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Seabird meta-Population Viability Model (mPVA) 

methods 

M. Tim Tinker a , c , ∗, Kelly M. Zilliacus b , Diana Ruiz 

b , Bernie R. Tershy 

b , 
Donald A. Croll b 
a EEB Department, University of California Santa Cruz, Santa Cruz, CA USA 
b Conservation Action Lab, University of California Santa Cruz, Santa Cruz, CA USA 
c Nhydra Ecological Consulting, Nova Scotia, Canada 

a b s t r a c t 

The seabird meta-population viability model (mPVA) uses a generalized approach to project abundance and 

quasi-extinction risk for 102 seabird species under various conservation scenarios. The mPVA is a stage-structured 

projection matrix that tracks abundance of multiple populations linked by dispersal, accounting for breeding 

island characteristics and spatial distribution. Data are derived from published studies, grey literature, and 

expert review (with over 500 contributions). Invasive species impacts were generalized to stage-specific vital 

rates by fitting a Bayesian state-space model to trend data from Islands where invasive removals had occurred, 

while accounting for characteristics of seabird biology, breeding islands and invasive species. Survival rates were 

estimated using a competing hazards formulation to account for impacts of multiple threats, while also allowing 

for environmental and demographic stochasticity, density dependence and parameter uncertainty. 

• The mPVA provides resource managers with a tool to quantitatively assess potential benefits of alternative 

management actions, for multiple species 
• The mPVA compares projected abundance and quasi-extinction risk under current conditions (no intervention) 

and various conservation scenarios, including removal of invasive species from specified breeding islands, 

translocation or reintroduction of individuals to an island of specified location and size, and at-sea mortality 

amelioration via reduction in annual at-sea deaths 
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Specifications table 

Subject Area: Environmental Science 

More specific subject area: Population Modeling 

Method name: Meta-Population Viability Model 

Name and reference of original 

method: 

[8] . Matrix population models: construction, analysis, and interpretation. 2nd ed 

edition. Sinauer Associates, Sunderland, MA.. 

Resource availability: NA 

Overview 

Mechanistic models of wildlife population dynamics have long been important tools for resource 

managers and conservation biologists [12] . A key advantage of using process-based models that

include spatial and demographic structure is that the impacts of many threats (e.g., invasive species,

fishing by-catch) are both spatially explicit and stage-specific, and thus the conservation benefits 

of mitigation efforts (e.g., removal of invasive species, fishing regulations) can be best-evaluated 

by modeling their effects on the appropriate demographic stages and/or sub-populations, and then 

translating these into species- level impacts [10] . One factor that has hindered the use of mechanistic

population models for informing conservation is the paucity of reliable demographic data for many 

rare and endangered species [2 , 17] . However, improvements in analytical methodology have enabled

the development of robust demographic models even for species where data are limited, both by

making use of diverse data sources [3 , 27] and by using hierarchical multispecies analyses to leverage

information from data-rich species to inform data-poor species, while accounting for phylogenetic 

relatedness or life history similarities [16 , 19] . 

We developed a generalized meta-Population Viability model (mPVA) for island-breeding seabirds. 

Our model is based around a stage-structured projection matrix [8] , with spatial structure of

dispersed breeding colonies incorporated by embedding demographic matrices for semi- discreet sub- 

populations (generally Islands or Island groups) within a larger meta-matrix structure representing 

the dynamics of the entire species. We use Bayesian hierarchical methods to parameterize the 

model using publicly available data contained in the IUCN Red List of Threatened Species version

2018.2 [17] , additional data contained in the Threatened Island Biodiversity Database [26] , literature-

reported values of seabird vital rates, and solicited expert opinion. The hierarchical model structure 

ensures that, for each species, parameter estimates are informed by data for all species, weighted

by taxonomic relatedness and life history similarity, resulting in higher precision of estimates for 

data-rich taxa and lower precision of estimates for data-deficient taxa. To estimate the demographic 

impacts of invasive species (that is, to estimate their effects on baseline vital rates), we use published

time series data on seabird abundance at islands where invasive species occur and/or where invasive

species have been removed. We fit a Bayesian state space model to these time series to estimate

the additional hazards associated with invasive species: the hazard function includes covariates for 

invasive type, nesting type, body size, island size, and number of co-occurring invasive species

(allowing for compensatory mortality at islands with > 1 invasive species present – see below, “Model

Parameterization”). 

