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Abstract—In this paper, while considering the impact of
antenna correlation and the interference from neighboring users,
we study the problem of channel estimation and training
sequence design in multi-input multi-output (MIMO) two-way
relaying (TWR) systems. To this end, we propose to decom-
pose the bidirectional transmission links into two phases, i.e.,
the multiple access (MAC) and the broadcast (BC) phases.
By deriving the optimal linear minimum mean-square-error
estimators, the corresponding training design problems for the
MAC and BC phases are formulated and solved. Subsequently,
algorithms and, in some special cases, closed-form solutions for
obtaining the optimal training sequences for channel estimation
in TWR systems are derived. Moreover, to further reduce
channel estimation overhead, the minimum required length of
the training sequences are determined. Simulation results verify
the effectiveness of the proposed training designs in improving
channel estimation performance in TWR systems.

I. INTRODUCTION

Two-way relaying (TWR) has received great attention re-
cently due to its high spectrum efficiency, and in the mean
time, maintaining the advantages of traditional relay assisted
communications. The improvement in spectrum efficiency in
TWR is achieved by applying self-interference cancelation at
each source node and extracting the desired information from
the received network-coded messages. In this case, the accu-
racy of the self-interference cancelation process significantly
affects the performance of TWR systems. Moreover, when
using the popular amplify-and-forward (AF) relaying strategy,
the accuracy of self-interference cancelation process is highly
dependent on the precision of the channel estimation process.
Thus, obtaining highly accurate channel state information
(CSI) becomes more important in TWR systems compared
to traditional one-way relaying systems [1].

On the other hand, the multi-input multi-output (MIMO)
technique can be introduced to TWR systems to further
improve transmission reliability and bandwidth efficiency. One
efficient way to realize such performance improvement is
to exploit the estimated CSI for the application of source
and relay precoding [2]. Therefore, in MIMO TWR systems,
in addition to affecting the performance of self-interference
cancelation, inaccurate channel estimation also imposes a
negative effect on the precoder design.

This work is supported by the NSF of China under grant 61322102 and
the National 973 project under grant 2012CB316100.

Some contributions have been reported for the matrix-form
channel estimation of the MIMO two-way relay system. For
example, in [3], a MIMO channel estimator is proposed that
uses the self-interference as a training sequence to estimate the
channel matrices corresponding to the broadcast (BC) phase.
In [4], an LS estimator is used to obtain the cascaded channel
matrices corresponding to the BC and the multiple access
(MAC) phases. Very recently, the authors in [5], [6] investigate
the minimum mean-square-error (MMSE) channel estimation
for TWR systems based on a correlated Gaussian MIMO
channel model. In particular, in [5], the cascaded channel
matrices for AF TWR systems are estimated and the training
sequences at the two source nodes are optimized. Different
from [5], the authors in [6] aim to estimate the individual
channel matrices for each link.

In this paper, similar to [5], [6], we study channel esti-
mation for correlated MIMO TWR systems by considering
the Kronecker-structured channel model. However, unlike [5],
[6], we take into account the interference from the nearby
users. Thus, in this model, the disturbances at the source nodes
and the relay node consist of both noise and interference.
Note that the considered colored estimation environment may
be more practical for applications in today’s more densely
deployed wireless networks. Although channel estimation of
point-to-point MIMO systems in colored environments has
been studied in [7], [8], to the best of our knowledge, this
topic has not been addressed in the TWR scenario.

To enhance TWR performance, we seek to estimate the
individual channel matrices corresponding to source-to-relay
and relay-to-source links. To this end, we propose to decom-
pose the bidirectional transmission of the TWR system into
the MAC and BC phases, in which the channel estimations
are performed at the relay node and two source nodes,
respectively. The proposed estimation scheme is different
from the ones in [5], [6], where the channel estimation is
assumed to only be conducted at the user ends. As such,
our proposed estimation scheme can more efficiently support
precoding at the relay since it requires significantly less feed-
back overhead [2]. Based on the proposed estimation scheme,
we derive the optimal linear MMSE (LMMSE) estimator for
each phase. Next, the corresponding training design problems
are formulated with the aim of minimizing the total MSE
of channel estimation process for each phase. The training
design problems considered here are different from that of
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Fig. 1. An illustration of MIMO two-way relay system.

