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Abstract

Rationale: The role of PI (protease inhibitor) type Z heterozygotes
and additional rare variant genotypes in the gene encoding alpha-1
antitrypsin, SERPINA] (serpin peptidase inhibitor, clade A, member 1),
in determining chronic obstructive pulmonary disease risk and
severity is controversial.

Objectives: To comprehensively evaluate the effects of rare
SERPINA1 variants on lung function and emphysema phenotypes
in subjects with significant tobacco smoke exposure using

deep gene resequencing and alpha-1 antitrypsin concentrations.

Methods: DNA samples from 1,693 non-Hispanic white
individuals, 385 African Americans, and 90 Hispanics with =20
pack-years smoking were resequenced for the identification of rare
variants (allele frequency < 0.05) in 16.9 kB of SERPINAI.

Measurements and Main Results: White PI Z heterozygotes
confirmed by sequencing (MZ; n = 74) had lower post-
bronchodilator FEV; (P=0.007), FEV;/FVC (P =0.003), and greater
computed tomography-based emphysema (P = 0.02) compared with
1,411 white individuals without PI Z, S, or additional rare variants

denoted as V. PI Z-containing compound heterozygotes (ZS/ZVy;
n=7) had lower FEV;/FVC (P=0.02) and forced expiratory flow,
midexpiratory phase (P=0.009). Nineteen white heterozygotes for
five non-S/Z coding variants associated with lower alpha-1
antitrypsin had greater computed tomography-based emphysema
compared with those without rare variants. In African Americans, a
5" untranslated region insertion (rs568223361) was associated with
lower alpha-1 antitrypsin and functional small airway disease
(P=0.007).

Conclusions: In this integrative deep sequencing study of
SERPINA1I with alpha-1 antitrypsin concentrations in a heavy
smoker and chronic obstructive pulmonary disease cohort, we
confirmed the effects of PI Z heterozygote and compound
heterozygote genotypes. We demonstrate the cumulative effects of
multiple SERPINA1I variants on alpha-1 antitrypsin deficiency, lung
function, and emphysema, thus significantly increasing the frequency
of SERPINA]1 variation associated with respiratory disease in at-risk
smokers.

Keywords: chronic obstructive pulmonary disease; alpha-1
antitrypsin; SERPINAI; rare variant; emphysema
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The strongest genetic risk factor for chronic
obstructive pulmonary disease (COPD) and
emphysema susceptibility has been the locus
coding for SERPINAI (alpha-1 antitrypsin,
serpin peptidase inhibitor, clade A, member 1)
on chromosome 14q32. Alpha-1 antitrypsin
deficiency is caused by genetic variants in
SERPINALI, resulting in increased risk for
early-onset obstructive lung disease and
emphysema, specifically in cigarette
smokers. SERPINA1 variation has been
estimated to account for <1% of all cases
of COPD and emphysema (1-3).
Traditionally, alpha-1 antitrypsin deficiency
is diagnosed based on serum alpha-1
antitrypsin levels and classified with protein
phenotyping (PI [protease inhibitor] typing)
through protein isoelectric focusing (PIEF).
Based on PIEF, PI type M is the major wild-
type phenotype associated with normal
alpha-1 antitrypsin levels and homozygotes
for this phenotype (MM) have a similar
COPD risk as the general population.

In individuals of European white
descent, the most frequent PI types associated
with alpha-1 antitrypsin deficiency are PI
type S due to low-frequency coding variants
at amino acid position 288 (Glu®®Val,
rs17580) and PI type Z at position 366
(Glu366Lys, 1s28929474) (4-6). Homozygotes
for the Lys>® allele (2Z), Val*®® allele (SS),
and compound heterozygotes (ZS) have
been associated with lower serum alpha-1
antitrypsin levels and an increased risk for
COPD and emphysema (2, 7, 8). The
influence of the PI Z heterozygote genotype
on COPD and emphysema risk and severity
is still controversial with multiple studies

showing contradictory results (9, 10). Earlier
PIEF-based studies suggested that MZ
heterozygotes with a history of smoking
have an increased risk for COPD and lower
lung function but were based on cohorts
with a minimal smoking history (without
the necessary gene-environment
interaction) or not ascertained for COPD
(9, 11, 12). More recent studies with targeted
genotyping have shown that PI type Z
heterozygote genotype was associated with
lower lung function, COPD, and computed
tomography scan measures of emphysema;
however, these analyses did not account for
additional rare SERPINAI variation or
alpha-1 antitrypsin concentrations (13-15).
A genome-wide association study for
emphysema and two for Global Initiative for
Chronic Obstructive Lung Disease (GOLD)
grade 2 to 4 COPD have also identified loci
adjacent to SERPINAI, suggesting the
importance of rare variation at this locus
(13, 16-18). None of these studies
performed DNA sequencing to exclude the
effects of background rare variation in MZ
heterozygotes or for the identification of
novel pathogenic rare genotypes.
Sequencing of SERPINAI is necessary
to confirm whether one PI Z allele is
sufficient to affect disease risk and severity,
and is essential for identifying additional
rare variants that could influence
pathogenesis (19). Altogether, MZ
heterozygotes and novel pathogenic rare
genotypes could increase the influence of
SERPINAI on COPD risk and severity in
ever-smokers. We hypothesize that PI type Z
and additional rare variants cumulatively

affect lung function and emphysema, and,
therefore, COPD risk and severity in
subjects with significant tobacco smoke
exposure (3). Thus, we performed a deep
resequencing study of SERPINAI in a
comprehensively characterized (including
alpha-1 antitrypsin concentration
measurements in a large subset), multiethnic
cohort from the NHLBI SPIROMICS
(Subpopulations and Intermediate
Outcomes Measures in COPD Study). The
results of this study have been previously
reported in abstract form (20, 21).

Methods

Study Population

SPIROMICS participants were 40 to 80
years of age with a smoking history =20
pack-years with COPD (GOLD spirometric
grades 1-4) and without COPD (22, 23).
Participants were comprehensively
characterized with annual pre- and post-
bronchodilator lung function measures for
up to 3 years, computed tomography scans,
and standardized questionnaires (22).
Alpha-1 antitrypsin concentrations were
obtained in 1,391 subjects using Myriad
RBM’s CustomMAP using Luminex xMAP
technology at the initial baseline visit.