We use the parameterized mPVA model to simulate population dynamics of threatened and 

endangered seabirds, with starting abundances initialized using the most recent IUCN red list 

status reports. Simulations incorporate both environmental stochasticity and appropriate levels of 

uncertainty in all parameters. Projections are made for all species, including those with limited or

negligible monitoring data; however, the level of estimation uncertainty is appropriately higher for 

these taxa. We summarize results in terms of the proportion of simulations dropping below a quasi-
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xtinction threshold within a 100-year period. We emphasize that our model is not designed to

apture the specific dynamics of any one species or conservation threat, and we note that customized

odels tailored to individual species and their environmental/anthropogenic threats will invariably

e more reliable for evaluating localized dynamics. Instead, our generalized model is designed to

valuate and compare conservation benefits (in terms of their effects on relative quasi-extinction

ikelihood) of various management options across multiple species, using consistent methodology.

e focus specifically on 4 management scenarios: (1) invasive species removals, (2) at-sea mortality

itigation; (3) re- introductions to previously-occupied islands; and (4) translocation to potential

reeding islands. 

odel structure 

The seabird mPVA is a generalizable mathematical structure for projecting the expected abundance

ver time of threatened seabird species on islands known to support breeding populations. Following

eneral convention, we use a single-sex projection matrix [8] to describe the demographic transitions

f independent (non-chick) female sea birds for population i in year t [1 , 11 , 20 , 21] . We assume a pre-

reeding census, and thus the first tracked age class are juveniles approaching 1-year of age (i.e.

hicks born the previous year that have survived both the breeding season and their first winter).

o reduce model complexity and number of parameters we collapse year-classes to stages [10] , such

hat individuals are classified by developmental/reproductive status into three life history stages: (1)

ub- adults, (2) breeding adults, and (3) non-breeding adults. 

We represent the number of individuals in stage a in breeding population i at year t as n a,i,t , and

epresent total female abundance for population i at year t as N i,t (where N i,t = �n a,i,t ). The three

tages are linked demographically in that sub-adults grow and develop to become adults, breeding

dults transition to non-breeding adult status (and vice versa) based on behavioral decisions or

xternal constraints, and breeding adults contribute to the sub-adult stage via successful reproduction

i.e., by producing offspring that hatch, fledge and recruit to the sub-adult stage). These demographic

ransitions are represented mathematically as population projection matrix A i , 

A i,t = 

[ 

s 1 ( 1 − g ) e 
2 · h · f · s 0 0 

s 1 · g s 2 · b s 3 · b 

0 s 2 ( 1 − b ) s 3 ( 1 − b ) 

] 

(1)

here matrix elements are comprised of one or more vital rates including annual survival ( s ), growth

ransition probability (g), adult annual breeding probability ( b ), average number of eggs produced per

reeding pair ( e ), hatching success rate ( h ) and fledging rate of chicks ( f ). Note that s 0 represents

he survival of fledged chicks for their first winter, while s 1 represents sub-adult survival rate, s 2
epresents breeding adult survival rate, and s 3 represents non-breeding adult survival rate. Note that

ll vital rates are expected to vary stochastically over time (environmental stochasticity), thus the

arameterized cell values of A i,t will vary from year to year (see methods for simulations, below). 

To estimate the probability of transitioning from sub-adult to adult stage (g) we use the standard

quation for fixed-duration age classes [8] : 

g = 

( (
s 1 / λ

)T −
(
s 1 / λ

)T −1 (
s 1 / λ

)T − 1 

) 

(2)

here T represents the time from recruitment to the average age of first reproduction ( AFR ) and λ
s the annual deterministic growth rate associated with a particular matrix parameterization. Eq. (2 )

ust be solved iteratively: λ is initially set to 1, Eq. (2) and then 1 are solved, λ is re-computed as the

ominant eigenvalue of A i,t , and the calculations repeated until the value of λ stabilizes to 2 decimal

laces. 

