
Formal Specification for Deep Neural Networks

Sanjit A. Seshia, Ankush Desai, Tommaso Dreossi, Daniel J. Fremont,
Shromona Ghosh, Edward Kim, Sumukh Shivakumar, Marcell Vazquez-Chanlatte,

and Xiangyu Yue

University of California, Berkeley

Abstract. The increasing use of deep neural networks in a variety of applica-
tions, including some safety-critical ones, has brought renewed interest in the
topic of verification of neural networks. However, verification is most meaningful
when performed with high-quality formal specifications. In this paper, we survey
the landscape of formal specification for deep neural networks, and discuss the
opportunities and challenges for formal methods for this domain.

1 Introduction

Deep neural networks (DNNs) are increasingly being deployed in domains where trust-
worthiness is a major concern, including automotive systems [41], health care [3], com-
puter vision [35], and cyber security [13,53]. This increasing use of DNNs has brought
with it a renewed interest in the topic of verification of neural networks, and more gen-
erally, in the topics of verified artificial intelligence (AI) and AI safety [47,52,4].

S

E

Φ

Compose Verify

Property

System

Environment

YES
[proof]

NO
counterexample

M

Fig. 1. Typical formal verification procedure: S is the system under verification, E is a model
(or specification) of its environment, and Φ is the specification that system S must satisfy when
composed with E.

Verification is most meaningful when performed with high-quality formal specifica-
tions, i.e., with a high-quality, mathematically rigorous specification of desired behavior
that lends itself to algorithmic checking. As shown in Fig. 1, a typical formal verifica-
tion procedure takes in not only a representation of the system under verification, but
also the specification to be verified as well as a model (or specification) of the environ-
ment. Even as there is growing interest in the verification of DNNs (e.g., [32,20]), there

is suprisingly little that has been written about formal specification for deep neural net-
works, in particular about properties that are particularly relevant for neural networks
as opposed to other types of systems.

In this paper, we seek to address this gap by exploring the landscape of formal
specification for deep neural networks (DNNs). We begin by exploring the use cases
of neural networks in learning-based systems today, presenting a brief taxonomy of
DNN-based systems under verification. We then consider the literature on the design,
(adversarial) analysis, and verification of DNNs. These works have implicitly or explic-
itly specified a variety of properties. We present these properties, organizing them along
two dimensions. First, we present a semantic classification of properties, based on their
meaning and relevance for the verification of systems based on deep neural networks.
Second, we present a trace-theoretic classification, where we take the standard view of
properties defined using sets of traces, and discuss how the various properties fit into
those categories.

Our overall goal is to lay an initial foundation for formalizing and reasoning about
properties of DNNs, and for using these properties in a rigorous design and verification
methodology. We conclude with a brief discussion of challenges and opportunities for
applying formal methods to the design and analysis of DNNs.1

2 Deep Neural Networks: Background and Use Cases

We are assuming that the reader is familiar with the basics of deep neural networks
(DNNs). For those not familiar with DNNs, we suggest one of the books on the topic
(e.g., [25]). The goal of this section is to define basic notation and describe common
patterns of DNN-based systems.

2.1 Notation

We will use fairly standard notation about machine learning in the supervised setting.
Consider a sample space Z of the form X ×Y , and an ordered training set S =

((xi,yi))
m
i=1, where xi ∈ X is the data and yi ∈ Y is the corresponding label. Let H be

a hypothesis space (e.g., a particular neural network architecture parameterized by a
weight vector w). If the network computes a function from X to Y , we will denote it
by fw; i.e., fw(x) = y. There is a loss (or risk) function ` : H×Z 7→ R so that given a
hypothesis w ∈H and a sample (x,y) ∈ Z, we obtain a loss `(w,(x,y)). We consider the
case where we want to minimize the average loss over the training set S,

LS(w) =
1
m

m

∑
i=1

`(w,(xi,yi)) + λR (w).