Resequencing of SERPINA1

DNA samples from 1,693 non-Hispanic
white individuals (1,097 with alpha-1
antitrypsin concentrations [see baseline
characteristics in Table E1 in the online
supplement]), 385 African Americans
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At a Glance Commentary

Scientific Knowledge on the
Subject: The influence of the MZ
heterozygote genotype on chronic
obstructive pulmonary disease
phenotypes is controversial, with
multiple studies showing contradictory
results. Over the past decade, protein
isoelectric focusing and genotyping-
based studies in European white
individuals, including one large
genotyping study of African Americans
and white individuals, have
demonstrated that protease inhibitor Z
heterozygotes have lower lung function
and more emphysema when
appropriately evaluating at-risk
individuals with sufficient pack-years
smoking history. These studies did not
evaluate for the effects of other rare
variants with deep sequencing, were not
complemented by alpha-1 antitrypsin
measurements, and most cohorts had
lower smoking histories (<20 pack-
years) (8, 11, 12, 14, 15, 17, 18).

What This Study Adds to the Field:
This study is the most comprehensive
analysis of rare SERPINAI variants in a
multiethnic cohort with significant
cigarette-smoking exposure ascertained
for a broad range of chronic obstructive
pulmonary disease severity, not alpha-1
antitrypsin deficiency. This study is the
first to perform deep gene sequencing
in combination with alpha-1 antitrypsin
concentrations to detect the cumulative
effects of protease inhibitors Z, S, and
additional rare SERPINA1 variants,
combined and independently (34).

(231 with alpha-1 antitrypsin
concentrations), and 90 Hispanics (63 with
alpha-1 antitrypsin concentrations) were
sequenced with an average depth of 61.8
reads per target region (X; median = 60.5X)
for the identification of less common and
rare variants with minor allele frequencies
less than or equal to 0.05 in a 16.9 kB region
(chromosome 14, nucleotide position
94841102-94857987 based on human
genome assembly GRCh37 [hg19]) of
SERPINAI consisting of the five coding
exons, four introns, and the 5" and 3’
untranslated regions (UTRs) (23).
Resequencing services were provided
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through the NHLBI Resequencing and
Genotyping Service. Twelve variants with
minor allele frequency less than or equal to
0.05 identified with sequencing, including PI
Z, were also genotyped and confirmed with
the Illumina OmniExpress HumanExome
BeadChip (Illumina, Inc.) and PI S with the
MassARRAY system (Sequenom, Inc.). A
flow diagram of the analytical methods is
shown as Figure 1.

Statistical Methods
SERPINAI polymorphisms that had a call
rate less than or equal to 0.98 and common
variants that did not meet Hardy-Weinberg
expectations (P < 0.05) or showed
nonrandom missingness were excluded
with the exception of PI type Z, which did
not meet Hardy-Weinberg expectations
(P=6.29X10"°) owing to a strong
influence on COPD risk in white
individuals (24). We annotated variants
identified with resequencing based on
GRCh37 using National Center for
Biotechnology Information ClinVar, the
NHLBI Grand Opportunity Exome
Sequencing Program, Exome Aggregation
Consortium, International Genome Sample
Resource based on the 1000 Genomes
Project, and Online Mendelian Inheritance
in Man databases to determine PI type and
novelty (25-29).

Regression-based burden tests of PI Z,
S, and other rare variants were stratified by
self-reported ethnic group to detect gene-
level effects on the strongly correlated
co-primary outcomes of baseline post-
bronchodilator FEV;% predicted,
FEV,/FVC ratio, and computed tomography
scan evidence of emphysema based on
percentage low attenuation area of bilateral
lungs =<—950 Hounsfield units (HFU)
(% < —950 HFU) at TLC (see Table E2)
(30). We subsequently analyzed individual
variants with regression-based allelic
association analyses. Based on the significant
co-primary outcome associations found
with burden tests and for PI Z (C/T alleles)
(15), we evaluated six collapsed genotype
groups based on the presence or absence of
PI Z, PIS, or other rare variant minor alleles
for which little or no a priori knowledge of
pathogenicity was available (Vy designates
all non-Z and non-S rare variants). Shown as
Figure 1:

1. Subjects with two SERPINAI variants
were grouped as 1) PI Z homozygotes
(ZZ), 2) PI Z compound heterozygotes

(ZS/ZVR), and 3) compound heterozygotes
without PI Z (SS/VrVr/SV).

2. Subjects with one SERPINAI variant
were grouped as 1) MZ heterozygotes
and 2) MS/MVy.

3. Subjects with no identifiable rare
variant, PI S, or Z were a single group
(No Z/S/Vy).

Secondary, related outcomes included
computed tomography scan evidence of air
trapping based on percentage of low
attenuation area of bilateral lungs less than
or equal to —856 HFU (% < —856 HFU) at
residual volume, small airway disease as
measured by computed tomography
scan-based parametric response mapping
of functional small airway disease
(PRM®AP) and clinical outcome measures
(see Figure 1) (31). Analyses were
performed using JMPGenomics 6.0 (SAS
Institute Inc.) and PLINK v1.07 adjusted
for age, sex, study site, body mass index,
pack-years cigarette smoking, FVC%
predicted for forced expiratory flow,
midexpiratory phase (FEF,5 ;5), height for
computed tomography scan measures, and
C-reactive protein for alpha-1 antitrypsin
concentrations (24). To account for
ancestry in African Americans and
Hispanics, whole-genome European,
African, and Native American percentage
ancestry was estimated using ADMIXTURE
for regression-based models (24, 32).
Haplotype analyses and phasing of
compound heterozygotes was performed
with 16 common tagging single nucleotide
polymorphisms (SNPs; * < 0.5), P Z, and S.

Luciferase Reporter Assay

To evaluate a rare, 5' UTR G-insertion
associated with alpha-1 antitrypsin
concentrations and PRM™AP in African
Americans, the 5" UTR of SERPINAI
NM_000295 was synthesized and
homology inserted into the pNL3.2 Nano
luciferase plasmid. All experiments were
performed in triplicate; experimental
details, including PCR primers and
genomic coordinates, are provided in Table
E3 and the online supplement methods.

