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ABSTRACT OF THE DISSERTATION

Correlated Phases of Weyl Semi-Metals

by

Huazhou Wei

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, August 2013

Professor Vivek Aji, Chairperson

Weyl Semi-Metals are materials whose properties are strongly influenced by spin-

orbit couplings. Their description, at low energies, is in terms of non-relativistic linearly

dispersing massless fermions. In this thesis, we explore possible of new correlated phases.

In particular we focus on excitonic phases due to particle-hole instabilities in chapters 2,

and 3, and on superconducting phases from particle-particle instabilities in chapter 4.

The range of the interaction plays a crucial role in determining the most stable

phase. For particle-hole instabilities, short-range interactions yield eight phases. At stoi-

chiometry, they all require minimum interaction strengths to ensure their emergence. Only

one of them, the chiral excitonic insulator(EI) phase, opens a gap at the nodes. It is ener-

getically most favored and is characterized by a complex vectorial order parameter. Also,

it is ferromagnetic with the phase of the order parameter determining the direction of the

induced net spin polarization’s. In contrast long-range interactions can condense a second

gapped state namely the Charge Density Wave (CDW). To highlight the physics, we employ

the multipole expansion and analyze to leading order. Expanding the interaction potential

(∝ 1/|~k − ~k′|) and the order parameter ∆(~k) in spherical harmonics, the gap equation is
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obtained and analyzed to obtain the minimum interaction strengths linked to phases. We

end that the critical coupling for CDW phase is half that of the EI phase. Thus, under the

Coulomb interaction, CDW phase is more energetically favorable.

In chapter 4, we turn to possible superconducting states induced by particle-

particle instabilities. As the energy spectrum has even nodes in the Brillouin zone, both

intra-nodal finite-momentum pairing and inter-nodal zero-momentum BCS pairing are al-

lowed. For local attractive interaction the finite momentum pairing state with chiral p-wave

symmetry is the most favorable phase at finite carrier density. For chemical potential at

the node the state is preempted by a fully gapped CDW phase. On the other hand, for

long-range attractive interactions, the p-wave BCS superconducting state wins out for all

values of the chemical potential.
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Chapter 1

Introduction

1.1 What is a Weyl Semi-Metal?

The emergence of materials whose properties are strongly influenced by spin orbit

coupling is an exciting new phenomenon in condensed matter physics. A prototypical

example of this type of materials is the topological insulator[5, 6], which has garnered much

attention[7, 8, 9]. Another canonical example of this type of materials is the one that we

focus on in this thesis: Weyl Semi-Metals[3, 4, 10, 11, 12]. The low energy description in

these systems is in terms of Weyl fermions. We will start our introduction by reviewing

the knowledge of Dirac fermions and carry out the transition to Weyl fermions and Weyl

Semi-Metals step by step in the following several sections.

1.1.1 Dirac Fermions

Low-dimensional materials are among of the most actively researched systems in

condensed matter physics. The most well-known examples are graphene[13, 14] and topo-

logical insulators[15, 16]. These are often termed Dirac materials because of the emergence
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of Dirac fermions in their low energy description[17, 18, 19]. In the vicinity of Fermi energy,

the excitations are described by the Dirac Equation:

(− i~α · ~∇+ βm
)
ψ = i

∂ψ

∂t
(1.1)

where ψ is the four-component Dirac spinor, and α, β are the 4× 4 Dirac gamma matrices:

~α =



0 ~σ

~σ 0


 ;β =



I 0

0 −I


 (1.2)

0 and I are 2 × 2 matrices. In order to get the plane wave solutions, we write the four-

component Dirac spinor ψ as:

ψ(~r, t) = u(~p)e−i(Et−~p·~r) =




χ

φ


 e−i(Et−~p·~r) (1.3)

Here, u(~p) is a four-component spinor, and both χ and φ are two-component spinors. So

the Dirac equation becomes:



m ~σ · ~p

~σ · ~p −m







χ

φ


 = E




χ

φ


 (1.4)

Here, we have dropped the exponential factors. The general solution of above equation is:

χ =
~σ · ~p

E −m
φ

φ =
~σ · ~p

E + m
χ

(1.5)

These are solutions to the Dirac equation provided the energy eigenvalues take the form:

E2 = |~p|2 + m2 (1.6)

For massless fermions, the energy dispersion a linear function of momentum[17, 18, 19]. This

is indeed the case in graphene for energies close to the node as seen in Fig.(1.1)[1]. The same

is also true for the surface states of three dimensional topological insulators[20, 21, 6, 8, 7].
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Figure 1.1: Band structure of two-dimensional graphene layer, where the hexagonal first
Brillouin zone is indicated. This graph is reproduced from C. W. J. Beenakker’s review
article: Refs.[1].

While the mass goes to zero, the Dirac equation reads:



0 ~σ · ~p

~σ · ~p 0







χ

φ


 = E




χ

φ


 (1.7)

which results in:

(
~σ · ~p

)
χ = Eφ

(
~σ · ~p

)
φ = Eχ

(1.8)

The above relations imply thatχ and φ are not independent with each other. However, a

linear combination between χ and φ in the following form:

ΨR =
1
2
(χ + φ)

ΨL =
1
2
(χ− φ)

(1.9)
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yields:

+
(
~σ · ~p

)
ΨR = EΨR

−
(
~σ · ~p

)
ΨL = EΨL

(1.10)

The two redefined two-component spinors, ΨR and ΨL are called Weyl spinors. They are

decoupled from each other and are considered independent particles. They are characterized

by a conserved quantum number called chirality[22]. Eigenstates of the operator ~σ · ~p/|~p|,

chirality is the projection of angular momentum ~σ on the momentum p̂. For angular mo-

mentum parallel to linear momentum, the chirality is + while for antiparallel alignment it

is −. For massless particles this quantum number is conserved. Fig.(1.2) depicts the two

possibilities.

1.1.2 Weyl Fermions

The ’Weyl equation’ has its origin in high energy physics[23, 24]. It was intro-

duced by German physicist Hermann Weyl[25] as a relativistic wave equation for describing

massless spin-1/2 particles. While Dirac equations, albeit in two dimensions, have been

the focus of condensed matter physicist over the last decade, Weyl fermions have gained

prominence over the past couple of years. They add to the growing list of topologically

nontrivial phenomena possible in the solid state.

Being described by two-component wave functions as opposed to the four-component

Dirac spinors, Weyl fermions occur in systems where two non-degenerate bands meet with

each other at limited number of isolated points in the Brillouin zone. In general the exis-

tence of such Weyl nodes at the chemical potential is accidental[26], but if they do exist,

they are robust against perturbations that are translationally invariant.

The linear dependence of energy on momentum is reminiscent of studies in rela-

4



Figure 1.2: Relation of angular momentum’s direction and momentum for particles with +1
chirality (upper case) and −1 chirality (lower case). This graph is taken from D. J. Miller’s
presentation[2] in SUPA graduate school in 2008.

tivistic high energy physics. The chemical potential is at the node and as such much of the

phenomena studied is of interest to a wider community beyond condensed matter physi-

cists. The spectrum in the low energy limit of Weyl Semi-Metal systems can be regarded as

three dimensional graphene-like materials. However, there are still considerable differences

between Weyl Semi-Metal systems and other linear dispersing energy spectrum materials,

such as graphene, whose band structure is displayed in Fig.(1.1)[1].

An important property of Weyl Semi-Metal systems is that the systems are robust

to most translationally-invariant interactions. This is exactly a consequence of chirality

being a conserved quantum number in three dimensions for massless fermions, while for two

dimensions it is not a conserved quantum number. As a result of this restriction coming

from the chirality conservation for linear dispersing massless fermions in three dimensions,

therefore only those interactions which could couple different fermions with opposite chiral-

ity can open a uniform gap at the Weyl nodes in Weyl Semi-Metal systems.

5



Figure 1.3: Band structure comparison between 2D graphene and 3D Weyl Semi-Metal
system. Detailed degeneracy properties in both cases are indicated explicitly. In order to
highlight the key point, we only plot one linearly node in each chase, however, in the Weyl
systems, Weyl nodes always appear in pairs with opposite chiralities.

Another difference between Weyl Semi-Metals systems and graphene systems, is

the degeneracy of the energy spectrums. Inversion symmetry and time-reversal symmetry

are preserved in graphene ensuring the two-fold spin degeneracy in graphene’s two dimen-

sional energy spectrum. However, in contrast, in the three dimensional Weyl Semi-Metal

systems, either inversion symmetry or time-reversal symmetry is broken. Thus the non-

degeneracy property of their energy spectra. The comparison is shown in Fig.(1.3). The

non-degeneracy property of Weyl Semi-Metal’s band structure originates from the strong

spin-orbit coupling in Weyl systems. The spin orientation is either ~σ parallel to ~k or ~σ

antiparallel to ~k, which is determined by the sign of chirality in each node ( +1 or −1).

Thus in Weyl Semi-Metal systems that preserve inversion symmetry but break time rever-

sal symmetry, each Weyl node in the momentum space, is accompanied by another Weyl

node with opposite chirality in the Brillouin zone. Thus there are even number of nodes

6



mandated by symmetry.

1.1.3 Possible Realization of Weyl Semi-Metals

While the physics of Weyl fermions has been extensively studied in the context

of liquid 3He[27, 28] where they arise in the A phase, the developments of study for Weyl

fermions in condensed matter context has just started [3, 4, 10, 11, 12, 29, 30, 31, 32, 33].

These works have renewed interest in Weyl Semi-Metal systems and their possible realization

in nature. Weyl fermions are conjectured to be the low energy excitations of two type of pos-

sible Weyl Semi-Metal structures: Pyrochlore Irradiates[3, 34, 35] and Topological-Normal

Insulator heterostructures[4]. In these materials, the semi-metallic nature is preserved by

the touching of two non-degenerate bands at even numbers of Weyl points in the vicinity of

or at the chemical potential. The conservation of chirality at each node implies that only

interactions that couple nodes can open gaps. As such these systems provide an interesting

new platform to study the interplay of interaction and spin orbit in establishing new states

of matter.

The first possible realization of Weyl Semi-Metals[3] is in Pyrochlore Iridates.

On each hexagonal zone boundary there are three Weyl points. Thus 24 Weyl points are

expected in Pyrochlore Iridates structures[3]. Please refer to the three-dimensional Brillouin

zone of Y2Ir2O7 in Fig.(1.4). For each pair of Weyl nodes with opposite chiralities, there is

perfect nest in. Refs.[3] focused on the pyrochlore iridates, which have the general formula

A2Ir2O7, where A=yttrium or a lanthanide element. In the pyrochlore iridates, both A

and Ir atoms are located on a network of corner-sharing tetrahedra[36, 37, 38]. Data from

experiments indicate the existence of magnetic order for A2Ir2O7[39], which breaks the time-

reversal symmetry. Other experiments[40] revealed an evolution of ground-state properties

7



Figure 1.4: left: Sketch of the predicted phase diagram for Pyrochlore Iridates: horizontal
axis is the increasing interaction among Ir 5d electrons; vertical axis is the external magnetic
field, which can trigger a transition out of the noncollinear all-in/all-out ground state,
which has several electronic phases. right:Three-dimensional Brillouin zone of Y2Ir2O7

(one example of Pyrochlore Iridates), where locations of the Weyl points are depicted (nine
are shown, indicated by the circled + or − signs). The source of the two graphs is: Refs.[3].
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with increasing radius of the A ion, which is believed to tune electron correlations. While A

= Pr is metallic, A = Y is an insulator at low temperatures. Those data are explained by

authors in Refs.[3], where the electronic structure calculations confirm the evolution and give

a novel ground state. The magnetic moments order on Ir sites in a noncollinear pattern, with

moment on a tetrahedron pointing all in or all out from the center. The structure preserves

inversion symmetry and the electronic properties evolve with correlation strength. For weak

correlations, or in the absence of magnetic order, a metal is obtained; while with strong

correlations, a Mott insulator with all-in/all-out magnetic order is found. And for the case

between the two limits with intermediate correlations, the electronic ground state is found

to be a Weyl Semi-Metal, with linearly dispersing nodes at the chemical potential. In this

phase time-reversal symmetry is broken and inversion symmetry is preserved.

The second possible realization of a Weyl Semi-Metal system[4] is in the super-

lattice heterostructures, which is made of alternating layers of topological insulator and

normal insulator, which is shown in Fig.(1.5). In Refs.[4] the topological-normal insulator

heterostructures proposed is the simplest realization of the three-dimensional Weyl Semi-

Metal phase with only two Weyl nodes carrying opposite chirality separated in momentum

space. This is achieved by utilizing a multilayer structure composed of identical thin films of

a magnetically doped three-dimensional topological insulator layers, separated by ordinary-

insulator spacer layers. The doped magnetic impurities in Topological Insulator layers leads

to spin splitting of the surface states. This is the source of time-reversal breaking in the

Weyl System, as the magnetic impurities ferromagnetically order with magnetization along

the growth direction of the heterostructures.

