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ABSTRACT OF THE THESIS

Quantification and Accuracy Evaluation of Tau Tangle Distribution in Postmortem Brain
Microscopy Images from Patients with Alzheimer's Disease Using U-Net Object Segmentation

Model

by

Andrew R. Bennecke
Master of Science in Bioinformatics
University of California, Los Angeles, 2023

Professor Daniel Jacob Tward, Chair

Alzheimer’s Disease is a progressive and fatal neurodegenerative disease which affects
millions of people around the world. The pathophysiology of the disease is characterized by the
accumulation of neuritic amyloid plaques and neurofibrillary tau tangles within the hippocampus
and many surrounding structures. Tau tangles, in particular, are commonly used to identify the
stage of disease progression. Currently, only the presence or absence of tau tangles, together with
simple staging information, in specific brain regions is noted at autopsy. An improvement to this
approach is to measure the distribution of tau tangles across large brain samples in order to better
characterize the progression of the disease. In this work, we build a framework for comparing the
ability of different machine learning models to identify the locations of tau tangles in

postmortem neural microscopy images. In particular, we focus on the development of a set of
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software tools which transform probability heatmaps into a set of region proposals for all the tau
tangles within an image. We then construct two different machine learning models and compare

their performance using a precision-recall (PR) framework.
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1: Introduction

Alzheimer’s disease (AD) is a progressive and ultimately fatal neurodegenerative disease that
affects over 6 million Americans. Economically, the disease is estimated to cost the nation $345
billion per year, which is expected to rise to $1 trillion by 2050 as the population ages

[https://www.alz.org/media/Documents/alzheimers-facts-and-figures.pdf, accessed 03/2023].

While it is known that 1 in 3 seniors dies with AD or another form of dementia, the disease is
currently only diagnosed at autopsy from the presence of amyloid plaques and tau tangles in

brain tissue [1,2].

There are several biomarkers of AD that are being developed for research purposes, which can
increase or decrease the certainty that symptoms of dementia in living people are due to the
Alzheimer’s pathophysiological process. These may contribute to early diagnosis, and have
helped to define early stages of the disease such as Mild Cognitive Impairment [3] or Preclinical
AD [4]. These biomarkers have now been standardized into the Amyloid / Tau
(Neurodegeneration) (A/T(N)) framework [5]. In this standard notation, neurodegeneration is
written in parentheses because it currently shows a lack of specificity. However, jointly studying
neurodegeneration with other biomarkers may increase this specificity. In particular, tau tangles
(unlike amyloid) are known to accumulate in a stereotypical pattern and are useful for disease

staging (Braak staging)[6].

A promising approach to linking tau tangles with neurodegeneration is to study their distribution
across the whole brain, rather than simply noting presence or absence in key areas which is

typical at autopsy. This requires a machine learning approach to identify tangles in microscopy
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images, and a geometric approach to reconstruct 3D distributions. Several methods have been
developed to attempt this [7][8], but there is no agreed upon framework to compare them or
evaluate their accuracy. This is particularly challenging because tau tangle detectors may have
very different kinds of outputs, either region proposals (common in natural images) which take
the form of bounding boxes with confidences, or probability masks (more common in biomedical

images) which take the form of heatmaps with values in the interval [0,1].

In this work, we address this challenge by building a framework for comparing different machine
learning techniques that detect tau tangles. We focus on developing a common analysis tool that
can transform probability masks into region proposals and evaluate their quality using a
precision-recall (PR) framework that has become standard in the analysis of natural images.
Moreover, we implement two different techniques based on modern and classical computer
vision algorithms, and compare their performance within this PR framework. The primary
contribution of this thesis is the development of software tools for accomplishing these tasks;

however, further work will be required to make quantitative statements about the disease itself.