Results

SERPINA1 Variants in the SPIROMICS
Multiethnic Study Cohort

The baseline characteristics are shown by
ethnic group in Table 1. Non-Hispanic

American Journal of Respiratory and Critical Care Medicine Volume 201 Number 5 | March 1 2020



SERPINA1 16.9kB region resequencing to identify rare variants (RV, allele frequency<0.05)
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Figure 1. SERPINAT genetic study flow diagram summarizes the sequential analytical steps for characterizing rare SERPINAT variants in SPIROMICS. First,
burden tests for Pls (protease inhibitors) Z, S, and 21 additional rare exonic coding variants and 1 frameshift insertion, all with a minor allele frequency of less than
0.05, were performed by self-reported ethnic group to evaluate for gene-level associations with the co—primary outcomes (30). Second, individual rare variants were
analyzed with regression-based allelic association tests to further evaluate significant associations. Based on the strong effect of Pl type Z variant on the co—primary
outcomes in white individuals, we performed association testing of this variant conditional on additional less common (Pl S) and rare SERPINAT variants. We
compared white individuals without a Pl Z, S, or additional rare variant allele (no Z/S/Vg, where Vg designates all non-Z and non-S rare variants), heterozygotes for
non—Pl Z rare variation (MS/MVg), Pl Z heterozygotes without another rare variant (MZ), compound heterozygotes with non-Pl Z rare variation (SS/SVg/VRVR), Pl
Z-containing compound heterozygotes with Pl S or additional rare variants (ZS/ZVg), and Pl Z homozygotes (Z2) to evaluate the effects of Pl Z heterozygotes with
the confirmed absence of other rare variants and Pl Z in compound heterozygotes with another rare variant. We performed similar analyses for secondary related
outcomes. BODE =body mass index, airflow obstruction, dyspnea, and exercise; FEF,5 75 =forced expiratory flow, midexpiratory phase; SGRQ = St. George’s
Respiratory Questionnaire; SPIROMICS = Subpopulations and Intermediate Outcomes Measures in Chronic Obstructive Pulmonary Disease Study.

white individuals had a higher smoking
history (51.8 pack-years) than African
Americans (41.0 pack-years) or Hispanics
(46.8 pack-years) (P=5.60 X 107°).
Post-bronchodilator FEV,% and
FEV,/FVC ratio was lower in white
individuals (71.8% predicted and 0.59,
respectively) compared with African
Americans (76.6% and 0.64) and Hispanics
(80% and 0.64; P=0.0004 and P=0.0001).
Computed tomography scan-based
emphysema based on percentage

<—950 HFU and air trapping based on
percentage =—856 HFU was highest in white
individuals (8.19% and 25.9%, respectively)
compared with African Americans (7.70%
and 22.2%) and Hispanics (4.89% and 20.0%;
P=0.0006 and P=3.80 X 10 °). White
individuals (n=1,097; 1.98 mg/ml), African

Americans (n=231; 1.95 mg/ml), and
Hispanics (n=63; 1.80 mg/ml) had similar
alpha-1 antitrypsin concentrations (P=0.18).
The allele frequencies for all missense
and frameshift exonic SERPINA1 variants
are shown by ethnic group in Table 2,
including 16 coding variants confirmed with
array genotyping. PI Z, S, 21 additional rare
coding variants, and one 5" UTR nucleotide
insertion variant are shown as Figure 2. One
variant in white individuals (Ile*’’Thr) had
not been previously reported. White
individuals had 17 coding variants with an
allele frequency less than 0.05 and one
frameshift insertion resulting in a null
variant (TyrlMTerfs, PI type QOGranite Falls)>
of which 15 were unique to white
individuals. African Americans had eight
variants with a frequency less than 0.05

Ortega, Li, O’Neal, et al.: Rare SERPINAT Variants in COPD and Emphysema

(including the benign PI M1/M4), four
unique to African Americans; whereas, in
Hispanics, four, two unique, rare variants
were identified. We identified 18 of 23
exonic coding SNPs identified in the NHLBI
Exome Sequencing Project (see Table E4),
plus seven additional rare coding variants
and a frameshift insertion (28).

Seven PI Z-containing compound
heterozygotes were identified among white
individuals: three with PI type S (ZS
genotype), two Ala>**Ser, one PI type
M6p,ssan> and one PI type I. Two PI SS
homozygotes and three compound
heterozygotes without PI Z were identified
in white individuals: one PI S/Ile*"”Thr, one
PI S/PI F, and one PI F/Ala>*Ser. The
baseline characteristics of compound
heterozygotes and nine PI Z homozygotes
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Table 1. Baseline Characteristics of the SPIROMICS Cohort

SPIROMICS Cohort Baseline Characteristics

Demographics
Subjects, n
Age, yr, mean (SD)*
Sex, F, n (%)*
BMI, mean (SD)
Pack-years, mean (SD)*
COPD diagnosis, n (%)*
COPD grade 2-4 diagnosis, n (%)*
Post-bronchodilator pulmonary function
Baseline FEV4, % predicted, mean (SD)*
Baseline FVC, % predicted, mean (SD)*
FEV4/FVC ratio, %, mean (SD)*
Clinical outcome measures

Hospitalization or ED visit last 12 mo, n (%)
St. George’s Respiratory Questionnaire, mean (SD)

BODE, mean (SD)

6-minute-walk distance, m, mean (SD)*

COPD assessment test, mean (SD)
Additional measures

Computed tomography evidence of emphysema,

TLC % area < —950 HFU, mean (SD)*

Computed tomography evidence of air trapping,

Ethnic Group

Non-Hispanic
White Individuals

1,693
65.2 (8.30)
751 (44.4)
27.8 (5.06)
51.8 (26.4)
1,191 (70.3)
921 (54.4)

71.8 (25.8)
90.3 (17.7)
0.59 (0.16)

163 (9.75)
32.1 (20.1)
1.51 (1.94)
4085 (118.1)
13.5 (8.10)

8.19 (10.2)
25.9 (21.0)

residual volume % area < —856 HFU, mean (SD)*

Computed tomography-based functional small
P %, mean (SD)*
AIpha-T1 antitrypsin concentration, mg/ml, mean

airways disease, PRM'

(SD)

21.9 (15.0)
1.98 (0.48)

African Americans Hispanics
385 90
58.2 (8.96) 60.8 (10.0)
207 (53.8) 34 (37.8)
28.0 (6.06) 28.6 (5.29)
41.0 (17.4) 46.8 (25.8)
206 (53.5) 52 (57.8)
167 (43.5) 36 (40.0)
76.6 (27.1) 80.0 (28.0)
92.5 (20.1) 94.8 (19.3)
0.64 (0.17) 0.64 (0.17)

0 (21.2) 16 (18.0)

37 8 (20.9) 34.5 (21.9)
1.57 (1.91) 1.08 (1.68)
410.6 (135.5) 408.9 (90.2)
15.9 (8.88) 15.4 (8.82)
7.70 (11.1) 4.89 (7.73)
22.2 (23.2) 20.0 (21.0)
17.1 (15.7) 16.8 (16.3)
1.95 (0.48) 1.80 (0.35)

Definition of abbreviations: BMI =

pulmonary disease; ED =emergency department; HFU = Hounsfield units; PR

MfSAD

SPIROMICS = Subpopulations and Intermediate Outcomes Measures in COPD Study.