[5], [6], since we take into account the effect of colored
disturbances caused by interference at the relay node and
user ends. Moreover, the training design scenarios for point-
to-point systems in [7], [8] are different from the scenario
under consideration in this paper, since our proposed train-
ing sequence design is optimized to simultaneously enhance
channel estimation accuracy over both links in the BC and
MAC phases. Although, for the general scenario, it is difficult
to derive the optimal training sequence structures as in [5]–
[8], we propose two iterative design algorithms to solve the
training design problems. These algorithms are verified to
converge quickly to the near optimal solution and to not be
sensitive to the initialization process. For some special cases,
where the covariance matrices of the channels or disturbances
have specific forms, the optimal structures of the training
sequences are derived. The minimum required training lengths
for channel estimation in both the MAC and BC phases are
also derived.

Notations: ⊗ denotes the Kronecker operator. vec(·) signi-
fies the matrix vectorization operator. ℜ(z) denotes the real
part of z. Blkdiag(A0,A1, · · · ,AN−1) denotes a block diag-
onal matrix with A0,A1, · · · ,AN−1 as its diagonal matrices.

II. SYSTEM MODEL

Consider a TWR system where two source nodes S1 and
S2 equipped with N1 and N2 antennas, respectively, exchange
information with each other through an M -antenna relay node
R as shown in Fig. 1. The channel matrices from S1 and S2

to the relay are denoted by H1 and H2, respectively, and the
channel matrices from the relay to S1 and S2 are denoted
by G1 and G2, respectively. We assume that the individual
channels are estimated within two phases, i.e., H1 and H2 are
estimated in the MAC phase by using the training signals sent
from the two sources, and G1 and G2 are estimated during
the BC phase by utilizing the training signal transmitted from
the relay node.

The received training signals in the MAC phase can be
expressed as

YR = H1S1 +H2S2 +NR, (1)

where YR ∈ CM×LS with LS being the length of the
source training sequences, Si ∈ CNi×LS denotes the training
sequence at the source Si, and NR ∈ CM×LS represents the
correlated Gaussian disturbance at the relay node including
the total background noise and interference from nearby com-
munications, which is modeled by vec(NR) ∼ CN (0,KR).
The channel matrix Hi ∈ CM×Ni is modeled via Rayleigh

fading distribution with mean zero and covariance ZHi ∈
SMNi×MNi , i.e., vec(Hi) ∼ CN (0,ZHi). Suppose that the
source Si has the maximum power of Pi during the training
phase, i.e., Tr(SiS

H
i ) ≤ Pi.

In the BC phase, the received training signals at the two
source nodes are given by

Yi = GiSR +Ni, i = 1, 2, (2)

where Yi ∈ CNi×LR , SR ∈ CNi×LR denotes the training
signal at the relay node R and Ni ∈ CM×LR represents
the correlated Gaussian disturbance at the source Si, which
is modeled by vec(Ni) ∼ CN (0,Ki). It is assumed that
the channel matrix Gi ∈ CM×Ni follows the distribution
vec(Gi) ∼ CN (0,ZGi). Here, we assume that the length
of the relay training sequence is LR. To satisfy the relay
power constraint, we have Tr(SRS

H
R ) ≤ PR, where PR is the

maximum power at the relay node during the training phase.
In this work, we assume that the covariances of the channels

ZHi , ZGi and the covariances of disturbances KR and Ki,
for i = 1, 2, are structured and known. We assume that the
channel matrices take the Kronecker-structured model, where
the covariance matrices are separated between the transmitter
and receiver sides. Specifically, the covariance of the channel
matrices can be decomposed as ZHi = Zt,Hi ⊗Zr,H , ZGi =
Zt,G ⊗ Zr,Gi , which allows us to model the channels as

Hi = Cr,HWHi
CT

t,Hi
, Gi = Cr,Gi

WGi
CT

t,G,

where Ca,b satisfies Za,b = Ca,bC
H
a,b with a ∈ {r, t}, b ∈

{H,H1,H2, G,G1, G2}. In (3), WHi and WGi are the
unknown matrices and each element is a zero mean and unit
variance Gaussian variable.