In the equation given above, λ> 0 and the term R (w) is called the regularizer; the latter
seeks to enforce a notion of “simplicity” in w. Since S is fixed, we sometimes denote

1 An early version of this paper appeared in [51].

`i(w) = `(w,(xi,yi)) as a function only of w. The training problem is to find a w that
minimizes Ls(w); i.e., we wish to solve the following optimization problem:

min
w∈H

LS(w)

This optimization problem is also sometimes termed empirical risk minimization.

2.2 DNN-Based Systems

Controller Plant

Environment

DNN‐Based Perception

Plant

Environment

DNN‐Based End‐to‐End Control

Loan
Application

Loan
Decision

…

DNN‐Based “Neural Program”

Input (e.g. unsorted array)

Output (e.g. sorted array)

(a)

(b)

(c)

(d)

Fig. 2. Four use cases for DNNs in systems: (a) only for perception in a larger closed-loop
system; (b) for end-to-end decision making, from perception to control, in a closed-loop system;
(c) for open-loop decision making, and (d) for general-purpose programming.

DNNs have been used in a variety of systems. Figure 2 shows a selection of the types
of DNN-based systems developed in research and development. Arguably their biggest
impact to date has been in perceptual tasks, such as vision, natural language process-
ing, speech recognition, etc. Thus, a major use case for DNNs is to perform perceptual
tasks within the context of a larger closed-loop system, such as an autonomous vehicle,
depicted in Fig. 2(a). An example of such a system is the automatic emergency brak-
ing system (AEBS) described by Dreossi et al. [15], where images taken by a camera
mounted in front of an autonomous vehicle are fed to a DNN performing object de-
tection and classification, whose output is sent to a controller that controls the steering
angle and throttle of the autonomous vehicle. This vehicle then interacts with the rest of
its environment (other vehicles, pedestrians, etc.) and the resulting interaction generates
new sensor (image) data, closing the loop. In this case, the DNN is one component of a
larger engineered system, which usually has its own specification that provides context
for the design of the DNN.

The use of DNNs has also been demonstrated for so-called “end-to-end control”,
where neural networks go from sensor data to generating decisions and controlling
actuation, as shown in Fig. 2(b). This example differs from Fig. 2(a) in that the DNN
is used not just for perception, but also control. An example is an experimental self-
driving system developed by a team at Nvidia [7].

Open-loop decision-making systems based on DNNs have also been proposed, such
as a system that decides which loan applications to approve. This kind of system is
depicted in Fig. 2(c). In this case, the DNN is the overall system under design and
analysis.

Finally, the versatility of DNNs has also been demonstrated in general-purpose pro-
gramming, such as learning programs for tasks such as sorting or string processing,
shown in Fig 2(d). This use case for DNNs has specifications similar to those arising in
traditional program verification problems.

There are other use cases for DNNs not shown in Fig. 2, such as the use of stateful
neural networks (e.g., recurrent neural networks) or the use of DNNs for reinforcement
learning, where the DNN is used for sequential prediction and decision-making tasks.

Each of these use cases throws up different requirements. We will discuss the cor-
responding kinds of formal specifications in the following section.

3 Semantic Classification

We classify properties of deep neural networks based on the type of semantic behavior
they capture. Each semantic category appears in a separate sub-section below; however,
we note that these are not strict partitions, and there are some properties that fall into
multiple categories.

3.1 System-Level Specification

Several systems use DNNs as one component in a larger system targeting a particular
application. For example, consider the use of a DNN for object detection in an au-
tonomous vehicle. In such settings, the end goal can typically be captured naturally in
terms of a system-level specification —- a property over the entire system that addresses
the target application. As argued in recent papers (e.g. [52,18]), if the DNN is used for
a perceptual task that mimics human perception, then it is very hard, if not impossi-
ble, to write a formal specification for that task. The overall system’s specification, in
contrast, can be described precisely, at least for engineered systems. Traditional spec-
ification formalisms, such as temporal logics, may be employed for the system-level
specification.