2: Methods / Results

2.1: Dataset

Our data was acquired as described in [8], and includes microscopy images of medial
temporal lobe tissue sliced every 1 mm and imaged with approximately 2 micron resolution. The
microscopy images are stored in the Tagg Image File (tif) format and the image annotations are
stored in the NIfTT file format (a standard developed for brain images). Each microscopy image
has approximately 8,000 to 14,000 pixels along each axis and has 3 channels (red, green, blue).
The annotation files are the same dimensions as the microscopy images and each contains 5-12
randomly selected chunks which were annotated by a neuroanatomist. Within each chunk, every
pixel is marked as either background (with the value 1) or as a tau tangle (with the value 2).
Pixels outside of annotated chunks are given the value 0. Twelve image-annotation pairs are used
to generate the inputs to the models discussed in Section 2.4. One example annotated image is
shown in Figure 1, shown at low and high magnification. Along with the microscopy images
and associated annotations, the dataset also contains 3D MRIs, which will be used in future work

to correlate tau tangle density with neurodegeneration patterns.
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Figure 1: Annotated tau histology image. Top left shows a tau immunostained section of a
human medial temporal lobe. Top right shows randomly selected chunks that were completely
annotated. Two example chunks, and their annotations are shown on the bottom row, where

yellow refers to a tau tangle, and purple refers to anything else.

2.2: Preprocessing

Several images needed to be stitched together due to the fact that the imaging technology

used to annotate this data (Seg3D, https://www.sci.utah.edu/cibc-software/seg3d.html ) was not

able to interactively process files of this size (several GB per file) without significant delay. In
order to transform these annotations into viable targets, each annotation chunk and the
corresponding image chunk needed to be extracted and stored locally. In this work, a “target” is
defined as the annotation of an image, which we would like our machine learning models to

predict as accurately as possible.



To accomplish this, each annotation image was parsed through, pixel-by-pixel, until an
anchor pixel was identified. In this work, an “anchor pixel” is defined as one with a value of 1 or
2 (indicating this pixel was annotated), and whose upper and left neighbors have a value of 0
(indicating this pixel was not annotated). An anchor pixel corresponds to the upper-leftmost pixel
in a 200x200 annotated chunk. Once an anchor pixel was identified, the 200x200 chunk with the
anchor pixel as the upper left corner was extracted from the larger annotation image and the
corresponding 200x200 chunk in the microscopy image was also extracted. These two chunks
were then saved locally as .#if files. Then, we continued to parse through the annotation image
and extract all remaining annotated chunks. This was repeated for every annotation image. From
the 12 annotation files, a total of 155 chunks were extracted, each 200 x 200 pixels. 49 of these
chunks contain masks that include the presence of tau tangle and the remaining 106 chunks
contain only background. Background was included so that the frequency of tau positive pixels

in our annotated set was roughly equal to the frequency of tau positive pixels in our large images.

2.3: Dataset Class

In order to use the pre-built functions and model architectures from the torchvision
package, a custom dataset class was implemented. To be initialized, this class required a
directory containing all of the image chunks, a directory containing all of the corresponding
annotation chunks, an optional argument for returning either boolean masks or bounding boxes,
and an optional argument for using either the entire dataset or a predetermined subset. An
example of a predetermined set would be the training data resulting from an 80/20 train/test split.
This dataset was used in forchvision’s DataLoader class as an input to the machine learning

pipeline. When the DataLoader requested an item from the dataset, a combination of random



operations were performed on the image and associated annotation. There was a 50% chance that
the instance would be flipped horizontally, a 50% chance that the instance would be flipped
vertically, and an equal chance that the instance would be rotated either 0°, 90°, 180°, or 270°.
The purpose of this was to prevent overfitting and enforce rotation, translation, and reflection
invariance by augmenting the dataset with label preserving transformations[9], known as data
augmentation. Then, a random 132 x 132 chunk was extracted from the instance for the
remaining transformations. Figure 2 shows an example set of operations performed starting with
the original image-annotation chunks and ending with the model input. Following these
operations, a python dictionary was constructed corresponding to the target and related metadata.
This dictionary contained the bounding boxes and masks associated with the annotation, labels of
objects in the annotation, unique image identification number, and the area of each bounding
box. Ultimately, a tuple containing the randomly transformed image and corresponding target

dictionary was returned as an input to the training procedure for the current model.
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Figure 2: Illustration of data augmentation. Top row shows images, and bottom row shows
corresponding annotations. From left to right we see the original image, a flipped image, a
rotated image, and a randomly cropped image where the crop is illustrated with a red box in

the third column.