The structured disturbance covariances Ki, for i ∈
{R, 1, 2}, are assumed to be modeled by [7]–[9]

Ki = Kq,i ⊗Kr,i, i = R, 1, 2, (3)

where Kq,1, Kq,2, Kq,R denote the temporal covariance
matrices and Kr,1, Kr,2, and Kr,R denote the received spatial
covariance matrix. Moreover, it is assumed that Kr,1, Kr,2,
and Kr,R share the same eigenvectors with Zr,G1 , Zr,G2

and Zr,H , respectively. This assumption is valid when the
disturbances are either spatially uncorrelated or share the
same spatial structure as the channels [8], [9]. The eigenvalue
decomposition (EVD) of Zt,Hi , Zr,H , Zt,G, and Zr,Gi are
given by

Za,b =Ua,bΣa,bU
H
a,b,

a ∈ {r, t}, b ∈ {H,H1,H2, G,G1, G2},
(4)

where Ua,b denotes the unitary eigenvector matrix and Σa,b

is a diagonal matrix with [Σa,b]n,n = σa,b,n being the n-th
eigenvalue of Za,b. Accordingly, the singular value decompo-
sition (SVD) of Ca,b is denoted by Ca,b = Ua,bΣ

1/2
a,b Ũ

H
a,b

with Ũa,b representing a unitary matrix. The EVD decompo-
sition of Kq,i and Kr,i is denoted by

Ka,b = Va,b∆a,bV
H
a,b, a ∈ {r, t}, b ∈ {1, 2, R}, (5)
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where Va,b denotes the unitary eigenvector matrix, ∆a,b is
a diagonal matrix with [∆a,b]n,n = δa,b,n being the n-th
eigenvalue of Ka,b.

III. CHANNEL ESTIMATION FOR TWO-WAY RELAY
SYSTEMS

For the estimation in the MAC phase, we rewrite (1) as

YR = Cr,HWH1C
T
t,H1

S1 +Cr,HWH2C
T
t,H2

S2 +NR

= Cr,HWHCT
t,HS+NR,

(6)

where WH , [WH1 ,WH2 ], CT
t,H ,

Blkdiag(CT
t,H1

,CT
t,H2

), and S , [ST
1 ,S

T
2 ]

T . Vectorizing YR

and applying the identity vec(ABC) = (CT ⊗ A)vec(B),
we can rewrite (6) as

yR =
(
STCt,H ⊗Cr,H

)
wH + nR, (7)

where yR , vec(YR), wH , vec(WH) and nR , vec(NR).
The estimation of wH based on the LMMSE criterion can be
obtained as ŵH = TRyR. The estimation matrix TR has the
following form

TR = RwhyR
R−1

yRyR
, (8)

where RwhyR
, E(wHyH

R ) = CH
t,HS∗ ⊗ CH

r,H , RyRyR
,

E(yRy
H
R ) =

(
STCt,H ⊗Cr,H

) (
STCt,H ⊗Cr,H

)H
+

KR = STCt,HCH
t,HS∗ ⊗ Cr,HCH

r,H + KR. Let us define
h , vec(H) = (Ct,H ⊗Cr,H)wH with H , [H1,H2], the
resulting estimation error, or mean-square-error (MSE), eR
can be obtained as

eR =E
(
||h− ĥ||22

)
=E

(
Tr

[
C0,H(wH −TRyR)(wH −TRyR)

H
])

,

where C0,H , CH
t,HCt,H ⊗CH

r,HCr,H . Substituting TR into
eR and using the matrix identity (I +AB)−1 = I −A(I +
BA)−1B, we obtain the following more compact form

eR =Tr
[
C0,H

(
I+

(
STCt,H ⊗Cr,H

)H
K−1

R

×
(
STCt,H ⊗Cr,H

))−1
]
.

(9)

Note that since the channel estimation model in (7) is linear
and Gaussian, the proposed LMMSE estimator is equivalent
to the optimal MMSE estimator.1

IV. TRAINING SEQUENCE DESIGN FOR MAC PHASE

To design the training sequence in the MAC phase, the S1

and S2 are optimized subject to two source power constraints
aiming at minimizing the total estimation MSE, i.e., eR in (9).
The corresponding optimization problem can be formulated as

min
S1,S2

eR in (9)

s.t. Tr(SiS
H
i ) ≤ Pi, i = 1, 2.

(10)

Before solving (10), we first introduce the following lemma
that deals with the minimum length of S.2

1Please refer to [10] for the details of the optimal LMMSE estimator and
the MSE derivation in the BC phase.

2Please refer to [10] for the omitted proofs of this paper.