An example of this approach is to specify the behavior of the automatic emergency
braking system whose closed-loop diagram is shown in Fig. 2(a). The function of this
system is to automatically actuate the brakes on the vehicle when it detects an environ-
ment object (obstacle) to be close. The objective is to maintain, at all times, a minimum
safe distance between the autonomous vehicle (AV) and environment objects while the
AV is in motion. We can write this specification in a standard specification language

such as signal temporal logic (STL), as follows:

G [AV moving⇒ dist(xAV ,xenv)> ∆]

However, to scale to large systems, compositional (modular) reasoning is necessary.
This poses a challenge to perform compositional verification in the absence of tradi-
tional, assume-guarantee style compositional specifications [50]. In prior work [15,16,50],
we have shown how to derive constraints on the input space of the DNN from a system-
level specification. However, these constraints are a guidance on where to search for
counterexamples rather than a specification for the DNN itself.

3.2 Input-Output Robustness

In recent years, a significant amount of work has addressed the robustness (or lack
thereof) of neural networks to so-called “adversarial perturbations” of their inputs (for
example, [27,43,42,54,58,5,9,38]). Techniques used to demonstrate a lack of robustness
are often referred to as “adversarial analysis.”
Optimization Formulation of Local Robustness: A common approach to adversarial
analysis involves solving an optimization problem of the following form, given a fixed
input x:

min
δ

µ(δ)

s.t. δ ∈ ∆

fw(x+δ) ∈ T (x)

(1)

Here µ is a cost function defined on the perturbations, typically a distance metric based
on a norm (L1,L2,orL∞), ∆ is a constrained domain set for δ, the constraint fw(x+δ) ∈
T (x) ensures that the output of the NN to the perturbed input lies in the adversary’s
target output set T (x) (which can be a function of x, e.g., Y \{y} where y is the correct
label). Typically ∆ is set to be the same as the domain of x, e.g., Rn. This property is
referred to as “local” robustness since it concerns robustness around a given input x.

For a recent survey (from a formal methods perspective) of techniques for analyzing
robustness, see [18].
Decision Formulation of Local Robustness: The decision version of this optimization
problem states that, given a bound β and input x, the adversarial analysis problem is to
find a perturbation δ such that the following formula is satisfied:

ϕ(δ)
.
= µ(δ)< β∧δ ∈ ∆∧ fw(x+δ) ∈ T (x)

In other words, the robustness property is the negation of the above formula, ¬ϕ(δ):

[µ(δ)< β∧δ ∈ ∆]⇒ [fw(x+δ) 6∈ T (x)]

Global Robustness: One can generalize the previous notion of robustness by universally
quantifying over all inputs x, to get the following formula, for a fixed β:

∀x. ∀δ. ¬ϕ(δ)

This is referred to as “global” robustness as we are not limited to analyzing robustness
around a fixed point.

An alternative formulation of global robustness involves specifying that the DNN
outputs a similar answer on all pairs of inputs (x1,x2) that are “close”, as follows:

∀x1,x2. [µ(x1− x2)< β∧ (x1− x2) ∈ ∆]⇒ [fw(x1)≈ fw(x2)]

where “≈” is a suitably-defined notion of similarity between outputs of the DNN.
Loss-based Robustness: Another formulation (e.g., [38]) involves finding a δ that max-
imizes the loss:

E(xy)∼D[max
δ∈∆

`(w,(x+δ,y))] (2)

where D is the distribution of the input space. In [38], the authors use the L∞ norm to
describe ∆ as a bounded neighborhood around x.

This is a probabilistic formulation that involves knowledge of the distribution. In
the absence of such knowledge, one may consider the worst case over the (x,y) space.
Additional Robustness Properties: Other authors have proposed alternative definitions
of robustness in the literature. For instance, Bastani et al. [5] define notions of adver-
sarial frequency (how often the DNN fails to be locally robust) and adversarial severity
(the average robustness value exceeding a given threshold, averaged over inputs x cho-
sen from some given input distribution). Cheng et al. [11] provide a definition of max-
imum resilience that is a global notion of robustness applying to multi-classification
DNNs.

