review some works done in the first two categories. They can be extended
to the more general case of partially grouped data.

In the first part of this chapter we review the moment corrections. These attempt to relate
directly the same moments calculated from the parent and the grouped populations respec-
tively. Sheppard’s corrections are included in the later. We also include the corrections
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needed for the m.l.e. and for regression coefficients estimated from grouped data. The m.l.e.
of a partially grouped sample is estimated using the EM algorithm. We also review linear
regression with partially grouped data. We are particularly interested in spatial data, but
the univariate case provides suggestions as to the cases we work with. In the second part
of the chapter we include the extensions of the Sheppard’s and the m.l.e. corrections to the
bivariate case. We also develop the m.l.e. for partially grouped data using the EM algorithm
for that case.

Haitovsky defined data grouping as the process by which a real-valued random variable, X,
with a given distribution function F (x|θ) (continuous or discrete) is condensed into a discrete
distribution function. For example by defining

pj =

∫ cj

cj−1

dF (x|θ), j = 1, . . . , J,

where X ∈ [c0, cJ ] is partitioned by c0 < c < . . . < cJ into J disjoint and exhaustive groups.
The cj’s are termed interval limits or boundaries and Ωj = (cj−1, cj] the jth interval or group.
Grouping transforms a given distribution function, continuous or discrete, into a multinomial
one. Given a sample of data, the number of cases falling into the jth group will be denoted

by nj, the jth group frequency. We write
J∑
j=1

nj = n. We might think of the observations as

occurring at the interval midpoints, the interval means or some other representative point
of an interval. The population interval mean is defined as the conditional expectation of X

given X ∈ Ωj for example, x̄j =

∫ cj

cj−1

dF (x|θ)

J∑
j=1

pj

. The interval widths cj − cj−1 may differ.

2.1 Moment corrections for grouped data

In the early statistical work on grouped data, analyses were concentrated in the first cate-
gory. The interest was to derive the relationships between sample moments calculated from
data before and after grouping. In particular, Sheppard [48] in 1898 proposed corrections
for estimating product moments when data were grouped into equispaced intervals. M.G.
Kendall [33] reviewed the properties of the frequency function f(x) under which Sheppard’s
corrections apply. Based on Kendall’s paper we include a sketch of how Sheppard’s correc-
tions are developed.
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Define f(x) in the range x = c0 to x = cJ , where respectively c0 and cJ may be ±∞.
Without loss of generality f(x) maybe consider as equal to zero outside this range, and still
be written:

∫ ∞
−∞

f(x)dx = 1

It is assumed that f(x) is continuous in the range c0 to cJ and that if the range is infinite
f(x) converges uniformly to zero as |x| → ∞.

Suppose the range is in fact divided into intervals of width h, and that we are given only
the counts of cases falling within those intervals. The probability of an observation in the
jth interval, centred at xj, will then be given by

pj =

∫ h
2

−h
2

f(xj + ε)dε, j = 1, . . . , J,

The raw moment of order s about the origin can be defined as

µ̄′s =
∞∑

s=−∞

xsjpj

=
∞∑

s=−∞

xsj

∫ h
2

−h
2

(xj + ε)dε

Here the bar over the µ denotes that the moment is raw, and the dash that it is taken about
0. The sth moment of the distribution itself, if it exists, is given by:

µ′s =

∫ ∞
−∞

xsf(x)dx

We may put:

1

h

∫ ∞
∞

F (x)dx =
∞∑
j=1

F (xj)−R

where R is a remainder term, which is thus true in general provided that the integral and
the sum exist. Assuming that the conditions needed for R to be neglected and
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F (x) = xs
∫ h

2

−h
2

f(xj + ε)dε

Then,

µ̄′s =
1

h

∫ ∞
−∞

xsdx

∫ h
2

−h
2

f(x+ ε)dε

=
1

h

∫ ∞
−∞

∫ h
2

−h
2

xsf(x+ ε)dεdx

provided that this multiple integral exists. If in addition it is absolutely convergent, we may
substitute x for x+ ε and integrate with respect to ε. We shall then have:

µ̄′s =
1

h

∫ ∞
−∞

∫ h
2

−h
2

(x− ε)sf(x)dεdx

=
1

h

∫ ∞
−∞

f(x)dx

(
x+ h

2

)s+1 −
(
x− h

2

)s+1

s+ 1

=
1

h

∫ ∞
−∞

f(x)dx

[ s2 ]∑
k=0

2

(
h

2

)2k+1(
s+ 1

2k

)
xs−2k

=

[ s2 ]∑
k=0

(
h

2

)2k (
s

2k

)
1

2k + 1
µ′s−2k (2.1)

where
[
s
2

]
is the integral part of s

2
. The raw moments in terms of the actual moments is

given in Equation (2.1).

There are two assumptions made in reaching equation: first the absolute convergence, and
second that R may be neglected. Sheppard’s correction are valid when the range of the dis-
tribution function is finite, that there is high-order contact at the terminals of the range and
that the remainder term in the Euler-Maclaurin expansion used in deriving the corrections
is negligible. Further details on the conditions for Sheppard’s correction can be found in
reference [33].

Not much later Pearson [42] (1902) introduced the analytical solutions to the general prob-
lem of moment computations for grouped distributions under varying assumptions about
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distributional form, including distribution functions that have infinite ordinates and any
slopes at either end of the terminals for example J- and U-shaped distributions.

Heijtan and Rubin [26] refers to coarse data as a kind of incomplete data. Coarse data
is when one observes only a subset of the complete-data sample space in which the true,
unobservable data lie. They considered grouping as a special case of coarsening data, where
the coarsening is known and non-stochastic (e.g. the intervals are set in advance).

2.2 Maximum likelihood estimate for partially

grouped data

Kulldorff (1961) generalized the concept of grouped data to partially grouped data. The
available sample is partially grouped if its information is associated with a set of disjoint
and exhaustive groups partitioning the variable X ∈ [c0, cJ ], such that in each group either
none or all of the individual observations in the region are recorded. The individual values
of the observations are denoted by yi, i = 1, . . . , I.

Consider the pdf or pmf f(·|θ) depending on the parameter θ. Let the sample space be
partitioned into J disjoint and exhaustive groups of widths cj − cj−1. A random sample of
size n is now drawn and the numbers falling in each group obtained. Let nj be the number

in the interval (cj−1, cj] and let n =
J∑
j=1

nj. Suppose there are also statistically independent

observations yi, i = 1, . . . , I sampled from f(·|θ).

We are interested in obtaining the maximum likelihood estimator (m.l.e.) of θ using both
the grouped and the non-grouped observations (partial grouping). Write

pj(θ) =

∫ cj

cj−1

f(y|θ)dy j = 1, . . . , J

for the probability of obtaining a value in the jth subinterval (cj−1, cj]. Now the overall
likelihood function has the following form:

L(θ) =
J∏
j=1

pj(θ)
nj

I∏
i=1

f(yi|θ) (2.2)
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The likelihood function depends on the observed counts and points (n1, . . . , nJ , y1, . . . , yI).
The m.l.e. maximizes (2.2) or, equivalently, the log-likelihood function (2.3) below. Condi-
tions to assure its existence were given in subsection 1.4.1.

` (θ) =
J∑
j=1

nj log pj(θ) +
I∑
i=1

log f(yi|θ) (2.3)

Let θ0 be the m.l.e. of θ calculated on the basis of non-grouping using a particular vector
vj = {vj1, . . . , vjnj

} for j = 1, . . . , J , as the observed values of the variable N(Ωj) and the
observations y1, . . . , yI . The estimator θ0 ignores grouping and it has been corrected in differ-
ent ways. In particular, Lindley [35] and Tallis [52] found an “exact” formula for correcting
the m.l.e. under grouped data, by using Taylor’s Theorem and the midpoints of the intervals,
(cj−1 + cj)/2. Tallis extended the results for unequal grouping and to the multivariate case.
These corrections coincide, under certain conditions, to Sheppard’s corrections.

We will introduce an approximation later. It might be possible that no exact formula is
found but we might get a large sample distribution.

2.3 Expectation-Maximization (EM) algorithm

Observations that are grouped fall into the category of incomplete data as defined by Demp-
ster, Laird and Rubin [13]. They proposed an approach to iterative computation of the
m.l.e.’s when the observations can be viewed as incomplete data. Since each iteration of the
algorithm consists of an expectation step (E-step) followed by a maximization step (M-step),
it has been called the EM algorithm. Dempster and Rubin [14] showed how Sheppard’s cor-
rections arise through the application of the EM agorithm.

McLachlan [39] develops the EM algorithm when grouped data are presented. We are inter-
ested in developing the case where we have grouped data for some regions and also individual
observations for other regions. Recalling our general scheme, let a region of interest be parti-

tioned into J sets Ωj j = 1, . . . , J . A random sample of size n =
J∑
j=1

nj is now drawn from a

population with frequency function f(·|θ) and the numbers falling in each Ωj obtained. Let
nj be the number of observations falling into Ωj. Let’s suppose we also have I independent
observations sampled from the same frequency function f(·|θ). These observations are not
grouped and are located outside the union of Ωj. The ungrouped observations Yi are statis-
tically independent of the grouped data, N(Ωj).
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For given n =
J∑
j=1

nj the observed data (n1, . . . , nJ)T has a multinomial distribution, con-

sisting of n draws on J categories with probabilities
pj(θ)

p(θ)
for j = 1, . . . , J where:

pj(θ) =

∫ cj

cj−1

f(y|θ)dy p(θ) =
J∑
j=1

pj(θ)

and θ is the vector of unknown parameters. Thus the log-likelihood is given by:

` (θ) =
J∑
j=1

nj log pj(θ) +
I∑
i=1

log f(yi|θ)

This problem can be addressed within the EM framework by introducing the vectors

vj = (vj1, . . . , vjnj
)T j = 1, . . . , J

as missing values. The vector vj contains the nj unobserved individual observations in the
jth region Ωj, j = 1, . . . , J .

It follows that the complete data log-likelihood function for θ is given by:

`c (θ) =
J∑
j=1

nj∑
l=1

log f(vjl|θ) +
I∑
i=1

log f(yi|θ) (2.4)

The E-step, on the (k+ 1)th iteration, is effected by first taking the expectation of Equation
(2.4) conditional on (n1, . . . , nJ ; y1, . . . , yI) leading to:

Q(θ, θ(k)) =
J∑
j=1

n
(k)
j Qj(θ, θ

(k)) +
I∑
i=1

log f(yi|θ(k))

where Qj(θ, θ
(k)) = Eθ(k) [log f(v|θ)|v ∈ Ωj] and n

(k)
j = nj.

Next the M-step. On the (k + 1)th iteration, differentiate Q(θ, θ(k)) with respect to θ.
Suppose that θ(k+1) is a root of the equation
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∂

∂θ
Q(θ, θ(k)) =

J∑
j=1

n
(k)
j

∂

∂θ
Qj(θ, θ

(k)) +
I∑
i=1

∂

∂θ
log f(yi|θ)

where

∂

∂θ
Qj(θ, θ

(k)) = Eθ(k) [log f(v|θ)|v ∈ Ωj]

These E and M steps are developed for partially grouped observations under the assumption
that the pdf is Normal with parameters θ = (µ, σ2). The E-step is then

`c (θ) = −(N + 1)

2

[
log σ2 + log 2π

]
− 1

2σ2

[
J∑
j=1

njEθ(k)
[
(v − µ)2|v ∈ Ωj

]
+

I∑
i=1

(yi − µ)2

2σ2

]

The value θ(k+1) of θ that maximizes Equation (2.4) are

µ(k+1) =

∑J
j=1 njEθ(k) [v|v ∈ Ωj] +

∑I
i=1 Yi∑J

j=1 nj + I

σ(k+1)2 =

∑J
j=1 njEθ(k)

[(
v − µ(k+1

)2 |v ∈ Ωj

]
+
∑I

i=1

(
Yi − µ(k+1)

)
∑J

j=1 nj + I

2.4 Regression Models

Suppose there are observations (x1, Y1), . . . , (xJ , YJ) where Yj are independent and the xj’s
fixed. The distribution of the response Yj for the jth case is assumed to depend on xj. In
general, xj is nonrandom and called a covariate or explanatory variable. The variate Yj
is assumed random and referred to as the response variable. Supposing E(Y ) = µ(x) one
models the data via:

Yj = µ(xj) + εj j = 1, . . . , J (2.5)

The function µ(x) : Rd → R may be unknown. In (2.5) the εj may be assumed i.i.d.
variates with distribution function F (ε|θ). One might assume µ(xj) = g(β,xj) where g is
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known except for a vector β = (β0, . . . , βp)
T . A historically common choice of g(β,xj) is

g(β,xj) =
∑p

l=0 βlxjl. The model (2.5) then becomes:

Yj = xTj β + εj j = 1, . . . , J

This is the model of multiple regression. It is common to assume the εj to be IN(0, σ2).
The model may then be written as:

Yj ∼ N(xTj β, σ
2) j = . . . , J

The m.l.e. for this model is obtained by maximizing the following likelihood function:

f(y|β, σ2) = f(y1, . . . , yn|β, σ2)

=
n∏
i=1

f(yi|β, σ2)

=
n∏
i=1

1√
2πσ2

exp

{
−
(
yi − xTi β

)2

2σ2

}

as a function of β and σ.