LEMMA 1. To achieve an arbitrary small MSE with infinite
power at the source nodes, the minimum length of the source
training sequence should be set to LS = N1+N2. Otherwise,
even with infinite power at the source nodes, the total MSE
is lower bounded by

∑M
n=1 σr,H,n

∑N1+N2

m=LS+1 σt,H,m with
σt,H,m being the m-th eigenvalue of Zr,H and Zt,H =
Blkdiag(Zt,H1

,Zt,H2
). Moreover, for Kq,R = qI and any

power constraint at the source node, if the optimal solution
of S in (10) has a rank r, the minimum length of source
training sequence can be set to LS = r.

Although the objective function in (10) has a similar form to
that of point-to-point systems, there are two power constraints
in (10) that make the problem of solving this non-convex
optimization problem more difficult than that of point-to-
point systems in [7], [8]. Also, as we consider the colored
disturbance, (10) cannot be solved as in [5], [6] by deriving
the optimal structures of the training sequences. In order to
proceed, we first note that eR in (9) can be obtained by
substituting (8) into (9). Thus, to make the problem tractable,
we propose an iterative algorithm, which decouples the primal
problem into two sub-problems and solves each of them in an
alternating approach. Let us rewrite (9) as

ẽR = E
(
Tr

[
C0,H(wH −TRyR)(wH −TRyR)

H
])

= Tr
[
C0,H −

(
STCt,H ⊗Cr,H

)H
TH

RCH
0,H−

C0,HTR

(
STCt,H ⊗Cr,H

)
+C0,HTR

(
STCt,H ⊗Cr,H

)
×
(
STCt,H ⊗Cr,H

)H
TH

R +C0,HTRKRT
H
R

]
.

Then, the optimization problem in (10) is equivalent to

min
TR,S1,S2

ẽR

s.t. Tr(SiS
H
i ) ≤ Pi, i = 1, 2.

(11)

In the first subproblem, we intend to optimize the LMMSE
estimator matrix TR for a given S1 and S2. Since TR is not
related to the power constraint, the problem simplifies to an
unconstrained optimization problem given by

min
TR

ẽR. (12)

Given that (12) is convex with respect to TR, by setting its
gradient to zero, we obtain the optimal TR as given in (8).

In the second subproblem, the training sequences S1 and S2

need to be optimized for a given TR by solving the following
optimization problem

min
S1,S2

ẽR

s.t. Tr(SiS
H
i ) ≤ Pi, i = 1, 2.

(13)

Next, it is shown that the optimization problem in (13) can be
transformed into a convex quadratically constrained quadratic
programable (QCQP) problem. To achieve this goal, we first
reformulate the last term in ẽR as
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Tr
[
C0,HTR

(
STCt,H ⊗Cr,H

) (
STCt,H ⊗Cr,H

)H
TH

R

]
(a)
=Tr

[
TH

RC0,HTR(S
T ⊗ I)(Ct,HCH

t,H ⊗Cr,HCH
r,H)(S∗ ⊗ I)

]
(b)
=vec(S⊗ I)H

(
TH

RC0,HTR ⊗CT
tr

)
vec(S⊗ I)

(c)
=sHEH

(
TH

RC0,HTR ⊗CT
tr

)
Es,

(14)
where Ctr , Ct,HCH

t,H ⊗ Cr,HCH
r,H , s , vec(S),

E , Blkdiag(Ẽ(1), Ẽ(2), · · · , Ẽ(LS)), Ẽ(i) = Ẽ, Ẽ ,[
Ē(1); Ē(2); · · · ; Ē(M)

]
, Ē(i) , Blkdiag(ei, ei, · · · , ei︸ ︷︷ ︸

N1+N2 elements

), and

ei is the unit vector with ei,i = 1 and ei,j = 0, j ̸= i.
In (14), Eq. (a) is obtained by using the circular property
Tr(AB) = Tr(BA) and the matrix identity (A ⊗ B)(C ⊗
D) = AC ⊗ BD, Eq. (b) is obtained by using the identity
Tr(ABCD) = vec(D)T (A⊗CT )vec(BT ) and (A⊗B)H =
AH⊗BH , and Eq. (c) is obtained by using vec(S⊗I) = Es.
Similarly, the term Tr

[
C0,HTR(S

TCt,H ⊗Cr,H)
]

can be
expressed as

Tr
[
C0,HTR(S

TCt,H ⊗Cr,H)
]
= vec(CT )

