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Christopher P. Hessa, A. James Barkovicha, and Duan Xua

a Department of Radiology and Biomedical Imaging, University of California San Francisco, San 
Francisco, CA, USA

b McConnell Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University, 
Montreal, Quebec, Canada

Abstract

Cerebral cortical folding becomes dramatically more complex in the fetal brain during the 3rd 

trimester of gestation; the process continues in a similar fashion in children who are born 

prematurely. To quantify this morphological development, it is necessary to extract the interface 

between gray matter and white matter, which is particularly challenging due to changing tissue 

contrast during brain maturation. We employed the well-established CIVET pipeline to extract this 

cortical surface, with point correspondence across subjects, using a surface-based spherical 

registration. We then developed a variant of the pipeline, called NEOCIVET, that quantified 

cortical folding using mean curvature and sulcal depth while addressing the well-known problems 

of poor and temporally-varying gray/white contrast as well as motion artifact in neonatal MRI. 

NEOCIVET includes: i) a tissue classification technique that analyzed multi-atlas texture patches 

using the nonlocal mean estimator and subsequently applied a label fusion approach based on a 

joint probability between templates, ii) neonatal template construction based on age-specific sub-

groups, and iii) masking of non-interesting structures using label-fusion approaches. These 

techniques replaced modules that might be suboptimal for regional analysis of poor-contrast 

neonatal cortex. The proposed segmentation method showed more accurate results in subjects with 

various ages and with various degrees of motion compared to state-of-the-art methods. In the 

analysis of 158 preterm-born neonates, many with multiple scans (n = 231; 26–40 weeks 

postmenstrual age at scan), NEOCIVET identified increases in cortical folding over time in 

numerous cortical regions (mean curvature:+0.003/week; sulcal depth:+0.04 mm/week) while 

folding did not change in major sulci that are known to develop early (corrected p < 0.05). The 

proposed pipeline successfully mapped cortical structural development, supporting current models 

of cerebral morphogenesis, and furthermore, revealed impairment of cortical folding in extremely 

preterm newborns relative to relatively late preterm newborns, demonstrating its potential to 

provide biomarkers of prematurity-related developmental outcome.
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Introduction

Cerebral cortical gyration is one of the most striking morphological changes that occur in 

the fetal brain. It starts as early as 10 gestational weeks and most secondary sulci and gyri 

are formed during the 3rd trimester of gestation (White et al., 2010). Recent study has shown 

that the process may evolve differently in children who are born prematurely (Lefevre et al., 

2015). To quantify such early morphological development by image analysis, it is necessary 

to extract cortical surface, especially the interface of the gray matter (GM) and white matter 

(WM). Only a few packages (Habas et al., 2012; Li et al., 2014b; Melbourne et al., 2014; 

Wright et al., 2014) have been proposed to perform this task. To enable regional analysis, 

they co-register an individual lobar atlas to each subject's cortical surface. However, this 

approach lacks point-wise correspondence across subjects and, consequently, spatial 

sensitivity.

Pure surface-based packages such as the MNI's CIVET pipeline (Kim et al., 2005; 

MacDonald et al., 2000) or FreeSurfer (Fischl, 2012) extract triangulated cortical surface 

and define point correspondence using surface-based spherical registration (Robbins et al., 

2004). These pipelines have been broadly used in applications for adult brain MRI. 

However, these packages have not been optimized for fetal/neonatal analyses. Different 

degrees of myelination, neuronal proliferation and migration, and axonal sprouting and 

pathfinding among various cortical and subcortical regions, which are distinctive features of 

developing brain, are manifested as regionally- and temporally-varying gyral shapes and 

GM/WM contrast in structural MRI. This spatiotemporally dynamic tissue contrast 

challenges tissue classification techniques used in most pipelines since they are usually 

based on a tissue contrast histogram constructed from the whole brain across time. 

Furthermore, the spatial normalization obtained by registering an individual volume/surface 

to a single, average template that represents a whole population can be incomplete in fetal/

neonatal brain MRI and may subsequently lack the point correspondence, as such a single 

volume or surface template cannot fully characterize the spatiotemporally dynamic brain 

anatomy.

A recent publication (Isgum et al., 2015) has summarized the result of the MICCAI Grand 

Challenge in 2012, which performed the systemic evaluation on neonatal brain segmentation 

approaches. The 8 methods presented were based on various techniques such as 

expectation–maximization framework with atlas prior, a method in the SPM toolkit, a 

Maximum a Posteriori Expectation–Maximization algorithm, large deformation of multiple 

atlases, prior knowledge of cortical morphology or use of single atlas combined with pattern 

learning of brain tissues/structures (Isgum et al., 2015). The segmentation accuracy of 

cortical GM for these techniques was generally relatively poor (Dice overlap index < 86%, 

range: 60–85%; Hausdorff distance > 5mm, range = 5.4–24 mm; note that the accuracy of 

cortical GM segmentation in adult brains often reaches above Dice = 90%). As this poor 
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segmentation may be partly due to the fact that many of these methods were driven from 

those directly used for adult brain segmentation, special technical elements to characterize 

the large anatomical variability in the neonatal stage may be demanded. Techniques that 

combine a feature of local intensity variations into the deformable models have recently 

been proposed for tissue segmentation of neonatal brain (Wang et al., 2011). Another 

method from the same group improved the performance by the guidance of deformation 

with image features extracted from a late time point longitudinal scan (L. Wang et al., 2013). 

These techniques demonstrated excellent performance in their data set. However, 

deformable model-based techniques are generally known to be noise sensitive. 

Unfortunately, about 40–50% of neonatal MRI scans are affected by a degree of motion 

artifact and a large proportion of such noisy data should have been excluded in previous 

morphological analyses (Engelhardt et al., 2015; Melbourne et al., 2014). Other methods 

have not taken into account motion artifact in segmentation.

To enable the analysis of cortical morphology in neonates, we developed a variant of the 

CIVET pipeline, called NEOCIVET. This pipeline includes a number of new modifications 

and parameter tunings. In particular, we improved the cortical GM segmentation under 

motion-affected MRI using a patch-based texture modeling and label fusion based on the 

joint probability between templates. This algorithm learns patterns of anatomical 

morphology under a variable amount of motion artifacts using a well-adapted library. Also, 

we constructed spatiotemporally varying age-specific surface templates using an unbiased 

construction scheme and a large sized preterm neonatal dataset (231 scans; age range: 26–40 

weeks gestation) to improve the surface registration performance across subjects.