Populations of seabirds breeding on oceanic islands are generally embedded within a larger meta-

opulation, consisting of breeding populations at different islands between which there is some level

f dispersal and thus demographic connectivity. Multiple breeding populations are accommodated in
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our model by taking the block diagonal of matrix Ai,t across k different sub-populations: 

C t = 

⎡ 

⎢ ⎢ ⎣ 

A 1 ,t ∅ · · · ∅ 
∅ A 2 ,t · · · ∅ 
. 
. 
. 

. 

. 

. 
. . . 

. 

. 

. 

∅ ∅ · · · A k,t 

⎤ 

⎥ ⎥ ⎦ 

(3) 

where ∅ represents a 3 × 3 matrix of 0s. To allow for stage-specific dispersal between sub-

populations, we first create dispersal matrix D to describe dispersal probabilities ( d a ) for each life

history stage: 

D = 

[ 

d 1 0 0 

0 d 2 0 

0 0 d 3 

] 

(4) 

We note that d a represents only the probability that an individual of stage a emigrates from

source population i ; it does not specify the recipient population. We next create an inter-population

connectivity matrix, IP , with non-diagonal elements p i,j describing the probability that an individual

that has emigrated from population i will immigrate to population j based on the pairwise distances

between populations: 

IP = 

⎡ 

⎢ ⎢ ⎣ 

−1 p 2 , 1 · · · p k, 1 

p 1 , 2 −1 · · · p k, 2 

. 

. . 
. 
. . 

. . . 
. 
. . 

p 1 ,k p 2 ,k · · · −1 

⎤ 

⎥ ⎥ ⎦ 

(5) 

To estimate p i,j we assumed that distributions of dispersal distances can be reasonably described

by exponential distributions, with expected values approximated by the average of literature-reported 

values of taxa-specific dispersal distances ( δ). We used exponential probability density functions to 

calculate the relative likelihood of dispersal at each pairwise inter-population distance, and then re- 

scaled these values such that �p i,j = 1 for i � = j . We note that the diagonal of matrix IP is fixed at -1

to simplify algebraic calculations (by ensuring that columns of IP sum to 1). 

To describe annual dynamics of the entire meta-population, we integrate matrices C, D and IP

(following [8] ) to obtain meta-population projection matrix M t 

M t = ( IP � D ) × C t + C t (6) 

In Eq. (6 ), the Kronecker tensor product of matrices IP and D describes regional movement

transitions for each life stage, while the remaining matrix operations account for demographic 

transitions of both dispersers and non-dispersers. Annual population dynamics are then computed 

by taking the product of M t and the population vector n a,i,t , using standard methods of matrix

multiplication: 

n a,i,t+1 = M t × n a,i,t (7) 

In demographic simulation models it is generally important to account for negative density- 

dependence (the tendency of population growth to decline towards 0 as populations approach 

environmental carrying capacity or K ), to avoid unrealistic expectations of unconstrained growth. For 

threatened seabird demographic models this step is often unnecessary, as current densities are far 

below historical levels likely to represent K. However, given the time frame of prospective simulations

(100 years; see below) and the potential for rapid growth of colonies once critical threats are removed

[6] , it was necessary to include density-dependence within the mPVA structure. Population regulation 

in most species occurs due to density-dependent variation in one or more vital rates, although

the mechanism and vital rates involved differ by species. For example, Common Guillemots ( Uria

aalge ) breeding on the Isle of May, Scotland, experienced density-dependent reduction in breeding

probability [9] , while Magellanic Penguins ( Spheniscus magellanicus ) experience reductions in fledging

success at high densities [25] . In general, both theory and empirical evidence suggest that density-

dependent variation is most likely to occur in vital rates with low elasticities [23] ; thus, for most
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Table 1 

Seabird vital rate parameters. 

sa Adult Survival 

b Adult annual breeding probability 

AFR Age of first reproduction 

E Average number of eggs produced per breeding pair 

H Hatching success rate 

F Fledging rate of chicks 

da Dispersal probability of adults 

δ Dispersal distance 

η Nest density 
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eabirds, we would expect population regulation to occur via density-dependent variation in fledging

uccess or juvenile survival, as opposed to adult survival. We therefore modified our model to allow

or density-dependent reductions in fledging success ( f ) as populations approach local K , using the

on-linear function: 

f dd = f 

/( 

1 + 

[
N i,t 

K i 

]θ
) 

(8)