While these notions of robustness have been useful in demonstrating the limitations
of DNNs for classification and other prediction tasks, as has been recently argued [18],
they are not enough by themselves. We need to tie them to the overall application se-
mantics. We discuss this point further in Sec. 3.11.

3.3 Input-Output Relations

Feedforward neural networks are programs that compute functions of their input. For
such programs, one can write formal specifications in the standard manner: assuming a
pre-condition on the inputs, P(x), guarantee a post-condition Q(x,y), i.e., ∀x,y. P(x)⇒
Q(x,y), where x and y are the inputs and outputs of the DNN respectively.

Researchers have identified special cases of pre/post-condition pairs for deep neural
networks. For example, Dutta et al. [19] analyze properties of the form P(x) =⇒ Q(y)
where P and Q are restricted to certain kinds of geometric regions. Similarly, Dvijotham
et al. [20] give examples of a similar class of restricted pre/post-condition pairs. These
are typically partial specifications of sequential program correctness.

Deep neural networks are being used for other kinds of functional computations,
such as neural Turing machines [30] and other neural programming architectures [8].
This case is depicted in Fig. 2(d). For these programs and formalisms, traditional classes
of functional program specifications, those that provide complete specifications of pro-
gram behavior, will also apply.

3.4 Semantic Invariance

For some applications, the input space X can be partitioned into equivalence classes
X1,X2,X3, . . ., such that for each equivalence class Xi⊆X , and pair of inputs xi1,xi2 ∈Xi,
we require that fw(xi1) = fw(xi2).

For instance, consider a DNN that must detect whether or not there is a car in an
image. One may want to specify that the binary output of the network (car,¬car) be
invariant to translation or scaling of objects in the image. Examples of such properties
are typically domain-specific. We refer to such properties as semantic invariance, an
example of which is geometric invariance (see, for example, [14,37,34,21,26]).

3.5 Monotonicity

In certain applications, the input space X admits a natural partial order �, and one
expects the output of the classifier to be monotonic with respect to this ordering. A
common example is a DNN used for approving loan applications: if Applicant A’s in-
come is strictly greater than Applicant B’s, all else being equal, then one might expect
that A’s application would be granted if B’s was.

One can formalize this property as follows:

∀x1,x2 ∈ X .x1 �X x2 =⇒ fw(x1)�Y fw(x2)

where �X indicates a preference order on X while �Y denotes such an ordering on the
output space Y .

For examples of papers discussing monotonicity properties, see [59,20].

3.6 Fairness

Over the last decade, there is a growing literature on the need to ensure that machine
learning (ML) systems produce outputs that are “fair” in some way. The notion of fair-
ness typically has to do with certain attributes of the input vector x being sensitive,
and that the decisions should not be influenced (perhaps in a statistical way) by those
sensitive attributes. For DNNs, fairness is typically discussed in the context of decision-
making systems similar to the one shown in Fig. 2(c).

This is still an evolving area, and there are many different formulations of fairness;
see, e.g., [31,23,6,2,1,36,24]. One aspect shared by many is that they are probabilistic
properties.

One class of fairness properties are similarity-based fairness properties, such as in-
dividual fairness (IF), which states that the neural network (ML model) maps similar
inputs to similar outputs. This shares similarities with semantic invariance and robust-
ness, except that the notion of similarity is different.

Another class of fairness properties are defined at the population level. An example
is demographic parity which states that the probability of getting a particular output
value is independent of the values of the sensitive attributes. In this respect, this property
shares similarities with the notion of non-interference that has been researched in the
formal methods and programming languages literature.

Yet another notion of fairness is counterfactual, relying on causal models (e.g. [36]).
In this version of fairness, a decision output by a DNN is fair towards a particular input
(individual) if that decision is the same in both the actual world and a counterfactual
world where the input has a different value for one or more “protected” attributes (fea-
tures).