Methods

NEOCIVET includes a series of image processing steps to achieve the goal of extracting the 

interface between GM and WM. Briefly we describe the flow of the pipeline here as in Fig. 

1: A) MRI images underwent intensity non-uniformity correction using N3 (Sled et al., 

1998); B) these images were linearly registered to the spatiotemporal neonatal brain 

template from the Biomedical Image Analysis Group, Imperial College London (http://

biomedic.doc.ic.ac.uk/brain-development/index.php?n=Main.Neonatal2). Non-linear 

registration between all pairs of images and performing nonlinear kernel regression (Serag et 

al., 2012) created this preterm newborn template that consisted of 9 brain images 

representing the mean shapes of different age groups (28–44 week gestational ages at every 

2 weeks). The individual images were first registered to the closest age-template and further 

registered to the oldest brain template using the transformation matrix of the registration 

between the selected age-template and the oldest template; C) we segmented the cerebrum 

and cerebellum using a patch-based brain extraction algorithm (BEaST) (Eskildsen et al., 

2012); D) these masked brains were re-registered to the template to improve the intracranial 

fitting; E) MRI intensities were re-corrected using N3 and normalized within the brain mask; 

F) the GM, WM, and CSF were classified within the mask by integrating the nonlocal mean 

estimation of multi-atlas texture patches (Coupé et al., 2011) with an advanced label fusion 

based on a joint probability between selected templates (H.Z. Wang et al., 2013). In order to 

overcome the poor segmentation, with varying tissue contrast and varying cortical folding 

patterns at different gestational ages as well as under heavy motion artifact, we constructed a 
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patch library that contains individual atlases (image + manual segmentation; n = 27) scanned 

at various ages and under variable conditions of motion; G) a nonlinear registration and 

label-fusion approach (H.Z. Wang et al., 2013) was used to mask out non-cortical structures: 

deep GM, ventricles and the periventricular germinal zone (which looks like GM as neural 

cells migrate into this area and proliferate in neonates) and the cerebellum. While the 

cerebellum was removed, other masked structures were merged into the WM class; H) 

segmentation of the corpus callosum in the mid-plane divided the WM into hemispheres. 

This separation allowed for analysis of hemispheric asymmetry in morphometry by co-

registering the flipped right hemisphere to the left; I) we parameterized the WM boundary 

by evolving an ellipsoid, triangulated using an icosahedral model and a multi-resolution 

deformation scheme, as in the CIVET (Kim et al., 2005); J) to improve point 

correspondence across subjects, a surface-based registration (Robbins et al., 2004) was 

performed with respect to age-specific templates that were constructed using an unbiased 

framework (Lyttelton et al., 2007); K) the cortical morphology was characterized by 

measuring sulcal depth and mean curvature; L) finally, these measurements were further re-

sampled to the surface template using the transformation obtained in the surface registration, 

in order to allow inter-subject comparison.

In the following sections, we describe the new modules included in NEOCIVET and how 

they address technical challenges in neonatal brain MRI. We also discuss the choice of 

parameters for optimal performance. Finally, we investigate the ability of NEOCIVET to 

assess developmental trajectory and its clinical utility using a dataset of pretermborn 

neonates.

Subjects

Our initial dataset comprised 158 preterm newborns (mean postmenstrual age at birth 

[PMA] = 28.3 ± 2.4 weeks; range 24–33 weeks), admitted to UCSF Benioff Children's 

Hospital San Francisco between June 2006 and March 2015. Exclusion criteria included (i) 

clinical evidence of a congenital malformation or syndrome, (ii) congenital infection, and 

(iii) newborns too clinically unstable for transport to and from the MRI scanner. Parental 

consent was obtained for all cases following a protocol approved by the institutional 

Committee on Human Research. All patients were scanned postnatally as soon as clinically 

stable (PMA at scan: 31.6 ± 1.8 weeks; range 26–36 weeks), and 110 patients were re-

scanned before discharge at late preterm age (PMA at scan: 35.9±2.0 weeks; range 32–40 

weeks). Due to extremely severe motion artifact for which even an expert could hardly 

recognize the brain anatomy, 20 baseline and 17 follow-up scans were excluded. The final 

database included 138 baseline (PMA = 31.8 ± 1.8 weeks) and 93 follow-up scans (35.9 

± 1.8 weeks). No subject was excluded among the initial 158 newborns.

MRI acquisition

Customized MRI-compatible incubators with specialized head coils were used to provide a 

quiet, well-monitored environment for neonates during the MRI scan, minimizing patient 

movement and improving the signal-to-noise ratio. Newborns enrolled between June 2006 

and July 2011 (n = 95) were scanned on a 1.5-Tesla General Electric Signa HDxt system 

(GE Medical Systems, Waukesha, WI, USA) using a specialized high-sensitivity neonatal 
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head coil built within a custom-built MRI-compatible incubator. T1-weighted images were 

acquired using sagittal 3-dimensional inversion recovery spoiled gradient echo (3D SPGR) 

(repetition time [TR] = 35; echo time [TE] = 6.00; inversion time of 0.00 ms; field of view 

[FOV] = 256 × 192 mm2; number of excitations [NEX] = 1.00; and flip angle [FA] = 35°), 

yielding images with 1 × 1 × 1 mm3 spatial resolution. Newborns enrolled between July 

2011 and March 2015 (n=63) were scanned on a 3-Tesla General Electric Discovery MR750 

system in a different MR compatible incubator and using a specially designed (for 3 T 

imaging) neonatal head coil. T1-weighted images were also acquired using sagittal 3D IR-

SPGR (TR = minimum; TE = minimum; inversion time of 450 ms; FOV = 180 × 180 mm2; 

NEX = 1.00; FA = 15°), and were reformatted in the axial and coronal planes, yielding 

images with 0.7 × 0.7 × 1 mm spatial resolution.