*P < 0.05 for the trend between ethnic groups.

body mass index; BODE =body mass index, airflow obstruction, dyspnea, and exercise; COPD = chronic obstructive
parametric response mapping of functional small airway disease;

TSerum alpha-1 antitypsin levels were measured in a subgroup of 1,097 non-Hispanic white individuals, 231 African Americans, and 63 Hispanics.

are shown as Table E5 (haplotype phases are
shown as Table E6). We identified 14
synonymous SNPs, 268 5" UTR variants,
103 intronic variants, and 122 3" UTR
variants, including 25 insertion-deletions
(see Table E7).

Effects of Pl Type Z, S, and Additional
Rare SERPINA1 Variants on Lung
Function and Emphysema

Phenotypes

Based on gene-level burden testing, white
individuals with any two rare exonic
SERPINAI variants, including PI Z and S
(two rare variants [2RVs]; n=21), had lower
FEV; (ORVs=72.6%; 2RVs =50.2% predicted;
P=3.58X10"7), FEV,/FVC (0RVs=0.59;
2RVs=0.44; P=3.52 X 10~ °), and FEF,5 ;s
(ORVs =55.7%; 2RVs=27.1% predicted;
P=1.69 X 10~°), as well as greater computed
tomography scan-based emphysema
(ORVs=7.83%; 2RVs=17.2% < —950 HFU;
P=1.47 X 10~°), air trapping (ORV's = 25.4%;
2RVs=46.5% < —856 HFU; P=2.89 X 10 °),
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and functional small airway disease

(ORVs =21.6%; 2RVs =34.4% PRM™A";
P=234X 10">; Table 3) compared with white
individuals with ORVs (n=1,411). White
individuals with 1RV (n=259) had a lower
FEV,/FVC (1RV =0.57; P=0.005), FEFy5 75
(1RV =50.4% predicted; P=0.004), and greater
emphysema (1RV =943% < —950 HFU;
P=0.049) compared with those with ORVs
(see Table 3). Rare variant associations were not
found in African Americans or Hispanics

(see Table ES).

Allelic association testing by ethnic
group is shown as Tables E9 to E14. As
previously demonstrated in white individuals,
the PI Z SNP (C/T alleles; Table 4) was
associated with lower post-bronchodilator
lung function and GOLD grade 2 or higher
COPD when comparing major allele
homozygotes (CC; n=1,601) and
heterozygotes (CT; n=281) (15). Compared
with major allele homozygotes, P1 Z SNP
heterozygotes also had lower FEF,s ;5
(CC=55.1%; CT =47.3%; P=0.01), greater

computed tomography scan-based emphysema
(CC=7.89%; CT =12.3%; P=0.01), air
trapping (CC = 25.4%; CT = 33.6%; P=0.01),
and functional small airway disease
(CC=21.6%; CT =26.1%; P=0.02; see
Table 4). Haplotype analyses excluded
background haplotype effects (see Table E15).
No significant lung function or computed
tomography scan measure associations were
found for any other exonic variant (see
Tables E9-E14) or PI Z in African
Americans or Hispanics (see Table E16).

Effects of Pl Type Z, S, and Specific
Rare SERPINA1 Variant Genotypes on
Lung Function and Emphysema
Phenotypes

Owing to the significant co-primary outcome
associations between white individuals with
ORVs versus 1RV or two SERPINA1 variants
(see Table 3) and PI Z genotypes (see

Table 4) but not PI S or other rare variants
(Vg; see Tables E9 and E12), we grouped
white individuals into six genotype groups by

American Journal of Respiratory and Critical Care Medicine Volume 201 Number 5 | March 1 2020



Table 2. SERPINA1 Polymorphisms Identified in the Coding Exons in SPIROMICS by Ethnic Group

SERPINA1 Variants*

Minor Allele Frequencies

cDNA Nucleotide Non-Hispanic White  African Americans Hispanics
rs Number® Change Coding Change Pl Type Individuals (n = 1,693) (n =385) (n=90)

rs28931570* c.187C>T Arg®3Cys [ 0.003 0.001 0
rs199687431* c.206C>T Ser®*Phe — 0.0003 0 0
rs111850950* c.250G>A Ala®*Thr M6passau 0.0003 0 0
rs376616935 c.286A>G Thr®Ala — 0 0.001 0
rs709932% c.374G>A Arg'%5His M2/M4 0.16 0.04 0.12
rs112030253* c.514G>T Gly'"?Trp M20bermburg 0.002 0 0
rs267606950 c.552delC Tyr'®Terfs Ogranite Falls 0.0003 0 0
rs1206520317 C.632A>G Tyr?"'Cys — 0.0003 0 0
rs6647* c.710T>C Val?*"Ala M1Ala/M1Val 0.22 0.56 0.24
rs28929470% c.739C>T Arg**’Cys F 0.004 0 0
rs121912714 C.839A>T Asp28Val PLowell, Q0cargifr 0.0009 0 0
rs17580% c.863A>T Glu>®8val S 0.04 0.008 0.05
rs141095970* c.879C>A His?%3GiIn — 0 0.001 0
rs772436715 c.880C>T Asp?4Asn — 0.0003 0 0
rs141620200* c.922G>T Ala®*8ser — 0.004 0 0
rs773222881 c.926G>A Ser’®Asn — 0 0 0.006
pos 94845916 c.950A>G 11e®' " Thr — 0.0003 0 0
rs139964603* c.976G>A Val*®|le — 0 0.003 0
rs377739083 c.1048C>T Pro3*°Ser — 0.0003 0 0
rs201788603* c.1061C>T Ser®**Phe SMunich 0.0009 0 0
rs201318727 c.1090A>G 11e%®4Val — 0.0003 0 0
rs143370956+ c.1093G>A Asp®®®Asn Pst Albans 0 0.001 0
rs201774333 ¢.1095C>G Asp®®5Glu — 0 0 0.006
rs28929474* c.1096G>A Glu®®®Lys z 0.03 0.005 0.03
rs61761869% c.1177C>T Pro®%Ser Mwurzburg 0.0009 0 0
rs1303% c.1200A>C Glu*®Asp M3 0.25 0.09 0.22
rs754885222 c.1211A>G Lys*®*Arg — 0.0003 0 0

Definition of abbreviations: cDNA = complementary DNA; Pl = protease inhibitor; pos = position; SPIROMICS = Subpopulations and Intermediate
Qutcomes Measures in Chronic Obstructive Pulmonary Disease Study.
Minor allele frequencies of missense and frameshift polymorphisms identified though resequencing of a 16.9 kB region of SERPINAT are shown by ethnic

group.