Grouped data in the regression scheme, may involve grouping the dependent variable, the
explanatory variables or both. Consider the case where both sides of the equation, are
grouped in corresponding ways. Further consider that the data consist of both grouped and
ungrouped observations. Let i index ungrouped and j grouped data with i = 1, . . . , I and
j = 1, . . . , J , yj and xj are aggregate. The log-likelihood function is the following:

` (θ) =
I∑
i=1

log f(yi|θ) +
J∑
j=1

nj log

∫ cj

cj−1

f(y|θ)dy (2.6)

= −I
2

log σ2 −
∑I

i=1(yi − xTi β)2

2σ2
+

J∑
j=1

nj log
1√

2πσ2

∫ cj

cj−1

exp

{
−
(
y − xTj β

)2

2σ2

}
dy

where θ = (β, σ2).

Burridge [7] refers to this expression. He develops a reparametrization that has a log-
likelihood function which is concave with respect to the transformed parameters:
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L(θ) =
1

σI

I∏
i=1

f

(
yi − xTi β

σ

∣∣∣∣θ) J∏
j=1

∫ vj

uj

f(ε)dε

` (θ) = I log φ+
I∑
i=1

log f

(
yi − xTi β

σ

∣∣∣∣θ)+
J∑
j=1

log

∫ vj

uj

f(ε)dε (2.7)

with uj = (cj−1 − xTj β)/σ and vj = (cj − xTj β)/σ. Using parametrization:

φ = 1/σ α = xTj β/σ

It applies to regression models with densities strictly log-concave i.e. standard normal, logis-
tic and extreme value. This same parametrization applies to grouped data. This condition
implies the existence and uniqueness of maximum likelihood estimates and also makes the
Newton-Raphson procedure faster and quite insensitive to the choice of starting value.

2.5 Bivariate grouped and partially grouped data

Grouped data in Rd, d = 2 follows the definition on the line. It is the process by which
a bivariate variable X with a given distribution function F (x|θ) (continuous or discrete) is
condensed into a discrete distribution function for example

Pj =

∫ ∫
Ωj

dF (x|θ)dx, j = 1, . . . , J. (2.8)

where the sample space, S, is partitioned into J disjoint and exhaustive groups Ωj j =
1, . . . , J . Grouping transforms a given distribution function, continuous or discrete, into
a multinomial one. We can think that the observations occurred at the centroid or some
other representative point of the region. The centroid of Ωj is defined as the conditional

expectation of X given X ∈ Ωj for example, x̄j =
∫ ∫

Ωj
dF (x|θ)/

∑J
j=1 pj. The regions

might be non-equal Ωj.

2.5.1 Maximum likelihood estimation: the 2-dimensional case

Consider the frequency function f(x|θ) defined in R2 depending on the parameter θ. Con-
sider that we have J non-overlapping regions Ωj. A random sample of size n is drawn from
a population with frequency function f(·|θ) and the numbers falling in each region counted.
Suppose we also have Yi i = 1, . . . , I independent observations sampled from the same fre-
quency function f(·|θ). These observations are not grouped and are located outside the J
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regions. We are interested in obtaining the maximum likelihood estimate of θ̂ from the data
set of both the grouped and the ungrouped observations.

Define Pj, the probability of obtaining a value in the jth region, as in Equation (2.8). The
likelihood function follows:

L(θ) =
J∏
j=1

Pj(θ)
nj

I∏
i=1

f(yi, θ) (2.9)

and it will be maximized with respect to θ. The log-likelihood and the partial derivative are
as follow:

` (θ) =
J∑
j=1

nj log

∫ ∫
Ωj

f(x|θ)dx +
I∑
i=1

log f(yi|θ)

∂

∂θ
` (θ) =

J∑
j=1

nj
∂

∂θ

[
log

∫ ∫
Ωj

f(x, θ)dx

]
+

I∑
i=1

∂

∂θ
log f(yi|θ)

=
J∑
j=1

nj∫ ∫
Ωj
f(x|θ)dx

[
∂

∂θ

∫ ∫
Ωj

f(x|θ)dx

]
+

I∑
i=1

1

f(yi|θ)
∂

∂θ
f(yi|θ)

2.5.2 The bivariate normal distribution

Consider a bivariate normal Y ∼ N(µ,Σ) where µ = (µ1, µ2) and the variance-covariance
matrix is as follow:

Σ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
Suppose that σ1σ2 6= 0 and |ρ| < 1. Then

fX(y1, y2) =
1

2π
√

det Σ
exp

[
−1

2
(y− µ)TΣ−1(y− µ)

]
=

1

2πσ1σ2

√
1− ρ2

exp

[
− 1

2(1− ρ2)

{
(
y1 − µ1

σ1

)2 − 2ρ
(y1 − µ1)(y2 − µ2)

σ1σ2

+(
y2 − µ2

σ2

)2

}]
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provided ρ 6= ±1. Recalling the problem of interest and writing θ = (µ,Σ) we can find an
expression for the log-likelihood function:

` (θ) =
m∑
i=1

Ni

2π
√

det Σ
log

∫ ∫
Ai

−1

2
(x− µ)TΣ−1(x− µ)dx

+

p∑
j=1

{
−1

2
yTj Σ−1yj +

(
Σ−1µ

)T
yj

}
− p

2

(
log | det Σ|+ µTΣ−1µ

)
− p log π

and the m.l.e. follows:

µ̂ =
1

I

I∑
i=1

xi (2.10)

Σ̂ =
1

I

I∑
i=1

(xi − µ̂)(xi − µ̂)T (2.11)
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Chapter 3

Smoothing and likelihood analysis

3.1 Introduction

One purpose of this thesis is to estimate a smooth intensity function of the distribution of
wildfires in the continental USA, by integrating two levels of aggregate data. The data is
reported as a spatial point process in federal lands and as counts in non-federal lands. In this
chapter, a robust smoother that integrates these two type of data and borrows strength from
the neighbor regions is proposed. The smoother is based on a locally weighted likelihood
approach.

To carry out a pilot study we selected five states: Minnesota (MN), North Dakota (ND),
South Dakota (SD), Wisconsin (WI) and Iowa (IA). The general setting of our problem is
provided as Fig. 3.1. There is a sample space S ∈ R2, which is divided into non-overlapping

sets as in S = B ∪ Ω, Ω =
(⋃J

j=1 Ωj

)
where the Ωj’s are themselves non-overlapping. In

the region B the individual locations are denoted by τi = (xi, yi), i = 1, . . . , I with (x, y)
corresponding to location. For the regions Ωj the data are nj, j = 1, . . . , J with nj = N(Ωj).

Fig. 3.1 displays the fires that happened in 1990 in the states selected for the pilot study.
The locations of the fires are represented as dots, while the total counts per county are
reported numerically. In Minnesota and Wisconsin, the fires are located principally in the
northern regions, which are covered by spruce fir, oak and aspen firch as shown in the for-
est cover types map Fig. 3.2. The wildfires in South Dakota took place in the south-west
boundary area, which is covered by pines. The stream and water bodies map at bottom
of Fig. 3.2, indicates that the wildfires in Minnesota are located close to the lakes region.
While the higher frequency of events in North Dakota are located along the Missouri River
and through the south-east boundary.

A second way to explore the wildfires occurred in 1990 is using a choropleth map. It is a
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Figure 3.1: Wildfires recorded in 1990 for the sample space S, the region formed by the
union of the states: MN, ND, WI, SD and IA. The data grouped by county corresponds to

ND and IA, there are J = 152 counties Ω =
(⋃J

j=1 Ωj

)
.
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Figure 3.2: Top: Forest cover types. Bottom: Streams and water bodies. Map key in the
Appendix. Source: www.nationalatlas.gov.
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thematic map in which areas are shaded or patterned in proportion to the measurement of
the statistical variable being displayed on the map. The Fig. 3.5 displays the choropleth
map of the total wildfires per county, the point observations were aggregated to a county
level. It shows that the counties on the southern west region of South Dakota are the ones
with the highest number of wildfires. The north central region of Minnesota and the Vilas
county in Wisconsin also experienced a higher number of wildfires.

One of the limitations of a choropleth map is that makes very hard to detect patterns. It
could also lead to a bias interpretation because of the absence in the analysis of prognostic
factors like the area (km2’s), vegetation and fuel conditions. The following section reviews
smoothing methods for grouped data that overcome some of the limitations of the chloropleth
maps.
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Choropleth map: squared root total fires grouped by county
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Figure 3.3: Squared root of total wildfires per county for 1990 visualized in a choropleth
map nj = N(Ωj) j = 1, . . . , J where J = 383.

3.2 Smoothing spatially grouped data

Geographic data are often reported as counts or averages over some regions in space like:
income, diseases, unemployment, etc. When data are reported this way, but the basic phe-
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nomenon is a point process such as: disease or fire locations, one has the change of support
problem (COS). In the literature [19], it is also referred as spatial misalignment.

Some authors have studied phenomena (i.e. diseases, births) that suggest an intensity func-
tion that varies smoothly over the space and the data is reported grouped or averaged
[53, 15, 2, 16, 40]. These works allude to the case of just one level of data aggregation, either
counts or averages. Although we are interested in integrating two types of data aggregation,
it is pertinent to include a review of these works as we present a generalization of their
problem. A more extensive review is provided in the following references [20, 19].

Tobler is one of the earlier references in the problem of obtaining a smooth map of a geograph-
ical distribution under the constraint that the original data is grouped in a discrete collection
of regions. He was interested in knowing how a population density, a continuous quantity,
varies over the USA. The interest in obtaining a smooth population density was based on
the fact that geographically, there is a mutual influence of places, in this case between states.

Tobler was interested in describing the population density in an area Ω given the average
population density in each of J non-overlapping and contiguous subareas Ω =

⋃J
j=1 Ωj. One

of the examples included in that paper was the population of the 48 contiguous states in
the United States. The problem was to obtain a smooth, non-negative function λ with the
volume matching property:

1

|Ωj|

∫∫
Ωj

λ(x, y)dxdy = zj j = 1, . . . , J (3.1)

where |Ωj| is the area of Ωj, and zj is the observed average value of λ over Ωj. Tobler
suggested seeking λ to minimize

JΩ
1 (λ) =

∫∫
Ωj

[(
∂λ(x, y)

∂x

)2

+

(
∂λ(x, y)

∂y

)2
]
dxdy (3.2)

subject to

1

|Ωj|

∫∫
Ωj

λ(x, y)dxdy = zj j = 1, . . . , J

and
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λ(x, y) ≥ 0 (x, y) ∈ Ω

Wahba [54] extended Tobler’s results for the standarized age adjusted female lung cancer
rates in Wisconsin. The data covered the period 1970-1975 and was grouped by county for
the 72 counties. She suggested to minimize

Jk(λ) =
k∑
v=0

∫ ∞
−∞

∫ ∞
−∞

(
k

v

)(
∂kλ(x, y)

∂xv1∂x
k−v
2

)2

dxdy (3.3)

instead of JΩ
1 , subject to

1

|Ωj|

∫∫
Ωj

λ(x, y)dxdy = zj j = 1, . . . , J

By minimizing Equation 3.3 instead of Equation 3.2 ensures that the solution λ̂ exists
uniquely provided certain conditions. These conditions can be consulted at [55]. Wahba
generalized these results to the volume smoothing problem, find λ ∈ χ:

1

J

J∑
j=1

wj

zj − 1

|Ωj|

∫∫
Ωj

λ(x, y)dxdy


2

+ h
k∑
v=0

∫ ∞
−∞

∫ ∞
−∞

(
k

v

)(
∂kλ(x, y)

∂xv∂yk−v

)2

dxdy

where wj is an adequate weight and h is a smooth parameter. Wahba took χ to be the
Sobolev space of square integrable functions on Ω with seminorm

JΩ
2 (h) =

k∑
v=0

∫ ∞
−∞

∫ ∞
−∞

(
k

v

)(
∂kλ(x, y)

∂xv∂yk−v

)2

dxdy <∞

where JΩ
2 (h) is a semi-norm on χ with null space the dimensional space

(
k+1

2

)
spanned by

the polynomials (1, x, y, . . .) of total degree ≤ k − 1.