2.4: Machine Learning Methods

2.4.1: Model 1 - U-Net model

The U-Net is a type of convolutional neural network proposed by [10]. A differentiating
factor of this architecture is that image features are computed iteratively at decreasing
resolutions, and heat maps are estimated iteratively at increasing resolutions . Also, when
constructing an output probability heatmap, “skip connections™ are used to avoid a bottleneck
where everything must be computed from low resolution features. In our implementation, an
image of size 132x132x3 is passed through the first layer of the network. Several
convolution/downsampling layers are applied in sequence to compute features at low resolution,
followed by several convolution/upsampling/concatenation layers for defining the output
heatmap. The U-Net architecture is illustrated in Figure 3 (left). The script defining the U-Net

model can be found at;

https://github.com/twardlab/pathology_detection andrew/blob/main/unet arch.py

2.4.2: Model 2 - Linear model

As a baseline for comparison, we include a simpler classification model consisting of a
single affine (linear plus addition) transformation. This method is essentially equivalent to linear
logistic regression, but we use exactly the same training procedure as for the U-Net. This model
is written using the PyTorch framework as a neural network with a single /inear layer. The linear
model architecture is illustrated in Figure 3 (right). The script defining the linear model can be

found at: https://github.com/twardlab/pathology_detection_andrew/blob/main/linear_arch.py
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Figure 3: Model architectures and example outputs. The top row shows the architectures
for the 2 models used in this work. From left to right, the images on the bottom row show a
sample input to the U-Net, the corresponding output from the U-Net, a sample input to the

linear model, and the corresponding output from the linear model.

2.4.3: Training

An 80/20 stratified train/test split was performed where image-annotation pairs were

grouped by whether or not the annotation only contained background. Due to the imbalance in
9



annotations with masks, this stratification ensured that every split would contain several
instances with tau tangle. Specifically, there were 124 image-annotation pairs used for the
training of each fold and the remaining 31 image-annotation pairs were used for testing of each
fold. The same splits were used for training and testing of both the U-Net and the linear model.
No validation set was used here since we are not considering optimization over any
hyperparameters. Cross entropy loss, summed over each pixel, was used as the loss function and
the Adam optimizer was used for the optimization step [11] . We use the term “epoch” to denote
one pass through the training set during optimization. Training was performed for 500 epochs
for each fold. Loss as a function of epoch, for one of our 5 folds, is shown in Figure 4 below.
From the figure we can see that the U-Net achieves a lower loss than the linear model, which is

expected given the small number of degrees of freedom in the linear model.
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Figure 4: Cross entropy loss as a function of epoch number. For one fold, we show cross
entropy loss as a function of epoch number for both the u-net and the linear model. The

bottom panel shows the same data zoomed in, by leaving out the first 100 epochs.
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2.5 Post-processing

As part of testing the model, each input is transformed into a heatmap, where each pixel
represents the probability that a tau tangle is present and ranges from 0 to 1. To remove isolated
single pixels that are due to noise, this probability heatmap is then blurred using a Gaussian filter
with standard deviation of 1.5 pixels. Then, a set of binarized images was generated from this
heatmap by thresholding over every value from 0.01 to 1 using a step size of 0.01. This
procedure allowed us to output a set of bounding boxes without having to choose a single
optimal threshold. Figure 5 is an example of the set of generated binarized images which arise
from this repeated thresholding. The title of each subplot corresponds to the probability threshold
used for binarization and the subplot shows the result of thresholding at this value. All pixels
with a value greater than the threshold become 1 (yellow) and all pixels with a value less than or
equal to the threshold become 0 (purple). The connected components of each binarized image are
then defined and bounding boxes are generated surrounding each distinct component. A
bounding box is a 4-tuple describing the maximum extent of the component in the x and y
direction, in the form: (xmin,ymin,xmax,ymax). Then, a confidence value is assigned to each
bounding box. In this work, confidence is defined as the 99th percentile of all the probability
values within the bounding box on the original probability heatmap, but more sophisticated
approaches could be investigated in the future. This confidence value is needed for the
precision-recall analysis described below. Every bounding box from each of these binarized
images is added to a set, which is then filtered. This set of bounding boxes contains many
bounding boxes corresponding to the same tau tangle. To address this redundancy, bounding
boxes were filtered out of this set if they satisfied one of several simple criteria: area of less than