*Variants are described by rs number, Pl type based on protein isoelectric focusing, and amino acid coding change when indicated.
TNovel variation or those without an rs number are shown by nucleotide pos on chromosome 14.
*Twelve less common and rare coding variants (minor allele frequency < 0.05) and 3 common variants were genotyped with the lllumina OmniExpress
HumanExome BeadChip (lllumina, Inc.) and Pl S (not covered by the Chip) using a Sequenom Array.

collapsing PI Z-containing and non-Z
variant (PI S or Vy) genotypes (Table 5 and
see Figure 1). These six genotype groups
included 1) those without PI Z, S, or other,
rare variants (“no Z/S/Vy” or “those without
rare variants”; n = 1,411); 2) heterozygotes for
non-PI Z rare variants (“MS/MVy”; n=132
MS; n=53 MVy); 3) PI Z heterozygotes (CT
SNP genotype) without another rare variant
confirmed by sequencing (designated as
“MZ”; n="74); 4) PI S homozygotes, PI S and
Vr (non-PI Z) compound heterozygotes
(“SS/SVRr/VRVR”; n=5); 5) PI Z-containing
compound heterozygotes (“ZS/ZVy™; n=7);
and 6) PI Z homozygotes (TT SNP genotype
designated as “ZZ”; n=9) are shown as
Figure 1 and Table 5. Stratifying between
these genotype groups characterized the
associations between ORVs and 1RV (see
Table 3) by distinguishing effects of true MZ
heterozygotes from Z-containing compound
heterozygotes (ZS/ZVy) and non-Z

heterozygotes (MS/MVy; see Figure 1). For
the associations between ORV's and 2RV (see
Table 3), this genotype stratification
distinguished the known effects of ZZ
homozygotes from the effects of additional
rare variants in compound heterozygotes
with (ZS/ZVy) and without PI Z
(SS/SVRr/VRVy; see Figure 1).

White MZ heterozygotes had a lower
FEV; (64.3%; P=0.007; Figure 3A) and
FEV,/FVC (0.54; P=0.003; see Figure 3B),
as well as increased computed tomography
scan-based emphysema (12.3%; P=0.02;
see Figure 3C) and air trapping (32.1%;
P=0.03), compared with those without rare
variants (FEV,; =72.6%; FEV,/FVC = 0.60;
emphysema =7.83%; air trapping = 25.4%;
see Table 5). Z-containing compound
heterozygotes also had a lower FEV;/FVC
(0.42; P=0.02; see Figure 3B) and FEF,5. 5
(20.1%; P=0.009) compared with subjects
without rare variants (see Table 5). Hence,
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the association between PI Z SNP
heterozygote (CT) genotype and lung
function is due to both MZ and Z-containing
compound heterozygotes (15). Non-PI Z
rare variant heterozygotes (MS/MVy) also
had a lower FEF,5 5 (50.6%) compared with
subjects without rare variants (55.7%;
P=0.03; see Table 5). White ZZ
homozygotes had lower lung function
measures (FEV,; =37.9% [P=2.11 X 10" °];
FEV,/FVC=040 [P=252 X 10 °]; FEF,5.55=
16.1% [P =0.0002]; see Figures 3A and 3B
and Table 5) and greater computed
tomography scan measures of emphysema
(24.3%; P=8.52 X 10~ 5; see Figure 3C), air
trapping (54.2%; P=1.15X10"®), and
functional small airway disease (35.8%;
P=6.83X10"7) compared with subjects
without rare variants (see Table 5). Genotype
effects on emphysema and air trapping

were determined by the lower lung zone
emphysema in ZZ and MZ; however, upper
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Tyr?"'Cys 1e3""Thr  Asp®®®Glu
ArgPHis Val®*"Ala ESI Asp®®Asn
Thr%Ala _PIMoma  SPIM1ValAla =PI P, aans
= 308 364
rs568223361 (InsG) Arg®3Cys élgi Ser lle”>Val Gjy400agp
=PI \ His = Gin \ =PI M3
TssiLI TSS2Y  suart codon Y Stop codon
o oo — ’
Ser*®Phe Val2oii Lys***Arg
24
Ala®Thr Gly"Trp | Arg Cys Pro®%%Ser Pro33ger
=PI M6p5sau =M20pemp 9 =PIF GV —Ser;54phe =P MWurzburg
Frameshift ~ " Munich 266
InsG= Asp?Val Asp®®*Asn GFl’lIJZ Lys
184 _ =
Tyr®"Terfs= =PI Py

Pl QOGranile Falls

=Pl QO¢4 gt

Figure 2. SERPINAT variants identified in the promoter and coding exons in the SPIROMICS
multiethnic cohort. Missense and frameshift polymorphisms identified though resequencing of a 16.9 kB
region of SERPINAT containing the untranslated promoter and five coding exons of SERPINAT in the
SPIROMICS multiethnic cohort are shown by amino acid position, coding change, and protease
inhibitor type where available. Of the 26 exonic coding variants identified with resequencing, three were
the common and benign protease inhibitor types M1Ala/Val (Val?*"Ala, rs6647), M2/M4 (Arg'25His,
rs709932), and M3 (GIu*®°Asp, rs1303). A newly identified missense variant is underlined. Variants only
found in white individuals are in blue text, those only in African Americans in red text (including an ethnic-
specific G-nucleotide 5’ untranslated region insertion [underlined] evaluated with functional studies), and
those only in Hispanics in green text. SPIROMICS = Subpopulations and Intermediate Outcomes
Measures in Chronic Obstructive Puimonary Disease Study.

lung zone emphysema was also increased in
ZZ (see Table E17). White SS/SVr/VrVy
showed a spectrum of baseline disease risk
and severity (see Table 5); however, tobacco
smoke exposure varied across these five
individuals (21.5-42.8 pack-years for two SS
homozygotes, 63.0-80.0 pack-years for two
SVy/one VRVy; see Table E5).

Effects of Pl Type Z, S, and Additional
Rare SERPINA1 Variants on

COPD Risk

All white PI Z-containing compound
heterozygotes (n="7) and ZZ homozygotes
(n=9) had GOLD grade 1 to 4 COPD.
Of these, six of seven Z-containing
compound heterozygotes and 100% of ZZ
homozygotes had grade 2 to 4 COPD.
Grade 2 to 4 COPD was more frequent in
MZ (n=49 [66.2%]) compared with white
individuals without rare variants (n =748
[53.0%]; P=0.02; see Table 5). Rare
SERPINAI genotypes were not significantly
associated with COPD in African
Americans or Hispanics (see Table E18).