Brillinger [2] worked with the analysis and display of spatially aggregate data over geographic
regions for phenomena that are felt to vary smoothly in space. He provided a spatial locally
weighted analysis of the births taking place to women aged 25 to 29 in the years 1986 and
1987 for the province of Saskatchewan at the census division level. The effect of the census
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division Ωj on the location (x, y) is included in the estimation of the model through the
following type of weights:

wj(x, y) =
1

|Ωj|

∫∫
Ωj

W(x− u, y − v)dudv (3.4)

with W the biweight,

W(x, y) =

{
(1− u2)2 |u| ≤ 1,

0 e.o.c.

where u =

√
x2+y2

h
for some bandwidth h > 0. This approach provided an alternative to the

empirical Bayes methods that have been proposed for similar problems.

Eddy and Mockus [16] wanted to estimate and display the incidence rate of mumps as a
smoothly varying function of space and time. They find that a smooth function (of the
incidence rate) is the best way to convey the behaviour of the spread of the disease. They
were interested in the estimation of a smoothly varying scalar function λ with a three di-
mensional argument λ(x, y, t). They thought of x and y as indicating spatial coordinates
and t as indicating a time coordinate. First we will focus on the spatial domain of their study.

Their data consist on the monthly averaged incidence rates of mumps reported for each state
in USA for the period 1968-1988. Their problem is to estimate a function λ(x, y) (just the
spatial domain) given sets {Ωj}, states, and data {zj}, average rate, for j = 1, . . . , J . The
relationship between λ and data is given by

zj =

∫∫
Ωj

λ(x, y)dG(x, y) j = 1, . . . , J. (3.5)

where Ωj ⊂ Ω and G(x, y) is the population distribution.

They propose to estimate λ(x, y) as in Equation ?? as follow:

• Choose a set of points and values for every Ωj, (xij, yij) ∈ Ωj and i = 1, . . . , kj respec-
tively for j = 1, . . . , J .

• The number of points kj in Ωj are taken to be proportional to the area |Ωj|.

• The points (xij, yij) are distributed in Ωj so that they repel each other and the boundary
of Ωj.
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• The values of µ at (xij, yij) are assumed constant for each Ωj, nij = nj.

• Use the estimator

µ̂(x, y) =

∑
iW(x− xij, y − yij)nij∑
iW(x− xij, y − yij)

(3.6)

where W(x− xij, y − yij) = exp{−λ||s− sij||2}, s = (x, y), sij = (xij, yij) and λ is the
smoothing parameter.

3.3 Locally weighted likelihood analysis: the Poisson

case

Brillinger [2] points that locally weighted likelihood analysis is a pertinent estimation tech-
nique for nonelementary distributions varying in space. Stanislawis proposed the notion of
a weighted likelihood for the nonparametric kernel estimation of a regression function. She
considered data be of the form (ul, Yl) l = 1, . . . , L where ul = (ul, vl) ∈ [0, 1]2 are lattice
points and the Yl are independent random variables from a family of distributions with pa-
rameter θl = θ(ul, vl), with θ(·) having a continuous partial derivative of order k ≥ 2 . The
goal was to arrive at a non-parametric estimate θ̂(x, y) for a fixed point (x, y) ∈ [0, 1]2. She
considered the estimator θ̂ that maximizes the weighted log-likelihood function:

`w (θ) =
L∑
l=1

W
(
x− ul
h

,
y − vl
h

)
log f(Yl|θ) (3.7)

The number of wildfires has been modeled as a Poisson distribution by different authors
[12, 43, 36, 37]. At first we consider that the total number of wildfires per county are dis-
tributed as a Poisson distribution. Under the assumption that the intensity function of the
wildfire point process is smooth, a locally weighted likelihood estimate is used. This fit-
ting procedure gives flexibility to include the grouping effect through the use of appropriate
weights that borrow information from the neighbor regions.

There will be some improvements over the chloropleth map, by modeling the total number
of wildfires by county as Poisson λ(u, v|θ) and using a weighted likelihood fit. Some of the
improvements are the inclusion in the model of the influence of the neighbour’s wildfires in
the location (x, y) through weights of the form Equation 3.4. Secondly the intensity function
varies smoothly over space and conveys better the trend of the wildfires.
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As a result of including the neighbour states to the pilot group (MN, ND, WI, SD, IA),
the extended sample space is called S as shown in Fig. 3.4. Assume f follows a Poisson
distribution and the weighted log-likelihood function follows:

`w (θ) = −
J∑
j=1

wj(x, y)

∫∫
Ωj

λ(u, v|θ)dudv + nj log

∫∫
Ωj

λ(u, v|θ)dudv

 (3.8)

θ = θ(x, y) where (x, y) is a point location in the pilot group and J = 860.

If we assume that the intensity rate is constant over the sample space λ(u, v|θ) = λ, an
homogeneous Poisson process, the λ that maximizes at position (x, y) the weighted log-
likelihood function Equation 3.8 has the following form:

λ̂(x, y) =

∑J
j=1wj(x, y)nj∑J
j=1wj(x, y)|Ωj|

(3.9)

where |Ωj| is the area of j county in km2. It is an extension of the kernel estimator studied
by [18, 41, 46]:

λ̂(x, y) =
L∑
l=1

YlW
(
x− ul
h

,
y − vl
h

)
/

L∑
l=1

W
(
x− ul
h

,
y − vl
h

)
(3.10)
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Figure 3.4: The pilot group states plus their neighbor states with their corresponding total
wildfires per county in 1990.
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We use two different weight functions in the smoothed estimate of the intensity function in
Equation 3.16, a naive weight and a biweight function. Other weight functions are explored
by different authors [54, 30]

1. A naive weight function is first used in Equation 3.16

wj(x, y) =

{ 1
|Ωj | (x, y) ∈ Ωj,

0 e.o.c.

This weight corresponds toW(·) a delta function in Equation 3.4. The estimate of the
smoothed intensity function is shown in the bottom part of Fig. 3.5.
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Figure 3.5: Wildfire occurrence rate by county per km2. It is equivalent to smooth the
spatially grouped data by county with the weight function in Equation 1.

2. A second analysis is done with the biweight function (also called bisquare) for 4
different bandwidths, we will name h2 the bandwidths associated to grouped data
h2 = (.5, 1, 1.5, 2). The weights wj(x, y) follow Brillinger’s approach Equation 3.4 and
W is the biweight function Equation 3.2. The weight function for the county Sioux
in North Dakota for four different bandwidths are included in figures 3.6, 3.7 and 3.8.
The four values of h2 illustrated in that figure correspond to no smoothing, a small
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amount of smoothing, a moderate amount and a significant amount of smoothing.

The weight functions are shown in three different displays: a grid color-scale rectangles
also known as image, contour and perspective plots. For small bandwidths the weight
function is constant over the region Ωj, at the boundaries the value is zero and it
doesn’t extend to the contiguous counties. As the bandwidth increases, the effect of
the fires occurred at a particular county extends to larger regions. The census division
are artificial boundaries (with some exceptions) that doesn’t define different properties
that influence wildfire occurrences.
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Figure 3.6: Image plots of the weight function wj(x, y) propose in definition Equation 3.4 for
the data that correspond to Sioux county in North Dakota. The sequence of plots correspond
to the following bandwidths h2 = (.5, 1, 1.5, 2) which goes from no smoothing to a significant
amount of smoothing.
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Figure 3.7: Contour plots of the weight function wj(x, y) propose in definition Equation
3.4 for the data that correspond to Sioux county in North Dakota. The sequence of plots
correspond to the following bandwidths h2 = (.5, 1, 1.5, 2) which goes from no smoothing to
a significant amount of smoothing.
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Figure 3.8: Perspective plots of the weight function wj(x, y) propose in definition Equation
3.4 for the data that correspond to Sioux county in North Dakota. The sequence of plots
correspond to the following bandwidths h2 = (.5, 1, 1.5, 2) which goes from no smoothing to
a significant amount of smoothing.
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The figure 3.9 shows the smoothed estimates for the intensity function in Equation 3.16
with the weight functions for four different bandwidths as shown in Figs. 3.6, 3.7 and
3.8. In the first two plots, by applying none or very little smoothing, we can detect two
spots with higher intensity with respect to the rest of the territory of interest. These
two spots are located in the south-east border of South Dakota. When using a wider
bandwidth like in the third and fourth plots, it seems that the wildfire occurrences in
north Minnesota are related to the conditions next to the Superior Lake. Also the fires
occurred in Wisconsin seems to be related with the Superior Lake. Using a locally
weighted likelihood analysis, it is also possible to identify an interrelation between
states, for example the fires occurred in the border of South Dakota are related to the
ones in north Nebraska. Also it seems that there is a relation between the fires in the
border between Nebraska and Iowa.
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Figure 3.9: Smoothed estimate of the intensity function when data is grouped by county and
assume to follow a Poisson distribution. These estimates are based on Equation 3.16 for four
different bandwidths h2 = (.5, 1, 1.5, 2). Each corresponds to different amount of smoothing
as shown in Figs. 3.6, 3.7, 3.8.
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3.4 Partially grouped data

In the previous section, we assumed that the number of wildfires per county can be mod-
eled by a Poisson distribution with intensity function λ(x, y|θ). Under the assumption of a
smoothed intensity rate, we estimated it at the position (x, y), λ̂(x, y), for different band-
widths h2 = (.5, 1, 1.5, 2). This approach neglected the point locations in the federal regions
and incorporated them to the model by grouping them by county.

In this section, we present a new model that incorporates the point locations and the counts.
We propose using a binary-valued process to approximate the wildfire point process to merge
the grouped and ungrouped data. Asymptotically this model also assumes that the number
of wildfires in the sample space S can be modeled as a Poisson process. Using the binary
approximation we arrive to a smoothed intensity function, that turns to be robust as will be
shown in section 4.6.

First we will include the results obtained by Brillinger, Preisler and Benoit [5] to approach a
spatial-temporal point process by a binary process. For now we work with the spatial case.

3.4.1 Approximation of a point process by a binary-valued process

Supposing that the space domain is broken up into pixels (x, x+ dx]× (y, y + dy]. Consider
the spatial point process, N , with intensity function assumed to exist and defined by

λ(x, y) = Prob{dN(x, y) = 1}/dxdy

where dN(x, y) = N(dx, dy) counts the number of fires in the pixel. Supposing that λ
contains a parameter θ the log-likelihood function will be written.

`(θ) =

∫
x

∫
y

log (λ(x, y)|θ)dN(x, y)−
∫
x

∫
y

λ(x, y|θ)dxdy (3.11)

Snyder and Miller [49]. Covariates can be included in λ.

We use one of the practical approaches to using the log-likelihood in practice Equation 3.11.
Replace the spatial point process N(dx, dy), by 0-1 valued process Yx,y on a lattice with
Yx,y = 1 if there is a fire in the corresponding pixel and by 0 otherwise for (x, y) ∈ R.

Suppose then that

Prob{Yx,y = 1} = λx,y (3.12)

A Bernoulli approximation to the log-likelihood 3.11 is now
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∑
x,y

Yx,y log (λxy) +
∑
x,y

(1− Yx,y) log (λx,y)

To simplify the notation for the moment, index the pixels by l rather than (x, y). In what
follows we assumed that Yl are independent given the covariates, the grouping effect and
the influence of adjacent fires. The grouping effect and the influence of adjacent fires are
included in the model by the weight functions employed in the fitting procedure.∑

l

Yl log (λl) +
∑
l

(1− Yl) log (λl)

3.4.2 Approximation of a partially grouped sample by a binary-
valued process

The problem of interest is to obtain a robust smoothed estimate of the intensity function for
the wildfire point process for a partially grouped sample. The log-likelihood function for the
point locations τi = (xi, yi) i = 1, . . . , I and the total number of fires by county N(Ωj) = nj
j = 1, . . . , J is

`(θ) =

∫∫
B

log (λ(x, y)|θ)dN(x, y)−
∫∫
B

λ(x, y|θ)dxdy

+
J∑
j=1

nj log

∫∫
Ωj

(λ(x, y)|θ) dxdy −
J∑
j=1

nj

∫∫
Ωj

λ(x, y|θ)dxdy

This log-likelihood function is approximated by replacing the partially grouped sample by a
binary-valued process Yl, on a lattice with Yl = 1 if there is a fire in the corresponding pixel
and by 0 otherwise. We propose the following binomial approximation to the log-likelihood
function 3.13:

`(θ) =

NB∑
l=1

Yl log (λl) +

NB∑
l=1

(1− Yl) log (1− λl)

+
J∑
j=1

log

(
Nj

nj

)
+

J∑
j=1

nj log (ρj) +
J∑
j=1

(Nj − nj) log (1− ρj) (3.13)

The fires occurred in federal regions are modeled as Yl ∼ Bin(1, λl) and the counts of fires
occurred in non-federal regions are modeled as N(Ωj) ∼ Bin(Nj, ρj). NB is the collection of
pixels in the federal regions and Nj is the collection of pixels in the j-county. While λl follows
the definition in Equation 3.12, ρj is the probability of a fire in a pixel of the collection of
pixels in Ωj.
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3.5 Smoothing spatially partially grouped data

In this section we present a smoothed estimate or sometimes called smoother, of the inten-
sity function of the wildfire point process when the observations are partially grouped. The
smoother is based on a locally weighted likelihood estimation (subsection 3.3) for the Bino-
mial approximation to the log-likelihood function Equation 3.13. The weighted log-likelihood
function is then:

`w (λ,ρ) =

NB∑
l=1

W(x− ul, y − vl) [Yl log (λl) + (1− Yl) log (1− λl)]

+
J∑
j=1

wj(x, y) [nj log (ρj) + (Nj − nj) log (1− ρj)] (3.14)

and it is maximized at λ̂ = (λ̂1(x, y), . . . , λ̂NB(x, y)) and ρ̂ = (ρ̂1(x, y), . . . , ρ̂J(x, y)).