Classification of brain tissues

Regional variations in myelination and cell density in neonatal brains may cause MR 

intensity changes beyond the variability that can be captured by the analysis of a whole brain 

histogram. Moreover, even after excluding subjects with an extremely severe motion artifact 

such that brain anatomy is barely recognized (approximately 10–15%), a degree of this 

artifact may still affect 30–40% of remaining data (Fig. 2). Unfortunately, such noisy data 

should have been excluded in previous morphological analyses (Engelhardt et al., 2015; 

Melbourne et al., 2014). We addressed the aforementioned issues by combining a patch-

based texture modeling (Coupe et al., 2011; Eskildsen et al., 2012; Hu et al., 2014) with a 

joint probability-based label fusion method (H.Z. Wang et al., 2013) and constructed a well 

adapted training-set as described below.

We determine a label corresponding to a given voxel xt in the target image based on the 

similarity of its surrounding patch P(xt) to all the patches P(ys) taken from atlases (s | s = 

1,2,…, N) in the library (=training-set). A voxel ys is selected inside a search volume (y ∈ 
ηxt). In other words, for the patch P centered at the voxel xt of the target image, similar 

patches extracted from the N images are searched for within the surrounding neighborhood 

ηxt. This procedure has been demonstrated to result in a moderately improved performance 

in computing the consensus segmentation compared to conventional multiatlas label fusion 

algorithms that often have difficulty in finding optimal texture features due to 

misregistration.

A nonlocal means estimator vl(xt) is used to estimate the label at xt:

(1)

where l(ys) is the label of voxel y on the current template image s. For the purpose of brain 

tissues, we define the label values as background=0, CSF=1, GM=2, and WM=3. 

Accordingly, we used l(ys) ∈ [0,1,2,3]. In the original study, the weight wl(xt, ys) of the label 

l(ys) was computed based on the similarity between patches P(xt) and P(ys) as:
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(2)

‖•‖2 is the normalized L2 norm that is normalized by the number of patch elements and 

computed between each intensity of the elements of the patches P(xt) and P(ys). This image 

similarity based local weighted method has been used in other voting (or label fusion) 

approaches and has performed competitively (Artaechevarria et al., 2009; Heckemann et al., 

2006; Lotjonen et al., 2010). Yet, H.Z. Wang et al. (2013) pointed that this method can be 

limited as it assigns voting weights to each atlas independently and, thus, cannot account for 

the case where labeling errors produced by different atlases may be correlated. For example, 

when a same (or very similar) atlas was copied to the library twice, the weight to this atlas in 

segmentation of a test image will be doubled, creating a biased result. Such biased results 

can occur in cases where the features of atlases included in a library do not distribute 

uniformly in terms of variability of the target anatomy. Thus, weighting using a joint 

probability as proposed in H.Z. Wang et al. (2013)) would improve the label fusion. We 

replace the weighting in Eq. (2) with the equation below:

(3)

where Mx is a pairwise dependency matrix between two atlases s1 and s2, defined as:

(4)

(5)

where δs1(x)=[1,0] is the label difference between the s1 atlas and the target image, and 

 is an expected segmentation error when atlases s1 and s2 are considered 

together. Therefore, Mx(s1,s2) estimates how likely atlases s1 and s2 are to both produce 

wrong segmentations for the target image, given the observed feature images. H.Z. Wang et 

al. (2013) demonstrated that Eq. (5) could follow as:

(6)

When s1 = s2, Eq. (6) can be collapsed to  and 

one can see that Eq. (2) is a particular case of Mxt (s1, s1) with β = exp(•). As observed in 
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H.Z. Wang et al. (2013), the use of β = 2 resulted in the most stable and best accuracy in our 

tissue segmentation as well. Finally, the label probability, vl(xt) in Eq. (1), was estimated per 

label l using Eqs. (3) and (6), and the hard classification of brain tissues was made based on 

the highest probability among all the tissue types (GM/WM/CSF/background).

Construction of training-set for the patch-based tissue segmentation

To train the proposed automated tissue segmentation, we selected 27 scans from our 

database, taking into account: (i) uniform age distribution; and (ii) a variable degree of 

artifact (Table 1). A rater (RM) segmented manually the 3 tissue types of brain (GM, WM, 

CSF) using the MNI-BIC Display tool (http://www.bic.mni.mcgill.ca/

ServicesSoftwareVisualization/Display). The images were spatially normalized prior to this 

process. The manual labeling is tedious and simultaneously demands consistency. To 

balance the time requirement and consistency when creating the training-set, a rater 

segmented a brain MRI on every 2nd slice through the coronal plane and the segmentation 

on the other slices was interpolated using a nearest neighborhood method (average time cost: 

4 days per case). Later, the rater completed the manual labeling in the full resolution by 

revisiting the initial labels and correcting them on 3 orthogonal views (i.e., axial, coronal, 

and sagittal planes; this took another 4 days). After a month, to evaluate the manual labeling, 

the same rater independently performed the “complete” labeling for a randomly selected 

sample (n = 7) to calculate the intra-rater agreement. This resulted in an excellent agreement 

between the two segmentations (Dice index: WM = 97 ± 2%, GM = 96 ± 3%). We finally 

investigated whether the automated segmentation accuracy was different if the learning was 

from “incomplete” versus complete manual labeling (further details can be found in the 

sections ‘Evaluation of the segmentation accuracy’ and ‘Performance relative to manual 

labeling’).

Surface fitting

The WM/GM interface was extracted by deforming an ellipsoid triangulated using 

icosahedral sampling (MacDonald et al., 2000). The initial surface was sampled with 320 

triangles and deformed towards the boundary of the hemispheric WM while smoothness and 

proximity (to prevent an intersection of the surface) were constrained. The surface was up-

sampled to 81,920 triangles at the end of each deformation cycle.

Surface-based morphological measurements

In most applications, CIVET is primarily used to measure cortical thickness between the 

inner and outer cortical surfaces. In contrast, NEOCIVET aims to characterize the cortical 

folding at the WM/GM interface (=inner cortical surface). We computed sulcal depth as 

gyration/sulcation index (Hill et al., 2010), and mean curvature that captures concavity/

convexity as cortical complexity index (Fig. 3). To compute the sulcal depth, we first 

overlaid a brain hull model (extracted in Fig. 1C) on the cortical manifold to detect vertices 

on the gyral crowns (Hill et al., 2010), which were initialized with a depth of zero. Then, the 

depth was calculated using the geodesic distance from the crown (Hong et al., 2014). The 

mean curvature was estimated using a method (Do Carmo, 1976) that has been widely 

employed in neuroimaging studies (Luders et al., 2006; Scott et al., 2013).
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(7)

where xv is the 3D position of the vertex v,  is the centroid of its neighbor vertices of vertex 

v, Nv is the unit normal vector at vertex v (i.e., this vector is normal to the polygon made by 

connecting the vertices neighboring v), and Bv is the average distance from the centroid of 

each of the neighbors.