TEs, (15)
where CT , (Ct,H ⊗ Cr,H)C0,HTR. To obtain (15), we
use the fact Tr(ATB) = vec(A)Tvec(B). The source power
constrain in (13) can be rewritten as

Tr(SiS
H
i ) = Tr(EiSS

H) = sH(I⊗Ei)s, (16)

where E1 , Blkdiag(IN1 ,0N2×N2) and E2 ,
Blkdiag(0N1×N1 , IN2), and the second equation in (16) is ob-
tained by using Tr(ABCD) = vec(DT )T (CT ⊗A)vec(B).
According to (14), (15), and (16), the optimization problem
in (13) can be transformed into

min
s

sHEH
(
TH

RC0,HTR ⊗CT
tr

)
Es− 2ℜ(vec(CT )

TEs)

s.t. sH(I⊗Ei)s ≤ Pi, i = 1, 2.
(17)

Since both EH
(
TH

RTR ⊗CT
tr

)
E and I ⊗ Ei are positive

semidefinite matrices, we conclude that the optimization prob-
lem in (17) is a convex QCQP problem, which can be easily
solved by applying the available software package.

In summary, we outline the proposed iterative training
design algorithm as follows:

Algorithm 1
• Initialize S1, S2

• Repeat
– Update the LMMSE estimator matrix TR using (8) for fixed S1

and S2;
– For fixed TR, solve the convex QCQP problem in (17) to get the

optimal S1 and S2;
• Until The difference between the MSE from one iteration to another

is smaller than a certain predetermined threshold.

THEOREM 1. The proposed iterative precoding design in
Algorithm 1 is convergent and the limit point of the iteration
is a stationary point of (11).

To this point, it is shown that the joint source training design
can be solved via Algorithm 1. In the following, we illustrate
that for some special cases, the optimal solution of (10) can
be obtained in closed-form.

A. When Kr,R = Zr,H

We first consider the case with Kr,R = Zr,H , which
corresponds to a scenario where the disturbance is dominated
by the interference from neighboring users as shown in [9].
Accordingly, the LMMSE estimator in (8) can be rewritten as

TR =
[
CH

t,HS∗ ⊗CH
r,H

]
×

[
STCt,HCH

t,HS∗ ⊗Cr,HCH
r,H +KR

]−1

=CH
t,HS∗ (STCt,HCH

t,HS∗ +Kq,R

)−1︸ ︷︷ ︸
,TR,1

⊗C−1
r,H ,

which further leads to TH
RC0,HTR = (TR,1 ⊗C−1

r,H)H

(CH
t,HCt,H ⊗CH

r,HCr,H)(TR,1 ⊗C−1
r,H) = TH

R,1C
H
t,HCt,H

TR,1 ⊗ I, and

Tr
[
C0,HTR

(
STCt,H ⊗Cr,H

) (
STCt,H ⊗Cr,H

)H
TH

R

]
(a)
= Tr(Zr,H)Tr

[
STCt,HCH

t,HS∗TH
R,1C

H
t,HCt,HTR,1

]
(b)
= Tr(Zr,H)

2∑
i=1

Tr
(
ST
i Zt,HiS

∗
iT

H
R,1C

H
t,HCt,HTR,1

)
.

(18)
In (18), Eq. (a) is obtained by using Tr(A ⊗ B) =
Tr(A)Tr(B), and Eq. (b) is obtained as Ct,H is a block
diagonal matrix as shown in (6). In addition, the term
Tr

[
C0,HTR(S

TCt,H ⊗Cr,H)
]

can be reexpressed as

Tr
[
C0,HTR(S

TCt,H ⊗Cr,H)
]

= Tr
[
(STCt,HCH

t,HCt,HTR,1)⊗Cr,HCH
r,H

]
= Tr(Zr,H)

2∑
i=1

Tr
(
ST
i Zt,HiCt,HiTR,1,i

)
,

(19)

where TR,1,1 , TR,1(1 : N1, :) and TR,1,2 , TR,1(N1 +1 :
N1+N2, :). Based on (18) and (19), (13) is equivalent to the
following optimization problem

min
S1,S2

2∑
i=1

{
Tr

(
ST
i Zt,HiS

∗
iT

H
R,1C

H
t,HCt,HTR,1

)
−

Tr
(
ST
i Zt,HiCt,HiTR,1,i

)
− Tr

(
TH

R,1,iC
H
t,Hi

ZH
t,Hi

S∗
i

)}
s.t. Tr(SiS

H
i ) ≤ Pi, i = 1, 2.

