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Abstract

Intervening on causal systems can illuminate their underlying
structures. Past work has shown that, relative to adults, young
children often make intervention decisions that confirm sin-
gle hypotheses rather than those that discriminate alternative
hypotheses. Here, we investigated how the ability to make in-
formative intervention decisions changes across development.
Ninety participants between the ages of 7 and 25 completed
40 different puzzles in which they had to intervene on vari-
ous causal systems to determine their underlying structures.
We found that the use of discriminatory strategies increased
through adolescence and plateaued into adulthood. Our results
identify a clear developmental trend in causal reasoning, and
highlight the need to expand research on causal learning mech-
anisms in adolescence.
Keywords: cognitive development; information-seeking; hy-
pothesis testing; causal learning

Introduction
We frequently take actions to manipulate the causal systems
that make up our environments. Critically, these causal inter-
ventions often vary in the information they reveal (Bramley,
Lagnado, & Speekenbrink, 2014; Tong & Koller, 2001; Co-
enen, Rehder, & Gureckis, 2015).

Imagine, for example, a child tending to a plant. She might
believe that the plant requires sunlight, water, and fertilizer
to grow. The child might intervene to confirm this hypothe-
sis by placing her plant on a sunny window sill, watering it
daily, and fertilizing it. If the plant blooms, she will take this
as evidence confirming her initial hypothesis. However, if
she were to consider a competing hypothesis – that the plant
needs only water and sun but not fertilizer to flourish – she
could instead provide the plant with water and sunlight, and
critically, withhold fertilizer. If the plant were to wither, she
would gain evidence in favor of her first hypothesis, but if it
were to grow, she would gain evidence in favor of the sec-
ond. In this way, different intervention decisions bring about
different sets of evidence that help to discriminate competing
ideas.

Consistent with this example, previous research has iden-
tified two broad classes of decision strategies for making in-
terventions: Confirmatory interventions seek evidence con-
sistent with a particular hypothesis, while discriminatory in-
terventions seek information that can disambiguate compet-
ing alternatives (Coenen et al., 2015). It is unclear, however,
how causal intervention strategies change with age. Previ-
ous work suggests that children as young as 2 years old can
derive sophisticated causal knowledge about the structure of
their environment by updating their prior assumptions about
cause and effect as they encounter new evidence (Gopnik et
al., 2004). This evidence is often self-generated – children

perform their own ”experiments” during play by intervening
on causal systems to resolve their uncertainty about how they
work (Gopnik, 2012).

Though children are capable of making informative inter-
ventions to drive their own learning (Bonawitz, van Schijn-
del, Friel, & Schulz, 2012; Schulz & Bonawitz, 2007; So-
bel & Sommerville, 2010), their information gathering strate-
gies may be sub-optimal. For example, early work in chil-
dren’s hypothesis testing suggests that the ability to system-
atically test competing alternatives improved from age 5 to
age 11, but that even 11-year-olds often failed to make inter-
ventions that would enable them to learn underlying causal
rules (Rieber, 1969). In a different experiment, when 9- to 11-
year-olds were tasked with determining the cause of a specific
chemical reaction, the majority of children failed to design
systematic experiments that would enable them to efficiently
isolate the causal agent (Kuhn & Phelps, 1982).

Characterizing developmental change in causal
reasoning
While this work hints that there may be changes in causal
intervention strategy across development, no prior work has
systematically characterized these changes from childhood
to adulthood, perhaps due to the inherent difficulty in mea-
suring developmental change in this complex ability. Multi-
ple strategies can promote effective inference, so studies that
have examined only the accuracy of causal judgments, or that
have allowed children to freely manipulate causal systems by
performing many different actions, may not effectively cap-
ture subtle changes in strategy use across development.