We construct a smoother that assumes the rate of occurrence of a wildfire in the sample
space S is constant. This assumption implies that λ1 = . . . = λNB = ρ1 = . . . = ρj = π
where π ∈ R. Under the assumption of a constant rate, generally and for the Poisson case,
given the weighting technique employed it might be assumed local constancy. The number
of fires in the sample space follows an homogeneous Poisson process, where E

[
Y(x,y)

]
=

Prob{Y(x,y) = 1} = π. The weighted log-likelihood function is then:

`w (π) =

NB∑
l=1

W(x− ul, y − vl) [Yl log π + (1− Yl) log (1− π)]

+
J∑
j=1

wj(x, y) [nj log π + (Nj − nj) log (1− π)]

∂`w (π)

∂π
=

NB∑
l=1

W(x− ul, y − vl)
[
Yl
π
− (1− Yl)

1− π

]
+

J∑
j=1

wj(x, y)

[
nj
π
− (Nj − nj)

1− π

]
(3.15)

where (ul, vl) are grid points. It is maximized at

π̂1(x, y) =

NB∑
l=1

W(x− ul, y − vl)Yl +
J∑
j=1

wj(x, y)nj

NB∑
l=1

W(x− ul, y − vl) +
J∑
j=1

wj(x, y)Nj

(3.16)
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for ∀ (x, y) ∈ S. This estimate is also an extension of the kernel estimator Equation 3.10.

The weights included in the log-likelihood function incorporate to the model the local vari-
ation and the influence of nearby fires in the position (x, y). The weights wj(x, y) as defined
in Equation 3.4 represent the influence of census division j on the location (x, y), like risks
caused by humans or environmental conditions. These weights are shown in Fig. 3.6 for
four different bandwidths h2. The weights associated to the ungrouped data W , integrate
the effect of the fire point locations. The latter follows the idea of a kernel estimate of the
intensity function of a point process for a bandwidth h1.

Figure 3.10 shows the estimates using the partially grouped sample with the same bandwidths
for the grouped and ungrouped data h1 = h2. In particular, we can see that there is a higher
probability of a wildfire occurrence in two regions of Minnesota, in the north and north-east
regions. The north region is located where the Red Lake and also the Mississippi River
crosses this area. The north-east region is connected to the Lake Superior. In North Dakota
there is a spot which can be related to the lakes that cover this area.
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Figure 3.10: Smoothed estimate of the intensity function π̂(x, y) Equation 3.16 when the ob-
servations are reported partially grouped. The biweight function is used and the bandwidths
are assumed equal for the ungrouped and grouped data h1 = h2. The four different esti-
mates show different levels of smoothing that goes from very small smoothing to significant
smoothed h1 = h2 = (.5, 1, 1.5, 2).
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3.6 Selection of the bandwidth

When implementing a semi-parametric or non-parametric model two things must be chosen:
the weight function W and the bandwidth h. In our analysis, we use the biweight function
based on its good performance and generally high efficiency over a wide range of distributions
[31]. The bandwidth controls the size of the neighborhood, that is, the degree of smoothing
imposed on the noisy observations. The bandwidth for each dimension h (latitude and lon-
gitude) are the same as shown in Equation (3.2).

We propose using two different bandwidths, h = h1 for the ungrouped data and h = h2 for
the grouped data. By using a semi-parametric approach we are looking for borrow informa-
tion from the neighbour regions. In a first analysis, we explore four different bandwidths to
obtain different levels of smoothing. Figs. 3.11, 3.12, 3.13 and 3.14 include the smoother
for the intensity function under partially grouped data Equation (3.16) for the different pair
combinations of h1 and h2.

When combining data with different levels of aggregation we consider that the bandwidths
selection has two main purposes: a) detecting local trends within each region when the data is
either grouped or ungrouped b) borrowing strength from the neighbor’s observations, either
they are given in the same level of data aggregation or they are different. As a preliminary
analysis we select the bandwidth for grouped data h2 = 1.5 because the weight function
extends to the neighbor counties as shown Fig. 3.8. We go with a wider bandwidth for the
ungrouped data h1 = 2. A following study will be to do a cross-validation analysis and look
for the best combination of bandwidths.
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Figure 3.11: Smoothed estimate of the intensity function π̂1(x, y) in Equation (3.16) when the
observations are reported partially grouped. The biweight function is used with combinations
of very little smoothing for grouped data (h2 = .5) with a sequence of smoothness for
ungrouped data h1 = (.5, 1, 1.5, 2).
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Figure 3.12: Smoothed estimate of the intensity function π̂1(x, y) in Equation (3.16) when the
observations are reported partially grouped. The biweight function is used with combinations
of little smoothing for grouped data (h2 = 1) with a sequence of smoothness for ungrouped
data h1 = (.5, 1, 1.5, 2).
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Figure 3.13: Smoothed estimate of the intensity function π̂1(x, y) in Equation (3.16) when the
observations are reported partially grouped. The biweight function is used with combinations
of some smoothing for grouped data (h2 = 1.5) with a sequence of smoothness for ungrouped
data h1 = (.5, 1, 1.5, 2).



52

−
10

5
−

10
0

−
95

−
90

404244464850

S
m

oo
th

ed
 in

te
ns

ity
 fu

nc
tio

n 
us

in
g 

pa
rt

ia
lly

 g
ro

up
ed

 d
at

a 
w

ith
 b

iw
ei

gh
t f

un
ct

io
n 

h 1
=

1 
h 2

=
2

la
tit

ud
e

longitude

0.
00

0.
05

0.
10

0.
15

0.
20

 0
.0

2 

 0
.0

2 

 0
.0

2 

 0
.0

2 

 0
.0

2 

 0
.0

2 

 0
.0

4 

 0
.0

4 

 0
.0

4 

 0.06 

 0
.0

6 

 0
.0

6 

 0
.0

6 

 0
.0

8 
 0

.0
8 

 0
.0

8 
 0

.1
  0

.1
2 

 0
.1

4  0.16  0.18 

−
10

5
−

10
0

−
95

−
90

404244464850

S
m

oo
th

ed
 in

te
ns

ity
 fu

nc
tio

n 
us

in
g 

pa
rt

ia
lly

 g
ro

up
ed

 d
at

a 
w

ith
 b

iw
ei

gh
t f

un
ct

io
n 

h 1
=

2 
h 2

=
2

la
tit

ud
e

longitude

0.
05

0.
10

0.
15

0.
20

 0
.0

2 

 0
.0

2 

 0
.0

2 

 0
.0

2 

 0
.0

2 

 0
.0

4 

 0
.0

4 

 0
.0

4 
 0

.0
4 

 0
.0

6 

 0
.0

6 
 0

.0
8 

 0
.1

  0
.1

2  0.14  0.16 

−
10

5
−

10
0

−
95

−
90

404244464850

S
m

oo
th

ed
 in

te
ns

ity
 fu

nc
tio

n 
us

in
g 

pa
rt

ia
lly

 g
ro

up
ed

 d
at

a 
w

ith
 b

iw
ei

gh
t f

un
ct

io
n 

h 1
=

0.
5 

h 2
=

2

la
tit

ud
e

longitude

0.
00

0.
05

0.
10

0.
15

0.
20

 0
.0

2 

 0
.0

2 

 0
.0

2 

 0
.0

2 

 0
.0

2 

 0
.0

2 

 0
.0

2 

 0
.0

2 

 0
.0

2 

 0
.0

2 

 0
.0

2 

 0
.0

4 

 0
.0

4 

 0
.0

4 

 0
.0

4 

 0
.0

4 

 0.04 

 0
.0

4 

 0.04 

 0
.0

6 

 0
.0

6 

 0
.0

6 

 0.08 

 0
.0

8 
 0

.0
8 

 0
.0

8 
 0

.0
8 

 0
.1

 

 0
.1

  0
.1

2 

 0.14  0.16  0.18 

−
10

5
−

10
0

−
95

−
90

404244464850

S
m

oo
th

ed
 in

te
ns

ity
 fu

nc
tio

n 
us

in
g 

pa
rt

ia
lly

 g
ro

up
ed

 d
at

a 
w

ith
 b

iw
ei

gh
t f

un
ct

io
n 

h 1
=

1.
5 

h 2
=

2

la
tit

ud
e

longitude

0.
05

0.
10

0.
15

0.
20

 0
.0

2 

 0
.0

2 

 0
.0

2 

 0
.0

2 

 0
.0

2 

 0
.0

2 

 0
.0

4 

 0
.0

4 

 0
.0

4 

 0
.0

6 

 0
.0

6 
 0

.0
8 

 0
.0

8 
 0

.1
 

 0
.1

2  0.14  0.16 

Figure 3.14: Smoothed estimate of the intensity function π̂1(x, y) in Equation (3.16) when
the observations are reported partially grouped. The biweight function is used with combi-
nations of significant smoothing for grouped data (h2 = 2) with a sequence of smoothness
for ungrouped data h1 = (.5, 1, 1.5, 2).
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3.7 Weights Implementation

In this section we describe how to implement the weights used in the locally weighted likeli-
hood analysis Equation (3.15). We are interested in estimating these weights for the region
formed by Minnesota, North Dakota, Wisconsin, South Dakota and Iowa. We define a “plot”
grid (x, y) over the 5 states region and estimate both the grouped and ungrouped weights at
each of them. The weights used for grouped data are

wj(x, y) =
1

|Ωj|

∫∫
Ωj

W(x− u, y − v)dudv (3.17)

and will be numerically approximated as follow:

• Generate a “working” grid over the county Ωj lengthening the sides at both ends by δ.
The estimations are done with δ = 1 and it was chosen based on how far the fires that
occurred in Ωj can spread into adjacent regions. The grid is defined by two parameters
east-west and north-south, δu = 3.4 km and δv = 3.9 respectively.

• The “plot grid” is defined by the parameters δx = 4.3km (East-West) and δy = 4.9km
(North-South). The “working grid” is finer than the “plot” grid.

• For each (x, y) we estimate W(x− ul, y − vl) for (ul, vl) in the county of interest Ωj.

• The weight wj(x, y) associated to position (x, y) that shows the effect of county Ωj, is
the sum over the set of pixels in the j-county.

wj(x, y) =

Nj∑
l=1

W (x− ul, y − vl) (3.18)

where Nj is the collection of pixels in the j-county.
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Chapter 4

Generalized linear model for partially
grouped data

In this chapter we propose a model that merges two levels of aggregate data (individual
points and aggregate counts in areas) to forecast the risk of wildfire occurrences in the Con-
tinental US. The model approximates a partially grouped sample by a binary-valued process.
The point observations τi = (xi, yi) are approximated by the Bernoulli distribution while the
total number of events in non-overlapping regions, N(Ωj), by the binomial distribution. We
use a a generalized linear model with the logit link function to include explanatory variables
that have been found to be of importance in the study of wildfire (fuels, season, topography,
weather conditions) [6]. They can be used as lead variables for estimating the risk of wildfire
occurrences. We use a locally weighted likelihood analysis to fit the model and to include
the grouping effect.

At first we include a review of the wildfire occurrence data set and the notation that will
be used in the rest of this chapter. In the second section it is explained how the partially
grouped observations is approximated with a binary-valued process, assuming the wildfire
point process is simple and the binary-valued random variables are equi-distributed. Finally,
we implement a logit model to forecast the risk of wildfire occurrence at a given time including
the fuel category as an explanatory variable.