Note that this morphometry was performed in the stereotaxic space (as in Fig. 1B) where the 

intracranial volume was normalized such that no effects of brain growth were on the actual 

measurement.

Construction of age-specific surface templates and registration

As seen in Fig. 3, cortical folding changes dramatically during perinatal development. This 

emphasizes the importance of constructing templates that capture the precise cortical 

morphology for specific age ranges, so as to ensure the accuracy of registration. We 

therefore subdivided our dataset into four age ranges: 27–30 (n = 58), 31–33 (n = 77), 34–36 

(n = 56) and 37–40 (n = 40) weeks PMA. For each group, we constructed a surface template 

(Fig. 4A) using SURFTRACC, a surface registration algorithm included in CIVET (Robbins 

et al., 2004) and an unbiased template construction framework (Lyttelton et al., 2007). In 

brief, SURFTRACC first transposes individual sulcal depth maps into icosahedral spheres. It 

then iteratively searches for local optimal vertex correspondence between an individual and 

a template sphere based on a matching of a given feature (in this case, depth potential 

function; Boucher et al., 2009). Mapping the deformed meshes back to the original cortical 

surface coordinates allows a registration of the individual to the template surface. Inclusion 

of a regularization step further preserves local surface topology. This procedure was 

integrated into a hierarchical framework that allows for registration from coarse to fine scale. 

An initial template was created by a simple averaging of vertices among the surfaces in each 

age group. Thereafter, an iterative alignment proceeds from low dimensional warping of all 

individuals to the initial template, and towards higher dimensional warping to a new 

template that is constructed from the previous warping cycle as described in Lyttelton et al. 

(2007). Left and “flipped-right” hemispheres from all subjects were pooled to avoid subject- 

and hemisphere-specific bias in the evolution and averaging. Using the original warping 

cycle in Lyttelton et al., we observed that fitting was incomplete, likely due to a larger 

anatomical variation included in neonatal brains even after breaking down the age range. 

Therefore, by adding cycles with which no more changes were made in the template shape at 

the end of registrations using the given control mesh size, we optimized the warping cycle 

for our data as in Table 2. After construction, the youngest-age template was registered to 

the 2nd youngest and so on such that each template was registered to its closest older 

template, yielding a temporally continuous transformation. For inter-subject analyses, any 

given subject was first registered to the corresponding age template and then was ultimately 

transformed to the oldest template space by concatenating the sequence of transformations 

between age-specific templates (Fig. 4B).
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Other technical considerations and parameter selection

For optimal performance in our neonatal dataset, parameters in the NEOCIVET were 

empirically chosen. Also, some CIVET modules were updated with more recent publicly 

available techniques. Below, we describe these modifications in some detail so as to guide 

NEOCIVET users in their parameter selection with respect to MRI field strength, pulse 

sequence and spatial resolution:

a) For intensity inhomogeneity correction using N3, we found that a smoothing 

distance for RF wavelength as 100 mm for 1.5 T and 40 mm for 3 T MRI 

yielded the best performance in brain masking and tissue classification, which 

also agreed with the result from a previous extensive analysis on the smoothing 

distance of N3 (Boyes et al., 2008).

b) The FSL-BET-based brain masking and single atlas-based masking of deep 

GM and ventricles performed poorly for neonatal brains due to rapid changes 

in volume and intensity. We addressed this issue by introducing publicly 

available techniques that use patches of multiple templates or fuse multiple 

templates based on a similarity measure (Eskildsen et al., 2012; H.Z. Wang et 

al., 2013). The use of 25 manually labeled atlases (images were chosen by 

balancing 1.5 T and 3 T data and the uniformity of age range) achieved 

excellent segmentation accuracy for the whole brain mask and the mask 

combining the deep GM and ventricles (Dice > 0.90%).

c) Our image data were scanned with an in-plane resolution of 1 × 1 mm2 for 

1.5 T and 0.6 × 0.6 mm2 for 3 T MRI with 1 mm thickness for both MRIs 

whereas the used volumetric neonatal templates were sampled at 0.82 × 1.03 × 

1.6 mm3. Registration to this template would cause image data loss. We up-

sampled the templates to 0.6 × 0.6 × 0.6 mm3. This step did not necessarily 

improve registration, which we ultimately optimized using the age-specific 

templates.

d) Parameters in the segmentation algorithm were chosen empirically. The 

nonlocal mean was computed on multi-resolution images to improve the 

performance against the local minima issue (as in Eskildsen et al., 2012). Three 

different resolutions (2.4 × 2.4 × 2.4 mm3; 1.2 × 1.2 × 1.2 mm3; 0.6 × 0.6 × 0.6 

mm3) were used and parameters were set at each resolution as: the size of 

searching area ηxt = 3 × 3 × 3; 5 × 5 × 5; 13 × 13 × 13 voxels; and the size of 

patch = 3 × 3 × 3; 3 × 3 × 3; 5 × 5 × 5 voxels. In Eq. (6), β was chosen as 2. On 

a single core of Intel™ i7-3770 K, 3.5 GHz, the segmentation step and the 

whole pipeline process for a neonatal MRI took 15 min and 2.1 h, respectively.

Evaluation of NEOCIVET

Evaluation of the segmentation accuracy

We compared our classification against the two original methods, the nonlocal mean method 

(Coupé et al., 2011) and the JointFusion algorithm (H.Z. Wang et al., 2013), which we used 

for our combined approach. We also evaluated a non-training-based method (Dai et al., 

Kim et al. Page 9

Neuroimage. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2013; Wang et al., 2011) that has been included in a publicly open package iBEAT, version 

1.1 (http://www.med.unc.edu/bric/ideagroup/free-softwares/libra-longitudinal-infant-brain-

processing-package). This method was based on a level-sets deformable model that evolved 

using local intensity information and constraints of atlas spatial prior, and cortical thickness 

constraint, as well as longitudinal information if available (Wang et al., 2011; L. Wang et al., 

2013). As our algorithm was based on learning, we segmented a test image using a leave-

one-out strategy where the test image was omitted from the training-set to avoid possible 

bias. We also compared the automated segmentation resulting from the learning using 

“incomplete” manual labeling to the segmentation using complete annotation.