(20)
We note that compared to (13), (20) has a simpler form and
can be solved in closed-form via the KKT conditions. Thus,
the optimal si , vec(Si) can be obtained as

si = [Xs,1 ⊗Xs,2,i + λiI]
−1

xs,3,i, (21)

where λi is the lagrangian multiplier associated with the
power constraint at Si, Xs,1 , TH

R,1C
H
t,HCt,HTR,1, Xs,2,i ,

ZT
t,Hi

, and xs,3,i , vec
((
TH

R,1,iC
H
t,Hi

ZH
t,Hi

)T ). The optimal
λi in (21) can be zero or should be chosen to activate the
power constraint. For the case where λi ̸= 0, the following
lemma is introduced.
LEMMA 2. The function g(λi) = Tr

(
SiS

H
i

)
= Tr

(
sis

H
i

)
,

with si defined above (21), is monotonically decreasing
with respect to λi and the optimal λi is upper-bounded by
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√
σs,3,i

Pi
− σs,min,i. Here, σs,min,i denotes the smallest eigen-

value of Xs,1 ⊗Xs,2,i and σs,3,i = ||xs,3,i||22.

By applying Lemma 2, the optimal λi that meets the
condition Tr

(
SiS

H
i

)
= Pi can be readily obtained via the

bisection search algorithm.

B. When Kq,R = qI

This scenario corresponds to a practical case, where the
disturbance consists of both the additive white Gaussian noise
and the temporally uncorrelated interference. To proceed, the
total MSE is first rewritten as

eR =Tr

[
C0,H

(
I+

1

q
CH

t,HS∗STCt,H ⊗CH
r,HK−1

r,RCr,H

)−1
]

=

M∑
n=1

σr,H,nTr

[(
Z−1

t,H + αnS
∗ST

)−1
]
,

where αn , σr,H,n

qδr,R,n
. Subsequently, the optimization problem

in (10) can be rewritten as

min
S1,S2

M∑
n=1

σr,H,nTr

[(
Z−1

t,H + αnS
∗ST

)−1
]

s.t. Tr(EiS
∗ST ) ≤ Pi, i = 1, 2

(22)

where Ei is defined in (16). Although the optimization prob-
lem in (22) is non-convex with respect to Si, it is noted that
one may optimize (22) with respect to the positive semidefinite
matrix S∗ST instead of the training sequence Si. Accordingly,
after solving for the optimum S∗ST , the solution can be
decomposed to obtain Si. This approach is preferable since
in (22), the objective function and the constraint both depend
on S∗ST and not Si. Hence, by defining QS , S∗ST , the
following equivalent problem can be obtained

min
QS≽0

M∑
n=1

σr,H,nTr

[(
Z−1

t,H + αnQS

)−1
]

s.t. Tr(EiQS) ≤ Pi, i = 1, 2.

(23)

THEOREM 2. The optimization problem in (23) is convex with
respect to the positive semidefinite matrix QS .

Next, it is shown that the optimization problem in (23) can
be solved by transforming it into a semidefinite programming
(SDP) problem. By introducing the variables Xn, the problem
in (23) can be rewritten in an equivalent form as

min
QS≽0,Xn

M∑
n=1

σr,H,nTr (Xn)

s.t. Tr(EiQS) ≤ Pi, i = 1, 2(
Z−1

t,H + αnQS

)−1

≼ Xn,∀n

(24)

By using the Schur complement, (24) can be further trans-
formed into the following SDP problem

min
QS≽0,Xn

M∑
n=1

σr,R,nTr (Xn)

s.t. Tr(EiQS) ≤ Pi, i = 1, 2[
Z−1

t,H + αnQS I

I Xn

]
≽ 0, ∀n

(25)

By solving the SDP problem in (25), the optimal solution
to the optimization problem in (23) is obtained. However,
this numerical method of solving this optimization problem
has a relatively high computational complexity. To obtain the
optimal structure of Si and gain a better understanding of the
optimization in (22), the following theorem is introduced.

THEOREM 3. With LS ≥ N1 + N2, the optimal training
sequence Si in (22) should satisfy the condition S∗

1S
T
2 = 0.