3.7 Input/Distributional Assumptions

Many theoretical guarantees about machine learning algorithms are predicated on the
assumption that the learned model is tested only on input drawn from the distribution
it was trained on. Such distributional assumptions therefore form an important class of
specifications. A specification language that captures such assumptions must inherently
be probabilistic. We belive probabilistic programming languages (e.g., [29,39,10,45,28]),
offer a natural and expressive way to specify distributions over the input space, and are
thus a natural fit for such specifications. As an example, a recent probabilistic program-
ming language for specifying input scenarios that can be used to generate input data for
neural networks is described in [22].

3.8 Coverage Criteria

Formal specification can be useful even for testing or semi-formal verification of a
system. This has been amply demonstrated in the design of digital circuits, where
simulation-based verification of temporal logic assertions is standard. In this setting,
formal specifications are often used to formalize design coverage objectives, e.g., to
ensure that certain conditions are activated by a test suite.

We believe formal specifications could play a similar role for the analysis of DNNs.
It is still unclear what sort of coverage properties are required. Some initial progress on
coverage-driven testing of DNNs has been reported by Pei et al. [44].

3.9 Temporal Specifications

Stateful neural networks, such as recurrent neural networks (RNNs), essentially imple-
ment state machines. For such neural networks, the formalisms used to specify proper-
ties of state machines, and more broadly, of reactive systems, would apply. Temporal
logics provide a suitable formalism to specify properties of such systems. An example
of previous work in such a direction is that of Rodrigues et al. [46], while Taylor and
Farrah [55] describe extracting rules from neural networks for verification, testing, and
other purposes.

Another use of DNNs for stateful systems exhibiting temporally-varying behav-
ior is in deep reinforcement learning (e.g., see [40]). In reinforcement learning (RL),
an intelligent agent interacts with its environment through actions, observations and
rewards [33]. Traditionally, specifications for RL have been given as quantitative objec-
tive (cost and reward) functions; however, there is also a large body of work on using
temporal logics for specifying RL objectives (see, e.g., [48,57]),

3.10 Specifications on Learning Algorithms

Finally, one might want to specify properties on the learning algorithms themselves
(and their implementations), rather than on specific learned models. Stochastic gradient
descent (SGD) is a commonly used algorithm for training DNNs. As an example, we
point out the recent work by Selsam et al. [49] on using interactive theorem proving to
detect errors in systems that implement machine learning algorithms based on stochastic
computation graphs.

3.11 Bridging System-Level Specifications with Component-Level Specifications

It has been recently observed [18] that although adversarial analysis of DNNs is use-
ful, it is not sufficient. The relevance of adversarial attacks can be questioned when the
impact on the overall system within which the DNN is used is unclear. Not all misclas-
sifications are equally important. Thus, it is necessary to increase the use of application-
level or system-level semantics in adversarial analysis and design of DNNs. There is a
need to bridge system-level specifications with component-level specifications.

To this end, we believe it is important to devise a good notion of semantic robust-
ness of DNNs to adversarial perturbations of the input. In order to do this, one needs
to define the semantic feature space of the DNN — i.e., the feature space that captures
application-level semantics and not just raw inputs (e.g., the pixel space for images).
The raw input is obtained from the semantic feature vector through a process of “render-
ing”, where we borrow the term from the rendering of images from high-level semantic
configurations. As an example, consider the application of a DNN to perform object
detection and classification in images captured for autonomous driving. In this case, the
semantic feature space is one that captures high-level semantics of the scene around the
vehicle – i.e., other agents that are present (cars, pedestrians, bicyclists, etc.) and their
properties, parameters of the road and traffic scene, and other relevant characteristics. In
this respect, this problem is similar to that of capturing input assumptions (see Sec. 3.7),
although the emphasis here is more on the semantic features of the environment and less
on the underlying distributions.