Performance relative to manual labeling

We used the complete manual labeling as the ground truth. Multiple comparisons for the 

following analyses were adjusted using false discovery rate (Benjamini and Hochberg, 

1995).

a) Global overlap assessment. To evaluate the volume-wise accuracy of 

automated approaches, we computed the Dice overlap between manual 
labeling and automatic labeling. To measure global contour differences 

between manual and automated labeling, we computed the mean Hausdorff 

distance, Hm (Kim et al., 2015). We measured Hm only for GM/WM 

interfaces. To assess the influence of larger cortical folding in older neonates or 

of amount of motion artifact on the segmentation accuracy, we correlated the 

accuracy metrics with age (i.e., PMA at scan) or the degree of artifact (none/

mild/moderate/severe).

b) Surface-based local analysis of contour accuracy. To localize the mis-

segmentation, a surface-based framework was employed to spatially localize 

contour difference between manual and automated segmentations (Kim et al., 

2015). We automatically extracted parametric surface models of the GM–WM 

interfaces (as described in the section ‘Surface fitting’) based on the manual 

labels, and based on the tissue classifications of each automated algorithm. 

Individual surfaces were aligned to their age-matched surface templates and 

ultimately to the oldest template (described in the section ‘Construction of age-

specific surface templates and registration’). For each classification algorithm, 

we computed the point-wise surface-normal component of the displacement 

vector between automated and manual labels. Statistical analysis was 

performed using SurfStat (http://www.math.mcgill.ca/keith/surfstat/). We 

performed surface-based t-tests on these differences (Worsley et al., 2009). To 

improve statistical sensitivity and across-subject correspondence data were 

blurred using a surface-based diffusion kernel of 10 mm full-width-at-half-

maximum (FWHM).

Evaluation of spatiotemporal surface template construction

To assess whether the proposed age-specific template construction scheme would improve 

surface registration, we compared the shape between the age-specific templates and a 

template created by pooling all individuals in the section ‘Construction of age-specific 
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surface templates and registration’. We also used a cortical parcellation (Tzourio-Mazoyer et 

al., 2002) that was originally mapped on the MNI-ICBM surface template. We projected this 

cortical subdivision to our oldest template (37–40 weeks) by the coregistration between this 

template and the MNI-ICBM template and subsequently mapped on the younger templates 

using the template-to-template coregistrations performed in the section ‘Construction of age-

specific surface templates and registration’. We compared the anatomical correspondence of 

this map to that projected on the pooled template.

Results

Cross-method comparison of segmentation accuracy

Manual labeling and all the automated segmentations for three representative subjects 

scanned at different ages and with different amounts of artifact are shown in Fig. 5. The 

proposed algorithm showed consistently similar tissue classification to the manual labeling, 

independent of the severity of motion artifact.

a) Global assessment. Classification performance is listed in Table 3. Our 

method provided significantly higher accuracy than the three conventional 

methods: nonlocal mean method, joint fusion approach, and the iBEAT 

package, both in terms of overlap (Dice index: GM: 1.4–8.8%, WM: 1.9–4.2%; 

t > 3.2; FDR < 0.05) and boundary distance (Hm: 0.11–0.53 mm) to the 

manual labeling (t > 3.5; FDR < 0.01). The segmentation using our approach 

was slightly improved when using the “complete” manual labeling as training 

data (Dice index: 0.9–1.6%; Hm: 0.08 mm). There were trends that accuracy of 

the segmentation using “incomplete” labeling-based training decreased with 

increased age (r = 0.45; t = 2.5; FDR = 0.1) and increased motion artifact (r = 

0.41; t = 2.2; FDR = 0.15), which disappeared when using “complete” 

labeling-based training (FDR > 0.3).

b) Surface-based contour accuracy (Fig. 6). At the WM–GM interface, the 

proposed algorithm with “incomplete” manual labeling-based training 

underestimated bilaterally small areas of prefrontal, lateral and medial occipital 

cortical GM (i.e., WM–GM interface was misplaced inside the true cortex) and 

unilaterally a focal area of left middle temporal GM compared to manual 

labeling (mean: 0.15 ± 0.10 mm). In this area, the GM underestimation in the 

algorithm increased along with aging (t = 4.2; FDR < 0.01). We found no areas 

displaying significant correlations between GM underestimation and the degree 

of motion artifact (FDR = 0.2). The GM underestimation in our algorithm 

became insignificant when using “complete” labeling-based training (FDR = 

0.2). No significant GM overestimation was observed (FDR > 0.3).

The nonlocal mean and the joint fusion approaches had a similar pattern and larger extents 

of the segmentation errors (nonlocal: mean: 0.31 ± 0.24 mm; joint fusion: mean: 0.23 ± 0.16 

mm; Fig. 6) relative to the proposed method. Underestimation of GM in the areas displaying 

segmentation errors were found to increase along with aging (nonlocal: t = 5.0, FDR > 

0.005; joint fusion: t = 5.2, FDR > 0.005) and no significant GM under/overestimations were 

found in relation to motion artifact (FDR > 0.1).
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The iBEAT segmentation algorithm showed GM overestimation in widespread areas of the 

cortex (mean: 0.93 ± 0.34 mm), with the primary area of large segmentation error located in 

the cingulate cortex. In the area demonstrating significant error, the GM overestimation of 

iBEAT significantly associated with the severity of motion artifact (t = 8.1; FDR < 0.001).

Evaluation of spatiotemporal surface templates

The constructed age-specific templates are shown in Fig. 7A. The templates captured 

general folding changes across different ages. Compared to the template created using the 

pooled dataset, the age-specific templates better characterized sulcal and gyral shapes, as 

sulcal fundi and gyral crowns presented with higher magnitudes of the mean curvature.

Mapping cortical parcellations (Fig. 7B), the spatiotemporal templates generally presented 

similar subdivisions of the cortex relative to the MNI-ICBM template. The labels were 

consistently located on the template between different ages. The pooled template, on the 

other hand, displayed a noticeable misplacement of mid-sagittal plane (gray in Fig. 7B), 

which subsequently distort the placement of other labels on the medial surface.