In Eq. (8 ), f dd (density-dependent fledging success) varies as a non-linear function of the

roportional abundance of a colony relative to K . By setting the θ parameter to a value of 5–10, the

unction results in negligible change in f dd at densities below 2/3 of K and then accelerating declines

n f dd at higher densities, with a reduction in f dd of 50% as density approaches K ( Fig. 1 ). Another

hallenge is to define K for each seabird/island combination. While K has not been defined for most

pecies (let alone specific breeding populations), we can approximate it by multiplying maximum

est density ( η) by the potential “Area of Occupancy” (AoO) for the species. Measurements of nest

ensities are reported in the literature for many species, and the AoO metric is reported by IUCN for

any threatened seabirds (IUCN 2018). 

odel parameterization 

aseline vital rates 

The principal benefit of a generalizable seabird mPVA model is that analytical methods are

onsistent across all seabird species, and thus results (in terms of both quasi-extinction risks and

itigation benefits) can be directly compared across taxa. This beneficial feature also represents a

hallenge, in that robust estimates of vital rates necessary to parameterize the model have only been

ublished for a fraction of extant seabird species. Moreover, even the literature for data-rich species

rovides estimates for a sub-set of the total parameters required for the model. 

We addressed this challenge by conducting a comprehensive literature search to extract parameter

stimates from published reports, and we treat the distribution of reported values as Bayesian priors

or our model. Specifically, we reviewed both the primary literature and grey literature (unpublished

eports, conference proceedings) to extract all available estimates of vital rate parameters ( s a , b , AFR,

, h, f, d a , δ and η; Table 1 ), and their associated standard errors ( σ v ), for as many species as possible.

These were entered into a new table within the Threatened Island Biodiversity Database,

ugmented by the results of an expert opinion survey mailed to researchers and experts in seabird

iology during Fall 2016. The resulting table included at least some estimated values for each

arameter, for each seabird family. We next stepped through each seabird species of interest and

xtracted from the database all parameter estimates available for species from the same taxonomic

amily as the focal species. We weighted these published estimates in terms of taxonomic relatedness:

pecifically, we replicated estimates 20x if they were from the same species, 5x if they were from

he same genus (but different species) and 1x if they were from a different genus (but same family)

rom the focal species. We then fit probability density distributions to each sample of estimates, using

aximum likelihood estimation (MLE) techniques implemented in R (using library “fitdistr”). In the
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Fig. 1. Density-dependent variation in realized Fledging Success rate, as modeled using Eq. (9 ) (see text for details). At densities below 50% K there is no measurable decrease in baseline 

fledging success (shown as 0.7 in this example), but as population density increases above 50% K there is an accelerating decrease in fledging success, resulting in zero population growth 

as the population approaches K . 
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ase of rate parameters ( s a , b, h, f and d a ) we first logit-transformed the sampled estimates and

hen fit normal distributions to the logit values; for integer parameters ( e and AFR) we fit Poisson

istributions; and for dispersal distances ( δ) and nest densities ( η) we fit log-normal distributions.

hese MLE-fitted distributions represent the best available prior knowledge about the likely range

f values for each parameter value, for each seabird species. For those species or genera that have

een well-studied, and for which there are abundant data available, the prior distributions were well

efined, whereas for data-poor species the prior distributions were poorly defined, or “vague” (see

ig. 2 ). 

stimating carrying capacity 

Given the simplifying assumption that the key limiting resource for most seabird breeding

opulations is appropriate nesting habitat (defined as high quality nest sites at mostly predator-free

ocations proximal to prey resources), we can derive a rough approximation of carrying capacity ( K )

y multiplying maximum nest density by the total area of appropriate habitat. For many species,

nformation was available from IUCN on the “Area of Occupancy” (AoO), although for most species

nly a sub-set of AoO represents appropriate nesting habitat. Using those species for which historical

ata were available on maximum population size (pre-decline) and AoO, we fit a linear model to

redict the proportion of AoO used for nesting, with covariates of adult body size and taxonomic

amily, and used this function to create a scaled value (AoO 

∗) representing total suitable nesting

abitat. To estimate K at the species level, we multiply range-wide AoO 

∗ by mean nest density ( η) for

ach species to get a rough approximation of range-wide K . We then partition this total K among the