9



Figure 1.5: Schematic drawing of the three-dimensional multilayer heterostructures ob-
tained by alternating Topological Insulator(TI) layers and Normal Insulator(NI) layers,
where for all of the TI layers, their surface states’ time-reversal symmetry is broken caused
by doping magnetic impurities inside TI layers. Unhashed layers are the TI layers, while
hashed layers are the NI spacers. The arrow in each TI layer shows the magnetization
direction. Only three periods of the superlattice are shown in the schematic. This graph
originates from Refs.[4].

1.2 Our Interests in Weyl Semi-Metals

In Weyl Semi-Metals, various phenomenon originate due to the low-energy effective

theory being in terms of massless linearly dispersing fermions in three dimensions. As

a new topological state of matter, Weyl Semi-Metal is characterized by the presence of

non-degenerate band-touching nodes, separated by Fermi level in its band structure in

momentum space. In Weyl systems, the robust protection of the semi-metallic physics

against translationally invariant perturbations is a consequence of chirality being a good

quantum number. The origin of the phenomena can be traced back to the existence of

strong spin-orbit coupling. this in turn can compete with other interactions and energy

scale seeding the idea that Weyl Semi-Metals systems should be an ideal place to explore

new correlated novel phases of matter. This is the motivation of my research and my

10



interests are mainly focused on the emergence of new phases of matter in Weyl Semi-Metal

Systems.

In this thesis, I will show that the interplay between general density-density inter-

action and topology can promote various novel phases, including excitonic phases[41] yielded

by particle-hole instability and superconducting phases originating from particle-particle

instability. In each case, we seek novel phases in two limits: short-range limit(momentum-

independent interaction) and long-range limit(Coulomb form interaction); and for each

limit, the interaction terms can be divided into two types: inter-nodal part and intra-nodal

part. The results for excitonic phases yielded by particle-hole instability are described

in chapter 2 and chapter 3, while the results for superconducting phases originating from

particle-particle instability is described in chapter 4. It is worth noting that the interactions

we considered in the following three chapters are repulsive, and the work on attractive in-

teraction case is done by other scientists[30], which was obtained by them around the same

time while we focused on our research under repulsive interaction. For the completeness of

research on this topic, we include their results in the appendix.
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Chapter 2

Excitonic Phases by Short-range

Repulsive Interaction

In this chapter we focus on the appearance and properties of Charge Density Wave

and Excitonic Insulating states in Weyl semi-metal systems. Particle hole pairs gain binding

energy due to repulsive Coulomb interaction. Since we have two nodes, these pairs can have

zero or finite momentum, Condensation of the former leads to excitonic insulators while the

latter yield CDWs. The nature of these instabilities depends crucially on the range of

interaction. As such we will compare the possible phases for short-range and long-range

interactions.

2.1 Model Hamiltonian

In order to simplify the problem and highlight the physics, we consider a system

with only two Weyl nodes, located at ~K1 = K0x̂ (labeled R) and − ~K1 = −K0x̂ (labeled L)

12



with their chiralities +1 and −1 respectively. The model hamiltonian reads:

H0± = ±~v
∑

~k

ψ†~kα
~σαβ ·

(
~k ∓ ~K0

)
ψ~kβ

(2.1)

where v is the fermi velocity and ~σ = {σx, σy, σz} is the vector of Pauli matrices. The linear

energy dispersion relation at each node can be written in this form: ε~q = ±~v |~q|, both of

which are centered around ± ~K0 respectively, with ~q = ~k ∓ ~K0. The Fermi levels located at

the positions of the two Weyl nodes, The conduction (or valence) band at the R node has

its spin parallel (or anti-parallel) to the reciprocal vector ~q, while the opposite is true at

the L node.

The general spin independent particle-particle interaction takes the form in the

following:

V =
∑

σ,σ′

∫
d~rd~r′V

(
~r − ~r′

)
ψ†σ′

(
~r′

)
ψσ′

(
~r′

)
ψ†σ (~r) ψσ (~r)

=
∑

σ,σ′

∑

~k,~k′,~q

V (~q)ψ†~k′+~q,σ′
ψ~k′,σ′ψ

†
~k−~q,σ

ψ~k,σ

(2.2)

Here V (~q) = 1
Ω

∫
d~rV (~r) with Ω being the volume of the Weyl semi-metal system that we

considered in our model.

For the moment, we haven’t made any assumptions on the nature of the inter-

actions. Since the Weyl physics is the low energy description of a more general theory,

we enforce an upper cutoff in the momentum integrals (up to |~q| = Λ/~v with a cutoff

energy Λ) around each Weyl point. We first use mean field approach to study the various

excitonic phases associated with different type of particle-hole interaction. Next we employ

Ginzburg-Landau free energy expansions to obtain the nature of instability near the tran-

sition temperature as well as to obtain the condensation energies as a function of coupling

constant for various phases. This will help establish the ground state for these materials.
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2.2 Particle-Hole Instabilities within Mean Field

Let’s begin by rewriting the interaction potential in the basis of the non-interacting

bands. Define ψR,L
~q,± = ηR,L

~q,± cR,L
~q,± as the fermionic fields of the conduction bands and valence

bands, where η is the spinor and c is the fermion annihilation operator. Restricting to

the low energy sector, only 6 of the 16 possible terms from Eq.(2.2) satisfy momentum

conservation.

In order to simplify the expression of the general particle-particle interaction,

we choose a new set of orthogonal coordinate system in the momentum space as below:

q̂ = {q̂x, q̂y, q̂z} which is the unit vector along ~q, and another two vectors ê1
~q ≡ θ̂~q =

{q̂xq̂z/
√

q̂2
x + q̂2

y , q̂y q̂z/
√

q̂2
x + q̂2

y ,−
√

q̂2
x + q̂2

y} and ê2
~q ≡ φ̂~q = {−q̂y/

√
q̂2
x + q̂2

y , q̂x/
√

q̂2
x + q̂2

y , 0}.

It is worth noting that the new set of orthogonal coordinate system: q̂, ê1
~q and ê2

~q is a right-

handed coordinate system (please refer to Fig.2.1). The unit sphere is spanned by the vector

q̂ by two rotations, one about any axis perpendicular to ê2
~q and the another about ê2

~q . For

example if we choose the first to be the z-axis, than the vector ê2
~q , which is the φ̂ in the

spherical polar system, spans a unit circle (perimeter of the shaded region in Fig.2.1) and

the vector ~e1
~q , which is the corresponding θ̂, spans the southern hemisphere. The following

construction holds for an arbitrary quantization axis n̂, with the corresponding polar and

azimuthal angle for ~q defined in the coordinate frame {l̂, m̂, n̂}.

Focusing on even function of momentum, ~k, i.e. V (~k) = V (−~k), the interaction

14
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Θ
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e`q
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e`q
2

Figure 2.1: The interaction shown in Eq.(2.3) is a function of three vectors (q̂, ê1
~q and ê2

~q)
that form a right handed coordinate system. Each vector couples to an operator of distinct
symmetry in the particle hole channel.

simplifies ê~k
= ê1

~k
+ ıê2

~k
,

V = −
∑

~k,~k′,n=±

[
V (~k − ~k′)

ê~k
· ê∗~k′ + ê∗~k · ê~k′

4

∑

τ=R,L

cτ†
~k,n

cτ
~k,−n

cτ†
~k′,−n

cτ
~k′,n

+V (~k − ~k′ − 2 ~K0)
ê~k
· ê~k′ + ê∗~k · ê

∗
~k′

2
cL†
~k,n

cL
~k,−n

cR†
~k′,−n

cR
~k′,n

−
[
2V (2 ~K0)− V (~k − ~k′)

(
k̂ · k̂′ + 1

)]
cL†
~k,n

cR
~k,−n

cR†
~k′,−n

cL
~k′,n

]
(2.3)

Here we have only considered the lowest energy channels involving the particle-hole in-

stability. The effects of including all terms, which does not change the discussion in

the main text, are discussed in Appendix A. The first and second term in the above

Eq.(2.3) promote the Excitonic Insulator instabilities with intra-nodal order parameter,

i.e.
〈∑

~k
~A~k

cτ†
~k,n

cτ
~k,−n

〉
6= 0 where ~A~k

is an odd function of ~k; while the last term in the

above Eq.(2.3) leads to the Charge Density Wave instabilities described by the inter-nodal

15



order parameter with
〈∑

~k
~A~k

cτ†
~k,n

cτ̄
~k,−n

〉
6= 0.

In the rest of this section, we will analyze all the possible symmetry broken states.

These are dictated by the fact that:

1. ~A~k
is one of three possible vectors {q̂, ê1

~q , ê2
~q};

2. rotational invariance is broken;

3. the state is either polar or chiral in nature.

These lead to eight possible novel particle-hole instabilities promoted by the presence of

short-range repulsive interaction. A summary of the main results can be found in table 2.1.

2.3 Inter-nodal Charge Density Wave

We begin by studying the inter-nodal instability that establishes ordering at 2 ~K0

(third term in Eq.(2.3)).Fpr short ranged repulsion the interaction is V (~k) = g/Ω, where

g > 0 is the repulsive interaction strength. Under this assumption, the coupling term, third

one in Eq.(2.3), takes the following form:

Veff = − g

Ω

∑

~k,~k′

∑
n=±

(
k̂cL†

~k,n
cR
~k,−n

)
·
(
k̂′cR†

~k′,−n
cL
~k′,n

)
(2.4)

~Ak̂ State
〈

~Ak

〉
∝ Spectrum gc

k̂
Chiral x̂ + iŷ Gapless 3
Polar ẑ Gapless 3

ê1
~k

Chiral-z x̂ + iŷ Gapless 6
Polar-z ẑ Gapless 3
Polar-x x̂ Gapless 12
Chiral-x ŷ + iẑ Gapless 4.8

ê2
k

Polar x̂ Gapless 4
Chiral x̂ + iŷ Gapped 2

Table 2.1: Possible excitonic phases, their symmetries, whether they gap out the Weyl node
or not and the critical coupling in units of (~v)3 /2πΛ2.
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Eq.(2.4) is identical to that of the interaction in 3He in the particle-particle channel that

leads to chiral superfluidity[27, 28]. Similarly in Weyl semi-metals case, the corresponding

state in the particle-hole channel is proven to be a charge density wave state. Within mean

field[28][42], there would be two possible particle-hole instabilities:

1. Chiral CDW: ~∆c = g
Ω

〈∑
~k′ k̂

′cτ†
~k′,n

cτ̄
~k′,−n

〉
= ∆c( x̂+ıŷ√

2
)

2. Polar CDW: ~∆p = g
Ω

〈∑
~k′ k̂

′cτ†
~k′,n

cτ̄
~k′,−n

〉
= ∆pẑ

Note that the directions chosen for the ground state is for convenience and all

other possibilities which can be obtained by coordinate system rotation in three dimensions

are equivalent. The first one is a chiral state while the second one is a non-chiral p wave

Charge Density Wave state. Combining the effective inter-nodal repulsive interaction in

Eq.(2.4) with the model hamiltonian in Eq.(2.1), we are get the mean-field Hamiltonian for

the interacting Weyl semimetal system :

HMF =
∑

~q,n




cL
~q,n

cR
~q,−n




†

~vn|~q| −~∆ · q̂

−~∆∗ · q̂ −~vn|~q|







cL
~q,n

cR
~q,−n


 (2.5)

Here, ~∆ representing ~∆c or ~∆p is the vectorial order parameter of the system. Following the

standard mean field procedure, we diagonalize this Hamiltonian by applying a Bogoliubov

transformation[28] and minimize the system’s free energy with respect to the vectorial order

parameter’s magnitude |~∆ · q̂|. The self-consistent integral equation which determines the

interaction strength and leads to the particle-hole instability takes the form:

1 =
g

Ω

∑

~k

|∆̂c/p · k̂|2
2E~k

tanh
βE~k

2
(2.6)

Here E~k
=

√
(~v|~k|)2 + |~∆ · k̂|2, and β = 1/kBT . Also ∆̂c/p represents the unit vector

direction of chiral or polar state, and Ω = 8π
3n

(
Λ
~v

)3, where n is the number of electrons in
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the system, which is set to 1 in the following calculation. The summation over momentum

space has an upper cutoff with the scale Λ/~v.

In the limit of ∆ ¿ Λ and zero temperature, we can expand the particle-hole

instabilities gap equation Eq.(2.6) to the leading order with respect to the order parameter

∆c/p, which gives:

1 ' πgΛ2

(~v)3

[
2
3

+
(−17− 30 ln 2

225
+

4 ln
(

∆c
2Λ

)

15

)
∆2

c

Λ2
+ . . .