4.1 Introduction

Our pilot study predicts wildfire risk for the year 1990 at 5 contiguous states: Minnesota
(MN), North Dakota (ND), South Dakota (SD), Wisconsin (WI) and Iowa (IA). The general
setting of our problem is provided as Figure 4.1. We define the sample space S ∈ R2 as
the region formed by the union of the 5 states just mentioned plus their adjacent states.
The sample space S is divided into non-overlapping sets as in S = B ∪ Ω. B includes the
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federal regions while Ω =
(⋃J

j=1 Ωj

)
include the non-federal regions. The Ωj’s stand for the

counties which are also non-overlapping.

The data cover fires that occurred in both federal and non-federal lands. The federal data
consist of fires’ point locations (latitude and longitude) τi = (xi, yi) ∈ R2 i = 1, . . . , I while
the non-federal data are aggregated by county, j, and the number in Ωj are represented by
N(Ωj) = nj j = 1, . . . , J .

In the figure, the fires locations are represented as dots, while the total counts per county
are reported by the nj. The set up with some data grouped and other ungrouped was
named a partially grouped sample by Kulldorff [34]. It occurs when both type of data are
present I, J ≥ 1. A partially grouped sample refers to the case where available information is
associated with a collection of disjoint sets partitioning a domain, S. It is based on the choice
for each set of whether its contents are points or a count. The set may be infinitesimally
small as in the case of a point. While Kulldorff dealt with real-valued data, we will consider
the points to lie in either space or space-time.

4.2 Binary-valued random variables

We model a partially grouped sample with a binary-valued process Yl. To begin superimpose
a lattice over the sample space S. Let NS denote the collection of pixels in S. By superim-
posing a grid over the set S of concern, we can create a useful approximation of the original
problem. When its location is known explicitly we assign a fire to its nearest lattice point,
as shown at Figure 4.2.

The accuracy of this approximation depends on how fine a grid has been chosen, and just
where the original points lie. The grid is defined by two parameters east-west and north-
south, δu > 0 and δv > 0 respectively, see Figure 4.2. For estimation purposes, the grids’
parameters are approximately δu = 3.4 km and δv = 3.9 km and they define the finest grid
that let us use some efficient routines already implemented in the library(spatstat) in R.

Now let Yl denotes the number of fires assigned to the l-th lattice point l = 1, . . . , NS . In
Figure 4.3 we display for Minnesota, a grid gray-scale rectangles also known as image where
the lighter scale correspond to lattice pixels where at least one wildfire occurred. It is equiv-
alent to being Yl > 0 for the pixel defined by the l-th lattice point. One sees that the events
are concentrated in northern Minnesota region, where the lighter gray pixels are located.
For display purposes, this figure uses a coarser grid than the one used for carrying out the
estimations.

If we assume that the wildfire point process is simple, that is the points are separated, then
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Figure 4.1: Wildfire occurrences recorded 1990 for the sample space S. The data grouped
into county corresponds to the states where where 1 is reported in the third column of table

1.1, Ω =
(⋃J

j=1 Ωj

)
with J = 462.
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Figure 4.2: Lattice over the sample space S with parameters δu > 0 and δv > 0. The set of
pixels in S, NS , are plotted with light grey points. Each wildfire location is assigned to the
closest lattice point.
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no two points of the process are coincident. This going to a limit, the number of fires that can
happen in each infinitesimal pixel is either 1 or 0. The Yl are then binary random variables.
We are following the idea of approximating a point process by a binary-valued process as
proposed by Brillinger, Preisler and Benoit [5] for example.

Next we model the grouped data in region Ωj with Binomial random variables, N(Ωj) ∼
Bin(Nj, λj) where Nj is the total number of grid points in Ωj and nj the correspondent
number of pixels where a wildfire occurred. The actual positions of the wildfire occurrences
within Ωj are unknown and the binary random variables Yl are unavailable but we can
express the total number of fires in Ωj as:

N(Ωj) =

Nj∑
l=1

Yl = nj j = 1, . . . , J (4.1)

We look to estimate for any point (x, y), the probability of occurrence of a wildfire near
it. We are interested in estimating the expected value of the binary random variable Y at
position (x, y), which will be name Yx,y. Using Equation (4.1) the conditional expected value
of Yx,y given N(Ωj) = nj may be evaluated as

E

Yx,y∣∣∣ Nj∑
l=1

Yl = nj

 = Pr

Yx,y = 1
∣∣∣ Nj∑
l=1

Yl = nj

 since Yx,y = 0, 1

=
nj
Nj

(4.2)

assuming equidistribution. The assumption of equidistribution implies that the pixels are of
equal areas, δu and δv are fixed, this can be relaxed later. In Equation (4.2) we can see that
the expected value of Y at position (x, y) is proportional to the expected number of events
in Ωj.

We further consider that the occurrence probability of a fire is a smoothly varying function
of space. To estimate it, we introduce a locally weighted estimate of Yx,y namely:

Nj∑
l=1

W(x− ul, y − vl)Yl (4.3)
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where (ul, vl) are the grid points. W is an appropriate weight function. If we assume
equidistribution, the weighted conditional expected value of Yx,y given N(Ωj) = nj is:

E

 Nj∑
l=1

W(x− ul, y − vl)Yl
∣∣∣ Nj∑
l=1

Yl = nj

 =

Nj∑
l=1

W(x− ul, y − vl)E

Yl∣∣∣ Nj∑
l=1

Yl = nj


=

nj
Nj

Nj∑
l=1

W(x− ul, y − vl) (4.4)

This is seen to be a smoothed estimator of Equation (4.2).

When the data are grouped into county, the weights used in the estimate Equation (4.4),
are meant to take into account the effect of the county division j on the location (x, y). For
the analysis of the wildfire occurrences, the county division is in many cases an artificial
boundary that does not define the limits of where the conditions actually change. We define
W to be the biweight function in Equation (3.2). It will provide a smoothing effect of the
fires happened in the region j on the location (x, y).

In Figure 4.4 we show the behaviour of the selected weights for grouped data:

wj(x, y) =
1

|Ωj|

∫∫
Ωj

W(x− u, y − v)dudv (4.5)

where W is the biweight function. At the top, the weight function for the interval [−40, 40]
is shown. The equidistributed bumps that form the weight function as explained in section
3.7 are also plot. In the bottom of that same figure, we can see the weight function for the
county McLean in North Dakota.

4.3 Generalized linear models for binary data

In order to extend our model to include covariates or explanatory variables we use the
structure of the generalized linear models (g.l.m.). In this section we give an overview of
g.l.m. for binary data but a complete reference can be found in [38]. The g.l.m. extend the
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linear model to include non-normal distributions. The covariates x1, . . . ,xp produce a linear
predictor η given by

η = Xβ

with unknown coefficients β = (β1, . . . , βp)
T and a design matrix X. The link between the

random components and covariates can be written as

η = g (µ) µ = g−1 (η)

where µ is the mean of the random component of the g.l.m. and g(·) is the link function.
The link function may be any monotone differentiable function.

Consider the J independent Binomial random variables N(Ω1), . . . , N(ΩJ). For g.l.m. the
relationship between the vector µ and the covariates as summarized by a design matrix X
of order J × p, that leads to the following form:

ηj = g(µj) =

p∑
r=1

xjrβr j = 1, . . . , J (4.6)

If N(Ωj) ∼ Bin(Nj, ρj) and the link function is the logit, we have:

ηj = log

(
ρj

1− ρj

)
=

p∑
r=1

xjrβr j = 1, . . . , J (4.7)

The weighted log-likelihood function is now

`w(ρ) =
J∑
j=1

wj(x, y) [nj log (ρj) + (Nj − nj) log (1− ρj)] (4.8)
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Substituting the logit link in the weighted log-likelihood function, one can write:

`w(ρ) =
J∑
j=1

wj(x, y)

[
nj log

(
ρj

1− ρj

)
+Nj log (1− ρj)

]
(4.9)

and

`w(β) =
J∑
j=1

wj(x, y)

[
nj

p∑
r=1

xjrβr −Nj log

(
1 + exp

p∑
r=1

xjrβr

)]
(4.10)

where N(Ωj) = nj. In the following subsection we describe a parameter estimation procedure
for this model.

4.3.1 Parameter estimation

The maximum likelihood estimates of the parameters β that appear in Equation (4.9) can
be obtained by iterative weighted least squares (IRWLS). In order to establish the equations
needed for using IRWLS we need to derive the weighted log-likelihood equations for the
parameter β. First the derivative of the Equation (4.8) to ρj is

∂`w(ρ)

∂ρj
=

J∑
j=1

wj(x, y)
nj −Njρj
ρj(1− ρj)

Using the chain rule, the derivative with respect to βr is

∂`w(β)

∂βr
=

J∑
j=1

wj(x, y)
nj −Njρj
ρj(1− ρj)

∂ρj
∂βr

For convenience express ∂ρj/∂βr as a product:

∂ρj
∂βr

=
∂ρj
∂ηj

∂ηj
∂βr

=
∂ρj
∂ηj

xjr
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Thus the derivative with respect to βr or the score function is

Uj =
∂`w(β)

∂βr
=

J∑
j=1

wj(x, y)
nj −Njρj
ρj(1− ρj)

∂ρj
∂ηj

xjr (4.11)

The variance-covariance matrix of the Uj’s has terms

I(β)rs = E (UrUs)

which form the information matrix or Fisher information I. Using the Equation 4.11

I(β)rs =
J∑
j=1

wj(x, y)
Nj

ρj(1− ρj)
∂ρj
∂βr

∂ρj
∂βs

=
J∑
j=1

wj(x, y)Nj

(
∂ρj
∂ηj

)2
1

ρj(1− ρj)
xjrxjs

= {XTWX}rs

where W is a diagonal matrix of entries given by

W = diag

{
wj(x, y)Nj

(
∂ρj
∂ηj

)2
1

ρj(1− ρj)

}

The estimating equation for the method of scoring generalizes to

β(m) = β(m−1) +
[
I(m−1)

]−1
U(m−1) (4.12)

where β(m) is the vector of estimates of parameters β1, . . . , βp at the mth iteration. In

Equation 4.12,
[
I(m−1)

]−1
is the inverse of the information matrix with elements given by

4.12 and U(m−1) is the vector of elements given by Equation 4.11, all evaluated at β(m−1). If
both sides of equation are multiplied by I(m−1) it is obtained
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I(m−1)β(m) = I(m−1)β(m−1) + U(m−1) (4.13)

The right-hand side of Equation 4.13 can be written as

XTWz (4.14)

where z has elements

zj =

p∑
r=1

xjrβ
(m−1)
r +

(
nj
Nj

− ρ̂j
)
∂ηj
∂ρj

all quantities being are evaluated at β̂
(m−1)

.

Hence the iterative equation 4.13, can be written as

XTWXβ(m) = XTWz (4.15)

and we begin using some initial approximations β(0).

The Equation 4.15 is in the same form as the normal equations for a linear model obtained
by weighted least squares, except that it has to be solved iteratively because, in general, z
and W depend on β. Thus for g.l.m., maximum likelihood estimators are obtained by an
iterative weighted least squares procedure.

The weighted maximum likelihood estimates can be obtained by including the pertinent
weights in the R function glm(). Regularly the glm() function uses the following weights:

w0
−1 =

(
∂ηj
∂ρj

2
∣∣∣∣
η̂0

V0

)

where V0 is the variance of the proportions. In particular, to include the grouping effect in
our estimators we will instead use the following weights w′0 in the glm() function:

w′0
−1

= wj(x, y)−1

(
∂ηj
∂ρj

2
∣∣∣∣
η̂0

V0

)
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4.4 Logit model for partially grouped data

Under the assumption of a fine grid, i.e. small δu, δv, and a point process τi = (xi, yi)
with isolated points, the events in B can be approximated by Bernoulli random variables Yl
l = 1, . . . , NB. Then Yl ∼ Bin(1, λl), where λl is the probability of the occurrence of a fire
in the pixel corresponding to the grid point (ul, vl). In the same way, the events grouped
into county has the binomial distribution N(Ωj) ∼ Bin(Nj, ρj) j = 1, . . . , J where ρj is the
probability of occurrence of a fire in a pixel of the collection of pixels in Ωj. The random
variables Yl and N(Ωj) are independent, conditional on the covariates, the grouping effect
and the influence of neighbour wildfire occurrences. The latter is included in the model by
appropriate weights in the likelihood function.