urrently occupied breeding locations; however, this step is challenging because equilibrium colony

izes are not equal or random across islands, but rather vary as a function of island size (larger islands

enerally support larger colonies, but the relationship is non-linear because suitable nesting habitat

sually comprises a higher proportion of smaller islands). We therefore used all available survey data

o fit a generalized linear mixed-effect model (GLMM) to predict the proportional allocation of seabird

bundance as a function of island size and number of breeding colonies: 

ogit 

(
N i ∑ 

i =1: NI N i 

)
∼ log ( Are a i ) + NI + 

Are a i ∑ 

i =1: NI Are a i 
+ log ( Are a i ) × NI + NI × Are a i ∑ 

i =1: NI Are a i 
+ ( 1 | F amily )

(9)

here NI is the number of distinct islands or breeding populations, and taxonomic family is included

s a random effect. This model provided a reasonably good fit to the available data and was used to

enerate expected proportional allocations of range-wide K among breeding colonies (subject to the

onstraint that Ki was required to be at least 2x the current estimated abundance). We note that, for

ost species on most Islands, the resulting estimates of K were more than 10x the current abundance

stimates. 

nvasive impacts 

Multiple studies have documented substantial negative impacts of invasive species on island-

reeding seabird colonies (see [18] ). However, in most cases the impacts of invasive species are

eported in terms of their population-level impacts on abundance or trends, rather than in terms of

er- capita effects on specific vital rates. Moreover, these published accounts are generally situation-

pecific, and thus extrapolating from these case studies to other seabird species and islands is difficult.

Therefore, to provide a consistent and repeatable approach for predicting the effects of invasive

pecies on seabird vital rates, we developed a Baysesian state-space model with which to estimate

eneralized invasive impacts, incorporating the effects of known co-variates (e.g. class of invasive

pecies, seabird nesting strategy, seabird body size, etc.) while accounting for uncertainty. We used

ublished data on the population trends of seabirds at islands having different suites of invasive

pecies, as well as population trends of seabirds at islands from which invasive species had been

emoved, to fit this model. To accommodate simultaneous impacts from multiple invasive species (i.e.
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Fig. 2. Prior distributions of our estimates for adult survival rate for two species, based on literature searches for published information. The data rich species (blue) has 5 published 

species-specific estimates, and 107 estimates for the taxonomic Family. The data poor species (red) has no species-specific estimates and only 17 estimates for the taxonomic Family, and 

this smaller sample size results in a greater degree of uncertainty in the prior distribution. 
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ompeting risks), we use a proportional hazards approach to model invasive effects on key vital rates

4 , 13] . 

To model invasive impacts, we first assume that the effects of invasive species on breeding seabirds

an be described in terms of changes to either or both of two vital rates, fledging success ( f ) and adult

urvival ( s 2 ). We recognize that other vital rates could also be impacted (hatching success, breeding

uccess, juvenile survival), however given the mPVA matrix structure ( Eq. (1 )) these effects would be

athematically indistinguishable from effects to f or s 2 . We next assume that the additional hazards

ssociated with invasive species effects will modify baseline vital rates as follows: 

f ′ = f exp 
(
γ f 

)
and s 2 

′ = s 
exp ( γs ) 
2 

(10)

here γ f and γ s represent the cumulative log hazard ratio associated with invasive effects on fledging

uccess and adult survival rates, respectively. Note that expressing hazard ratios in log form simplifies

alculations and data fitting, as multiple independent hazards are additive in log form [4] . If we define

azard ratio 	x as the proportional change in mortality risk for eggs or nestlings associated with the

resence of invasive species x (e.g. 	x = 1.1 indicates a 10% increase in mortality risk), and further

ssume that effects of multiple invasive species are independent and additive, then the cumulative

og hazard ratio associated with invasive effects on fledging success ( γ f ) would be calculated as the

um of log ( 	x ) for invasive species x = 1, 2, …Xi (if there are Xi invasive species at breeding site

 ). However, because of the brief duration of breeding seasons and concentrated nature of seabird

reeding colonies on oceanic islands, it is reasonable to expect that mortality from multiple invasive

pecies is at least partially compensatory rather than purely additive [7 , 14] . Also, we might expect

ortality impacts from invasive species to be more acute on smaller islands, where the potential for

efuge from predators is minimal. Accordingly, we compute cumulative log hazards of invasive effects

n fledging success at site i as: 