]

1 ' πgΛ2

(~v)3

[
2
3

+
(

3
25

+
2
5

ln
(∆p

2Λ

))
∆2

p

Λ2
+ . . .

] (2.7)

Both of the two possible instabilities share the same critical value for the coupling constant.

Now we can see: for g > 3(~v)3/2πΛ2 there exists charge density wave instability within

mean field approach. Crucially the charge density wave instability does not gap out the

Weyl nodes, therefore the conduction bands and valence bands still meet at the two nodes

and there are no non-zero gap opened.

We further analyze the instability by studying the gap as a function of coupling

strength using Eq.(2.6). For every interaction strength g, we can calculate the correspond-

ing order parameter magnitude ∆ from Eq.(2.6). After normalizing the quantities to be

dimensionless, we plot the result in Fig.2.2. From the plot, we can see the two particle-

hole instabilities states indeed share the same instability threshold, just like the results we

achieved through analytically expansion. Also, the magnitude of the order parameter is

larger for the chiral state, as compared to the polar state for the same interaction strength.

We can analyze the phase transition further by looking at the condensation energy

and how it changes as we modify the interaction magnitude. Here, the condensation energy,

denoted as Ec, is defined as the zero temperature free energy difference between the conden-

sate charge density wave states and the normal states. By taking the similar procedure like
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Figure 2.2: Gap magnitude of the two charge density wave states. Order parameter magni-
tude as a function of inverse of the interaction strength for chiral (blue ◦) and polar (purple
¤) states.

above, for every interaction strength g, we calculate the corresponding condensation energy

Ec by getting the difference of zero temperature free energy between charge density wave

condensation states and normal states. After dimensionless normalization the results are

shown in Fig.2.3, where the magnitude of the condensation energy of the two charge density

wave states are plotted as a function of the interaction strength. From the plot, we see that

the chiral state yields a greater (more negative) condensation energy, compared with the

polar state at the same interaction magnitude. Therefore in this sector the lowest energy

state is the chiral charge density state which can be regarded as the new ground state of

the Weyl semimetal system at the presence of inter-nodal repulsive short-range interaction.

2.4 Ginzburg-Landau Free Energy Analysis

To study the temperature dependence we employ the Ginzburg Landau theory[43]

for a single order. For chemical potential near the Weyl node, the free energy related to the
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charge density wave state’s order parameter is:

FCDW =
∑

~q,α

E~qαf(E~q,α)−
∑

~q,α

(
E~q,α − ~vF | ~qα| − |~∆ · q̂|2

g

)
− TS

=
∑

~q,α

E~q,αf(E~q,α) + 2Ec − TS

(2.8)

Here the entropy S take the general form:

S = −kB

∑

~q,α

[(
1− f(E~q,α)

)
ln

(
1− f(E~q,α)

)
+ f(E~q,α) ln f(E~q,α)

]
(2.9)

And α = L,R, denotes the indices for the quasi particles obtained by the Bogoliubov

transformation[28]. Ec ≡ −1
2

∑
~q,α

(
E~q,α − ~vF | ~qα| − |~∆·q̂|2

g

)
is the condensate (exciton

pairs) energy. We can rewrite Eq.(2.8) to be:

FCDW = − 1
β

lnTr(e−βĤ)

= − 1
β

∑

~q,α

ln
(
1 + e−βE~q,α

)
+ 2Ec

(2.10)

Here, considering the known free energy expression of normal Fermi liquid state:

FN = − 1
β

∑

~q,α

ln
(
1 + e−β~vqα

)
(2.11)
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We can find that the free energy difference between charge density wave state and the

normal Fermi liquid state is:

FCDW − FN = FCDW +
1
β

∑

~q,α

ln
(
1 + e−β~vqα

)

= − 1
β

∑

~q,α

ln
1 + e−βE ~qα

1 + e−β~vqα
−

∑

~q,α

(
E~q,α − ~vF | ~qα| − |~∆ · q̂|2

g

) (2.12)

For T ' Tc, both FCN ≡ FCDW − FN → 0 and ∆0(T ) → 0. Hence we can express

the condensation energy FCN as a functional of |~∆c/p(T ) · q̂| = Aq̂
c/p∆c/p(T ) for the chiral

(
Aq̂

c = ∆̂c · q̂ = |q̂x|±i|q̂y |√
2

)
or polar

(
Aq̂

p = |q̂z|
)

charge density wave phases and expand the

partial derivative of FCN in the Taylor series as:

1
∆c/p

∂FCN

∂∆∗
c/p

= − 1
2∆c/p

∑

~q,α





[
1− 2f(E ~qα)

] ∂E ~qα

∂∆∗
c/p

−
|Aq̂

c/p|2∆c/p

g





= −
∑

~q

|Aq̂
c/p|2
2

{
1
E~q

tanh
βE~q

2
− 1

ε~q
tanh

βcε~q

2

}

'
∑

~q

|Aq̂
c/p|2

[
f(βε~q)− f(βcε~q)

ε~q
+

∞∑
n=−∞

β3
c |∆c/p|2|Aq̂

c/p|2
((2n + 1)2π2 + β2

c ε2~q)
2

+ O(|∆c/p|4) + . . .

]

(2.13)

Because for T ' Tc the free energy difference has the general following form:

FCN = −ac/p|∆c/p|2 +
bc/p

2
|∆c/p|4 + . . . (2.14)

Therefore for the chiral charge density wave phase, the coefficients of the above free energy

difference expression are:

ac = ap ' 4π

3kBT

(
1

βc~v

)3 (
1− T

Tc

)

bc =
2
3
bp =

8π

15(~v)3

∞∑

n=0

[ π(2n+1)
βcΛ

π2(2n+1)2

β2
c Λ2 + 1

+
tan−1

(
βcΛ

π(2n+1)

)

π(2n + 1)

]

' 8π

15(~v)3

[
βcΛ
2

ln 2 +
1
4

ln
(

βcΛ
2π

)
− 1

4
Ψ

(
1
2

)]

(2.15)
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The coefficient ac in the above Eq.(2.15) is to leading order in (βcΛ)−1 and Ψ(x) is the

digamma function. The critical temperature Tc, evaluated by taking ∆ → 0 at T = Tc

in Eq.(2.6), is kBTc '
√

3
π2 (Λ2 − 3(~v)3

2πg ). For the polar charge density wave phase, the

coefficient ap is the same as ac and bp is 3
2bc . Thus the critical temperature Tc in polar

charge density wave phase, is the same as that in the chiral charge density wave phase. On

the other hand, the coefficient of the quartic term is smaller for the chiral phase and hence

it has the larger order parameter magnitude and even lower free energies comparing with

polar phase. Therefore, we conclude that the most stable state in the inter-nodal sector is

the chiral charge density wave phase.

2.5 Intra-nodal Excitonic Insulator

Having established the particle-hole instabilities in the inter-nodal sector we turn

to those promoted by the first two terms in Eq.(2.3). Focussing on momentum independent

interaction: V (~q) = g
Ω . we get:

V = − g

2Ω

∑

~k,~k′

(
~Φ1∗

~k
· ~Φ1

~k′ +
~Φ2∗

~k
· ~Φ2

~k′

)
(2.16)

To make the symmetry content manifest we have rewritten the interaction in terms

of operators Ψ1
~k

and Ψ2
~k
. They are ~Φ1

~k
, and the part containing ê2

~k
by another new symbol

~Φ2
~k
. Their definitions are:

~Φ1
~k

= ê1
~k

(
cL†
~k,+

cL
~k,− + cR†

~k,+
cR
~k,−

)

~Φ2
~k

= ê2
~k

(
cL†
~k,+

cL
~k,− − cR†

~k,+
cR
~k,−

) (2.17)

Let’s first consider the order parameters related to the ê1
~k

component. In the above

expression, we can see that only the first term inside the summation ~Φ1∗
~k
·~Φ1

~k′
concerns the ê1

~k
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component. Hence together with the model hamiltonian Eq.(2.1), we find that there would

be four possible particle-hole instabilities for order parameters related to ê1
~k

component:

1. Chiral-z EI: ~∆L
cz1 + ~∆R

cz1 = g
2Ω〈

∑
~k

ê1
~k
(cL†

~k,−n
cL
~k,n

+ cR†
~k,−n

cR
~k,n

)〉 = (∆L
cz1 + ∆R

cz1)(
x̂+iŷ√

2
)

2. Polar-z EI: ~∆L
pz1 + ~∆R

pz1 = g
2Ω〈

∑
~k

ê1
~k
(cL†

~k,−n
cL
~k,n

+ cR†
~k,−n

cR
~k,n

)〉 = (∆L
pz1 + ∆R

pz1)ẑ

3. Polar-x EI: ~∆L
px1 + ~∆R

px1 = g
2Ω〈

∑
~k

ê1
~k
(cL†

~k,−n
cL
~k,n

+ cR†
~k,−n

cR
~k,n

)〉 = (∆L
px1 + ∆R

px1)x̂

4. Chiral-x EI: ~∆L
cx1 + ~∆R

cx1 = g
2Ω〈

∑
~k

ê1
~k
(cL†

~k,−n
cL
~k,n

+ cR†
~k,−n

cR
~k,n

)〉 = (∆L
cx1 + ∆R

cx1)(
ŷ+iẑ√

2
)

The number 4 comes from the fact: while vector k̂ spans the whole unit sphere, vector ê1
~k

only spans in the southern hemisphere, which makes the ẑ axis be different from the other

two axes. Therefore we would have one order parameter along ẑ direction and another order

parameter to be perpendicular with ẑ direction; at the same time, we still need another two

order parameters to resolve the two axes inside the xy-plane, one of which should locate

inside the xy-plane, and the other one should be perpendicular with the former one and

should also link the plane with the special ẑ axis. That’s why we produced the 4 vectorial

order parameters listed above.

Following the similar procedure of mean field analysis approach for the inter-nodal

part interaction, we can also diagonalize the hamiltonian and minimize the free energy with

respect to the four order parameters. Finally we are left with a similar minimization particle-

hole instabilities condition as in Eq.(2.6), where ∆α = 2∆R/L
α is the zero temperature order

parameter magnitude and α denotes the four possible particle-hole instability phases. For

every interaction strength g, we can calculate the corresponding order parameter magnitude

∆ from the minimization particle-hole instabilities condition. After normalizing all the

quantities to be dimensionless, we can produce the figure in Fig.2.4, where the magnitude of
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Figure 2.4: Order parameter magnitude as a function of inverse of the interaction strength
for Polar-x EI ∆px1 (blue ◦), Chiral-z EI ∆cz1 (purple ¤), Chiral-x EI ∆cx1 (brown ♦), and
Polar-z EI ∆pz1 (green 4).

the order parameter of the four states, are plotted as a function of the interaction strength.

From the plot, we see that for g > 3(~v)3/2πΛ2, the polar-z EI has the largest gap for

the same interaction strength among these four states. At zero temperature we get ∆pz1 >

∆cx1 > ∆cz1 > ∆px1. As for the condensation energy for the four particle-hole phases related

to ê1
~k

component, we have also made the plot in Fig.2.5, where we are told this relation

Epz1
c < Ecx1

c < Ecz1
c < Epx1

c for the same interaction strength g larger than 6(~v)3/πΛ2.

By comparing Fig.2.4 and Fig.2.5 from order parameters related to ê1
~k

component

with Fig.2.2 and Fig.2.3 from order parameters of inter-nodal part interaction, we conclude

that the polar-z Excitonic Insulator phase and the chiral Charge Density Wave phase are

equally energetically favorable among the six possible particle-hole states up to now for a

given interaction strength. Following the same procedure of Ginzburg Landau free energy

analysis, we can get the Ginzburg Landau coefficients for the polar-z Excitonic Insulator

state in the following form:
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apz ' 2π

3kBT

(
1

βc~v

)3 (
1− T

Tc

)

bpz ' 2π

15(~v)3

[
βcΛ
2

ln 2 +
1
4

(
ln

(
βcΛ
2π

)
−Ψ

(
1
2

))] (2.18)

Comparing the above coefficients with Eq.(2.15), we find that apz = 1
2ac and bpz = 1

4bc,

which yields a smaller order parameter in polar-z Excitonic Insulator state (only 1√
2

that of

the chiral Charge Density Wave state), but the same condensation energy as chiral Charge

Density Wave phase at finite temperature. Finally we note that none of these phases gap

out the Weyl node or produce any non-zero gap at Weyl nodes between the conduction

bands and valence bands.