The locally weighted log-likelihood function combining the grouped and ungrouped data is:

`w (λ,ρ) =

NB∑
l=1

W(x− ul, y − vl) [Yl log (λl) + (1− Yl) log (1− λl)]

+
J∑
j=1

wj(x, y) [nj log (ρj) + (Nj − nj) log (1− ρj)]

In the federal regions, the explanatories x1, . . . ,xp for the point observations are provided in
the basic entity, points. The fires in non-federal regions are reported grouped into county and
the respective explanatories are used at the county level. The explanatories for the county
level are called x′1, . . . ,x

′
p′ . Therefore, we define the relationship between the probabilities

and the covariates for the two levels of aggregation, points Yl and counts N(Ωj):

ηl = log

(
λl

1− λl

)
=

p∑
r=1

xlrβr l = 1, . . . , NB (4.16)

ηj = log

(
ρj

1− ρj

)
=

p∑
r=1

x′jrβr j = 1, . . . , J (4.17)

where the link is the logit function.

Substituting into the locally weighted log-likelihood function Equation (3.14)
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`w (λ,ρ) =

NB∑
l=1

W(x− ul, y − vl)
[
Yl log

(
λl

1− λl

)
+ Yl log (1− λl)

]

+
J∑
j=1

wj(x, y)

[
nj log

(
ρj

1− ρj

)
+Nj log (1− ρj)

]
(4.18)

and

`w (β) =

NB∑
l=1

W(x− ul, y − vl)

[
Yl

p∑
r=1

xlrβr − Yl log

(
1 + exp

p∑
r=1

xlrβr

)]

+
J∑
j=1

wj(x, y)

[
nj

p∑
r=1

x′jrβr −Nj log

(
1 + exp

p∑
r=1

x′jrβr

)]
(4.19)

Using IRWLS, as described in the Subsection 4.3.1, it can be maximized for

β̂ = (β̂1(x, y), . . . , β̂p(x, y))

.

4.4.1 Smoother based on a logit model

In this subsection we introduce an elementary logit model with only a constant as an ex-
ploratory variable. The linear predictor follows:

ηl = ηj = β1 (4.20)

assuming that the probability of a wildfire occurrence in the sample space is constant. This
assumption is relaxed when we used a weighted likelihood approach so we are assuming
the probability of a wildfire occurrence is constant in the support of the weight function.
Substituting the linear predictor Equation (4.20) in the weighted log-likelihood function
Equation (4.18), we can predict the probability of a wildfire occurrence in the proximity of
the position (x, y). Under this assumption the predicted probability is named π̂2(x, y)

π̂2(x, y) =
exp β̂1

1 + exp β̂1

(4.21)
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where β̂1 = β̂1(x, y) and

β̂1(x, y) = log


NB∑
l=1

W(x− ul, y − vl)Yl +
J∑
j=1

wj(x, y)nj

J∑
j=1

wj(x, y) [Nj − nj]



Either maximizing the weighted log-likelihood function or using the glm() function we obtain
the same expression. The estimates in Equation (4.21) are plotted in the bottom Figure 4.6.
These estimates combine two different weight functions, one for the ungrouped data and
other for the grouped data. Figure 4.5 shows both weight functions using the biweight with
two different bandwidths, h1 for the ungrouped and h2 for the grouped data. The federal
and non-federal regions differ in the degree of smoothing that is applied.

The smoother used in the previous chapter in Equation (3.9) can be compared with the
estimate in this section, Equation (4.21). The difference is that the first neglected the point
observations and considered both the federal and non-federal fires grouped into county. It as-
sumed that the total number of fires per county had a Poisson distribution. The second uses
a binary-valued process to integrate the two levels of aggregate data, points and counts. In
the limit, both cases consider that the total number of fires by county has a Poisson distribu-

tion with expected values
(∑

(x,y)∈Ωj
π1(x, y)

)
|Ωj| and

(∑
(x,y)∈Ωj

π2(x, y)
)
|Ωj| respectively.

Figure 4.6 compares both smoothers, the first two plots show the estimate with data grouped
into county for two different bandwidths. The third shows the estimate with the logit model.
A clear difference between the two smoothers is that using data grouped into county show a
relationship between the regions of high fire probability in North Dakota and South Dakota.
This relationship is not detected with the second smoother, in the contrary it detects two
independent regions with high probability, one in central North Dakota and other in north-
west South-Dakota. The first smoother detects an area with high probability of wildfire
occurrence in Wisconsin but this does not happen with the smoother based on the logit
model.

Some of the explanatory variables that have been used in the modeling of wildfire occurrences
[44] are: fuel category, elevation, wind speed, state of weather, topography, vegetation.
Including some explanatories in the model that can be reasonably forecasted will provide us
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Figure 4.5: Weight function associated to the point (x, y) in the log-likelihood function. Top:
the weight function for ungrouped data is based on the binary process

∑
l=1W(x−ul, y−vl)Yl,

where the l index runs over the pixels in MN. Bottom: weight function used for grouped
data wj =

∫∫
Ωj
W(x − u, y − v)dudv in particular Ωj is Dickey county, North Dakota. In

both cases W is the biweight function with bandwidths h1 = 2 and h2 = 1.5 respectively.
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Figure 4.6: Smoothed estimate of the intensity function with data grouped into county. The total number
of fires in a county is assumed to have a Poisson distribution. A weighted likelihood fit with the biweight
function using the bandwidths a) top: h2 = 1.5 b) middle: h2 = 2. The bottom provides a smoothed
estimate of the probability of occurrence of a wildfire. This is the partially grouped sample, the logit link
with only a constant β1 included in the linear predictor. A weighted likelihood fitting procedure is used with
the biweight function and the two bandwidths h1 = 2 and h2 = 1.5.
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with useful predictions. A first analysis to follow uses the fuel conditions as the explanatory
variable.

4.5 Fuel model as explanatory variable

The National Fire Danger Rating System (NFDRS) provides the fuel conditions over the
Continental US. It is estimated for a 1 km grid by Burgan et al. [6]. The NFDRS Fuel Map
is Figure 4.7 and the characteristics for each fuel model are provided in Table 4.1.

National Fire Danger Rating fuel models [51] have been mapped across the lower 48 states
at 1 km resolution [6]. The map was derived from a combination of satellite imagery used
to create a land cover database for the conterminous U.S., and ground data sampled from
across the U.S.

To construct the fuel model map, ground sample data was obtained from 2560 plots of 1
km2 scattered randomly across the U.S., and an NFDR fuel model was assigned to each
plot. This data, combined with the landcover class data and an Omernick Ecoregion map,
permitted counting the number of times a fuel model was assigned to each sampled landcover
class within each ecoregion. The preliminary map was then revised by having at least one
person from each Forest Service Region go to the Fire Sciences Laboratory to review the
map. This person was well versed in the location and extent of vegetation in the region, and
what NFDR fuel models best represent it [51].

4.5.1 Model implementation

We are interested in predicting the probability of a wildfire occurrence in a pilot group
s = {MN,ND,WI, SD, IA}. Our sample space, S, includes these states plus their neigh-
bours. The information from the adjacent regions is included in the prediction of the proba-
bility of a wildfire occurrence at (x, y) through a weighted likelihood analysis. The weighted
likelihood fit uses weight functions that assign more influence to those observations closer
to (x, y) and less influence to those further from it. Therefore, to predict the probability
of wildfire occurrence for a particular state s, the logit model just includes the information
from the neighbour states as the weights for the observations further away can be neglected.

The linear predictors for the logit link function based on Equation 4.16 including the fuel
categories are:
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Figure 4.7: US NFDRS Fuel Model Map
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NFDR Fuel Fuel Load (T/Hectare) Extinction
Model Live Dead Moisture (%) Vegetation Represented

A 0.67 0.45 15 Western annual grasses
B 25.78 17.93 15 California mixed chaparral
C 2.91 3.14 20 Pine grass savanna
D 8.41 6.73 30 Southern rough
E ——– ——– ——– Hardwoods (winter)
F 20.18 13.45 15 Intermediate brush
G 29.14 21.30 25 Short needle conifers with heavy dead load
H 67.3 10.09 20 Short needle conifers with normal dead load
I ——– ——– ——– Heavy logging slash
J ——– ——– ——– Intermediate logging slash
K ——– ——– ——– Light logging slash
L 1.12 0.56 15 Western perennial grasses
M ——– ——– ——– Agricultural land
N 4.48 6.73 25 Saw grass or other thick stemmed grasses
O 20.18 17.93 30 High pocosin
P 3.36 4.48 30 Southern pine plantation
Q 12.33 14.57 25 Alaskan black spruce
R 2.24 3.36 25 Hardwoods (summer)
S 3.36 3.36 25 Alpine tundra
T 6.73 3.36 15 Sagebrush-grass mixture
U 2.24 7.85 20 Western long-needle conifer
V ——– ——– ——– Water
W ——– ——– ——– Barren
X ——– ——– ——– Marsh

Table 4.1: Fuel loadings and extinction moisture used in calculating the Fire Potential Index.

ηl = β
(s)
1 +

K∑
k=2

I
(s)
lk β

(s)
k l = 1, . . . , NB (4.22)

ηj = β
(s)
1 +

K∑
k=2

I
(s)′

jk β
(s)
k j = 1, . . . , J (4.23)

where (x, y) ∈ s, η = η(x, y) and β = β(x, y). As the fuel model is a categorical explanatory

variable, I
(s)
k above is an indicator function for the k fuel category, I

(s)
k = 1 if the k category

is present in the s state or its neighbours. Table 4.5.1 shows the fuel categories that covers
each state and their neighbours.

For each (x, y) the model is defined by the following matrix expression
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NFDR Fuel Model MN ND WI SD IA
A
B
C + + + +
D
E
F +
G + + + + +
H + + + +
I
J
K
L + + + + +
M + + + + +
N
O + + + + +
P
Q + + + + +
R + + + + +
S + +
T + + + +
U + + + + +
V + + + + +
W + +
X

Table 4.2: NFDRS fuel categories that covered MN, ND, WI, SD and IA and their respective
neighbours. The fuel categories are described in Table 4.1.
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Y =


Y1

. . .
YNB
n1

. . .
nJ

 X =


1 I11 · · · I1K

. . . . . . . . . . . .
1 INB1 · · · INBK
1 I ′11 · · · I ′1K
. . . . . . . . . . . .
1 I ′J1 · · · I ′1K

 β =

 β1

. . .
βK



for simplicity the index (s) is omitted in the indicator functions and X is the design matrix.
The indicator functions for the federal regions is Ilk = 1 when the k fuel category covers
the pixel correspondent to the l pixel and zero otherwise. The indicator function for the j
county is I ′Jk = 1 when the model occupies the larger area of the county’s territory and zero
otherwise. This assumption seems viable as the NFDR map shows that the majority of the
county’s territory is covered by one or two fuel categories.

The probability of a wildfire occurrence is estimated for dots of a grid (x, y) covering the five
states of interest. The estimated probability with, fuel category as an explanatory variable,
is denoted π̂3:

π̂3(x, y) =
exp {β̂(s)

1 +
∑K

k=2 Ikβ̂
(s)
k }

1 + exp {β̂(s)
1 +

∑K
k=2 Ikβ̂

(s)
k }

(x, y) ∈ s (4.24)

where β̂
(s)

= (β̂
(s)
1 (x, y), . . . , β̂

(s)
K (x, y)) and Ik = Ik(x, y). The indicator functions Ik(x, y) =

1 when the k fuel category covers the pixel corresponding to the grid point (x, y). We omit
the first fuel category (k = 1) to avoid that the design matrix will not have full rank and the
parameters are not identifiable. For each state, as we omit the first fuel category the effect
of the other fuel categories is measured relative to the omitted category.

The map of estimated probabilities is Figure 4.8. One sees: a) In North Dakota there is a
strip with a higher probability of wildfire occurrence. This region is located closed to the
Lake Sakakawea. b) In the southwestern region of South Dakota there is a higher proba-
bility of fire and it seems to be located in the Black Hills National Forest. The causes of
the high risk region in the north-central need to be explored. c) In Minnesota, the regions
with higher probability can be associated with some lakes. d) In Iowa the western border
seems to experience a higher risk of fire. It could be associated to the the Missouri River or
a highway that runs parallel to the border. The road may be from human caused fires.
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Figure 4.8: Probability map using the estimator in Equation 4.18 including the NFDRS fuel
model as explanatory. The biweight function is used and two different bandwidths h1 = 2
and h2 = 1.5 for ungrouped and grouped data respectively.
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4.6 Model Assessment

One way to assess a model is through the analysis of the residuals. As the observations in
non-federal regions are not provided in the basic unit, points, we need to form residuals with
the data grouped into county. Brillinger and Preisler [5] use Le Cam and Hodges’ Poisson
Binomial distribution as an approximation to the distribution of the total number of wildfire
occurrences.