A recent study of adults (Coenen et al., 2015) developed
a Bayesian measurement model for determining the extent to
which confirmatory vs. discriminatory intervention strategies
are invoked during decision-making. In this study, adults’
intervention decisions were best characterized by a model
that combined the discriminatory Expected Information Gain
(EIG) strategy with a Positive Testing Strategy (PTS) that as-
signed “value” to intervention decisions based on the propor-
tion of causal links they would activate. This intervention
strategy is generally less cognitively effortful than more dis-
criminatory strategies and can yield informative outcomes in
some contexts (Austerweil & Griffiths, 2011), but can also
hinder learning by failing to rule out alternative causal mod-
els (Nickerson, 1998). Further, adults increased their use of a
discriminatory strategy after attempting to solve problems in
which confirmatory interventions were systematically less ef-
fective, but decreased their discriminatory strategy use under
time pressure (Coenen et al., 2015).
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The task and modeling approach used by Coenen et al.
(2015) has several key properties that make them particu-
larly well-suited to characterize changes in causal interven-
tion strategy across development. First, the task itself is easy
to understand but challenging to perform optimally, such that
it can be understood by young children while remaining sen-
sitive to changes in causal learning that may occur throughout
late childhood, adolescence, and early adulthood. Second, the
modeling approach can effectively capture both discrimina-
tory intervention decisions, but also the more cognitively sim-
ple, confirmatory strategy that may be adopted by resource-
constrained learners. Finally, the model enables estimation
of continuous strategy mixture weights for each participant,
which can characterize the extent to which their choices re-
flect confirmatory or discriminatory strategies. By leveraging
this measure, we can both account for heterogeneity in strat-
egy use across individuals and examine how strategy use may
change across development.

Two previous studies have taken a similar approach but
have only examined the choices made by young children, be-
tween the ages of 5 and 8 (McCormack, Bramley, Frosch,
Patrick, & Lagnado, 2016; Meng, Bramley, & Xu, 2018).
In both these studies, rather than selecting interventions that
maximized their ability to disambiguate multiple compet-
ing possibilities, children often made choices that maximized
positive evidence in favor of a single hypothesis. However,
these studies used only a small number of trials, potentially
leading to unreliable estimates of strategy use and preventing
the examination of learning over time.

Further, selecting interventions that maximize informa-
tion gain may require multiple cognitive mechanisms that
continue to develop throughout late childhood and adoles-
cence. When faced with intervention decisions, individuals
must prospectively imagine the outcomes that different ac-
tions are likely to bring about (Sloman & Lagnado, 2015).
Then, they must evaluate whether these outcomes provide ev-
idence for one causal hypothesis over another to ultimately
choose which action to take (Coenen & Gureckis, 2015). Fi-
nally, individuals need to recognize that this cognitive process
is “worth it” – that considering possible outcomes of differ-
ent interventions promotes more accurate hypothesis evalua-
tion relative to other less effortful cognitive strategies. Each
of these component mechanisms undergoes marked change
throughout development. The ability to use mental models of
the environment to prospectively compare decisions (Decker,
Otto, Daw, & Hartley, 2016), the ability to infer causal rela-
tions based on observed outcomes (Gopnik et al., 2017), and
metacognitive sensitivity to the efficacy of different cogni-
tive strategies (Weil et al., 2013) all improve not just in early
childhood – a focal point of many studies of causal learning
– but continuously across late childhood, adolescence, and
early adulthood.

Here, we leveraged the approach introduced by Coenen et
al. (2015) – and its key measurement characteristics – to
determine the developmental trajectories of causal learning

strategies across late childhood, adolescence and early adult-
hood. Though these developmental periods have been largely
neglected in the causal intervention literature, research fo-
cused on related cognitive mechanisms suggest these peri-
ods may be characterized by robust change in learning and
decision-making strategies. Beyond characterizing the gen-
eral trajectory of change in the use of different intervention
strategies, we sought to illuminate interactions between dif-
ferent cognitive mechanisms that may support the emergence
of discriminatory hypothesis testing.

Methods
Participants
Ninety 7-to-25-year-olds (Mage = 15.87 years, SDage = 5.26
years, range = 7.04 - 25.74 years, 46 females) participated
in the study. All participants completed the matrix-reasoning
and vocabulary section of the Wechsler Abbreviated Scale of
Intelligence, from which age-normed IQ scores were derived.
There was not a significant relation between age and IQ in
our sample, F(1,88)< .001, p > .99,ηp < .001.