Effects of Pl Type Z, S, and Additional
Rare SERPINA1 Variants on
Longitudinal Lung Function

Although there was a significant difference
in longitudinal decline of FEV; and FVC
over 3 years in those with 2RVs compared
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with those without rare variants (see

Table 3), there were no strong genotype-
specific associations (additive P > 0.05; see
Tables 4 and 5). Based on burden testing,
white individuals with any two of the rare
variants, including PI Z and S (n=16), had
a higher rate of decline (FEV; =—0.14 L/yr
[P=0.001]; FVC=—0.16 L/yr [P=0.009];
FEV,/FVC=—0.02/yr [P=0.02]) compared
with white individuals without rare variants
(n=1,214; FEV, = —0.04 L/yr; FVC = —0.04
L/yr; FEV/FVC = —0.006/yr; see Table 3).

Effects of Pl Type Z, S, and Additional
Rare SERPINA1 Variants on
Exploratory Clinical Outcomes

Body mass index, airflow obstruction,
dyspnea, and exercise (BODE) index was
higher in MZ (2.07; P=0.006) and ZZ
subjects (5.00; P=6.67 X 1077) compared
with those without rare variants (1.46),
whereas St. George’s Respiratory
Questionnaire scores were only higher in
ZZ subjects (total score=57.3) compared
with those without rare variants (31.6;
P=0.002; see Table E19). COPD
Assessment Test scores were higher in ZZ
(22.1; P=0.007) and Z-containing
compound heterozygotes (20.6; P=0.04)
compared with those without rare variants
(13.4; see Table E19). In white individuals,
COPD exacerbations requiring emergency

department visits or hospitalization were
more frequent in ZZ (n=4 [44.4%])
compared with those without rare variants
(n=131 [9.38%]; P=0.02; see Table E19).

Effects of Rare SERPINA1 Variants on
Alpha-1 Antitrypsin Concentrations

PI Z SNP genotypes (C/T) were associated
with alpha-1 antitrypsin concentrations

in white individuals (P=5.84 X 105

see Table 4). Alpha-1 antitrypsin
concentrations were lower in MS/MVy
(n=113; 1.79 mg/ml; P=123x10"'"),
MZ (n=49; 1.22 mg/ml; P=2.92 X 10~ %),
compound heterozygotes without PI Z
(n=2; 1.20 mg/ml; P=0.005), PI Z-
containing compound heterozygotes (n=5;
0.87 mg/ml; P=2.73 X 10~ '%), and ZZ
homozygotes (n =6; 0.88 mg/ml;
P=7.13X10""°) compared with those
without PI Z/S/Vy (n=922; 2.05 mg/ml; see
Table 5). Detailed genotype analyses based
on PI types Z, S, and additional rare
variants demonstrate effects on alpha-1
antitrypsin concentrations, which mirror
effects on lung function and emphysema
(Figures 4A-4C). Rare variant burden
testing excluding white subjects with either
PI Z and S demonstrated lower alpha-1
antitrypsin concentrations in those with 1
of 14 different rare variants (n=38;

1.76 mg/ml) compared with those without
variants (n=922; 2.05 mg/ml; P=8.09 X 10~
see Figure El). African American (n=4;

1.30 mg/ml) and Hispanic MZ heterozygotes
(n=5; 0.91 mg/ml) had lower alpha-1
antitrypsin concentrations compared with
African Americans (n=368; 1.96 mg/ml;
P=0.03) and Hispanics (n=74; 1.82 mg/ml;
P=0.02) without rare variants (see Table E18).

Alpha-1 Antitrypsin Quantitative Trait
Loci Analyses

Association testing, 16.9 kB region-wide, for
alpha-1 antitrypsin concentrations of
SERPINAI conditional on PI Z did not
identify loci within the 5" or 3’ UTR
reaching region-wide Bonferroni-adjusted
significance (P=1.0 X 10~ * based on 493
variants tested; see Figures E2 and E3). Five
rare non-Z coding variants were at least
nominally associated with alpha-1
antitrypsin concentrations in white
individuals (Ile*'”Thr [coinherited with PI
S in an individual compound heterozygote;
P=0.05; see Figures 4A-4C], PI I

[P: 00002]’ PI QoGranite Falls [P= 001]) PIS
[P=5.93X10""], PI Mwursburg [P=0.046];
see Figure E2 and Table E20), whereas no
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Figure 3. Effects of rare SERPINAT variant—containing genotypes on lung function and computed
tomography scan-based emphysema. Regression-based association testing compared white
individuals without Pls (protease inhibitors) Z, S, or other rare variants (No Z/S/VR); heterozygotes for
non-Pl Z rare variants (MS [n=132] and MV [n =53] heterozygotes); Pl Z heterozygotes without
another rare variant (M2); Pl S and Vg compound heterozygotes (SS, SVg, and VRVg); Pl Z-containing
compound heterozygotes with Pl S or additional rare variants (ZS/ZVg); and Pl Z homozygotes (Z2).
Compound heterozygotes with Pl type Z and S or additional rare variants include three Pl type ZS,
one Pl type Z/Pl Mgpassau, One Pl type Z/PI |, and two Pl type Z/Ala®*®Ser. Compound heterozygotes
without Pl type Z included two Pl type S homozygotes (SS), one Pl type S/lle®!"Thr, one Pl type S/PI
type F, and one Pl type F/Ala®®Ser. Bars represent the means. Regression-based analyses adjusted
by study site, age, sex, body mass index, and pack-years smoking history for lung function ([A]
FEV,% predicted and [B] FEV+/FVC ratio). Models also included height for log-transformed computed
tomography scan-based emphysema based on percentage of the area in bilateral lungs with density

SSVRVR/SVR (ZS/ZVR) ZZ
(N=5) (N=7)  (N=9)

of —950 Hounsfield units (HFU) or less ([C] log % bilateral area < —950 HFU).

exonic rare variants were associated in
African Americans (see Table E21) or
Hispanics (see Table E22). In the entire
white cohort with sequencing data, we
collapsed associated variants (PI I, QyGranite Falls
Mwurzburg) With rare variants showing with
mean concentrations <1.5 mg/ml in carriers,
the lowest 10th percentile, (PI Syiunicn [7=3;
1.5 mg/ml], PT Qocarditr OF Prowen [n=1; 1.3
mg/ml]; see Table E20) to test for associations
in the absence of PI S and PI Z genotypes.
White heterozygotes with any one of these
five rare variants had increased computed
tomography scan-based emphysema (1 =19;
9.92%) compared with those without rare
variants (n=1,409; 7.83%; P=0.02; Figure 5
and see Table E23).