4 pixels, area greater than 400 pixels, or there exists an identical (duplicate) bounding box.
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Figure 5: Example of bounding box probability thresholding. Generation and extraction of
bounding boxes at all probability thresholds. Notice that the large component at the top left
has no bounding box because its area is greater than 400 pixels, and the smaller components

toward the bottom right have no bounding box because their area is less than 4 pixels.




After filtering, non-maximum suppression (NMS) (as described in[12]) was performed to
choose one bounding box out of each group of overlapping boxes. To accomplish this, first
bounding boxes are sorted by their confidence from greatest to least and stored in an input list,
and an output list was initialized as empty. Second, the bounding box with highest confidence
from the input list was appended to the output list of bounding boxes, and removed from the
input list. Third, all bounding boxes in the input list, with an Intersection Over Union (IOU) of
greater than 0.5 with respect to this high-confidence bounding box were removed from the input
list. Fourth, this process was repeated until no bounding boxes remained in the input list. The
value of 0.5 was chosen heuristically, but could be potentially learned from data as stated in [12].
A summary of our post processing steps for one image is shown in Figure 6. We notice that
there are still multiple bounding boxes for the same component, and improving the NMS step

will be the subject of future work.
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Figure 6: Example of post processing steps. The upper left figure shows the original
prediction from the model. The upper right figure shows the original prediction after
undergoing a Gaussian blur. In the lower left figure, each red box corresponds to a region
proposal generated from the methods discussed in the above section. The lower right figure

shows the remaining region proposals after filtering and performing NMS.
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2.6 Performance Quantification

Several metrics are used in quantifying the performance of these models. IOU is
computed as the area of the intersection between two bounding boxes divided by the area of the
union between two bounding boxes. Precision is computed as the number of True Positives (TPs)
divided by the sum of the total TPs and False Positives (FPs). Recall is computed as the number
of TPs divided by the sum of the total TPs and False Negatives (FNs). For a single [OU
threshold, a set of (precision, recall) pairs, parameterized by confidence, are used to construct a
PR curve. Average precision (AP) is the area under this PR curve. The final metric used to define
model performance is mean average precision (mAP), which is the mean of the set of average
precisions from each IOU threshold. We consider all IOU thresholds from 0.5 to 0.95 in steps of
0.05. These steps are illustrated as an algorithm in Figure 7. This PR analysis allows us to
compare models without choosing specific thresholds, and is independent of True Negatives
(TN) which cannot be meaningfully defined in these cases and are necessary for a more standard

receiver operating characteristic analysis.
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Initialize empty set for all PR curves
for all 10U thresholds (i) m 0.5:0.05: 1 do
Initialize empty sets for precision and recall

for all confidence thresholds (¢) in 0.01 : 0,01 : 1 do
Imitialize counts for TP, FP, FN to 0
for all results in model output do
prob « Probability heatmap
ann + Corresponding ground truth annotation
Construct set of gronund truth bboxes from ann
Initialize empty set of prediction bboxes
for all probability thresholds (p) in 0.01 : 0.01 : 1 do
Construct set of prediction bboxes at p
Compute confidence for each bbox and append to list of
all prediction bboxes
end
Remove duplicate bboxes and those with an area too small or
too large
Perform Non-Maximum Suppression on list of prediction
bhoxes
Compute number of TP, FP. and FN for the ground truth
and prediction sets and add to total TP, FP, FN counts

end

Compute precision and recall, and append to respective sets
end

Append (precision, recall) curve to set of all PR curves

end

Figure 7: Algorithm for generation of PR curves.