Task
Participants completed a computerized task in which they
were told they were employees at a computer chip factory,
whose job was to sort 3- and 4-node computer chips based
on the configuration of their hidden wires. On each trial, par-
ticipants first viewed two causal graphs for 2 seconds, each
of which displayed a different possible configuration of the
chip’s hidden wires (Figure 1). Then, a computer chip ap-
peared, with all of its nodes turned ”off.” Participants had as
much time as they wanted to make one intervention decision
– that is, to click on one node. The node that was clicked al-
ways turned on. After a brief delay (200 ms) during which the
chip turned grey and beeped, the chip reached its final state,
indicating outcome of the intervention. The activation of a
parent node turned on its direct descendants with a probabil-
ity of .8. There were no background causes - nodes could only
turn on if they were directly clicked or activated by a parent
node. After viewing the outcome of their intervention, par-
ticipants had unlimited time to click on whichever of the two
causal graphs they believed indicated the true configuration of
the chip’s hidden wires. Participants then used a continuous
slider to rate their confidence that they selected the correct
configuration. Participants were told that they would be paid
a bonus based on how many chips they sorted correctly.

Prior to beginning the experimental trials, all participants
completed an extensive tutorial in which they were trained on
the probabilistic nature of the wires, the directionality of the
wires, the correspondence between the causal graph diagrams
and the actual chip on which they intervened, and the overall
trial procedure.

Participants completed 40 experimental trials. Trial order
was pseudo-randomized such that in each block of 10 trials,
participants always completed five 3-node puzzles and five 4-
node puzzles. The specific puzzles were selected such that the
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Figure 1: Participants completed 40 intervention trials, in which they had to select a node to determine the configuration of a
computer chip’s hidden wires.

discriminatory and confirmatory strategy we modeled (more
details below) made divergent predictions about the proba-
bility of selecting different nodes. The side of the screen on
which each graph appeared was randomized. On each trial for
each participant, one graph was randomly selected to be the
chip’s “true” underlying structure. Participants only learned
how many chips they sorted correctly at the end of the task;
they did not receive trial-by-trial feedback.

Strategies
To model participant intervention choices, we focused on one
specific discriminatory intervention strategy - Expected Infor-
mation Gain - and one specific confirmatory strategy - Posi-
tive Testing Strategy. The models differ in how they assign
value to possible interventions.

Expected Information Gain (EIG) EIG assumes that in-
dividuals have a set of hypotheses about the structure of a
particular causal system, with each system represented as a
causal Bayesian graph. A learner’s uncertainty about which
graph (g) is most likely the source of their current observa-
tions is represented as the Shannon entropy over the graphs
within their hypothesis set (G):

H(G) = ∑
g∈G

P(g)log2
1

P(g)

Learners maximizing information gain should select the in-
formation that will cause the largest reduction in their uncer-
tainty. This can be computed by considering the amount of
information gained by each possible outcome (o) of each ac-
tion (a), weighted by their probability:

EIG(a) = H(G)− ∑
o∈O

P(o|a)H(G|a,o)

where H(G|a,o) is the new uncertainty after an intervention:

H(G|a,o) = ∑
g∈G

P(g|a,o)log2
1

P(g|a,o)

Positive Testing Strategy (PTS) PTS assumes that partic-
ipants seek positive evidence to confirm a single hypothesis.
We use the formalization introduced in Coenen et al. (2015)
which assumes that participants consider each graph in turn,
and choose the intervention that will activate the largest pro-
portion of nodes within a single causal graph:

PT S(a) = max
g

(
DescendantLinksn,g

TotalLinksg
)

Results
Age-related change in strategy use
To characterize participants’ intervention choices, we fit a
single Bayesian model in which we assumed participants
were linearly combining EIG and PTS with weight θ, where
θ = 0 indicates a pure PTS strategy and θ = 1 indicates a pure
EIG strategy. We further assumed that participants’ choices
were noisy, such that the expected value of each choice proba-
bilistically influenced intervention decisions. We used a soft-
max choice function to represent this process, with a free pa-
rameter, τ, to capture each participant’s decision noise.