Next we focus on the order parameter of particle hole instabilities along the ê2
~k
,

i.e. ~Φ2∗
~k
· ~Φ2

~k′
. There are only two possible particle-hole instabilities for order parameters

related to ê2
~k

component:

1. Polar EI: ~∆L
p2 + ~∆R

p2) = g
2Ω〈

∑
~k

ê2
~k
(cL†

~k,−n
cL
~k,n

− cR†
~k,−n

cR
~k,n

)〉 = (∆L
p2 + ∆R

p2)x̂

2. Chiral EI: ~∆L
c2 − ~∆R

c2 = g
2Ω〈

∑
~k

ê2
~k
(cL†

~k,−n
cL
~k,n

− cR†
~k,−n

cR
~k,n

)〉 = (∆L
c2 + ∆R

c2)(
x̂+iŷ√

2
)
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Here we have made a simplification by setting ∆R
p2 = ∆L

p2 ≡ ∆p2/2 > 0 and ∆R
c2 = ∆L

c2 ≡

∆c2/2 > 0 under the assumption of inversion symmetry.

The reason of only two possible particle-hole instability phases is that the order

parameter have different signs between the two Dirac nodes and there are two possible

Excitonic Insulator states based on symmetry, as there is no z-component in ê2
~k
. So, while

vector k̂ spans the whole unit sphere, vector ê2
~k

would only spans inside the xy-plane, which

makes the ê2
~k

component doesn’t have meaningful vectorial order parameter along ẑ axis.

Therefore we would need one order parameter locate inside the xy-plane and the other one

should be perpendicular with the former one and should also link the plane with the special

ẑ axis. That’s why we would only have 2 vectorial order parameters listed for ê2
~k

component.

Following the procedure of mean field analysis for the inter-nodal part interaction,

we diagonalize the hamiltonian and minimize the free energy with respect to the two or-

der parameters. Finally we are left with a similar minimization particle-hole instabilities

condition as in Eq.(2.6). Here we also make the plot for the two particle-hole instabili-

ties phases, where in order to make comparison explicitly, we have added our former data

of chiral Charge Density Wave phase. For every interaction strength g, we calculate the

corresponding order parameter magnitude ∆ from the minimization particle-hole instabil-

ities condition, and normalize all the quantities to be dimensionless, and plot the results

in Fig.2.6. From the plot, we can see that for g > (~v)3/πΛ2, there exists chiral Excitonic

Insulator phase which has the largest gap for the same interaction strength among these

three states.

At zero temperature we get ∆c2 > ∆CDW > ∆p2. As for the condensation energy

for the three particle-hole phases, two of which are related to ê2
~k

component, we have also
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Figure 2.6: Order parameter magnitude as a function of inverse of the interaction strength
for Polar EI ∆p2 (blue ◦), Chiral CDW ∆c (purple ¤), and Chiral EI ∆c2 (brown ¦). Chiral
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made the plot in Fig.2.7, where we find this relation Ec2
c < ECDW

c < Ep2
c for the same

interaction strength g larger than 2.1(~v)3/πΛ2.

The same conclusion can be reached analytically. Taylor expanding the gap equa-

tion ( Eq.(2.6)) for ê2
~k

case. we get

1 ' πgΛ2

(~v)3
[
1 +

(
1 + ln

(
∆2

c2

8Λ2

))
∆2

c2

4Λ2
+ . . .

]
(2.19)

We find that for g > (~v)3/πΛ2 there exists a chiral Excitonic Insulator instability with a

uniform gap. From Fig.2.6 we see the chiral Excitonic Insulator state has the largest gap

value compared with all other states for a given interaction strength. Also Fig.2.7 shows that

the chiral Excitonic Insulator state is also more energetically favorable at zero temperature

compared with the chiral Charge Density Wave state or polar Excitonic Insulator phase.

We conclude that the Chiral Excitonic Insulator phase is the only state that opens

a non-zero gap at the Weyl nodes. In the next section we explore its magnetic properties.

2.6 Ferromagnetic Phase of the Chiral EI State

For short-range repulsive interaction at zero temperature the chiral Excitonic In-

sulator phase is the most stable state among all the possible particle-hole instability states.

This chiral Excitonic Insulator states mix particle and hole states which have opposite spin

orientations in the non-interacting limit. Thus the superposition in the new ground state

less to the spins to no longer be aligned with their momenta. In order to evaluate the nature

of the spin configuration in the Weyl semimetal system, we compute the expectation value of

spin at momenta ~k for the occupied band. The result is that there exists a net polarization

for the expectation value of spin at each Weyl node. For the purpose of understanding the

origin of this result, we first rotate the mean field Hamiltonian back to the ψk,σ fermionic
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basis. It takes the form :

H± = H0± −
∑

~k

ψ†~kα
~∆′ ·

[
ê2
~k
ê2
~k
∓

(
ê2
~k
× ~n

)
ê1
~k

]
· ~σαβψ~kβ

(2.20)

Here we have defined a new vector: ~∆′ = ∆̃ sin (χ) l̂+∆̃ cos (χ) m̂, and the ∆̃ is the projection

of the vectorial order parameter on the direction of unit vector ê2
~k
: |~∆c2 · ê2

~k
|. Also the χ is

the corresponding phase of the vectorial order parameter.

Figure 2.8: Spin direction distribution on the surface of unit sphere in reciprocal space. Left:
Distribution in the non-interacting limit; Right: Distribution while a short-range repulsive
interaction is applied, where we are shown that the expectation value of spin has a non-zero
value. It is the origin of the magnetization in the chiral Excitonic Insulator state.

From Fig.2.1, we see that under inversion operation, ê1
~k

does not change sign but

ê2
~k

does; on the other hand, inversion operation interchanges the two Weyl nodes (we would

go from one Weyl node to the other under inversion operation). Therefore the hamiltonian

preserves the inversion symmetry as the expression inside the square brackets is unchanged.

In order to get the expectation value of spin, we c averaging over polar and az-

imuthal angles, which leads to a term of the form ~∆′ ·~σ/2 at both Weyl nodes. This non-zero

expectation value is the origin of the magnetization in the chiral Excitonic Insulator state
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and serves as a diagnostic of this state. The spin orientation is also plotted on an equal

energy surface around the node in Fig.2.8. Note that occupation of spins aligned opposite

teach other is equal in the absence of the order parameter. In the presence of the order

parameter there is a net canting.

The finite magnetization also provides a route to detecting this state. Hysteresis

of magnetization with respect to applied field is one route. In addition, the gap can be

manipulated by an external magnetic field as it couples linearly to the order parameter. As

such the chiral EI phase is a rare example of a correlated ferromagnetic insulator.

30



Chapter 3

Excitonic Phases by Long-range

Repulsive Interaction

Here we consider the effect of long-range unscreened Coulomb interaction. Our

previous analysis with short-range interaction can be viewed effectively as screened Coulomb

interaction the Weyl semi-metal system. The bare, unrenormalized long-range Coulomb

interaction should promote the Excitonic Insulator phases or Charge Density Wave states

with infinitesimal repulsive interaction, but running coupling constants modify the result

yielding again a minimum cutoff value of the interaction strength to develop the Charge

Density Wave phases or Excitonic Insulator states. This is similar to the two dimensional

Dirac system such as graphene [44, 45].

The bare unscreened Coulomb interaction in momentum space is of the form:

V (~q) = g/|~q|2, where g is a positive coefficient. The dominant channels for Excitonic

Insulator states and Charge Density Wave states come from the first line of Eq.(2.3) and

the second term in the third line of Eq.(2.3) respectively. This is because terms involving
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2 ~K0 are much smaller than others: | ~K0| À |~k| or |~k′|.

The same mean field gap equation for momentum dependent coupling is:

∆(~k) =
∑

~k′

V (~k, ~k′)
∆(~k′)
2E~k′

tanh
βE~k′

2
(3.1)

with E~k′ =
√

(~v|~k′|)2 + |∆(~k′)|2. The Coulomb interaction in momentum space is V (~k, ~k′) =

V (~k − ~k′) = g/|~k − ~k′|2. We focus on the zero temperature phased diagram, which makes

the tanh factor in Eq.(3.1) to be 1. In the following two small sections, we will discuss the

new phases in that are condensed.

3.1 Inter-nodal Instability: Charge Density Wave

Among the three lines in Eq.(2.3), the third line represents the inter-nodal mech-

anism. There are two channels with coupling constant 1 and k̂ · k̂′. The angle independent

factor ”1” is dominant in determining the magnitude of order parameters, comparing with

the factor ”k̂ · k̂′”. Hence in the following, as for the inter-nodal part of interaction, we

will only focus on how the factor ”1” generates a uniform gap for the Charge Density Wave

phase.

For this channel, Eq.(3.1) becomes:

∆(~k) =
g

2

∑

~k′

1

|~k − ~k′|2
∆(~k′)√

(~vk′)2 + |∆(~k′)|2
(3.2)

In order to get the magnitude of the order parameter, here we expand ∆(~k) in the spherical

harmonics[46] as:

∆(~k) =
∞∑

l=0

l∑

m=−l

∆m
l (|~k|)Y m

l (θ, φ) (3.3)
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Also, we can do the same expansion for the |~k − ~k′|−1.We have:

1

|~k − ~k′|
=

∞∑

l=0

l∑

m=−l

4π

2l + 1
kl

<

kl+1
>

Y m∗
l (θ′, φ′)Y m

l (θ, φ) (3.4)

Here, k< =min(|~k|, |~k′|) and k> =max(|~k|, |~k′|). As the above expansion equation needs to

be squared before being taken into Eq.(3.2), so the number of summation indices is doubled.

Under these expansions, Eq.(3.2) becomes:

∑

l3m3

∆m3
l3

(k)Y m3
∗

l3
(θ, φ) =

g

16π3

∫
k′2 dk′

∫ π

0
sin θ′ dθ′

∫ 2π

0
dφ′

∑

l1m1

∑

l2m2

[
4π

2l1 + 1
4π

2l2 + 1
kl1

<

kl1+1
>

kl2
<

kl2+1
>

×

Y m1
∗

l1
(θ′, φ′)Y m1

l1
(θ, φ)Y m2

∗
l2

(θ′, φ′)Y m2
l2

(θ, φ)

∑
l4m4

∆m4
l4

(k′)Y m4
∗

l4
(θ′, φ′)√

(~vk′)2 + 1
4π∆0

0(k′)2

]
(3.5)

Here, we have replaced
∑

~k′ by 1
(2π)3

∫
d3~k′, and ∆(~k′) in the denominator of Eq.(3.2) by

its leading expansion term: ∆0
0(k

′)Y 0
0 (θ′, φ′) = 1√

4π
∆0

0(k
′).

∫
dΩ′Y m1

∗
l1

(θ′, φ′)Y m2
∗

l2
(θ′, φ′)Y m4

∗
l4

(θ′, φ′) =

√
(2l1 + 1)(2l2 + 1)(2l4 + 1)

4π




l1 l2 l4

0 0 0







l1 l2 l4

m1 m2 m4




(3.6)

Here,
∫

dΩ′ =
∫ 2π
0 dφ′

∫ π
0 sin θ′ dθ′ and




j1 j2 j3

m1 m2 m3


is a Wigner 3j-symbol[47],

which is related to the Clebsch-Gordan coefficients[24]. All the parameters are integers or

half-integers. Additionally, the following selection rules should also be satisfied by these

parameters:

1. mi ∈ {−|ji|, . . . , |ji|}, i = 1, 2, 3.
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2. m1 + m2 + m3 = 0

3. |j1 − j2| 6 j3 6 j1 + j2

4. j1 + j2 + j3 should be an integer.

If any of the four selection rules is not satisfied, the Wigner 3j-symbol matrix goes to zero.

Putting Eq.(3.6) into Eq.(3.5) gives:

∑

l3m3

∆m3
l3

(k)Y m3
∗

l3
(θ, φ) =

g

π

∫
k′2 dk′

∑

l1m1

∑

l2m2

∑

l4m4

√
2l4 + 1

4π(2l1 + 1)(2l2 + 1)
×




l1 l2 l4

0 0 0







l1 l2 l4

m1 m2 m4




kl1+l2
<

kl1+l2+2
>

Y m1
l1

(θ, φ)Y m2
l2

(θ, φ)∆m4
l4

(k′)√
(~vk′)2 + 1

4π∆0
0(k′)2

(3.7)

Multiplying Y m5
l5

(θ, φ) and performing the integral
∫

dΩ in Eq.(3.7) gives:

∆m5
l5

(k) =
∑

l1m1

∑

l2m2

∑

l4m4

√
(2l4 + 1)(2l5 + 1)




l1 l2 l4

0 0 0







l1 l2 l4

m1 m2 m4


×




l1 l2 l5

0 0 0







l1 l2 l5

m1 m2 m5




g

4π2

∫ Λ
~v

0
k′2 dk′

kl1+l2
<

kl1+l2+2
>

∆m4
l4

(k′)√
(~vk′)2 + 1

4π∆0
0(k′)2

(3.8)

In the LHS of Eq.(3.8), we have used the orthogonality condition of spherical harmonics:

∫
dΩ′Y m′∗

l′ (θ, φ)Y m
l (θ, φ) = δll′δmm′ (3.9)

On the RHS of Eq.(3.8), we have used Eq.(3.6). Let’s focus on the dominant leading term

of ∆(~k) in its expansion: 1√
4π

∆0
0(k), which requires setting l5 = 0 and m5 = 0 in Eq.(3.8).