17




In Figure 8, we show PR curves comparing the U-Net model to the linear model, for a
single IOU threshold and a single fold (the same fold for both models). Notice that the linear
model never outputs a confidence greater than 0.01, and so only outputs false negatives. This is
consistent with our expectation that a linear model will be insufficient to classify tau tangles,

given variations in foreground and background image intensity throughout the brain images.

Lo PR Curve (IOU Threshold: 0.5)
| — LU-Net
Linear
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0.6 1
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D.G ; T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Recall
Figure 8: Comparison of the two methods using PR curves. This figure shows the PR
curves generated for the U-Net and Linear models over the same fold at a fixed IOU threshold
of 0.5.
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In Figure 9, we show mAP for each of our 5 folds. We notice that the linear model leads
to a value of 0 in all cases as described above. The U-Net performs better over every fold, but its

mAP is still quite low given the large number of false positives resulting from our simple NMS

procedure.
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Figure 9: Comparison of final mean average precisions. The first 5 groups compare the
mAP between the U-Net and Linear models at each fold. The rightmost group compares the
average mAP across all 5 folds.
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3: Discussion

First, we built a set of software tools for constructing bounding boxes and assigning
confidence to those bounding boxes from a U-Net output. The purpose of these tools is to
evaluate the quality of outputs using the PR framework, which is standard for object
segmentation tasks involving natural images, but is not typical for object segmentation tasks
involving biomedical images. Second, we trained two models for detecting tau tangles in
microscopy images from the medial temporal lobe using and compared their performance using
this set of software tools. As expected, we found that the linear model was insufficient for
detecting tau tangles.

There were various limitations in filling the knowledge gap. First, the NMS/filtering step
must be improved to eliminate all of the incorrect bounding box predictions generated from the
probability thresholding portion of the algorithm. The presence of these additional predictions
leads to an increase in the total number of false positives, which causes a decrease in precision at
every IOU threshold. This decrease in precision at each IOU threshold contributes to an overall
decrease in mAP. Therefore, increasing the ability of the NMS/filtering step to eliminate these
redundancies would lead to an increase in the overall quality of the model’s predictions. Second,
the method for assigning confidence scores to each bounding box must be improved. The method
used in this work was rather crude. A more sophisticated method for generating a confidence
score would likely have a stronger mathematical foundation and likely lead to better predictions.
Finally, the small quantity of data used in training and testing likely prevented the model from
making more accurate predictions with higher confidence. Therefore, a larger amount of data for

training and testing would likely lead to an increase in the amount of true positives and a
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decrease in the number of false positives. These two changes would contribute to an increase in
precision, recall, and ultimately, mAP.

There were also various limitations in the generalizability of our set of software tools. In
this work, we developed a procedure for evaluating the performance of machine learning models
which output a heatmap. Another important class of machine learning models to which we would
like to compare our results are those which directly output a set of bounding boxes, such as those
in the region-based convolutional neural network (R-CNN) family. While we designed our
method to be compatible with these types of outputs, we have not yet explicitly included them in
our comparisons. This type of output, as opposed to heatmaps, is essential for generating counts
of tau tangles relative to counts of healthy neurons, which is a biologically meaningful measure
of disease severity. For example, in the work of [7], counts of tau tangles were not estimated.
Instead, a measure of “tau burden” was computed directly from the probability heatmaps.

Along with addressing the aforementioned limitations, future research could extend this
work in several ways. One way that this work could be extended is by developing algorithms that
detect all the tau tangles within the dataset and map out their densities in a 3-dimensional space.
The distribution of these 3D structures could be correlated with other AD biomarkers, such as
amyloid plaque deposits, and other measures of neurodegeneration determined from MRI. The
tools that we have built will help when deciding on the best machine learning models for this

task.
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