Le Cam and Hodges [29] begin by considering a large number, say n, of events that might
occur. The chance, say p, that any specified one of these events will occur, is small. Assum-
ing that the events are independent, N has exactly the binomial distribution, say Bin(n, p).
If we now let n→∞ and p→ 0 so that np→ λ where λ is fixed and 0 < λ <∞, it is shown
that Bin(n, p) tends to the Poisson distribution P (λ) with expectation λ. They consider this
explanation as often not satisfactory because the various trials cannot in many applications
reasonably be regarded as equally likely to succeed. Let pi denote the success probability
of the ith trial, i = 1, 2, . . . , n. Then N has the distribution called “Poisson binomial”.
Starting from this more realistic model they prove that the Poisson approximation will be
good provided only α is small, whether n is small or large, and whatever value

∑n
i=1 pi may

have.

In our case, we recall the binary-valued random variable Yx,y defined on a lattice, with
Yx,y = 1 if there is a fire in the corresponding pixel and by 0 otherwise. We assume that
these random variables are independent given the covariates, the grouping effect and the
influence of neighbour wildfire occurrences. N(Ωj) will now be assumed to have the distri-
bution called the “Poisson Binomial”. Using Le Cam and Hodges result it can be shown
that N(Ωj) has in the limit the Poisson distribution with parameter λj =

∑
(x,y)∈ΩJ

π(x, y)

provided the α = max{π(x, y)}(x,y)∈Ωj
is small, whether the number of pixels in Ωj, Nj is

small or large and whatever value
∑

(x,y)∈ΩJ
π(x, y) may have.

Using any distribution the expected number of wildfires in the region Ωj, E[N(Ωj)] is

E [N(Ωj)] =
∑

(x,y)∈Ωj

π(x, y)

The errors are

εj = nj − E[N(Ωj)] j = 1, . . . , 860
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In Figure 4.9 we include the boxplots and density estimates of the county standarized resid-
uals grouped by state. The standarized residual for the j county has the following expression

ε̂j/
√

ˆvar(ε̂s) (4.25)

where
√

ˆvar(ε̂s) stands for the standard errors of the county residuals in a particular state.
It seems that our model is not modeling well a number of large observations. The boxplots
for the federal lands (MN, WI and SD) suggests that another kind of distribution with
heavy tail might need to be considered. As there are several outliers, we are interested in
our estimates to be resistant. For Iowa where the data is reported grouped by county, the
residuals show that our model is underestimating the number of fires per county. Mapping
the counties with large residuals could give spatial intuition about explanatory variables that
are not included in the model.

4.7 Robust locally weighted regression

The estimated parameters are obtained by maximizing the weighted log-likelihood function
in Equation 4.9. These parameters under the regularity conditions defined in the subsection
1.4.1 have the asymptotic properties of the m.l.e., consistency and efficiency.

The analysis of the residuals shows that the model might not follow the assumption of nor-
mality. This may lead us our estimates are robust? Mallows (1979) suggested performing
both robust and standard methods and to compare the results. If the differences are minor,
either set can be presented. If the differences are not, one must consider why not, and the
robust guides to next steps.

We use a robust fitting procedure that guards against deviant points distorting the smoothed
points. Through an iterative downweighting procedure similar to the one proposed by
Cleveland [9], we use weights that depend on the discrepancy between the data and the
fitted model. The method consists on smoothing a partially grouped sample formed by
{(ul, vl, Yl)l=1,...,NB , (nj)j=1,...,J}, in which the predicted value at (x, y) is the value of a logit
model fit to binary data using weighted least squares. The weight for (ul, vl) is large if (ul, vl)
is far from (x, y) and small if it is close. The position of the nj fires are not available then
we use the weights wj(x, y) in Equation 3.4 to include the group effect, it is large if Ωj is far
from (x, y) and small if it is not.

The robust locally weighted regression consists on the following sequence of operations. For
each (x, y):

1. Compute the estimates β̂
(s)
r (x, y), of the parameters in the logit model for the in-

dependent variables {(Yl)l=1,...,NB , (nj)j=1,...,J}. It is fit by IWLS with the weights
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Figure 4.9: Standarized residuals corresponding to the logit model with the NFDRS fuel
model as explanatory. In the top, the boxplots are for the standarized residuals grouped by
state. In the bottom, kernel density plots for the standarized residuals by state. Superim-
posed on a histogram are the kernel density estimates with a Gaussian kernel.
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W(x − ul, y − vl) l = 1, . . . , NB and wj(x, y) j = 1, . . . , J for the ungrouped and
grouped data respectively. The weight function is “tricube”:

Wt(x, y) =

{
(1− |u|3)3 |u| ≤ 1,

0 |u|.

In this case, the β̂
(s)
r (x, y) are the values of β that maximize the weighted log-likelihood

function Equation 4.20. The fitted values are {(π̂l)l=1,...,NB , (π̂j)j=1,...,J}.

2. Define {(ε̂l)l=1,...,NB , (ε̂j)j=1,...,J} be the residuals in the final iteration of the IWLS
fit. Let M = median ((ε̂l)l=1,...,NB , (ε̂j)j=1,...,J) be the median of the residuals. Define
robustness weights by

w
(m)
l = W(ε̂l/6M) l = 1, . . . , NB

w
(m)
j = W(ε̂j/6M) j = 1, . . . , J

where W is the biweight function defined in the Equation 3.2 and (m) refers to the m
iteration.

3. Compute the new π̂(x, y) by fitting the logit model using the weighted least squares
with weights w(m)Wl l = 1, . . . , NB and wmwj j = 1, . . . , J .

4. Repeatedly carry out steps 2 and 3 until convergence. The final π̂(x, y) provides a
robust locally weighted regression predicted value.

The robust predicted values are included in Figs. 4.10 and 4.11, they are the result of 2
iterations of the downweighting procedure. The first two figures use the same bandwidths
for the ungrouped and the grouped data while the third figure applies different amount of
smoothing to the ungrouped and grouped data. In the three cases, the central region of
North Dakota experiences a high risk of wildfire occurrence before and after the robust pro-
cedure. Also, the high risk region at the border of South Dakota with Nebraska and Iowa,
experiences a contraction in its area when plotted.

Green [21] establishes that these estimates are also resistant as they are the result of mul-
tiplying the prior weights used by glm() with the weights w(m) obtained in the iterative
procedure.
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Figure 4.10: The black contour plots are the estimates of the probability of wildfire occur-
rences in Equation 4.21 by a logit model with just a constant as a regressor. The bandwidths
are assumed equal h1 = h2. The white contour plots are the robust estimates using the it-
erative downweighting procedure with 2 iterations as explained in section 4.7.
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Figure 4.11: The black contour plots are the estimates of the probability of wildfire occur-
rences given Equation 4.21 by a logit model with just a constant as a regressor employing
the bandwidths h1 = 2 and h2 = 1.5. The white contour plots are the robust estimates using
the iterative downweighting procedure with 2 iterations as explained in section 4.7.



83

Chapter 5

Risk analysis

A basic goal of this work is to provide to the US Forest Service with a risk analysis of the
wildfire occurrences in the Continental US, both in federal and non-federal regions. Risk
may be defined as the probability of some hazardous event or catastrophe, the chance that
something bad will occur [4]. A formal risk analysis includes (i) estimation of probabilities,
(ii) determination of the distribution of damage and (iii) preparation of products for the uses
such as formulas, graphics and hazard risk maps.

We propose a risk analysis with two parts: a) a smoother for a partially grouped sample.
It may be used as an the exploratory tool in the data analysis. b) Predicted probabilities
for a given time t of wildfire occurrence as a function of location with fuel category as
an explanatory variable. Also the uncertainties and the uncertainty associated to these
predictions.

5.1 Smoother

Under the assumption that the wildfire occurrence point process has a smooth intensity
function we propose a smoother that integrates the ungrouped and grouped wildfire data.
It is compared with a smoother based only on grouped data by county. Both smoothers are
based on a weighted and estimating equations likelihood analysis. Their structure is linear,
the smoothed values being linear combinations of the responses Equation (3.16,4.21).

Kafadar and Morris [32] consider that process of smoothing geographical data aims to:

1. reveal the relationship between the response and location (longitude, latitude), which
may suggest a functional model that describes the connection between response and
the environment;
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2. magnify the underlying trend by reducing the variance in the smoothed values, at the
expense of some bias;

3. reduce attention to unusual values or outliers;

4. reveal patterns in the residuals once the smoothed trend has been removed;

5. minimize the undesirable consequences of aggregated data.

We are interested in a smoother that elicits wildfire patterns and higher risk regions, that
are not perceptible when the data are partially grouped. In the top of Fig. 5.1 the wild-
fire occurrences for 1990 are plotted grouped by county and as locations as available. This
display makes it difficult to detect trend or surprises. The middle and bottom plots of the
same figure, present the ways proposed for integrating the two levels of data aggregation.

The plot in the middle shows the smoother based on data aggregated by county and the
bottom one shows the smoother based on the binary-valued approximation to the partially
grouped sample. The weights used in their weighted likelihood estimation include the cor-
responding area in, scaling the number of fires by the area exposed to risk. Both smoothers
identify a higher risk of wildfire occurrence in: a) central North Dakota; b) north Minnesota
and c) the boundary between South Dakota, Nebraska and Iowa.

Their findings differ in the relationship between the wildfire occurrences in North and South
Dakota. The first smoother uncovers a link between these regions the other does not. Pos-
sible reasons for this difference is that when data is grouped by county, the fire occurrences
are distributed uniformly over the whole county with the biweight function Fig. 4.5 while in
the second case the fires’ locations for South Dakota are included. A second reason could be
that this effect may vary if a different bandwidth is used. Also the robust analysis included
in section 4.7, shows evidence that a further analysis is needed to verify their differences.

5.2 Probability estimates and measures of uncertainty

We use a logit model to predict the probability of wildfire occurrence in the region formed
by the pilot group (MN, ND, WI, SD and IA). The model includes the NFDRS fuel classi-
fication as an explanatory variable. The predictions are done for a grid with pixels having
sides of lengths δx = 4.4 km and δy = 4.9 km.

The predicted probability for the pixel that corresponds to the location (x, y) can be ex-
pressed as follow:
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Figure 5.1: Top: wildfire occurrences in 1990 displayed as points or county totals. Mid-
dle: smoother with data grouped by county Equation (3.16), with biweight and moderate
smoothing (h2 = 1.5). Bottom: smoother based on the binary-valued approximation in
Equation (4.21), employing biweight function and different bandwidths for the ungrouped
(h1 = 2) and the grouped data (h2 = 1.5).
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π̂3(x, y) =
exp {β̂(s)

1 +
∑K

k=1 Ikβ̂
(s)
k }

1 + exp {β̂(s)
1 +

∑K
k=1 Ikβ̂

(s)
k }

(x, y) ∈ s (5.1)

where s = {MN,ND,WI, SD, IA} and the index k runs over the fuel categories existing

in the state. The estimated parameters β̂
(s)

= (β̂
(s)
1 (x, y), . . . , β̂

(s)
K (x, y)) are obtained by

maximizing the weighted log-likelihood function Equation (4.18) or with the glm() function
including the respective weights shown in Equation (4.16).

The estimated pointwise probabilities are displayed in Fig. 5.2 and findings are: a) in North
Dakota there is a strip with a higher probability of wildfire occurrence. This region is located
closed to the Lake Sakakawea; b) in the south-west region of South Dakota there is a higher
probability of fire and it seems to be located in the Black Hills National Forest. It could be
explored for the causes of the high risk region in the north-central part; c) in Minnesota,
the regions with higher probability can be associated with the fuel category of hardwood
litter, located in the central north region of the state. In this region, there are also some
hydrological sources like the North Lake and the Lake of the Woods; d) in Iowa the west
border appears to experience a higher risk of fire, it can be associated with the Missouri
River or a highway that runs parallel to the border.

In the next section, we include associated confidence intervals. Those provide a measure of
the precision with which inferences can be made with our model. We also test if the NFDRS
fuel categories are related to the number of wildfire occurrences in the Continental US.

5.2.1 Uncertainty estimates

1. The Fisher information matrix defined in Equation (1.2) for the logit model in Equation
(4.18) with p covariates is as follows:

I(β) =



NB∑
l=1

λl (1− λl) +

J∑
j=1

Njρj (1− ρj) · · ·
NB∑
l=1

xpλl (1− λl) +

J∑
j=1

Njxpρj (1− ρj)

...
. . .