γ f,i = 

[ 

x = X i ∑ 

x =1 

log ( 	x ) 

] 

×
(

1 / X i 

)φ

×
(

1 / Are a i 

)ψ 

(11)

In Eq. (11 ), the second term on the right adjusts for compensatory mortality, with parameter φ
etermining the degree to which mortality is compensatory (mortality is purely compensatory as

→ 1, purely additive as φ→ 0, and 0 <φ < 1). The third term on the right of Eq. (11 ) adjusts for

he effect of island size ( Areai expressed in units of km 

2 ), such that per-capita impacts decrease

ith larger Island size when parameter ψ > 0. Both φ and ψ are treated as parameters to be fit.

he cumulative log hazards associated with invasive effects on adult survival are calculated almost

dentically to Eq. (11 ). We note however that the proportional effects of invasive species on adult

urvival are generally somewhat lower than the effects on chicks and may vary depending on adult

ize and the type of invasive species (with some invasive species posing no threat to adult seabirds).

e therefore replace the nestling hazard ratio 	x with an adult hazard ratio, �x , and then estimate

umulative log hazards of invasive effects on adult survival as: 

γs,i = 

[ 

x = X i ∑ 

x =1 

log ( �x ) 

] 

×
(

1 / X i 

)φ

×
(

1 / Are a i 

)ψ 

(12)

here log( �x ) is calculated as: 

l og ( �x ) = ζx × β1 × l og ( 	x ) 

(
1 / AdSz + 1 

)β2 

(13)

In Eq. (13 ), β1 and β2 are fitted parameters that adjust adult hazards relative to chick hazards as

 function of adult body size, and ζ x is a binomial switch variable that determines whether a given

nvasive species represents a measurable risk to adults, based on published accounts and/or expert

pinion ( ζ x = 0 for herbivores and most birds, ζ x = 1 for carnivores, most omnivores, and rats). 

We use Bayesian methods to estimate the scalar parameters φ, ψ , β1 , and β2 , and we treat 	x as

 hierarchical parameter drawn from a normal distribution, 	x ∼ N ( 	, σ 	), where 	 and σ	 are

dditional parameters to be fit. To limit the number of fitted parameters we did not estimate unique

alues of 	x for each combination of invasive species and seabird, but rather for each combination
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of nesting type (arboreal, burrow, cliff, crevice, crevice/burrow, surface) and 5 categories of invasive

species (bird, carnivore, herbivore, omnivore, rat). Our observed data were time series of survey counts

( O i,t ) at islands supporting different suites of invasive species, as well as survey counts at islands

where invasive species had been present but then were removed [6] . The latent (unobserved) variable

was the true abundance of each seabird species at each island ( N i,t ), assumed to be affected by the

presence of (or removal of) invasive species. For each available survey estimate, O i,t was assumed to be

drawn from a Poisson distribution with mean N i,t . The dynamics of N i,t were calculated using standard

matrix multiplication methods, with projection matrices constructed and parameterized according to 

Eqs. (1 ), (2) , (10) –(13) (note that for this analysis we ignored density-dependence and inter-island

dispersal). Priors for baseline vital rates were set according to the methods described above, and we

used uninformative priors for N i,1 and for the parameters that determined invasive species effects ( φ,

ψ , β1 , β2 , 	 and σ	). 

The model was coded in R and JAGS (Just Another Gibbs Sampler) and solved using Markov Chain

Monte Carlo methods to find the values of the parameters most likely to result in the observed data.

We ran 20 parallel chains for a burn-in period of 50 0 0 replications and then saved a total of 10,0 0 0

samples, using these to describe the posterior distributions for invasive species effects parameters. 

Initializing meta-population and incorporating information on current trends 

Before running simulations of the mPVA for a seabird species of interest, the model was

initialized with starting abundances at each breeding island. For some threatened species, estimates 

of the total number of adult birds or the number of breeding pairs are available for each

occupied island. These data were obtained through searches of primary and grey literature as well

as from BirdLife International species factsheets ( http://datazone.birdlife.org/species/spcreferences ). 