Let S represent the semantic feature space. Given s ∈ S, we obtain an input x ∈ X
by a process we will call rendering or concretization. (X is sometimes referred to as the
“concrete feature space” to distinguish it from S.) Let R denote the rendering procedure;
i.e., R(s) = x. Then, we introduce a notion of (global) semantic robustness as follows:

∀s,s′,x,x′. [s≈S s′∧R(s) = x∧R(s′) = x′]⇒ [fw(x)≈ fw(x′)]

Similar to the notion of robustness described in Sec. 3.2, the above definition is based on
a notion of similarity in the semantic feature space (≈S) and one on the output space of
the DNN (≈). Such a notion of similarity may well be based on a suitably-chosen norm
and bound such as β or δ used in Sec. 3.2. However, we prefer the more abstract version
given above given that much more work remains to be done in characterizing semantic
feature spaces, the rendering process, and the relation of S and R to the operation of the
DNN. Further, the rendering procedure R may take in additional parameters (similar to
those of the DNN w), which we hide here for simplicity.

Initial work on defining semantic feature spaces and bridging system-level specifi-
cations with component-level ones is just emerging. To our knowledge, the first work
in this direction was [15,16], which uses a simple “modification” space to represent
semantic transformations to images. Fremont et al. [22] present a more expressive lan-
guage to capture semantic properties of a scene. However, these are very preliminary
results, and much more remains to be done, as described in [18].

4 Trace-Theoretic Classification

We conclude with a brief categorization of the above types of properties with respect to
their trace-theoretic nature.

Most properties in the formal methods literature tend to be trace properties; i.e.,
the property is equivalent to specifying a set of correct or desired behaviors of the
system. For such properties, one can examine a single trace (input-output behavior) of
the system and determine whether or not it violates the property.

However, certain properties are not trace properties, but are instead characterized as
sets of trace sets (or a set of correct systems) — these are called hyperproperties [12].
Notable examples of such properties include determinism and security properties such
as confidentiality and integrity. For such properties, one must examine an ensemble
of two or more traces in order to determine whether the property has been violated.
Hyperproperties cover all non-trace properties.

4.1 Trace Properties

Several system-level properties, such as those specified in linear temporal logic or met-
ric temporal logics, are trace properties. Similarly input-output relations, temporal spec-
ifications for stateful NNs, and specifications on machine learning algorithms tend to
be trace properties. Input-output robustness for a fixed input is a trace property. Certain
coverage properties can be evaluated over single traces (e.g., whether specific neurons
were activated on an input).

4.2 Hyperproperties

Some system-level properties, such as those specifying security policies, can be hyper-
properties. Input-output robustness in the general case (for all inputs) is a hyperprop-
erty; one must examine all pairs of inputs to determine if the system is robust. Sim-
ilarly, semantic invariance and monotonicity involve reasoning over pairs of (related)
traces. We note that all of the hyperproperties in this context are so-called two-safety
properties, and so in theory are not much harder to verify or test than ordinary safety
properties [56].

Fairness and average-case robustness are also hyperproperties, but of a probabilistic
nature. Distributional assumptions on the input space are also properties of an ensemble
of traces. Finally, some coverage properties are aggregate measures over sets of traces
and thus are naturally hyperproperties.

5 Conclusion

In order to understand the design and verification problem for deep neural networks, it
is essential to have a good understanding of the landscape of formal specification for
DNNs. In this paper, we have presented a classification of the kinds of specifications
that have been found useful for reasoning about neural networks and the systems that
employ them. This serves as a starting point for creating a more systematic design
methodology for DNNs.

Formal specifications can be used not only for verification and testing, but also
for retraining, e.g., using counterexamples [17], or by using specification-guided cost
functions or features (say by augmenting the regularizer R (w)) in the training process.
Specifications are also crucial to capture, in a rigorous manner, the assumptions made
during the design process of DNNs, so that these can be taken into account during the
design and operation of the overall system containing the DNN. We believe the field of
formal methods for the design and analysis of deep neural networks, and of machine
learning systems in general, will be a rich domain for research for the foreseeable future,
and that formal specification will play a foundational role in this research.