...
NB∑
l=1

xpλl (1− λl) +

J∑
j=1

Njxpρj (1− ρj) · · ·
NB∑
l=1

x2pλl (1− λl) +

J∑
j=1

x2pNjρj (1− ρj)



where λl is the probability of a wildfire occurrence at the pixel corresponding to the
l grid point, NB is the total grid points in the federal region, ρj is the probability of
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Figure 5.2: Probability map using the estimator in Equation (4.18). The model including
the NFDRS fuel data. The biweight function with the bandwidths h1 = 2 and h2 = 1.5 for
ungrouped and grouped data respectively was employed.
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wildfire occurrence in a pixel in the j county and xp is the p covariate in the design
matrix. The maximum likelihood estimates are obtained by IRWL as described in
Subsection 4.3.1. For the final iteration, Î(β̂)−1 is the estimated variance-covariance
matrix for β.

Under the regularity conditions included in Subsection 1.4.1, we can use the large sam-
ple approximate distribution of the m.l.e. for the rth parameter β̂r → N(βr, I(β)−1

rr )
in distribution. For a vector of parameters to be estimated, dividing the estimate of β̂r
r = 1, . . . , p by its standard error is a common practice for examining the significance
of the rth explanatory variable in the wildfire occurrence. We use the t-statistic

β̂r/

√
ˆvar(β̂r) ∼ tJ+NB−p

where β̂r = β̂r(x, y), ˆvar(β̂r) is the element in the position (r, r) of the inverse of the

observed information matrix Î
(
β̂
)−1

.

In Fig. 5.3, bottom, we plot the estimated t-statistic for the elementary model where
the linear predictor just includes a constant term β1. The values varies from −9.87 to
−1.40 and we can consider that the number of fires experiences a spatial variation in
the pilot group area.

Before exploring the estimated t-statistics for the model with fuel characteristics, Ta-
ble 4.5.1 shows the fuel categories that cover the pilot group. The indicator functions
included in the linear predictor Eqn. (4.21) correspond to each fuel category. For
each state, as we omit the first fuel category the effect of the other fuel categories is
measured relative to the omitted category.

The estimated t-statistics for each parameter β̂
(s)
1 , . . . , β̂

(s)
K are displayed independently

for each state in Figs. 5.4, 5.5, 5.6, 5.7 and 5.8. Our findings were: a) in Wisconsin the
constant term is statistically significant . b) in South Dakota the effect of the west-
ern Perennial grass in the wildfire occurrence is not statistically significant relative to
the pine grass savannah that is the Black Hills National Forest. It is interesting that
in the rest of the regions the fuel categories are not statistically significant probably
another kind of information related to the vegetation is needed. Also it must be kept
in mind that the NFDRS fuel map is intended for use to assess fire danger across the
continental U.S., not for fire behavior assessment at any specific site. The purpose of
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Figure 5.3: Top: probability map using the estimator in Eqn. (4.21) including only a constant
in the linear predictor with the biweight function and bandwidths h1 = 2 and h2 = 1.5 for
ungrouped and grouped data respectively. Bottom: estimated t-statistic for the elementary
model with just only a constant in Eqn. (4.21). The values of the t-statistic varies from
−9.87 to −1.40.
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NFDR Fuel Model MN ND WI SD IA
A
B
C + + + +
D
E
F +
G + + + + +
H + + + +
I
J
K
L + + + + +
M + + + + +
N
O + + + + +
P
Q + + + + +
R + + + + +
S + +
T + + + +
U + + + + +
V + + + + +
W + +
X

Table 5.1: The five states that constitute the pilot group: MN, ND, WI, SD and IA with the
respective NFDRS fuel categories that cover their neighbours and them. The fuel categories
are described in Table 4.1.
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the map must be remembered rating fire danger across large geographic areas.

The difficulty of using the t-statistic individually to examine the significance of the rth
explanatory variable is that the distributions are marginal. So about 5% of the null
values will appear significant at the 5% level. That is why we include a analysis of
deviance (ANODEV) for the two nested models, elementary model (only a constant)
and the one with fuel categories:

Θ0 ⊂ Θ

where Θ0 stands for the parameters under the null (only a constant) with K − 1
restrictions and Θ stands for the parameters in the model with the fuel categories.
The test statistic is the difference in deviances

2
[
`w(Θ̃)− `w(Θ̂0)

]
− 2

[
`w(Θ̃)− `w(Θ̂)

]
(5.2)

where Θ̃ is the m.l.e for the saturated model (one parameter for each observation).
Under the null hypothesis the difference in deviances has a χ2 distribution with K − 1
degrees of freedom.

2. The standard error for the estimated probability at position (x, y) is obtained by the
delta method,

V ar[g(β̂)]→ g′(β̂)Tvar(β̂)g′(β̂))

in particular for the logit link function

g(β̂) =
exp (xtβ̂)

1 + exp (xtβ̂)

Figures 5.11 and 5.12 show the approximate 95% confidence intervals for the logit mod-
els, the elementary (only a constant) and the one with the fuel categories respectively.
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Figure 5.4: Top: probability map for Minnesota using Eqn. (4.18) with the fuel categories
shown in Table 4.5.1. The biweight function with bandwidths h1 = 2 and h2 = 1.5 for
ungrouped and grouped data respectively. Bottom: estimated t-statistic for β̂

(s)
1 , . . . , β̂

(s)
11

where s = MN , Minnesota and the omitted category is the pine grass savannah. The values
of the t-statistic vary from −5.78 e-06 to 2.44 e-07.
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Figure 5.5: Top: probability map for North Dakota using Eqn. (4.18) with the fuel categories
shown in Table 4.5.1. The biweight function with bandwidths h1 = 2 and h2 = 1.5 for
ungrouped and grouped data respectively. Bottom: estimated t-statistic for β̂
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1 , . . . , β̂

(s)
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where s = ND and the omitted category is the pine grass savannah. The values of the
t-statistic vary from −1.36 to 0.58.
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Figure 5.6: Top: probability map for Wisconsin using Eqn. (4.18) with the fuel categories
shown in Table 4.5.1. The biweight function with bandwidths h1 = 2 and h2 = 1.5 for
ungrouped and grouped data respectively. Bottom: estimated t-statistic for β̂
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where s = WI, Wisconsin and the omitted category is the conifers. The t-statistic vary
from −4.20 to 0.65.
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Figure 5.7: Top: probability map for South Dakota using Eqn. (4.18) with the fuel categories
shown in Table 4.5.1. The biweight function with bandwidths h1 = 2 and h2 = 1.5 for
ungrouped and grouped data respectively. Bottom: estimated t-statistic for β̂
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where s = SD, South Dakota and the omitted category is the pine grass savannah. The
values of the t-statistic vary from −5.01 to −0.85.
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Figure 5.8: Top: probability map for Minnesota using the estimator in Eqn. (4.18) with the
fuel categories shown in Table 4.5.1. The biweight function with the bandwidths h1 = 2 and
h2 = 1.5 for ungrouped and grouped data respectively. Bottom: estimated t-statistic for
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Figure 5.9: Top: deviance for the elementary model with only a constant as explanatory
variable. Bottom: the p-value for the χ2 distribution with 1 degrees of freedom.
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Figure 5.10: Top: difference in deviances in Equation 5.2 of the null when only a constant is
included in the logit model and where fuel categories are included as explanatory. Bottom:
the p-value for the χ2 distribution with K − 1 degrees of freedom.
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In both cases, the confidence intervals for the predictions in the boundary between
Iowa and Nebraska are narrower. In the elementary model, the uncertainty associated
with the predictions in the north central part of Wisconsin is less. The confidence
intervals for the logit with fuel model are less extend in northern Minnesota and in
south-east region of South Dakota.
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Figure 5.11: A 95% confidence interval for the predicted probability using just a constant in
the linear predictor of the logit model. Top: lower limit of the confidence interval. Bottom:
upper limit of the confidence interval.
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Figure 5.12: A 95% confidence interval for the predicted probability using the NFDRS fuel
category as an explanatory variable. Top: lower limit of the confidence interval. Bottom:
upper limit of the confidence interval.
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Chapter 6

Conclusions and future work

In this chapter we summarize the contributions of this thesis and point out some possibilities
for future work.

6.1 Summary

One of the goals of this thesis is the development of statistical methods that provide an inte-
grated analysis of different sets of spatial data. In particular, we examine partially grouped
samples where the observations are available in two levels of data aggregation: points and
aggregate counts in area. These two types of data refer to the same stochastic process and
therefore we develop a joint analysis, as opposed to transforming the observations to the
same level of aggregation (for example, by aggregating the points located in the same area).

A contribution of the work is the use of a binary-valued process as a way to approximate a
partially grouped sample. Previously, a binary-valued process had been used to model spatial
point processes (see, for example, [5]), and we extended this result to the more general case
of approximating the combination of point locations and aggregate counts. Based on this
approximation we propose a smoother as an exploratory tool in the analysis of ungrouped
and grouped data.

We consider the wildfire occurrences process to have a locally constant smoothed intensity
function. Based on this assumption we developed a smoother based on a weighted likelihood
analysis fit of the binary-valued approximation. The smoother assumes that the intensity
rate is constant in the support of the weight function. In our analysis, the weights play two
important roles: to include the grouping effect in the model and to capture local variation.
The analysis uses two different bandwidths, one for the ungrouped data and other for the
grouped data. The bandwidths are assumed to be constant in both coordinates. In the
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future, the model can be refined to include a cross-validation analysis to select the band-
widths. In addition, it may be worthwhile to explore if having bandwidths by region or state
improves our results.

A fundamental part of the risk analysis is to predict the mean rate of wildfire occurrence in
1991 for the pilot group. These estimates are based on a logit model that rest on the binary-
valued approximation. We include the NDFRS fuel model as an explanatory variable and
notice that its significance on the of wildfire-occurrence probability varies spatially. Future
work is underway to incorporate other explanatory variables.

The risk analysis of the wildfire occurrence is thought to be useful for the allocation of re-
sources for the US Forest Service. Therefore, measuring the uncertainty of our predictions is
fundamental to evaluate the reliability of our estimates. The estimated standard errors are
used to construct the 95% confidence intervals for the predicted probabilities. The visual-
ization of uncertainty measures, like confidence intervals, is a topic that deserves additional
study.

The model assessment is based on the residuals analysis using the observations grouped by
county and applying the binomial Poisson distribution proposed by Le Cam and Hodges. It
will be of interest to propose a model assessment that can be done using the 0-1 approxima-
tion. As there are some differences between the estimations done with robust and standard
methods, other robust estimates might be explored.

In this thesis, in order to develop computer routines and insights more easily, we focused on
the data for one year and five states. Work is underway to use our model to analyze the
data for several years and on the whole Continental Unites States.

6.2 Problems for future research

We mention a number of research topics that arise from this thesis:

1. Spatial-Temporal Analysis: A natural extension of this work is to include the time
domain in our model. The idea of binary approximation can be extended to a spatial-
temporal analysis; this is done by dividing the domain into voxels (x, x+ dx]× (y, y+
dy]× (t, t+dt]. The corresponding intensity function for the spatial-temporal intensity
function will be [5]:

λ(x, y, t) = Prob{dN(x, y, t) = 1|Ht}/dxdydt
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where dN(x, y, t) = N(dx, dy, dt) counts the number of fires in the voxel where Ht

is the history of N process up to and including time t. In particular, predicting the
probability of a wildfire occurrence for a day in the year is of interest..

2. Parameter properties: Chapter 2 reviews a selection of grouped-data estimation
methodologies that can be extended to the more general case of partially grouped
data. Chapter 2 also shows how the raw moments can be related to the ones obtained
with grouped data like Sheppard’s correction [48]. A question that might be of interest
to explore is the relationship between the parameters estimated with complete obser-
vations and those with partially grouped data, for example using the centroid as the
value of observed data for grouped data.

3. Volatility: Future research is needed in order to develop methods for modeling volatil-
ity with partially grouped data. Here we briefly mention an idea in this direction. For
a given position (x, y), a data smoother produces two sequences: the smooth sequence,
Sx,y, and the rough sequence, σx,y; and compound smoothers might be obtained by
re-roughing. In terms of the volatility of the process, we can use of σx,y, the condi-
tional standard deviation. Some preliminary estimates of the volatility in terms of the
standard deviation σ̂x,y may be:

Yx,y = Sx,y + σx,yεx,y

Ŝx,y = smooth(Yx,y)

σ̂x,y = smooth(|Yx,y − Ŝx,y|)

ε̂x,y =
Yx,y − Ŝx,y

σ̂x,y

where εx,y is white noise.

4. Weighted Likelihood analysis: it may be important to consider the boundary effects
of the estimates obtained from the weighted likelihood analysis.
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