According to the selection rules of Wigner 3j-symbol, the restriction on l5 and m5 leads

to: l2 = l1, m2 = −m1, m4 = 0. Considering




l1 l1 0

m1 −m1 0


 = (−1)l1−m1√

2l1+1
, we have the

expression of ∆0
0(k):
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∆0
0(k) =

∑

l1m1,l4

√
2l4 + 1




l1 l1 l4

0 0 0







l1 l1 l4

m1 −m1 0


×

(−1)2l1−m1

2l1 + 1
g

4π2

∫
k2l1

<

k2l1+2
>

∆0
l4
(k′)k′2 dk′√

(~vk′)2 + 1
4π∆0

0(k′)2

(3.10)

For




l1 l1 l4

0 0 0


 ·




l1 l1 l4

m1 −m1 0


 factor, its value with l4 = 0 is much larger than that

its value with l4 6= 0. Therefore only keep the l4 = 0 terms in
∑

l4
while calculating ∆0

0(k)

in Eq.(3.10), which results in:

∆0
0(k) =

g

4π2

∫ Λ
~v

0

( ∑

l1

k′2

2l1 + 1
k2l1

<

k2l1+2
>

)
∆0

0(k
′) dk′√

(~vk′)2 + 1
4π∆0

0(k′)2

=
g

4π2

[ ∫ k

0

∑

l1

(k′/k)2l1+2

2l1 + 1
∆0

0(k
′) dk′√

(~vk′)2 + 1
4π∆0

0(k′)2

+
∫ Λ

~v

k

∑

l1

(k/k′)2l1

2l1 + 1
∆0

0(k
′) dk′√

(~vk′)2 + 1
4π∆0

0(k′)2

]
(3.11)

Here we have used
∑

m1
= 2l1 + 1, given that the summation function is independent of

m1. Expand the summation
∑

l1
to l1 = 1 in Eq.(3.11), we have:

∆0
0(k) =

g

4π2

[ ∫ k

0

[(k′

k

)2 +
1
3
(k′

k

)4
] ∆0

0(k
′) dk′√

(~vk′)2 + 1
4π∆0

0(k′)2

+
∫ Λ

~v

k

[
1 +

1
3
( k

k′
)2

] ∆0
0(k

′) dk′√
(~vk′)2 + 1

4π∆0
0(k′)2

] (3.12)

Here we find l1 = 1 term is much smaller than l1 = 0 term, so keeping the dominant l1 = 0

term is enough. This yields:

∆0
0(k) =

g

4π2

∫ k

0

k′2

k2

∆0
0(k

′)dk′√
(~vk′)2 + 1

4π∆0
0(k′)2

+
g

4π2

∫ Λ
~v

k

∆0
0(k

′)dk′√
(~vk′)2 + 1

4π∆0
0(k′)2

(3.13)
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After rescaling the parameters u = ~vk and u′ = ~vk′, we can simplify the above equation

to:

∆0
0(u) =

g

4π2~v

∫ u

0

(u′

u

)2 ∆0
0(u

′)du′√
u′2 + 1

4π∆0
0(u′)2

+
g

4π2~v

∫ Λ

u

∆0
0(u

′)du′√
u′2 + 1

4π∆0
0(u′)2

(3.14)

Next, we calculate the leading term ∆0
0(u) from Eq.(3.14). Taking derivatives with respect

to u on the two sides of Eq.(3.14) gives:

d∆(u)
du

=
−2
u

(
∆(u)− g

4π2~v

∫ Λ

u

∆(u′)du′√
u′2 + 1

4π∆(u′)2

)
(3.15)

Here we have neglected all the subscript and superscript in ∆0
0(u). Multiplying u on two

sides of above equation and taking derivative with respect to u again gives:

u
d2∆(u)

du2
+ 3

d∆(u)
du

+
g

2π2~v
∆(u)√

u2 + 1
4π∆(u)2

= 0 (3.16)

In order to extract useful information from Eq.(3.14), we make the following as-

sumption for simplifying order parameter’s calculation[44]: the dominant contribution to

∆0
0(k) comes from the region of u′ ∈ [u∗,Λ], where u∗ is determined by the condition

u∗ = ∆(u∗)/
√

4π, and we can neglect the contribution from the region of u′ ∈ [0, u∗]. The

validity of this approach is demonstrated in the function dependence shown in Fig.(3.1).

This condition allow us to simplify Eq.(3.14) and Eq.(3.16) to:

∆0
0(u) =

g

4π2~v

∫ u

u∗
du′

(u′

u

)2 ∆0
0(u

′)
u′

+
g

4π2~v

∫ Λ

u
du′

∆0
0(u

′)
u′

(3.17)

and

u2 d2∆(u)
du2

+ 3u
d∆(u)

du
+

g

2π2~v
∆(u) = 0 (3.18)

General solution for Eq.(3.18) can be written in the following form:

∆(u) = Au
−1−

q
1− g

2π2~v + Bu
−1+

q
1− g

2π2~v (3.19)
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Figure 3.1: the determination of u∗, which split the integration region into two parts: the
small u′ region is neglected, while the other region is taken to be the dominant one.

From Eq.(3.17), we have the boundary conditions for the differential equation:

u3 d∆(u)
du

∣∣∣∣
u→u∗

= 0

(
u

d∆(u)
du

+ 2∆(u)
)∣∣∣∣

u→Λ

= 0

(3.20)

Taking the general solution into the boundary conditions, we are left with:

u∗

Λ
=

(1 +
√

1− g
2π2~v

1−
√

1− g
2π2~v

) 1√
1− g

2π2~v (3.21)

If g is a very small, then we find u∗ À Λ, which violates our assumption that

u∗ should be much smaller comparing with the upper cutoff value of the integral on ~k: Λ.

Thus no physical solution exists for small. One requires should be large enough to make

1− g
2π2~v be negative. Defining

√
1− g

2π2~v = iα with α =
√

g
2π2~v − 1 > 0, and rewriting

Eq.(3.21), we have:

u∗

Λ
=

(
1 + iα

1− iα

) 1
iα

= e
1
iα

ln 1+iα
1−iα (3.22)

Considering the modulus of 1+iα
1−iα is 1, thus it is appropriate to assume that it is
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equal to eiϕ, then we have:

u∗

Λ
= e

ϕ
α (3.23)

Here we can find that: u∗
Λ < 1 requires ϕ

α < 0, which leads to ϕ < 0, because

α =
√

g
2π2~v − 1 is always positive.

On the other hand, we know: cosϕ = 1−α2

1+α2 and sinϕ = 2α
1+α2 where α > 0,

which gives cos ϕ ∈ (−1, 1) and sinϕ ∈ (0, 1). Therefore, ϕ ∈ ( − 2nπ,−(2n − 1)π
)
,

with n = 1, 2, 3 . . . Thus the restriction on g takes the form g
2π2~v − 1 > 0 or equivalently

g > 2π2~v.

Further simplifications is aided by the α dependence of φ: ϕ = −2nπ+cos−1
(

1−α2

1+α2

)
.

This makes the ratio of u∗ and Λ to be:

u∗

Λ
= e

−2nπ+arccos

(
4π2~v

g −1

)
√ g

2π2~v
−1 (3.24)

where n = 1, 2, 3 . . .

Thus, even for long range interaction the inter nodal instabilities require a mini-

mum interaction strength for chemical potential at the node. Unlike the short range case

where repulsion does not stabilize a gapped CDW, it is indeed a possible ground state for

unscreened Coulomb interaction.

3.2 Intra-nodal Interaction: Excitonic Insulator

Here we focus our analysis on the intra-nodal part interaction. Like we did in the

inter-nodal case, in the first line of Eq.(2.3), we first identify the most dominant channel.

In the general expression of Eq.(2.3), except the third line, both of the other two
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lines in Eq.(2.3) correspond to intra-nodal part interactions, which reads:

Vintra =−
∑

~k,~k′,n=±
×

[
V (~k − ~k′)

ê~k
· ê∗~k′ + ê∗~k · ê~k′

4

∑

τ=R,L

cτ†
~k,n

cτ
~k,−n

cτ†
~k′,−n

cτ
~k′,n

+V (~k − ~k′ − 2 ~K0)
ê~k
· ê~k′ + ê∗~k · ê

∗
~k′

2
cL†
~k,n

cL
~k,−n

cR†
~k′,−n

cR
~k′,n

]
(3.25)

with ê~k
= ê1

~k
+ iê2

~k
.

The first term dominates, because |~k| ¿ | ~K0|, |~k′| ¿ | ~K0| and V (~q) is inverse

proportional to ~q2. Therefore we drop the second term and focus on the instability due to

small ~k−~k′. The coefficient in the first line is expanded in the spherical coordinate system

as:

ê~k
· ê∗~k′ + ê∗~k · ê~k′ = 2 sin θ sin θ′ + 2(1 + cos θ cos θ′) cos(φ− φ′) (3.26)

Since we will average over the angles, it is clear that the terms with the least variation

will promote the strongest instability. Of the three, the term proportional to 2 cos(φ− φ′)

is expected to dominate, which means the other two terms depending on θ and θ′ can be

safely ignored. Thus Eq.(3.25) will become:

Vintra = −
∑

~k,~k′

V (~k − ~k′)
cos(φ− φ′)

2
×

∑

τ=R,L

(
cτ†
~k+

cτ
~k−cτ†

~k′−cτ
~k′+

+ cτ†
~k−cτ

~k+
cτ†

~k′+
cτ

~k′−

) (3.27)

Here we have expanded the summation on n.

Within mean field[28][42], taking ∆(~k) =
〈
cτ†
~k+

cτ
~k−

〉
would lead the bracket in the

above equation to be: ∆(~k)∆(~k′)∗ + ∆(~k)∗∆(~k′), where two terms are equal if we switch

~k, ~k′ in one term. So the two terms can be replaced by one of them being multiplied by a
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factor of 2, which shows:

Vintra = −
∑

~k,~k′

V (~k − ~k′) cos(φ− φ′)
∑

τ=R,L

cτ†
~k+

cτ
~k−cτ†

~k′−cτ
~k′+

(3.28)

Now, under this expression of interaction, the self-consistent gap equation of Eq.(3.1)

changes to:

∆(~k) = g
∑

~k′

cos(φ− φ′)
|~k − ~k′|2

∆(~k′)

2
√

(~v|~k′|)2 + |∆(~k′)|2
(3.29)

Expanding cos(φ− φ′), we get become:

∆(~k) =
g

4

∑

~k′

eiφe−iφ′ + e−iφeiφ′

|~k − ~k′|2
∆(~k′)√

(~v|~k′|)2 + |∆(~k′)|2
(3.30)

Here the two exponential factors have equal contribution to the magnitude of order pa-

rameter ∆, so we will only keep the first factor. Assuming ∆(~k) = ∆(k)eiφ, the above

self-consistent gap equation becomes:

∆(k) =
g

4

∑

~k′

1

|~k − ~k′|2
∆(k′)√

(~v|~k′|)2 + ∆(k′)2
(3.31)

It is worthwhile to note that Eq.(3.31) is very similar to Eq.(3.2), which is the self-consistent

gap equation for the inter-nodal interaction case. The only difference between these two self-

consistent gap equations is the right hand side of Eq.(3.31) is only half of that of Eq.(3.2).

Therefore we adapt the same technique as the previous section to analyze the intra nodal

case.