The two previous studies using this modeling approach
employed a hierarchical model in which group-level hyper-
parameters were also estimated (Coenen et al., 2015; Meng et
al., 2018), but given our broad age range, we did not want to
assume that the participants in our sample comprised a single
group. Rather than estimating group-level hyper-parameters,
we estimated the model separately for each participant.

We estimated posterior distributions over the parameters
using Markov chain Monte Carlo (MCMC) sampling via the
NUTS algorithm implemented in STAN (4 chains of 2000
iterations, 1000 per chain discarded as warmup; 4000 total
samples per parameter) (Stan Development Team, n.d.; Team,
2013). We used uniform priors over the parameter space
(τ ∼ U(0,∞);θ ∼ U(0,1)). Rhat values for all parameter
estimates were less than 1.1, indicating convergence across
chains (Brooks & Gelman, 1998).

To characterize how strategy use changed with age, we
extracted the posterior mean estimates of strategy mixture
weights (θ) and examined their relation with age. We tested
two linear regression models to examine linear and nonlin-
ear trajectories of developmental change: One included lin-
ear z-scored age as a predictor, and one included both lin-
ear z-scored age and quadratic z-scored age as predictors
(Somerville et al., 2012). We followed this approach for all
subsequent models described in the paper.

The model with the quadratic age term provided a signifi-
cantly better fit to the data, F(1,87) = 9.95, p = .002. Both
age (β = .12, p < .001) and age2 (β = −.06, p = .002) sig-
nificantly predicted strategy mixture weight (Figure 3), sug-
gesting that through early adolescence, participants decreased
their use of PTS in favor of EIG. Even within age groups,
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Figure 2: Intervention choices for the 20 three-node puzzles presented in the experiment. The corners of each simplex represent
nodes on which participants intervened. The circles represent the average choice for each age group (Children: 7 - 12 years old,
Adolescents: 13 - 17, Adults: 18 - 25), while the diamonds represent the “value” of each node as determined by EIG and PTS.

strategy use varied across problems (Figure 2); adolescent
choices, for example, sometimes resembled those of adults
(16) and sometimes were more like those of children (10).

We also examined how decision noise (τ) changed with
age. Decision noise decreased linearly with age (β =
−.576, p = .048), indicating that the choices of older rel-
ative to younger participants were more fully captured by
the predictions of the two intervention strategies (Figure 3).
There was not, however, a significant relation between θ and
τ (p = .271), suggesting that age-related change in strategy
mixture weight can not be attributed to age-related differ-
ences in decision noise.

Figure 3: Model-derived estimates of participants’ strategy
mixture weights (θ) show that participants became more dis-
criminatory with increasing age through late adolescence.
Decision noise estimates (τ) show that intervention decisions
became more value-based with increasing age. Best-fitting
regression lines illustrating the effects of age and age2 on θ

and age on τ are plotted.

In line with previous findings (Meng et al., 2018; Coenen
et al., 2015), our modeling results suggest that children and
adults use a combination of confirmatory and discriminatory
strategies to test causal hypotheses. Further, they demonstrate
that this combination systematically differs across children,
adolescents, and adults.

Inference-intervention interactions
Why did the use of a discriminatory intervention strategy in-
crease across development? One possibility is that when pre-
sented with the novel task, participants explored different in-
tervention strategies until finding one they believed was most
effective. Older participants may have been more sensitive to
the relative efficacy of different intervention strategies. For
EIG to be a useful strategy, however, individuals needed to
be able to make accurate causal inferences based on the out-
comes of their interventions. Gaining information to disam-
biguate competing hypotheses was only useful if individuals
could correctly updated their beliefs based on that new evi-
dence (Coenen & Gureckis, 2015).