Application of NEOCIVET

Here we investigated the ability of the pipeline to assess developmental trajectory and the 

impact of brain injury on cortical structural development.

Cortical folding in brain development

Mixed-effect linear/polynomial nonlinear models were used to address both inter-subject 

effects and intra-subject changes between serial MRI scans by permitting multiple 

measurements per subject and thus increasing statistical power. For the subsequent analyses, 

we selected a linear or polynomial model that yielded the smallest fitting error. We first 

assessed a possible impact of MRI field strength on measurement of cortical folding by 

comparing the two groups (1.5 T vs. 3 T) while correcting for PMA at scan. We then 

assessed developmental trajectory of cortical folding by correlating the magnitudes of sulcal 

depth and curvature with PMA at the time of scanning. We included the presence of imaging 

evidence for moderate/severe perinatal brain injuries (i.e., intraventricular hemorrhage, 

cerebellar hemorrhage, white matter injury, and hydrocephalus) as covariates to correct for 

possible impact of such injuries on the cortical folding process.

Clinical utility of NEOCIVET

The brain of the extremely preterm (EPT) infant may grow and develop in a different way 

than it would in the womb. It has been suggested that EPT birth impedes brain growth even 

in the absence of major white-matter destruction or hemorrhage (Ajayi-Obe et al., 2000). We 

grouped our dataset into EPT (PMA at birth < 28 weeks; n = 71) and into moderately 

preterm (MPT) birth (32–34 weeks; n = 20; note that our neonatal dataset did not include 

anyone categorized as the late preterm birth [PMA > 34 weeks]). We then assessed 

difference in cortical folding between EPT and MPT groups while correcting for their PMA 

and the presence of imaging evidence for brain injuries.
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Results

Measurement of cortical folding in development—MRI field strength slightly 

affected our morphometry as we found only a trend towards difference in cortical folding 

between the 1.5 T and 3 T groups (sulcal depth: t = 2.8, FDR = 0.08; mean curvature: t = 

2.5, FDR = 0.1). As a result, cortical folding was underestimated in 1.5 T relative to 3 T data 

(overall depth = −0.002 mm/week; curvature = −0.0001/week). Even though this effect did 

not reach the significance after FDR correction, we included the field strength as a covariate 

in all the subsequent analyses in order to correct for its potential effects.

NEOCIVET identified increases in cortical folding over time in numerous cortical regions 

(overall sulcal depth: +0.021 mm/week; curvature: 0.0032/week) while folding was 

unchanged in major sulci that are known to develop earlier (FDR < 0.05; Fig. 8A). This 

pattern was nonlinear as 2nd order polynomial model fitted best (t = 22; FDR < 0.0001; vs. 

linear fitting: t = 18). A region of interest (ROI) analysis (Fig. 8B) showed that middle 

frontal, superior frontal, precentral, and superior occipital cortices displayed the most rapid 

cortical folding among all ROIs (depth 0.05–0.06 mm/week; curvature 0.005–0.008/week) 

whereas Rolandic operculum, postcentral, parahippocampal and calcarine cortices presented 

the slowest folding (depth: <0.008 mm/week; curvature: <0.001/week).

Comparison of cortical folding between EPT and MPT—Comparing the folding 

pattern in the EPT to MPT, NEOCIVET found significant growth impairment in EPT, 

localized primarily in the regions developing postnatally (FDR < 0.05; Fig. 9), which 

included bilateral superior frontal, occipital, and basal temporal cortices, the bilateral 

precuneus, and the right superior/middle temporal cortex. The EPT group additionally was 

found to have growth impairment in bilateral parahippocampal gyri and part of the right 

central cortex that showed a slow growth postnatally (Fig. 8). We also tested the effects of 

birth weight on cortical morphology. The pattern was very similar to that found when 

comparing the EPT newborns with the MPT newborns (Supplementary Fig. 1). This is 

reasonable as birth weight and GA at birth was highly correlated (r = 0.7; p < 0.0001).

Discussion

We have introduced NEOCIVET, a variant of the CIVET pipeline that was designed to 

extract the cortical surface and measure relative morphometrics, for application to neonatal 

MRI. The patch-based joint-fusion approach for cortical tissue segmentation in NEOCIVET 

generally performed accurately across data with various ages and various motion artifacts. 

Nonetheless, it still presented focal areas of significant misclassification in the prefrontal 

and occipital cortices. This inaccurate segmentation was improved by refining the manual 

segmentation in the training data. NEOCIVET successfully characterized the developmental 

trajectory of cortical folding by improving a series of processes in CIVET. Our cross-data 

validation showed reliable performance of NEOCIVET when it was applied to two different 

sets of MRI images scanned under different field strengths. NEOCIVET revealed 

developmental disruption in extremely preterm (EPT) newborns relative to moderate preterm 

(MPT) newborns, demonstrating its potential to provide biomarkers of prematurity-related 

developmental outcome.
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Given the complex nature of cortical folding, dramatic changes in brain structures in early 

development and relatively low and dynamically changing tissue contrast on MRI, 

improvement of performance in brain tissue segmentation is not trivial. We achieved this 

goal using the proposed method. Optimizing the whole cortical morphometry pipeline for 

neonatal brain MRIs, in particular for those with the motion artifact, is challenging and 

important in neonatal neuroimaging. In this context, the main novelty of the proposed 

technique lies in 1) a tissue segmentation method that is a mathematically sound integration 

of one label-fusion method to the other with different advantages and; 2) seamless 

incorporation of this segmentation technique into a well-established framework for cortical 

morphometry.

There have been numerous attempts to segment neonatal brain tissues. These works included 

the methods evaluated in the MICCAI 2012 Grand Challenge (Isgum et al., 2015) as well as 

more recent approaches that include a coupled level-set approach that utilized a population-

based atlas and local intensity variability (Wang et al., 2011), a similar approach combined 

with the guidance of longitudinal scans (L. Wang et al., 2013), and a method that combined 

patch modeling with the level-set approach (Wang et al., 2014). More recent works uses a 

multi-step classifier utilizing supervised learning (Moeskops et al., 2015a), trains a classifier 

using multicontrast MRIs (Anbeek et al., 2013; Wang et al., 2015), or combines the patch 

analysis with Expectation–Maximization algorithm (Liu et al., 2016). Our segmentation 

algorithm, which combined patch analysis with a joint probabilistic label fusion, achieved a 

comparable accuracy in labeling brain tissues at various ages. Our approach, by modeling 

the pattern of motion artifacts through a strategic construction of the template library, further 

achieved reliable performance in segmentation of the neonatal MRIs with a degree of motion 

artifact that occurs in about 30% of acquisitions. None of the previous studies have evaluated 

the impact of motion artifact on their methods. The proposed method is training-based 

whereas iBEAT is not. By comparing training-based patch analysis techniques including our 

method with a non-training-based algorithm, we found an advisory result: i.e., patch-based 

approaches are more recommended for motion-corrupted data.