Alpha-1 antitrypsin quantitative trait
loci analysis in African Americans conditional
on PI Z identified a G-insertion in the 5" UTR
(—5,368 bps relative to start codon,
1rs568223361; see Figure 2) associated with
lower alpha-1 antitrypsin concentrations
with similar significance as PI Z (P =0.02; see
Figure E3). Five African Americans with this
insertion had fgreater functional small airway
disease (PRM™AP = 43%) compared with
those without (17%; P=0.007; see Figure E4
and Table E24). Luciferase reporter
experiments indicate that this insertion
lowers alpha-1 antitrypsin expression (see
Figures E5A and E5B) through either altered
transcriptional or translational regulation (33).

Discussion

This study is the largest, deep targeted
resequencing analysis of SERPINAI
variation integrated with alpha-1
antitrypsin measurements in a
comprehensively characterized multiethnic
cohort of subjects with COPD and
unaffected cigarette smokers not
ascertained for alpha-1 antitrypsin
deficiency. Targeted DNA sequencing
provides deeper coverage compared with
whole-genome or whole-exome sequencing
for the identification of rare variants. In
addition, the heavy minimal smoking
history of =20 pack-years in the
SPIROMICS cohort provides an
opportunity to detect pathogenic variation
not possible in cohorts without sufficient
exposure because gene-environment
interactions are a necessary component for
the penetrance of the emphysema and
COPD induced by alpha-1 antitrypsin
deficiency (34).
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Figure 4. Rare SERPINAT variant genotypes and alpha-1 antitrypsin levels in non-Hispanic white

individuals and effects on lung function and computed tomography scan-based emphysema.

Detailed genotypes in white individuals are shown as those without a rare SERPINAT variant (MM),
those with one rare variant (Vg) that is not Pl (protease inhibitor) type S or Z (MVg), those with one PI
type S allele and no other variant (MS), Pl type Z heterozygotes (MZ), Pl type S homozygotes (SS),

Ortega, Li, O’Neal, et al.: Rare SERPINAT Variants in COPD and Emphysema

Thus, this study addresses long-
standing questions regarding the role of PIZ
genotypes in the pathogenesis of COPD and
emphysema while providing insight into
novel rare SERPINAI genotype associations
in ever-smokers. First, this study confirms
that PI Z heterozygotes with a significant
cigarette smoking history have lower lung
function, greater airflow obstruction, and
greater computed tomography scan-based
quantitative measures of emphysema, air
trapping, and functional small airway
disease. The question of the effects of MZ
heterozygosity on COPD risk and severity is
an important issue that has been evaluated
over the past 40 years in mostly general
populations primarily limited by small
sample sizes, physician-based diagnoses, and
a failure to establish sufficient exposure to
tobacco smoke resulting in variable results
(9, 10, 12, 35). Irish MZ heterozygotes based
on PIEF with =20 pack-years smoking
history had a lower lung function and an
increased COPD risk compared with MM
ever-smokers, whereas no differences were
observed between those with <20 pack-
years (11). In contrast to our study, these
subjects were not ascertained for COPD and,
on average, had normal lung function.

Recent genotyping studies of COPD
and controls with =10 pack-years smoking
history also found lower lung function and
higher risk for COPD, computed
tomography scan-based emphysema, and
air trapping in PI Z heterozygotes
compared with those without PI S or Z,
including what we described in a genome-
wide association study of the same
population (13-15). In conjunction with
prior studies, we confirm the effects of the
MZ heterozygote genotype on COPD and
emphysema phenotypes in current and ex-
smokers. In contrast to prior studies, we
assessed background variation with deep
sequencing of SERPINAI (10-15). Hence,
we were able to demonstrate that the effects
of PI Z heterozygote CT genotype (see
Table 4) are determined by the combined
effects of true MZ and PI Z-containing
compound heterozygotes on alpha-1
antitrypsin concentrations, lung function,
measures of small airway disease, and
emphysema (see Table 5) (13-15, 36).

Second, we demonstrated that non-PI
Z rare SERPINA1 variants and PI S are
significantly associated with COPD
phenotypes in Z-containing compound
heterozygotes. Prior studies have shown
that ZZ homozygotes and ZS compound
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Figure 5. Effects on non-PI (protease inhibitor) type S or Z rare SERPINAT variants associated with
alpha-1 antitrypsin concentrations on computed tomography scan-based emphysema in non-
Hispanic white individuals. Regression-based analyses were adjusted by study site, age, sex, pack-
years smoking history, body mass index, and height. Bars represent the means, red dots on the right
column represents subjects without rare SERPINAT variants (common, major allele homozygotes),
and the dots of multiple colors on the right column represent different heterozygotes for one of five
different rare SERPINAT variants associated with lower alpha-1 antitrypsin concentrations (P =0.05)
or with mean concentrations <1.5 mg/ml, excluding Pl type S and Z. HFU =Hounsfield units.

heterozygotes are at an increased risk for
airflow obstruction and emphysema;
however, few studies have evaluated
Z-containing compound heterozygotes with
additional variation (7, 8). In our study,
white Z-containing compound heterozygotes
with four different rare variants had
increased airflow obstruction, impaired
small airway function, and lower alpha-1
antitrypsin concentrations (see Table 5) (10,
37). Pathogenic Z-containing compound
heterozygotes with a diversity of rare
variants, including QOgGyanite rans> PI I, and
Prowen> have been associated with alpha-1
antitrypsin deficiency and early-onset
severe emphysema in case reports (38-41).
Third, our study is the first to show that
multiple rare SERPINA]I variant genotypes,
independent of PI Z, impact alpha-1
antitrypsin deficiency and could serve as a
predictor of emphysema even among heavy
smokers with a single variant. We found a
cumulative effect of rare variation on

alpha-1 antitrypsin deficiency, independent
of PI Z and S (see Figure E1), similar to that
described in a general population (42). Of
these, we identified five non-S/Z variants
associated with lower alpha-1 antitrypsin
concentrations and cumulatively associated
with computed tomography scan-based
emphysema in white heterozygotes (see
Figure 5) (10). White individuals with two
rare SERPINAI variants, including PI S
homozygotes and compound heterozygotes
without PI Z, also had a higher rate of lung
function decline (see Tables 3 and 5),
demonstrating the diversity of genotypes
that influence disease progression beyond
PI Z genotypes (43, 44). The largest number
of rare SERPINAI variants and phenotype
associations were found in white
individuals because of the smaller sample
size of African Americans and Hispanics,
which also resulted in a potential lack of
power to detect associations in these
minority racial groups. Despite this