To examine whether causal inference changed with age,
we computed the posterior probabilities of each of the two
possible causal graphs based on the selected node and the fi-
nal states of the other nodes on each trial. We then ran a
linear mixed-effects model to determine whether there was
a relation between age and the posterior probability of the
structure selected. Older participants selected more probable
causal structures, F(1,88) = 10.44, p = .002. This suggests
that with increasing age, individuals became better at eval-
uating the outcomes of their interventions to disambiguate
competing hypotheses. However, this metric is inherently
confounded with intervention decisions – by definition, inter-
ventions with higher EIG scores were more likely to lead to
greater increases in the posterior probability of one structure
over another. Thus, it is difficult to determine the direction of
the relationship between causal intervention and inference –
were older participants selecting more informative interven-
tions because they could more effectively prospectively eval-
uate how that information would enable them to update their
beliefs? Or were they updating their beliefs more effectively
because they chose interventions that provided stronger evi-
dence in favor of one hypothesis over another?

Participant confidence in the structure they selected can
provide insight into developmental change in causal infer-
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ence – and metacognitive sensitivity to causal evidence –
without being confounded by intervention choice. If par-
ticipants were sensitive to the extent to which the informa-
tion they gained allowed resolution of competing hypothe-
ses, then their confidence in the structures they selected
should track their posterior probabilities. To determine how
these posterior probabilities and age influenced confidence
ratings, we ran a linear mixed-effects model. Our best-
fitting model included both a linear and quadratic effect of
age. Participants were more confident in their selection when
the posterior probability of the structure they selected was
higher, F(1,3535.17) = 353.69, p < .001 However, this ef-
fect was qualified by an age x posterior probability interac-
tion (F(1,3529.67) = 21.75, p< .001) as well as by an age2 x
posterior probability interaction (F(1,3529.76) = 12.83, p <
.001), such that the influence of posterior probabilities on
confidence ratings increased throughout childhood and early
adolescence. These results indicate that the ability to evalu-
ate the extent to which new information supported causal hy-
potheses improved non-linearly across development. Impor-
tantly, they suggest developmental improvements in causal
inference that are separable from improvements in interven-
tion strategy.

We next examined whether developmental change in
causal inference influenced intervention strategy. Specif-
ically, we computed the correlation between the posterior
probability of the structure selected and confidence ratings
for each participant and ran a linear regression to determine
whether these values, which we will refer to as “evidence sen-
sitivity,” predicted strategy mixture weight (θ). We found
a positive relationship between evidence sensitivity and θ

(β = .09, p < .001), even when controlling for age and age2.
In other words, participants with stronger sensitivity to the
strength of the evidence on which to base their inferences also
demonstrated greater use of EIG.

Within-task learning effects
Beyond examining how causal intervention strategy changed
with age, our use of 40 trials enabled us to examine learn-
ing over the course of the task. We hypothesized that older
participants’ greater use of a discriminatory strategy might in
part be driven by faster learning, such that age would more
strongly influence estimated values of θ in the second half of
the experiment, after participants had the opportunity to learn
to adjust their strategy based on their evaluations of their ear-
lier decisions.

To examine whether participants used a different mixture
of strategies throughout the course of the task, we fit our
Bayesian model separately to the first and second half of trial
data for each participant. We then ran a linear mixed-effects
model to determine how experiment half and age influenced
strategy mixture weight. As before, both linear and quadratic
age predicted strategy mixture weight (ps < .02). Further-
more, strategy mixture weight increased from the first half to
the second half of the experiment, F(1,87) = 11.4, p < .001
(Figure 4), indicating that participants may have learned to

use a more discriminatory strategy over the course of the task.
Contrary to our prediction, however, experiment half did not
interact with age or age2 (ps > .20).

Decision noise also decreased over the course of the exper-
iment, F(1,88) = 5.18, p = .03. This effect was qualified by
an age x experiment half interaction, such that younger partic-
ipants demonstrated a greater decrease in decision noise from
the first to the second half of trials, F(1,88) = 4.72, p = .03
(Figure 4). This suggests that younger participants may have
learned to use their estimates of the value of each intervention
to more strongly guide their decisions over the course of the
task. While the change in their strategy mixture weight did
not statistically differ from that of older participants, younger
participants may have learned that both strategies were more
effective than randomly selecting nodes.