It is generally believed that use of prior information in (single/multiple) template-based 

approaches can bias the segmentation and may result in mis-segmentation. Our results 

showed a significant correlation between segmentation accuracy and the postmenstrual age 

when using incompletely annotated labeling in the training process. However, this effect 

became smaller using complete annotation. Our method did not show the relationship 

between segmentation accuracy and the severity of a motion artifact, suggesting that 

cooperation of a proper learning method such as patch-based segmentation with an inclusion 

of numerous motion-affected cases in the training set can improve the segmentation 

performance and can minimize the bias.

In the segmentation of neonatal brains, where intensity contrast and cortical morphology 

varies largely across different ages, the construction of a reliable template library is crucial 

for robust segmentation. Creation of a template (= atlas) inevitably involves an expert's 

manual labeling, which is very tedious and time-consuming. In our study, we tested the 

utility of partially annotated (or incomplete) segmentation that reduced the time of complete 

labeling by one half. Our evaluation showed that the overall performance using partial 
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labeling showed only slightly reduced accuracy compared with complete annotation, which 

confirms a previous finding (Moeskops et al., 2015a). It is, nevertheless, worth noting that 

the regional mis-segmentation was significantly higher in partial labeling. The related 

cortical GM underestimation in older brains likely indicates that the higher cortical folding 

complexity in older neonatal brains may increase inaccuracy of the partial labeling, which 

was performed only through the coronal slices.

Previous studies that measured cortical folding have lacked point-wise correspondence 

between subjects, which challenges group-wise analysis of regional changes (Melbourne et 

al., 2014; Wright et al., 2014). We overcame this weakness using a surface registration that 

re-arranges mesh triangulation based on cortical morphology similarity between subjects. 

We initially hypothesized that a single averaged template cannot fully characterize the 

spatiotemporally dynamic brain anatomy and the co-registration of an individual surface to 

such a template may be erroneous. We indeed found that a template created from the whole 

population of our neonatal data could not capture the representative shape. By creating 

spatiotemporal surface templates and co-registering between templates, we optimized the 

point-wise correspondence between subjects with different ages.

Lyttelton et al. (2007) pointed out that a minimum of 30 subjects is required for a stable 

template construction. Using a large dataset obtained through the long-term UCSF Neonatal 

Brain Development Research Program, we constructed 4 different age-representative 

templates made using more than 40 subjects per each. To the best of our knowledge, there 

have been only two studies (Li et al., 2015; Wright et al., 2015) that constructed 

spatiotemporally varying surface templates. The temporal point-correspondence in this 

method was obtained using kernel regression. However, these age-specific templates were 

created based on a much smaller number of subjects than in our study (total scan numbers: 

81 vs. 231).

Compared to the MNI-ICBM adult template, the flat area on the midsagittal plane was larger 

in our neonate templates due to our exclusion of part of the mesiotemporal lobe from the 

GM segmentation, where the tissue contrast was not sufficient for segmentation at this age. 

This shape difference from the adult atlas slightly influenced the registration performance in 

the neighboring area in the temporal lobe. However, a relatively small degree of manual 

correction would easily improve the current parcellation that was fully automatic and was 

based on the adult atlas.

The cortical folding in early development is known as an established biomarker to predict 

maturation (i.e., gestational age) and brain functional development (Dubois et al., 2008; 

Zilles et al., 2013). Visual inspection of brain MRI (Garel et al., 2001) and postmortem 

brains (Chi et al., 1977) could only identify the emergence of a new gyrus. By extracting 

parametric cortical surfaces, we could quantify the degree of cortical folding as well as 

identify gyral emergence. Our quantification of cortical gyration captured the nonlinear 

trajectory of folding increase in preterm newborns. Our finding of the nonlinear folding 

trajectory is supported by previous analyses of fetal brain MRI (Habas et al., 2012; Wright et 

al., 2014) that have found similar characteristics in an overlapped period of the fetal 

development.
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The effects upon brain growth may differ in the presence of different perinatal clinical 

conditions such as preterm birth (Padilla et al., 2015), low body weight at birth (Parikh et al., 

2013), prematurity-related brain injuries (Kim et al., accepted for publication; Kim et al., 

2016; Tam et al., 2011b), and the related treatments (Tam et al., 2011a). Cortical folding 

may also be impaired as a result of such clinical factors (Engelhardt et al., 2015). We 

demonstrated the sensitivity of cortical folding metrics provided in NEOCIVET by revealing 

impaired cortical folding in extremely preterm (EPT) newborns compared to relatively late 

preterm newborns. The regions with decreased cortical folding in EPT newborns were 

mapped mostly in the cortical areas that rapidly fold postnatally, suggesting the presence of 

perinatal brain damage. The lack of overlap of our finding with a previous finding reporting 

areas of cortical volume loss in EPT (Padilla et al., 2015) suggests that a combined analysis 

of various morphological and microstructural measurements may be demanded to clarify the 

effects of the prematurity on brain development.

We focused only on reconstruction of the GM–WM interface (namely WM surface). Other 

measures such as cortical thickness and area were not considered in our study. It is also 

noted that cortical gyrification is conventionally measured on the middle surface created 

between pial and WM surfaces even though it has been done also on WM surface in 

numerous neonatal studies due to no modeling of the pial surface (Habas et al., 2012; 

Lefevre et al., 2015; Wright et al., 2014). We are currently expanding the current pipeline to 

derive the pial surface as in recent neonatal/infant brain studies (Li et al., 2014a; Lyall et al., 

2015; Moeskops et al., 2015b).

The fast 2D MRI acquisition that creates stacks of image slices in many orientations is 

commonly used to correct for motion artifact in fetal brain imaging instead of using a post-

processing like ours. After reconstructing a high-resolution volume image from these 2D 

image stacks, NEOCIVET is applicable to the analysis of cortical morphology in fetal 

brains.