When island specific estimates of total birds are available, we simply divide the value in half (to obtain

the estimated total number of female birds) and then multiply by the stationary stage distribution

(SSD) associated with the parameterized matrix model [8] , in order to create the initial population

vector n a,i,1 . When island specific estimates of breeding pairs are available, we use this value to

estimate n 2,i,1 , and then calculated scaled estimates of sub-adults and non-breeding adults using the

SSD. For many other species, estimates of abundance are only available for the entire population, and

so the estimate must be partitioned among breeding sites/islands. We accomplish this using the fitted

proportional allocation function ( Eq. (9 )) to partition the total number of female birds among breeding

colonies, accounting for prediction uncertainty and sampling error as described above for “Estimating 

Carrying Capacity”. The total number at each island is then divided among stages according to the

SSD. 

For most threatened seabird species of interest, the IUCN Red List also includes information on

current population trends for each species. We used this information to update the prior distributions

of parameter estimates for each species, thereby ensuring that the mPVA model simulations were 

consistent with the best available information on current trends. To accomplish this, we created 

a priori quantitative definitions for the expected values of λ (annual growth rates) corresponding 

to the qualitative descriptions of status/trends in the IUCN red list (Increasing, Stable, Decreasing).

Based on reported quantitative trend values available for a sub-set of species, we assumed modal

lambda values of 1.02, 1.00 and 0.98 for Increasing, Stable and Decreasing, respectively; however, 

recognizing the uncertainty associated with the qualitative status designations we also allowed for 

a distribution of uncertainty around each modal value. Specifically, for each classification we assigned 

relative weights ( w λ, where � w λ = 100) corresponding to our expectations about the likelihood of

each potential value of lambda for a given status, assuming a distribution of possible log(lambda)

values with standard deviation = 0.03 Table 2 ). Using these weights as sample sizes, we created

a vector of 100 “observed trend values” for each species/island combination, corresponding to the 

reported trends in the IUCN Red List. We then created a Bayesian model (coded using JAGS software)

to estimate posterior distributions for all model parameters, given the set of prior expectations (i.e. the

MLE-fitted distributions for baseline vital rates and posterior distributions for invasive threat function 

parameters) and the observed trend values. As described above (see “Invasive Impacts ”), Eqs. (1 ), ( (2)

and (10) –(13) were used to calculate expected dynamics of the latent variable ( Ni,t ) and thus the

http://datazone.birdlife.org/species/spcreferences
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Table 2 

Weights used to define "observed values" for annual trend ( λ) 

associated with qualitative descriptions of trends in IUCN status 

reports. The distribution of λ weights provides an approximation 

of the uncertainty associated with quantitative population trends. 

Lambda Increasing Stable Decreasing Unknown 

0.9 0 0 0 1 

0.91 0 0 1 1 

0.92 0 0 2 2 

0.93 0 1 3 3 

0.94 0 2 6 3 

0.95 1 3 8 5 

0.96 2 5 11 6 

0.97 3 8 12 7 

0.98 6 11 13 9 

0.99 8 13 12 10 

1 11 14 11 10 

1.01 12 13 8 10 

1.02 13 11 6 9 

1.03 12 8 4 7 

1.04 11 5 2 5 

1.05 8 3 1 4 

1.06 6 2 0 3 

1.07 4 1 0 2 

1.08 2 0 0 1 

1.09 1 0 0 1 

1.1 0 0 0 1 

Tally Wts 100 100 100 100 

m  

v  

σ  

e  

b

R

 

t  

t  

d  

o  

b  

t  

m  

m  

v  

e

f  

a  

o  

t  

c  

a  

b  

s  
ean annual growth rate ( ̂ λ) associated with a given set of parameter values; the observed trend

alues were assumed to be drawn from a log-normal distribution with mean of ˆ λ and standard error

λ (itself a fitted parameter). We saved 50 0 0 samples from the Bayesian posterior distributions for

ach parameter, for each species/island pair, and used these to parameterize model simulations (see

elow). 