Taking Eq.(3.4) into Eq.(3.31), and rearrange the factors, we have:

∆(k) =
g

32π3

∑

l1m1

∑

l2m2

4π

2l1 + 1
4π

2l2 + 1
Y m1

l1
(θ, φ)Y m2

l2
(θ, φ)×

∫
dΩ′Y m1

∗
l1

(θ′, φ′)Y m2
∗

l2
(θ′, φ′)

∫
kl1+l2

<

kl1+l2+2
>

∆(k′)k′2dk′√
(~vk′)2 + ∆(k′)2

(3.32)
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The integration,
∫

dΩ′, is evaluated by taking l4 = m4 = 0 in Eq.(3.6). The result is:

∫
dΩ′Y m1

∗
l1

(θ′, φ′)Y m2
∗

l2
(θ′, φ′) = (−1)2l1−m1δl2,l1δm2,−m1 (3.33)

Replacing in Eq.(3.32) the summation
∑

l2m2
vanishes. Using symmetry properties of spher-

ical Harmonics, Y m2
l2

(θ, φ) = Y −m1
l1

(θ, φ) = (−1)m1Y m1
∗

l1
(θ, φ), and the identity:

l∑

m=−l

|Y m
l (θ, φ)|2 =

2l + 1
4π

(3.34)

Eq.(3.32) simplifies to:

∆(k) =
g

32π3

∑

l

4π

2l + 1

∫
k2l

<

k2l+2
>

∆(k′)k′2dk′√
(~vk′)2 + ∆(k′)2

(3.35)

Here we have replaced (l1,m1) with (l, m) as required by the delta functions. Using the

relation between k and k′, we can split the integral range into two regions. With these

considerations the gap equation is

∆(k) =
g

8π2

∫ Λ
~v

0

( ∞∑

l=0

k′2

2l + 1
k2l

<

k2l+2
>

)
∆(k′)dk′√

(~vk′)2 + ∆(k′)2

=
g

8π2

[ ∫ k

0

( ∞∑

l=0

1
2l + 1

(k′

k

)2l+2
)

∆(k′)dk′√
(~vk′)2 + ∆(k′)2

+
∫ Λ

~v

k

( ∞∑

l=0

1
2l + 1

( k

k′
)2l

)
∆(k′)dk′√

(~vk′)2 + ∆(k′)2

]
(3.36)

The expansion of
∑∞

l=0 is dominated by the l = 0 term. Thus we neglect all the l 6= 0

terms, while keeping l = 0 term only, which gives:

∆(k) =
g

8π2

[ ∫ k

0

(k′

k

)2 ∆(k′)dk′√
(~vk′)2 + ∆(k′)2

+
∫ Λ

~v

k

∆(k′)dk′√
(~vk′)2 + ∆(k′)2

]
(3.37)

Following the procedure we did in last section for inter-nodal interactions, rescaling

the parameters: u = ~vk and u′ = ~vk′ simplifies above equation to be:

∆(u) =
g

8π2~v

[ ∫ u

0

(u′

u

)2 ∆(u′)du′√
u′2 + ∆(u′)2

+
∫ Λ

u

∆(u′)du′√
u′2 + ∆(u′)2

]
(3.38)

41



Taking two times of derivative with respect to the new variable u, we get the differential

equation corresponding to the above self-consistent gap equation:

u
d2∆(u)

du2
+ 3

d∆(u)
du

+
g

4π2~v
∆(u)√

u2 + ∆(u)2
= 0 (3.39)

Taking the similar assumption as in Fig.(3.1), and introducing u∗ which is determined by

u∗ = ∆(u∗), we have Eq.(3.39) to be simplified:

u2 d2∆(u)
du2

+ 3u
d∆(u)

du
+

g

4π2~v
∆(u) = 0 (3.40)

The general solution of above differential equation is obtained in the following form:

∆(u) = Au
−1−

q
1− g

4π2~v + Bu
−1+

q
1− g

4π2~v (3.41)

This general solution satisfies the boundary condition Eq.(3.20), which is also the boundary

condition of inter-nodal interaction’s dominant term ’1’. Since the boundary conditions are

identical much of the procedure is the same as before. We get the ratio of u∗ over Λ as:

u∗

Λ
=

(1 +
√

1− g
4π2~v

1−
√

1− g
4π2~v

) 1√
1− g

4π2~v (3.42)

Looking for a physically meaningful solution yields a requirement ofg > 4π2~v,

Thus, the minimum cutoff for the excitonic insulating state for the Coulomb case is twice

as large. This can be traced back to the angular dependence of the order parameter. In the

CDW phase the order parameter is uniform while in here it is with cos(φ) or sin(φ). An

averaging yields a factor of 2. Thus one expect the CDW to be the preferred ground state.
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3.3 Ginzburg-Landau Free Energy Analysis

In this section we derive the Ginzburg Landau Free energies and expand on the

results obtain within mean field. The Hamiltonian of the Weyl semi-metal system is

H0 =
∑

n,~k

(
cL†
n,~k
~vn|~k|cL

n,~k
+ cR†

−n,~k
(−~vn|~k|)cR

−n,~k

)
(3.43)

In Eq.(2.3)’s inter-nodal part, the Coulomb interaction has two terms V (2 ~K0) and V (~k −

~k′)k̂ · k̂′ . The former can be ignored compared with the leading term V (~k − ~k′). We write

the inter-nodal part of Coulomb interaction from Eq.(2.3) in the following form:

Veff = −
∑

~k,~k′

∑
n=±

V (~k − ~k′)cL†
n,~k

cR
−n,~k

cR†
−n,~k′

cL
n,~k′

(3.44)

Here V (~k − ~k′) = g/|~k − ~k′|2 is the Coulomb interaction. In order to the usage of mean-

field analysis, we define Ψ(~k′) = 〈cR†
−n,~k′

cL
n,~k′
〉, and replace the creation-annihilation operator

pairs by their average value Ψ(~k′) or Ψ†(~k) plus small fluctuations. The Coulomb interaction

becomes:

Veff = −
∑

~k,~k′

∑
n=±

g

|~k − ~k′|2
[
Ψ†(~k)cR†

−n,~k′
cL
n,~k′

+ Ψ(~k′)cL†
n,~k

cR
−n,~k

−Ψ†(~k)Ψ(~k′)
]

(3.45)

Here we have neglected the higher orders in the devotion from mean field[28][42]. The order

parameter is

∆(~k) =
∑

~k′

g

|~k − ~k′|2
Ψ(~k′) (3.46)

Similarly, we also have the expression for ∆†(~k′), both of which transform the Coulomb

interaction to be:

Veff = −
∑

n,~k′

∆†(~k′)cR†
−n,~k′

cL
n,~k′

−
∑

n,~k

∆(~k)cL†
n,~k

cR
−n,~k

+
∑

~k,~k′

∑
n=±

g

|~k − ~k′|2
Ψ†(~k)Ψ(~k′) (3.47)
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In order to write the Hamiltonian H = H0 + Veff to be more compact, we replace the

summation index ~k′ by ~k in the first term of above equation. After that we have our full

Hamiltonian in the following:

H =
∑

n,~k

[
cL†
n,~k

(~vn|~k|)cL
n,~k
− cL†

n,~k
∆(~k)cR

−n,~k
− cR†

−n,~k
∆†(~k)cL

n,~k

+cR†
−n,~k

(−~vn|~k|)cR
−n,~k

]
+

∑

~k,~k′

∑
n=±

g

|~k − ~k′|2
Ψ†(~k)Ψ(~k′)

(3.48)

Writing in the matrix form we get a 2× 2 Hamiltonian similar to Eq.(2.5):

H =
∑

n,~k




cL
n,~k

cR
−n,~k




†

~vn|~k| −∆(~k)

−∆†(~k) −~vn|~k|







cL
n,~k

cR
−n,~k


 +

∑

~k,~k′

∑
n=±

g

|~k − ~k′|2
Ψ†(~k)Ψ(~k′) (3.49)

The two differences with Eq.(2.5) are: i) The definition of order parameter ∆, and ii) The

constant term coming from the mean-field analysis. However, both these differences do not

mitigate form an analytic computation. Employing the Bogoliubov transformation[28]:




a
n,~k

b
n,~k


 =




1
c1

~vn|~k|−
√

(~vn|~k|)2+|∆(~k)|2
c1∆†(~k)

1
c2

~vn|~k|+
√

(~vn|~k|)2+|∆(~k)|2
c2∆†(~k)







cL
n,~k

cR
−n,~k


 (3.50)

where the coefficients are:

c1,2 =

√√√√1 +

(
~vn|~k|
|∆(~k)|

∓
√(

~vn|~k|
|∆(~k)|

)2

+ 1

)2

, (3.51)

the Hamiltonian is:

H =
∑

n,~k




a
n,~k

b
n,~k




†


E1 0

0 E2







a
n,~k

b
n,~k


 +

∑

~k,~k′

∑
n=±

g

|~k − ~k′|2
Ψ†(~k)Ψ(~k′) (3.52)

The eigenvalues of the Hamiltonian are:

E1,2 = ±
√(
~vn|~k|)2 + |∆(~k)|2 (3.53)
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Next, we obtain the free energy of the state, and compare with the free energy of the normal

state, where the order parameter is zero. Starting from the general free energy expression,

the detailed form can be retrieved as follows:

F = − 1
β

lnTr
(
e−βH

)

= − 1
β

∑

α,~k

ln
(
1 + e

−βE
α,~k

)
+ Hc

(3.54)

Here α = 1, 2 represent the two energy eigenvalues, and the last part is the constant term

which comes from the mean-field analysis and contributes to the condensation energy:

Hc =
∑

~k,~k′

∑
n=±

g

|~k − ~k′|2
Ψ†(~k)Ψ(~k′) (3.55)

It is worth noting that the above free energy expression can also be obtained from

another path as follows[28]:

F =E − TS

E =
∑

α,~k

E
α,~k

f + Hc

S =− kB

∑

α,~k

[
(1− f) ln(1− f) + f ln f

]

(3.56)

Here the function f is the Fermi statistics function:

f
(
E

α,~k

)
=

1
1 + exp

(
βE

α,~k

) (3.57)

Take the second and third line into the first, the free energy expression is obtained. Now,

we calculate the condensation energy :

FCN = FCDW − FN = − 1
β

∑

n,α,~k

ln
1 + e

−βE
α,~k

1 + e−β~v|~kα|
+ Hc (3.58)
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In order to get FCN ’s power series in ∆(~k), we first take a derivative with respect to ∆†(~k)

and then perform a Taylor expansion[48] with respect to ∆(~k). Finally we performs an

integration on ∆(~k) which gives us the FCN ’s power series in ∆(~k). This procedure is

employed below.

∂FCN

∂∆†(~k)
=

∑

n,~k

∆(~k)
2

( ∑
α

f
(
E

α,~k

)

E
α,~k

)
+

∂Hc

∂∆†(~k)
(3.59)

The terms in the bracket can be evaluated using the identity:

∑
α

f
(
E

α,~k

)

E
α,~k

=
−1
E~k

tanh
βE~k

2
(3.60)

where E~k
is the shortened form of E

α=1,~k
. The partial derivative of the condensation energy

is:

∂Hc

∂∆†(~k)
=

∑

n,~k

Ψ(~k) (3.61)

Using these results the derivative becomes:

∂FCN

∂∆†(~k)
=

∑

n,~k

−∆(~k)
2E~k

tanh
βE~k

2
+

∑

n,~k

Ψ(~k) (3.62)

The last term needs further simplification. We return to the self-consistent particle-hole

instability equation:

∆(~k) =
∑

~k′

V (~k − ~k′)
∆(~k′)
2E~k′

tanh
βE~k′

2
(3.63)

Take β → βc gives us E~k′ → ε(~k′), and compare it with the definition of order parameter

Eq.(3.46). this implies

Ψ(~k′) =
∆(~k′)
2ε(~k′)

tanh
βcε(~k′)

2
(3.64)
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Bring the above into the Eq.(3.62), gives us the final expression of Ginzburg-Landau free

energy’s first derivative with respect to ∆†(~k):

∂FCN

∂∆†(~k)
= −1

2

∑

n,~k

∆(~k)
(

1

E(~k)
tanh

βE(~k)
2

− 1

ε(~k)
tanh

βcε(~k)
2

)
(3.65)

We find that Eq.(3.65) is very similar to Eq.(2.13), except that ∆ in Eq.(2.13) is a mo-

mentum independent order parameter, while it is not true for the Coulomb interaction’s

inter-nodal case. Nevertheless, we can still borrow the Taylor expansion procedure following

Eq.(2.13), which yields the Ginzburg-Landau free energy’s power series with respect to the

order parameter ∆(~k):

∂FCN

∂∆†(~k)
=

∑

n,~k

∆(~k)
[
f(βε(~k))− f(βcε(~k))

ε(~k)

−
(

βε(~k)
2

− βε(~k)
2

tanh2 βε(~k)
2

− tanh
βε(~k)

2

) |∆(~k)|2
4ε(~k)

3 + · · ·
] (3.66)

Integrating we get

FCN =
∑

n,~k

[
f(βε(~k))− f(βcε(~k))

ε(~k)
|∆(~k)|2

−
(

βε(~k)
2

− βε(~k)
2

tanh2 βε(~k)
2

− tanh
βε(~k)

2

) |∆(~k)|4
8ε(~k)

3 + · · ·
] (3.67)

For T ' Tc, the free energy formula reads:

FCN = −a|∆|2 +
b

2
|∆|4 + · · · (3.68)

After comparison of these two above, we are left with the coefficients of Charge Density

Wave phase in Coulomb interaction’s inter-nodal case:

a =
4π

3kBT

(
1

βc~v

)3(
1− T

Tc

)

b ' 8π

15(~v)3

[
ln 2
2

βcΛ +
1
4

ln
(βcΛ

2π

)
− 1

4
Ψ

(1
2

)] (3.69)

Here the coefficient a is to the leading order in (βcΛ)−1 and Ψ(x) is the digamma function.
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Chapter 4

Odd Parity Superconductivity in

Weyl Semi-Metals

So far, we have focused our interest on the nature of correlated phases in Weyl semi-

metal systems due to repulsive interactions. We have shown that for chemical potential at

the Weyl nodes, perfect nesting would lead to various particle-hole instabilities. Specifically,

for local repulsive interaction, an excitonic ferromagnetic insulator state is stabilized[49];

while for attractive interactions, a Charge Density Wave[30] is realized. Here we turn

to the possible instabilities due to attractive interactions. Meng and Burkov[31] studied

the nature of superconducting state obtained in systems, where the superconductivity is

externally induced by proximity effect. This is achieved by replacing the normal insulator

by a superconductor in the Topological-Normal insulator heterostructure. They find a

variety of gapless and/or topological superconducting phases which may host Majorana

bound states on the surface or vortex cores. Gil Young et al.[32] studied the intrinsic

superconducting instabilities of doped Weyl semimetals within a model that has C4h point
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group symmetry. They find that the even parity fully gapped finite momentum pairing

state is energetically favored.