We plan to include NEOCIVET in a future CIVET release that is open to the public through 

CBRAIN, a web-based platform for distributed processing and exchange of 3D/4D brain 

imaging data (http://mcin-cnim.ca/neuroimagingtechnologies/cbrain/).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Flowchart of NEOCIVET, a variant of CIVET used for neonatal brain analysis. New 

modules and parameters are in red. PVGZ: periventricular germinal zone.
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Fig. 2. 
Various degrees of motion artifact on neonatal MRI.
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Fig. 3. 
Measurement of folding on the cortical surfaces. Top: sulcal depth was quantified using 

geodesic distance from the gyral crown (indexed in red); bottom: cortical complexity was 

computed using mean curvature.
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Fig. 4. 
Construction of spatiotemporal surface template and the used surface registration scheme. A. 

The whole dataset (n = 231) is split into 4 different age groups. Age-specific templates are 

created using an unbiased averaging framework (Lyttelton et al., 2007). B. A new subject 

will be registered to its age-matched template and ultimately registered to the oldest 

template space using template-to-template transformations.
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Fig. 5. 
Segmentation and WM surface extraction. Three examples (top: 37 weeks PMA with 

minimal artifact; middle: 36 weeks PMA with moderate artifact; bottom: 34 weeks with 

severe artifact) are shown. The segmentation using the proposed method that was based on 

learning from incomplete manual labeling was compared to that using a nontraining-based 

method (iBEAT).
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Fig. 6. 
Regional segmentation error map. For each classification algorithm, we extracted the WM 

boundary and computed the point-wise surface-normal component of the displacement 

vector between automated and manual labels. The significant areas (FDR < 0.05) are those 

presenting GM underestimation in automated methods. The proposed approach exhibited 

only focal areas of significant segmentation error whereas other training-based methods (B, 

C) resulted in larger extents of the error and the non-training-based method (D) displayed 

broad areas of error. In the areas of significant error, all methods resulted in larger errors 

along with increased PMA.
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Fig. 7. 
Results of spatiotemporal template construction. A. Age-specific surface templates and the 

template constructed using pooled data. The mean curvature was mapped on each template. 

The age-specific templates captured folding changes across different ages. B. Cortical 

surface parcellation. The parcellation was performed in the MNI-ICBM template and 

mapped to the neonatal templates by coregistration (see details in the section: ‘Evaluation of 

spatiotemporal surface template construction’). The pooled template displayed a noticeable 

misplacement of the mid-sagittal plane, which subsequently distort the placement of other 

labels on the medial surface. Cortical label index: 1. precentral; 2. postcentral; 3. superior 

frontal, dorsolateral; 4. middle frontal; 5. superior frontal, orbital; 6. middle frontal, orbital; 

7. inferior frontal, triangular; 8. inferior frontal, orbital; 9. inferior frontal, opercular; 10. 

insula; 11. rolandic operculum; 12. Heschl; 13. temporal pole: superior temporal; 14. 

temporal pole: middle temporal; 15. superior temporal; 16. middle temporal; 17. inferior 

temporal; 18. supramarginal; 19. angular; 20. superior parietal; 21. inferior parietal; 22. 

superior occipital; 23. middle occipital; 24. inferior occipital; 25. superior frontal, medial; 

26. superior frontal, medial orbital; 27. Rectus; 28. olfactory; 29. anterior cingulate; 30. 

median cingulate; 31. posterior cingulate; 32. supplementary motor area; 33. paracentral 

lobule; 34. precuneus; 35. cuneus; 36. lingual; 37. calcarine fissure & surrounding the 

cortex; 38. parahippocampal; 39. fusiform.
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Fig. 8. 
Trajectory of cortical folding in preterm newborns. A. NEOCIVET identified increases in 

cortical folding over time in numerous cortical regions while folding unchanged in major 

sulci that are known to develop earlier (FDR < 0.05). This pattern was nonlinear as 2nd 

order polynomial model fitted best. B. Analysis of the region of interests (ROIs) defined in 

Fig. 7. The folding trajectories measured using sulcal deepening are shown in the 4 fastest 

and 4 slowest folding areas.
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Fig. 9. 
Impairment in cortical folding in extremely preterm (EPT, gestational age at birth < 28 

weeks) newborns compared to moderate preterm newborns (MPT, 32–34 weeks). The 

significant areas (FDR < 0.05) indicate the shallower sulcal depth in the EPT group 

compared to MPT after correcting the postmenstrual at scan. The boxplot shows the folding 

distribution of the overall cortical surface for the two groups.
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Table 1

Distribution of age and motion artifact among the templates (n = 27) used for training of the proposed tissue 

segmentation.

Age Motion artifact

26-30 31-33 34-36 37-40 none mild moderate severe

n(%) 5 (18%) 8 (30%) 8(30%) 6 (22%) 10(37%) 9 (33%) 4(15%) 4(15%)
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Table 2

Construction of an unbiased surface template. The number of control mesh sizes used for each cycle is shown. 

After each cycle, averaging was performed to create an intermediate template and a new template feature field 

(depth potential map) was generated.

Cycle no. Control mesh size (polygons)

320 1280 5120 20,480 81,920

Cycles1–2 y N N N N

Cycles3–4 Y Y N N N

Cycles 4–5 Y Y Y N N

Cycles 6–8 Y Y Y Y N

Cycles 9–12 Y Y Y Y Y
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Table 3

Performance of cortical GM/WM segmentation.

Algorithm Dice similarity index (%) Hausdorff distance (mm)

GM WM WM

Wang et al. (2011) 84.6 ± 3.4 92.1 ± 2.2 0.81 ± 0.22

Nonlocal mean 91.2 ± 2.9 93.8 ± 1.9 0.48 ± 0.10

JointFusion 92.0 ± 2.4 94.4 ± 1.9 0.39 ± 0.08

NEOCIVET-I 93.4 ± 2.1 96.3 ± 1.6 0.28 ± 0.07

NEOCIVET-C 95.0 ± 1.8 97.2 ± 1.3 0.20 ± 0.05

NEOCIVET-I/-C indicates the proposed approach separately trained using incomplete/complete manual labeling. Nonlocal mean and JointFusion 
used incomplete manual labeling.
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