unning Simulations to assess and compare relative risk 

To evaluate the relative degree of extinction risk for seabird species, and to examine and compare

he potential benefits of alternative management actions, we conducted forward simulations using

he mPVA model. After drawing parameter values randomly from their appropriate uncertainty

istributions, we simulated 100 years of population dynamics for each species, with the effects

f year- to year variation in environmental conditions (environmental stochasticity) represented

y adding a zero-centered random normal term to the logit-transformed vital rates. We assumed

hat annual deviations from average survival were perfectly correlated across stages but with the

agnitude of variance ( σ e ) allowed to differ by stage: for species having reliable data on the

agnitude of annual variance in vital rates we used these data to set σ e , otherwise we used default

alues of σ e = 1 for fledging survival rates and σ e = 0.5 for all other stages. We next adjusted

nvironmental stochasticity to incorporate temporal and spatial autocorrelation: we used the “filter”

unction in R (which uses a Fast Fourier Transform to convolve a time series of random values to

chieve a specified autocorrelation) to transform the annual deviations, setting the average first-

rder correlation across years to R = 0.67. We used the inverse matrix of between-colony distances

o parameterize spatial autocorrelation, scaled such that two colonies 100km apart would have

orrelated annual deviations with R = 0.9, while two colonies 10 0 0km apart would have correlated

nnual deviations with R = 0.5. Finally, when the population abundance at a breeding colony dropped

elow 100, we adjusted the calculation of annual demographic transitions to allow for demographic

tochasticity: specifically, adjusted survival parameters were drawn from a beta distribution with
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Fig. 3. TOP PANEL: Sample population abundance trajectories over a 100-year period as projected by simulations of the 

mPVA model run for a sample species (Lava Gull). Each line shows a single 100-year simulation, with variation between 

lines representing uncertainty due to sampling error and environmental stochasticity. Simulation runs that drop below the 

QE threshold (50 females) are assumed to go extinct. BOTTOM PANEL: Projected vulnerability for sample species plotted over 

time, where projected QE risk is defined as the proportion of simulations that decline below the QE threshold. Solid line shows 

mean values and grey shaded band indicates the inter-quartile range for all simulations. 
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ean equal to the expected value and variance equal to ( p ∗ q )/ n (where p is the mean expected

alue, q = 1 – p, and n is the number of individuals in the stage experiencing the survival rate). 

We iterated the population dynamic simulations many times so that the distribution of results

ould be used to describe the uncertainty associated with model projections ( Fig. 3 ). We ran

imulations for the “default scenario”, corresponding to the current species distribution, abundance

nd array of threats, and under “alternative scenarios” corresponding to various management actions

invasive species removals, reductions of by-catch or other at-sea mortality, translocations, or re-

ntroductions). As a metric of comparison, we use quasi-extinction probability (QEP), defined as the

elative likelihood that model-projected abundance would drop below a quasi- extinction threshold

ithin a 100-year period. Quasi-extinction thresholds (QE) are often used in PVA models as a

urrogate for absolute extinctions [5 , 24] , describing the point at which abundance is so low that

rue extinction risk due to natural catastrophes, demographic stochasticity or loss of genetic diversity

ecomes unacceptably high. There are no universally accepted definitions of QE (but see [15] ): values

f N = 500 have been suggested based on genetic considerations, but lower values (100 or 50) may be

ore appropriate for large/rare species. We set QE to 50 females (100 individuals) for species with

n initial population exceeding 200 breeding pairs, or to 10 females for those species with an initial

opulation less than or equal to 200 breeding pairs. 

We used two hierarchical levels of replication for model simulations. An outer loop was used

o account for parameter uncertainty, whereby for each of 100 replications ( NS 1 = 100) we made

andom draws of all parameter values from their respective posterior distributions (as described in

he sections above). For each outer loop replication, we conducted an inner loop of 100 iterations

 NS 2 = 100) of the 100-year simulation, to account for uncertainty associated with environmental

nd demographic stochasticity and sampling error. The distribution of simulation outcomes from the

nner loop was used to calculate a point estimate of projected abundance ( N proj ) and QEP (proportion

f simulations dropping below QE) for each iteration of the outer loop ( Fig. 3 ). We then calculated

he median, standard error and inter-quartile range of N proj and QEP distributions across outer loop

eplicates. These metrics were used to evaluate relative risk for seabird species and to compare the

fficacy of alternative management scenarios. We emphasize that QEP values are intended as relative

easurements of risk only, and not intended to be accurate predictions of extinction risk [22 , 24] . 
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