limitation, this is the largest SERPINAI
sequencing study in a minority cohort of
ex-smokers and COPD with alpha-1
antitrypsin concentrations that identified a
rare 5 UTR variant unique to African
Americans associated with functional small
airway disease, a putative precursor to
emphysema, and alterations in alpha-1
antitrypsin expression (37). The clinical
impact of this G-insertion needs to be
confirmed in larger racially diverse cohorts.
We tested for associations between
SERPINAI variation and multiple
phenotypes, resulting in multiple tests.
The strong effects of SERPINAI variation
in rare compound heterozygotes
demonstrated gene-level variant
interactions that justified a tiered approach
starting with burden testing (see Figure 1)
to minimize multiple comparisons. In
addition, the three co—primary outcomes
are interrelated (see Table E2), resulting in
association tests that are not independent.
Another limitation is that sequencing does
not distinguish compound heterozygotes,
including singleton variants versus two
variants occurring on the same
chromosome. The low alpha-1 antitrypsin
concentrations in compound heterozygotes
provide supportive evidence that we
identified true compound heterozygotes
(see Tables 3 and 5, Table E5, and Figures
4A-4C). Finally, the analysis of small
samples sizes of rare genotype subgroups is
a major statistical challenge inherent to the
analysis of rare variants, which could have
weak effects, no effects, or opposing
beneficial effects not detected with
traditional association tests or collapsing
methods. For instance, whereas
Z-containing compound heterozygotes
showed statistical trends similar to ZZ
homozygotes, non-Z compound
heterozygotes and SS homozygotes showed
a spectrum of baseline disease risk and
severity (see Tables 5 and E5), which could
relate to differences in individual variant
effect sizes or tobacco smoke exposure, and
requires study in larger cohorts. The

Figure 4. (Continued). compound heterozygotes with Pl type S except Pl type Z (SVR), Pl type S and Z-containing compound heterozygotes (S2), Z-containing
compound heterozygotes with additional rare variants except Pl type S (ZVg), and Pl type Z homozygotes (Z2), as shown. MV heterozygotes included those with
Lys™®Arg (n=1), Pro®®Ser (Pl Muurzoug n=3), 16%°Val (n=1), Ser***Phe (Pl Syiunicn; 1 =2), Pro®*Ser (n=1), Ala®®Ser (1=7), Asp®Val (Pl Piowel, Q0carai;
n=1), Arg®Cys (PIF; n=8), Ty*"'Cys (n = 1), Tyr'®Terfs (Pl Qlgranite rais; 1= 1), Gly'2Trp (Pl M200emourg; 1= 5), Ser*°Phe (0=1), and Arg®*Ser (PI|; n=6). ZVx
compound heterozygotes included one Pl Z/Pl Mgpassau, 0Ne PI Z/P1 1, and one Pl Z/A1a*®®Ser. SV compound heterozygotes included one Pl S/1le®' Thr.
Regression-based analyses were adjusted by study site, age, sex, body mass index, and pack-years smoking history for lung function ([A] FEV1% and [B]
FEV4/FVC ratio). Models also included height for (C) log-transformed computed tomography scan—based emphysema based on percentage of the area in bilateral
lungs with density of —950 Hounsfield units (HFU) or less (% area < —950 HFU). a1AT =alpha-1 antitrypsin.
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challenge of variable effects was also
important for non-Z/S rare variation for
which we leveraged alpha-1 antitrypsin
quantitative trait loci analyses to identify five
pathogenic variants cumulatively associated
with emphysema in white individuals and a
rare insertion associated with functional
small airway disease in African Americans.
Using targeted, deep DNA sequencing
and comprehensive phenotyping, we have
demonstrated the potential for sequencing
as a complementary test to the measurement
of alpha-1 antitrypsin concentrations for the
identification of novel variant determinants
for COPD and emphysema risk and
progression (19). We used next-generation
sequencing to detect novel and known rare
variation, including insertions or frameshift
variation, and ethnic-specific variants that
would not have been found in SNP-based
genotyping platforms primarily based on
European descent populations. Sequencing
distinguishes null variants (Q0Gyanite Falls>
QOcaraifr) that falsely appear as homozygote
MM or ZZ genotypes on PIEF, as well
as similar PI types that have varying
pathogenic effects (normal M, Myurzburg
M6Passau’ PSt. Albans> PLowelb S, SMunich)~
DNA sequencing definitively demonstrated
that MZ heterozygotes with the confirmed
absence of background rare variation and
Z-containing compound heterozygotes
associated with COPD and emphysema.
We also used alpha-1 antitrypsin
concentrations in conjunction with
computed tomography scan-based

measures and in vitro functional studies to
identify novel, at-risk non-Z heterozygote
subgroups. These findings need to be
evaluated in larger cohorts with sequencing
but justifies the sequencing of SERPINAI in
a subgroup of at-risk smokers with COPD,
emphysema, and low alpha-1 antitrypsin
concentrations in the absence of two
pathogenic SNPs covered by chip
genotyping panels. Commercial testing kits
already perform resequencing in those with
alpha-1 antitrypsin deficiency if SERPINA1
panel genotyping is negative (45). A similar,
step-wise approach for CFTR resequencing
is standard for individuals with clinical
features of cystic fibrosis and elevated sweat
chloride concentrations despite negative
CF1TR panel genotyping (46). CFTR
sequencing has identified over 2,000
variants of which 346 variants are known to
cause cystic fibrosis and are critical to the
selection of targeted modulator therapies
(47, 48).

Based on the frequency of Z-containing
compound heterozygotes, MZ heterozygotes,
and additional rare variant heterozygote
genotypes associated with emphysema
(see Table E23 and Figure 5) in white
individuals from SPIROMICS (6.4%), the
impact of SERPINAI variation in the
smoking general population could be more
than ninefold greater when compared with
the prevailing hypothesis (ZZ/ZS combined
frequency =0.7%). Based on the cumulative
deleterious effects of multiple rare
SERPINA1I genotypes, we should no longer

consider SERPINA]I variation a rare cause
of COPD and emphysema but as a
common and important pathogenic
determinant of disease risk and severity. As
the costs of next-generation sequencing and
high-throughput genotyping decline, the
identification and study of diverse
SERPINAI variation could lead to the
development of comprehensive genotyping
panels for the identification of a larger
number of at-risk genotype subgroups. This
would allow early targeted smoking
cessation or other targeted, precision
approaches for the individualized prevention
and treatment of COPD and emphysema
related to alpha-1 antitrypsin deficiency.
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