In addition, the optimal Si has a form of Si = U∗
t,Hi

ΣsiV
H
si ,

where Vsi is chosen such that VH
s1Vs2 = 0 and Σsi is a

diagonal eigenvalue matrix with [Σsi ]n,n = σsi,n. Σsi can
be obtained by solving the following water-filling problem of∑M

n=1

αnσr,H,nσ
2
t,Hi,m

(1+αnσt,Hi,m
σ2
si,m

)2 = λi, where the optimal λi should

be selected such that
∑Ni

m=1 σ
2
si,m = Pi.

Remark 1: Due to the space limitation, we omit the training
design for the BC phase. The details can be found in [10].

V. SIMULATION RESULTS

The total normalized MSE (NMSE), defined
as either 1

M(N1+N2)

∑2
i=1 E{||Hi − Ĥi||2F } or

1
M(N1+N2)

∑2
i=1 E{||Gi− Ĝi||2F }, is utilized to illustrate the

performance of the proposed algorithms. In all simulations,
the channel covariances are assumed to have the following
structures [Zt,b]n,m = zt,bJ0(dt,b|n−m|), b ∈ {H1,H2, G},
and [Zr,b]n,m = zr,bJ0(dr,b|n − m|), b ∈ {H,G1, G2},
where J0(·) is the zeroth-order Bessel function of the first
kind, dt,b and dr,b are proportional to the carrier frequency
and the antenna separation vectors at the transmitter and
the receiver, respectively [7]. Moreover, the scalars zt,b and
zr,b are normalization factors such that Tr(Zt,Hi) = Ni,
Tr(Zr,H) = M , Tr(Zt,G) = M and Tr(Zr,Gi) = Ni. The
temporal covariance of the disturbance is assumed to be
modeled via a first order autoregressive (AR) filter, i.e.,
[Kq,b]n,m = Iq,bkq,bη

|n−m|
q,b for b ∈ {1, 2, R} [7]. Here, the

scalar kq,b is a normalization factor similar to Zt,b and Zr,b.
Moreover, Iq,b indicates the strength of the interference from
the nearby users. For simplicity, the lengths of the source and
relay training sequences are assumed to be LS = N1 + N2

and LR = M , respectively. The sum power at the two
sources are assumed to be P1 + P2 = 2P . If not specified
otherwise, we assume that N1 = N2 = M = 3.

In Fig. 2, we compare the total NMSE of the proposed
iterative training design algorithm with that of [8], which is
intended for point-to-point systems. The plots in Figs. 2(a)
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Fig. 2. Performance comparison with the existing design in [8].

and 2(b) illustrate that compared to the approach in [8],
the proposed training design can significantly improve the
accuracy of channel estimation in TWR systems. This gain
is even more pronounced when the two source nodes operate
at different transmit power levels during the MAC phase and
when the strengths of the disturbances at the two source nodes
are asymmetric, i.e., Iq,1 ̸= Iq,2 during the BC phase. This
can be mainly attributed to the fact that the proposed training
design algorithm, i.e., Algorithm 1, takes into account the
temporal correlation of the disturbances at the relay node in
the MAC phase, while ensuring that the training sequences
transmitted from the relay simultaneously match the channels
corresponding to relay-to-source links during the BC phase.

In Fig. 3, the performance of the proposed training sequence
design algorithms and channel estimators in the MAC phase
for Kq,R = qI is demonstrated. Three training sequence
design approaches are taken into consideration: 1) The itera-
tive design based on Algorithm 1; 2) The SDP design based
on (25); and 3) The SVD design based on Theorem 3. As
shown in Theorem 2, in this case, the optimization problem
for finding the optimal training sequences is convex. Hence, it
is well-known that both the SDP and the SVD design schemes
can achieve optimal channel estimation performance. This
outcome is also verified by the results in Fig. 3. However,
it is interesting to note that the proposed iterative algorithm
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Fig. 3. Performance illustration of the case with Kq,R = qI for MAC
phase channel estimation.
can also achieve optimal performance, which further verifies
its effectiveness for designing the training sequences.

VI. CONCLUSIONS

In this paper, we considered the channel estimation for
MIMO TWR systems. The impact of the interference from
neighboring devices and the effect of antenna correlations
on the design of training sequences and channel estimation
performance were taken into consideration. To realize channel
estimation of four individual links, we proposed to decompose
the bidirectional link into MAC phase and BC phase, and
conducted the channel estimation in each phase. The optimal
LMMSE estimators were first derived. Then the corresponding
training design problems were formulated and solved by using
different optimization skills.
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