The point group symmetry imposed above is not necessary for Weyl semimetals.

In this chapter we relax this constraint and explore the possible superconducting phases.

For local attractive interactions we find the finite momentum pairing to be the ground state,

while for long range interactions, a gapped BCS state would appear as a competing phase,

with details of the interaction favoring one over the other. Crucially, in contrast to Gil et al.

[32] we find that a ”spin singlet” has no weight and that only p-wave ”spin triplet” phases

are allowed. The difference originates from the properties of the model under inversion. In

our case the spin at momentum ~k and momentum −~k are the same as required by inversion

symmetry. On the other hand, even for inversion symmetric models, the effective low energy

theory can be one where the spins are not parallel at momenta related by inversion[4]. In

the latter case, singlet pairing has finite overlap with the chiral state. For the class of

Weyl semi-metals studied here, we generically find odd parity superconductivity which are

analogs of the 3He A phase. They add to a class of spin triplet superconducting phases that

display Weyl behavior [50, 51]

The approach we will take in the following is the same as the one that we used

to explore excitonic phases[49]. In this regard the work is complementary to that of Gil

Young et al.[32], who look at mean field decomposition in the spin basis prior to projecting

to the low energy sector. We first project to the linearly dispersing chiral basis and than

perform the mean field analysis. To highlight the physics, we simplify to the case of two

Weyl nodes and local density density interactions. There are two types of particle-particle

instabilities that can arise in this case i) intra-nodal (occurring at zero momentum) and
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ii) inter-nodal (occurring at a finite fixed momentum associated with the nesting vector).

The former leads to finite momentum pairing (analogous to FFLO[52, 53]) while the latter

is the zero momentum pairing BCS[54] state. For local interaction, the most favorable

superconducting state is the finite momentum paired odd parity axial phase. A minimum

interaction strength is required to nucleate them for chemical potential at the node which

is the consequence of the vanishing density of states. We also find that it is energetically

less optimal than a fully gapped Charge Density Wave phase. For finite chemical potential

the particle hole nesting is lost, and the axial superconductor is realized. For long range

attraction a fully gapped BCS state is stabilized for all values of the chemical potential.

4.1 Model Hamiltonian

We will also start from the clean limit Hamiltonian, which gives the linearly dis-

persion relation between momentum and energy. Consider a system with two Weyl nodes

at ~K0 = K0x̂ (labeled R) and − ~K0 = −K0x̂ (labeled L) with chiralities +1 and −1 respec-

tively. The Hamiltonian is

H0± = ±~v
∑

~k

ψ†~kα
~σαβ ·

(
~k ∓ ~K0

)
ψ~kβ

, (4.1)

where v is the Fermi velocity and ~σ = {σx, σy, σz} is a vector of Pauli matrices. The

dispersion at each node is ε~q = ±~v |~q| centered around ± ~K0, with ~q = ~k ∓ ~K0 is the

shortened form of the momentum vector. The conduction (valence) band at the R node has

its spin parallel (anti-parallel) to ~q, while the opposite is true at the L node. The general
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particle-particle interaction, in momentum space, still takes the form:

V =
∑

σ,σ′

∑

~k,~k′,~q

V (~q)ψ†~k′+~q,σ′
ψ~k′,σ′ψ

†
~k−~q,σ

ψ~k,σ
(4.2)

Here the upper cutoff of the momentum magnitude in integral Λ/~v is also in-

volved, since the Weyl physics is the low energy description of a more general theory, thus

this enforcement in the vicinity of Weyl points is necessary.

4.2 Particle-Hole Instabilities within Mean Field

We rewrite the interaction in the basis of the non-interacting bands. To do so we

define a rotation matrix MR,L(~k)nσ such that cL,R
~kn

= ML,R(~k)nσψR,L
~kσ

. Note that the spin

degeneracy is lifted and the noninteracting eigenstates are labels by n = ±. The rotation

matrices are unitary and rotate the spin quantization axis of each electron to point along

its momentum ~k.

We split the sum over momentum over ~k for each ψ~k,σ
into two, one with small

momenta near the left node and the other with small momenta about the right node. An

upper cutoff in energy, Λ, is imposed as the linear dispersion is a low energy phenom-

ena. Of the 16 possible terms from Eq.(4.2) only 6 terms satisfy momentum conserva-

tion for scattering restricted to the states within the cutoff around the node. For every

momentum ~q = qq̂, where q̂ = {q̂x, q̂y, q̂z} is the unit vector along ~q, we define two or-

thogonal vectors ê1
~q ≡ θ̂~q = {q̂xq̂z/

√
q̂2
x + q̂2

y , q̂y q̂z/
√

q̂2
x + q̂2

y ,−
√

q̂2
x + q̂2

y} and ê2
~q ≡ φ̂~q =

{−q̂y/
√

q̂2
x + q̂2

y , q̂x/
√

q̂2
x + q̂2

y , 0}, such that q̂, ê1
~q and ê2

~q form a right handed coordinate

system (see Fig.2.1). The unit sphere is spanned by the vector q̂ by two rotations, one

about any axis perpendicular to ê2
~q and the another about ê2

~q .

Construction above holds for an arbitrary quantization axis n̂, with the corre-

51



sponding polar and azimuthal angle for ~q defined in the coordinate frame {l̂, m̂, n̂}. In

the rest of the letter we use the {x̂, ŷ, ẑ} coordinate system. The particular choice of the

coordinate system breaks spatial rotational invariance.

Specializing to potentials that are even functions of ~k, i.e. V (~k) = V (−~k), the

interaction is

Vc =
∑

~k,~k′,τ,n

[(
V (~k − ~k′)− V (~k + ~k′ − 2τ ~K0)

)
ê1
~k
· ê1

~k′
+ ê2

~k
· ê2

~k′

2
cτ†
~kn

c−τ†
~−kn

c−τ

−~k′n
cτ
~k′n

+ V (~k − ~k′)
1 + k̂ · k̂′

2
cτ†
~kn

cτ†
~−kn

cτ
−~k′ncτ

~k′n

] (4.3)

τ = ± refer to the two nodes. The advantage of this representation, instead of the polar and

azimuthal angles, is that it allows us to avoid the double-valued nature of the spin rotation

group. We have dropped terms of the form cτ1†
n~k

cτ2†
−n−~k

cτ2
−n−~k′

cτ1
n~k′

and cτ1†
n~k

cτ2†
n−~k

cτ2
−n~k′

cτ1
−n−~k′

which lead to pairing of states which are not degenerate in the noninteracting limit. For

attractive interaction we get the very rich structure, with a number of possible supercon-

ducting phases. The first two terms in Eq.(4.3) lead to inter nodal pairing, which give

the zero momentum BCS[54] state, while last term yields finite momentum pairing states

(FFLO[52, 53]). In the rest of the paper we analyze the instabilities within mean field.

4.2.1 Local Interactions

For local interactions, the BCS channel vanishes. To understand why, note that

the interaction is one where we destroy particles at ~k and −~k and create them at ~k′ and −~k′.

Thus there are two possibilities: put the first particle at ~k′ and the second at −~k′ or vice

verse. These are inequivalent processes, as evident from the different momentum transfer

involved, among indistinguishable particles. The exchange produces a relative minus sign.

52



For local interaction the weight of both the processes are identical leading to an exact

cancelation. This is very different from that of the model with lower symmetry such as

the C4h symmetric model studied by Gil Young et al.[32], where the BCS channel is also

unstable for local attraction. The reason for the difference arises from the fact that in our

model the spins at ~k and −~k are parallel for all ~k. Thus the two process only pick up a

relative sign independent of the spin orientation. For the C4h symmetric models, whether

the particle at ~k ends up at ~k′ or −~k′ also determines a relative factor that accounts for

the different spin orientation of the two final states. This mitigates the cancelation for all

momenta. Nevertheless, in both cases the finite momentum pairing wins out. Tipping the

system to favor the BCS state requires fine tuning.

In the finite momentum pairing channel, there are two equally attractive channels

corresponding to order parameters of the form ∆s =
〈∑

~k
cτ
−~kn

cτ
~kn

〉
and ~∆p =

〈∑
~k

k̂cτ
−~kn

cτ
~kn

〉
.

The former is the even parity (s-wave) while the latter is odd parity (p-wave) superconduc-

tor. Note that the anti commutation of fermionic operators implies that ∆s = 0. This is

expected as non-degenerate states cannot pair in the singlet channel and only odd orbital

pairing survives. For local attractive interaction, V (~k) = g/Ω where g is a constant and Ω

is the volume of the system. The gap equation for the p-wave channel at zero temperature

is

1 =
g

2

∑

k

∣∣∣∆̂p · k̂
∣∣∣
2

√
(~vk)2 +

∣∣∣~∆p · k̂
∣∣∣
2

(4.4)

In general the complex order parameter takes the form ~d1 + i~d2 and extremalization yields

two possible structure: (i) ~d1 · ~d2 = 0 , |~d1| = |~d2| and (ii) ~d1||~d2, ~d1 + i~d2 = ~deiφ where ~d is a

real vector[27]. Minimization of the gap equation for the two cases yields the axial vacuum

(case (i)) as the ground state and thus a chiral superconductor is stabilized. This states
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has nodes in the gap, with linearly dispersing massless charged excitations, in complete

analogy with the A phase of liquid 3He. Equation (4.4) is identical to the gap equation

obtained for the excitonic phases for repulsive interaction [49]. Reading off the results we

note that a minimum interaction strength of gc = 3(~v)3/2πΓ2 is required for the state

to be realized for chemical potential at the node. Here Γ < Λ is the cutoff in energy of

the attractive interaction. At mean field level, the Charge Density Wave instability is also

possible for attractive interaction [49, 30]. The critical coupling is smaller as compared

to the superconducting state and opens a full gap (i.e. no nodes). Thus the nodal finite

momentum superconducting state is always disfavored as compared to the Charge Density

Wave states.

At finite chemical potential the particle hole nesting between the nodes is lost and

only the superconducting state is realized. Moreover, for finite chemical potential, µ, the

state is precipitated for infinitesimal interaction strength. For µ − Γ > 0 and µ + Γ < Λ,

the attractive interaction is operative only for the positive energy sector of the theory with

linear dispersion. For this case the transition temperature is 2KBTc ≈ Γ exp[−3/gν(µ)]

where ν(µ) = µ2/2π2(~v)3 is the density of states at the chemical potential.

4.2.2 Long-range Interactions

For local interaction V (~k − ~k′) = V (~k + ~k′ − 2τ ~K0) and no inter nodal pairing is

allowed. For long range interaction, the cancelation does not occur and a BCS state can

precipitate. This state competes with the intra-nodal pairing state. Which of the two wins

depends on the details of the interaction. To identify the possible phases, we assume an

attractive interaction of the form
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V (~k) =





−g if |~k| < | ~K| < | ~K0|

0 otherwise
(4.5)

for some fixed ~K. Thus the attraction has a range of order 1/| ~K| smaller the 1/| ~K0|.

While this simplifies the algebra, the symmetry arguments below hold in general. Let

us now consider the two attractive channels: (1) ~∆1 =
〈∑

~k
ê1
k̂
cτ
−~kn

cτ
~kn

〉
and (2) ~∆2 =

〈∑
~k

ê2
k̂
cτ
−~kn

cτ
~kn

〉
. Since ê1

~k
is even under inversion , i.e. ê1

~k
= ê1

−~k
, ~∆1 = 0. This is

analogous to the even orbital parity channel vanishing in the intra-nodal case.