Figure 4: In the second half of the experiment, participants
relied more on EIG over PTS, and their choices were less
noisy.

Finally, we examined whether evidence sensitivity related
to participants’ change in strategy use over the course of the
task. We computed ∆θ for each participant by subtracting
their estimated θ value over the first half of the experiment
from their estimated θ value over the second half of the ex-
periment. We then ran a regression examining the effects of
age and evidence sensitivity on ∆θ. We found a significant
effect of evidence sensitivity on ∆θ, β = .049, p = .019, such
that participants who were most sensitive to their ability to
correctly identify underlying causal structures demonstrated
increased use of EIG over the course of the experiment. Mir-
roring our previously reported results, there was not a signif-
icant effect of age on ∆θ, nor was there an age x evidence
sensitivity interaction effect (ps > .61).

Discussion
Our results and modeling analyses demonstrate robust
changes in causal intervention strategy from middle child-
hood to adulthood. In sum, interventions become more dis-
criminatory with increasing age until reaching a plateau in
late adolescence. What causes this developmental shift?

One possibility is that improvements in intervention strat-
egy are due to increased exposure to scientific reasoning
strategies through formal schooling. Future work could test
participants at multiple time-points and examine the extent
to which increases in EIG use align with exposure to curric-
ular units focused on concepts like controlling variables to
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effectively discriminate hypotheses (Kuhn, Arvidsson, Les-
perance, & Corprew, 2017).

However, several aspects of our data suggest that for-
mal schooling can not account for all age-related change in
strategy use that we observed. First, almost all participants
demonstrated a mixture of strategies throughout the experi-
ment, and this mixture appears to change gradually with in-
creasing age (as opposed to a sharp shift corresponding to the
introduction of specific concepts during formal schooling).
We also found that individual and developmental differences
in more basic learning mechanisms, like sensitivity to the
informativeness of intervention outcomes, predicted strategy
use. Additionally, individuals across our age range increased
their use of a discriminatory strategy throughout the course
of the task, without any explicit instruction or feedback.

It may also be the case that with increasing age, individu-
als become better at prospectively planning their intervention
decisions. Though evidence sensitivity correlated with strat-
egy mixture weight in our data, it did not fully account for
developmental change in strategy use. Importantly, we hy-
pothesized that the ability to make accurate causal judgments
may enable individuals to select the best intervention only if
they prospectively simulate and sample the outcomes of po-
tential choices in the first place (Bonawitz, Denison, Grif-
fiths, & Gopnik, 2014). On some trials, participants may
not have attempted to think through the possible outcomes
of their decisions, in which case the ability to evaluate those
outcomes would not affect the intervention choice. Future
studies should probe the role of other cognitive mechanisms
in supporting the use of EIG, like model-based decision-
making, which may support or similarly rely on simulating
probabilistic outcomes of multi-stage decisions (Decker et al.,
2016; Doll, Duncan, Simon, Shohamy, & Daw, 2015).

Another possibility is that younger people are equally ca-
pable of implementing a more discriminatory intervention
strategy, but perform a different cost-benefit analysis when
determining which strategy to use. As mentioned previously,
the confirmatory PTS strategy often reveals diagnostic infor-
mation in environments in which causal links are sparse or
deterministic (Austerweil & Griffiths, 2011). Additionally,
confirmatory hypothesis testing may be adaptive when indi-
viduals have the opportunity to make multiple interventions
at low cost. It may be the case that rather than spending time
and cognitive effort to make the single best intervention, chil-
dren prefer to make multiple, easier, intervention decisions,
which together provide the information they need. Future
studies could isolate changes in ability from changes in ef-
fort allocation, by raising the cost of making an uninforma-
tive intervention or forcing all participants to spend a long
time deliberating prior to allowing them to perform their in-
tervention.

Finally, though few studies have examined causal learn-
ing in adolescence, our results demonstrate that causal learn-
ing and decision-making continue to change during this pe-
riod. Future work probing the cognitive mechanisms that

drive these changes will inform how to best support adoles-
cents as they interact with their environments with increasing
independence and shape their own learning opportunities.
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