There are two possible superconducting states: (1) ~∆2 =
〈∑

~k
ê2
k̂
cτ
−~kn

cτ
~kn

〉
= ∆2px̂

and ~∆2 =
〈∑

~k
ê2
k̂
cτ
−~kn

cτ
~kn

〉
= ∆2c(x̂ + iŷ)/

√
2. The p and c label refer to polar and chiral

respectively. The structure of the order parameters is dictated by symmetry. Once the

spatial rotational symmetry is broken by a choice for the quantization axis, the vector ê2

lies in the plane perpendicular to it. As the vector k̂ sweeps out the unit sphere, ê2 spans a

unit circle in this plans (see Fig.2.1). Thus the order parameter in this case is either a polar

vector in the plane (chosen to be x̂ for illustrative purposes) or chiral. Within mean field,

the spectrum for the quasi-particles for the two cases are E2p =
√

(~vk)2 + |∆2s|2 cos2 φ

and E2p =
√

(~vk)2 + |∆2c|2, where φ is the azimuthal angle in the {x̂, ŷ, ẑ} coordinate

system. The polar state has line nodes while the chiral state is gapped. On minimization

of the free energy, the latter is energetically favored. It also more favorable as compared to

the finite momentum pairing state.

For chemical potential at the node a minimum coupling strength of gc = (~v)3/2πΓ2

is needed to nucleate this state. Here Γ = ~v| ~K| is the energy corresponding to the cut

off in momentum in Eq.(4.5). Since the intra-nodal pairing depends only on the small

wavelength part of the interaction, the instability criterion is the same for the interaction
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in Eq.(4.5) as the short-range interaction. Since the critical coupling is three times larger

in the latter case, we conclude that for long range interactions the chiral BCS state is the

preferred ground state.

For finite chemical potential, the transition temperature for the chiral BCS state is

2KBTc ≈ Γ exp[−1/2gν(µ)]. Thus the transition temperature is lower than that of the finite

pairing state given by 2KBTc ≈ Γ exp[−3/gν(µ)]. The difference arises from the angular

dependence of the gap in the finite momentum state which has nodes at the poles.

4.3 Topological Excitations

For short range interactions the lowest energy state is the finite momentum pairing

in odd parity channel. Such a state has nodes at the north and south pole of the spherical

fermi surface. In complete analogy with the corresponding states for spinless version of the

equal spin pairing states in 3He[27], they support relativistic massless fermionic excitations.

The existence of these nodal points leads to surface states at zero energy. As discussed

in references [32, 55] the vortex of finite momentum pairing state is made up of two half

quantum vortices, where the phase only winds around one of the Weyl nodes but not the

other. The fact that Fermi surface encloses a Berry phase of π, implies that each half vortex

hosts a Majorana mode at its core. In general the hybridization between the two will gap

them out as they are not protected by any symmetry. For long range interaction, the odd

parity BCS state wins out. This state is fully gapped.
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4.4 Effect of Disorder

It is known that spin orbit interaction leads to suppression of the deleterious effects

of disorder induced pair breaking on superconductivity[56]. In particular scalar disorder

cannot mix states with different chirality. Stated differently scattering between different

spin-momentum locked states acquire angular dependence arising from mismatch in spin

orientation. The nontrivial dependence leads to vanishing dephasing rate yielding robust

superconductivity[56].

4.5 Discussion

In this section we compare and contrast our work to those in the literature. To

understand why only odd pairing superconductivity is obtained, it is important to note that

the bands that touch are spin non degenerate. In other words, in the low energy effective

theory there are two state per momentum which are split in energy. Chirality is a good

quantum number but not spin. Given this, it is not possible to form spin singlets among

degenerate states, as only one of the one ”spin” state per momenta is available. Previous

studies on the interplay of spin orbit and superconductivity [32, 31] perform a the mean field

decomposition before projecting to the chiral basis. In other words a projection to singlet

states is made before accounting for the splitting due to spin orbit. This allows for finite

pairing amplitude among states that are non degenerate in energy in the noninteracting

limit (i.e. mixes the valence and conduction bands). Fore chemical potential at the node

these yield a class of even parity superconducting states for the C4h symmetric models.

They are absent in the class of Weyl semi-metals studied here.

Another important distinction is that in the minimal model assumed here of
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two Weyl nodes, the Pauli matrices represent spin. In particular they do not change

under inversion. In certain class of effective theories, inversion operator takes the form

I : σzH(−~k)σz[4, 32]. In this case the sign of the spin operators for the transverse direc-

tions changes under inversion. This additional symmetry leads to a set of superconducting

states that allow for even parity spin singlet pairing. The reason is that the spin state at ~k

and −~k are no longer the same, as one would expect if inversion was an identity operator on

spins. Thus there is a finite projection of singlet states onto the spin texture in the chiral

basis.

A final point to note is that a full lattice model (as opposed to the low energy

effective theory considered here) has linear dispersion for a finite energy window around

the node. Thus any analysis that uses the full energy dispersion includes of the deviation

from linearity. This is especially true for doped systems with large chemical potentials.

Nevertheless the non-degeneracy of the bands and the spin structure allow for odd parity

superconductors. Whether the even or odd parity states win out in this case is deferred to

future investigations.

In summary Weyl semi-metals are shown to display robust odd parity supercon-

ductivity, with both zero and finite momentum cooper pairs.
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Chapter 5

Conclusions

In this chapter, we present the primary conclusions of the work we done in the

whole thesis.

In chapter 2, we presented the following conclusion for short-range interactions:

1. Strong spin-orbit coupling and repulsive interaction leads to novel excitonic phases in

Weyl semi-metals.

2. For short-range interaction, eight novel phases are yielded, and all of them require

minimum interaction strengths to ensure each phase be promoted.

3. Among all the phases yielded by the interplay between interaction and topology, a

novel chiral excitonic insulator phase is of great importance, because this state, char-

acterized by a complex vectorial order parameter, can lead to a meaningful bandgap

out of the Weyl nodes.

4. The most striking feature we achieved is that the novel state, chiral excitonic phase

is ferromagnetic, with the phase of the order parameter determining the direction of
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the induced net spin polarization, which can serve as the experimental identification

for the chiral excitonic insulator phase.

5. For the two Charge Density Wave phases promoted by the inter-nodal part of in-

teraction, we also tried the Ginzburg-Landau free energy analysis to check whether

the conclusion we get from mean-field analysis is correct. Finally, the ensurance is

achieved.

For the other limit of interaction, long-range case, which is discussed in detail in

chapter 3, the conclusion that we achieved are the follows:

1. Strong spin-orbit coupling and repulsive long-range interaction can also lead to novel

excitonic phases in Weyl semi-metals.

2. Similar to the short-range case limit, long-range case would also yield Charge Density

Wave phase from inter-nodal part of interaction, and Excitonic Insulator phase from

intra-nodal part of interaction.

3. Considering the complexity of calculation with Coulomb form interaction, we only

keep the leading terms for inter-nodal and intra-nodal parts. In each part, we derive

the minimum interaction strength needed for the existence of each novel phase. For

Charge Density Wave phase corresponding to inter-nodal part, the minimum inter-

action strength is g > 2π2~v; while for Excitonic Insulator phase corresponding to

intra-nodal part, the minimum interaction strength reads g > 4π2~v. Therefore, un-

der the Coulomb interaction, the most energy favorable state would be the Charge

Density Wave phase, which gives the lowest value among all the interaction’s minimum

strengths.
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Following the procedure of searching novel phases promoted by interaction-hole

instabilities in Weyl semi-metal systems in chapter 2 and chapter 3, we convert to the

realization of any possible superconducting states of matter in Weyl semi-metal systems in

chapter 4. The following conclusion are reached there under this topic:

1. We achieved the realization of superconducting states of matter in Weyl semi-metal

systems in the presence of strong spin orbit coupling.

2. As the energy spectrum has nodes at an even number of points in the Brillouin zone,

consequently both intra-nodal finite momentum pairing and inter-nodal BCS super-

conductivity are allowed.

3. we displayed the robust odd parity superconductivity, with both zero and finite mo-

mentum cooper pairs and reached a particular case where non degenerate bands indeed

can support the odd parity superconductivity with rich topological content.

4. For local attractive interaction the finite momentum pairing state with chiral p-wave

symmetry is found to be most favorable at finite chemical potential. The state is an

analog of the superfluid 3He A phase, but with cooper pairs having finite center of

mass momentum.

5. For chemical potential at the node the state is preempted by a fully gapped Charge

Density Wave phase. For long-range attractive interactions, the BCS state wins out

for all values of the chemical potential.

6. Finally, we compared of our work with those in literature and try to explain why only

odd pairing superconductivity is obtained.
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Appendix A

Interaction Part of Hamiltonian

In this appendix we comment on the nature of repulsive interactions. While

Eq.(2.2) in the free Hamiltonian (H0) energy spin basis ηR,L
~q,± cR,L

~q,± have a number of terms,

states that conserve momentum and energies are the only ones of relevance. For com-

pleteness we show the possible terms. Here we list all interactions related to particle-hole

instabilities by writing V ' V1 +V2 +V3 + . . . with V1 corresponds to the terms in Eq.(2.3).

V1 = −
∑

~k,~k′,n=±

[
V (~k − ~k′)

ê~k
· ê∗~k′ + ê∗~k · ê~k′

4

∑

τ=R,L

cτ†
~k,n

cτ
~k,−n

cτ†
~k′,−n

cτ
~k′,n

+V (~k − ~k′ − 2 ~K0)
ê~k
· ê~k′ + ê∗~k · ê

∗
~k′

2
cL†
~k,n

cL
~k,−n

cR†
~k′,−n

cR
~k′,n

−
[
2V (2 ~K0)− V (~k − ~k′)

(
1 + k̂ · k̂′

)]
cL†
~k,n

cR
~k,−n

cR†
~k′,−n

cL
~k′,n

]

V2 = −
∑

~k,~k′,n=±

[
V (~k − ~k′)

ê~k
· ê~k′ + ê∗~k · ê

∗
~k′

4

∑

τ=R,L

cτ†
~k,n

cτ
~k,−n

cτ†
~k′,n

cτ
~k′,−n

+V (~k − ~k′ − 2 ~K0)
ê~k
· ê~k′ + ê∗~k · ê

∗
~k′

2
cL†
~k,n

cL
~k,−n

cR†
~k′,n

cR
~k′,−n

−
[
2V (2 ~K0)− V (~k − ~k′)

(
1− k̂ · k̂′

)]
cL†
~k,n

cR
~k,−n

cR†
~k′,n

cL
~k′,−n

]

(A.1)

In the above expression, we have written all the terms yielded by the particle-hole
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possibilities, which are split into V1 and V2. Each term in V2, represents one possible case

of annihilating two particles in valance band(s) and creating them in conducting band(s),

which hold(s) higher energy than valance band(s). Thus, all the terms in V2 violate the

conservation of energy. In contrast, V1’s terms are allowed from energy perspective and

retained in chapters 2 and 3 (Eq.(2.3)).
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Appendix B

Particle-Hole instability due to

Attractive Interaction

Our work, described in chapter 2 and chapter 3 has focused on possible phase

arising from repulsive interactions. In particular we find that for local interaction a fer-

romagnetic insulating phase is stabilized, while for long range interaction the CDW is the

energetically favored phase. An intriguing possibility is that attractive local interactions

can also yield a CDW phase. This was reported on in ref.[30]. For completeness we discuss

the main results.

In order to understand the result, let’s return to Eq.(2.3), which is used in our

repulsive interaction analysis:

V = −
∑

~k,~k′,n=±

[
V (~k − ~k′)

ê~k
· ê∗~k′ + ê∗~k · ê~k′

4

∑

τ=R,L

cτ†
~k,n

cτ
~k,−n

cτ†
~k′,−n

cτ
~k′,n

+V (~k − ~k′ − 2 ~K0)
ê~k
· ê~k′ + ê∗~k · ê

∗
~k′

2
cL†
~k,n

cL
~k,−n

cR†
~k′,−n

cR
~k′,n

−
[
2V (2 ~K0)− V (~k − ~k′)

(
k̂ · k̂′ + 1

)]
cL†
~k,n

cR
~k,−n

cR†
~k′,−n

cL
~k′,n

]
(B.1)
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Both of the two terms representing intra-nodal interaction(first two lines), cannot

produce any excitonic insulator phases, due to the attractive(negative) property of V (~k).

This conclusion is true no matter what limit V (~k) takes, either short-range limit(local

momentum-independent form) or long-range limit(Coulomb interaction form). When V (~k)

is long-ranged (Coulomb interaction form), V (2 ~K0) in the third line can be neglected. This

leads to the inter-nodal part interaction in the third line be positive when the potential is

negative (attractive). Therefore, long-range limit of attractive V (~k), can not yield charge

density wave phases either. So, the final possibility for charge density wave state to exist

is under short-range attractive V (~k). This indeed is the case. While V (~k) is a momentum-

independent negative value, notice that the last line inside the bracket is positive, while

there is an overall minus sign outside. Hence the CDW phase is expected for attractive

local interactions. It is important to bear in mind that attractive interactions also lead to

superconducting instabilities that compete with the CDW state. In chapter 4, we explore

that interplay and deal with the superconducting instabilities.
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