Acknowledgments

The work of the authors on this paper was funded in part by the NSF VeHICaL project
(#1545126), NSF projects #1646208 and #1739816, NSF Graduate Research Fellow-
ships, DARPA under agreement number FA8750-16-C0043, the DARPA Assured Au-
tonomy program, Berkeley Deep Drive, and by Toyota under the iCyPhy center. This
paper was the outcome of discussions amongst the co-authors in early 2018. It has ad-
ditionally benefited from conversations with Somesh Jha, Susmit Jha, Pushmeet Kohli,
Aditya Nori, Jerry Zhu, and several participants in Dagstuhl Seminar 18121.

References

1. Albarghouthi, A., D’Antoni, L., Drews, S., Nori, A.: Fairness as a program property (2016),
arXiv:1610.06067

2. Albarghouthi, A., D’Antoni, L., Drews, S., Nori, A.V.: Fairsquare: probabilistic verification
of program fairness. Proceedings of the ACM on Programming Languages (2017)

3. Alipanahi, B., Delong, A., Weirauch, M.T., Frey, B.J.: Predicting the sequence specificities
of DNA-and RNA-binding proteins by deep learning. Nature biotechnology (2015)

4. Amodei, D., Olah, C., Steinhardt, J., Christiano, P.F., Schulman, J., Mané, D.: Concrete prob-
lems in AI safety. ArXiV e-prints abs/1606.06565 (2016)

5. Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A., Criminisi, A.: Mea-
suring neural net robustness with constraints. In: Lee, D.D., Sugiyama, M., Luxburg, U.V.,
Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems (NIPS) 29.
pp. 2613–2621 (2016)

6. Binns, R.: Fairness in machine learning: Lessons from political philosophy (2017),
arXiv:1712.03586

7. Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L.D.,
Monfort, M., Muller, U., Zhang, J., et al.: End to end learning for self-driving cars. arXiv
preprint arXiv:1604.07316 (2016)

8. Cai, J., Shin, R., Song, D.: Making neural programming architectures generalize via recur-
sion. arXiv preprint arXiv:1704.06611 (2017)

9. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: IEEE
Symposium on Security and Privacy (SP) (2017)

10. Carpenter, B., Gelman, A., Hoffman, M.D., Lee, D., Goodrich, B., Betancourt, M., Brubaker,
M., Guo, J., Li, P., Riddell, A.: Stan: A probabilistic programming language. Journal of
statistical software 76(1) (2017)

11. Cheng, C.H., Nührenberg, G., Ruess, H.: Maximum resilience of artificial neural networks.
In: International Symposium on Automated Technology for Verification and Analysis. pp.
251–268. Springer (2017)

12. Clarkson, M.R., Schneider, F.B.: Hyperproperties. Journal of Computer Security 18(6),
1157–1210 (Sep 2010)

13. Dahl, G.E., Stokes, J.W., Deng, L., Yu, D.: Large-scale malware classification using random
projections and neural networks. In: Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). pp. 3422–3426. IEEE (2013)

14. Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.: Deformable convolutional
networks. IEEE International Conference on Computer Vision (2017)

15. Dreossi, T., Donzé, A., Seshia, S.A.: Compositional falsification of cyber-physical systems
with machine learning components. In: NASA Formal Methods Symposium (2017)

16. Dreossi, T., Donzé, A., Seshia, S.A.: Compositional falsification of cyber-physical sys-
tems with machine learning components. CoRR abs/1703.00978 (2017), http://arxiv.
org/abs/1703.00978

17. Dreossi, T., Ghosh, S., Yue, X., Keutzer, K., Sangiovanni-Vincentelli, A., Seshia, S.A.:
Counterexample-guided data augmentation. In: 27th International Joint Conference on Arti-
ficial Intelligence (IJCAI) (2018)

18. Dreossi, T., Jha, S., Seshia, S.A.: Semantic adversarial deep learning. In: 30th International
Conference on Computer Aided Verification (CAV) (2018)

19. Dutta, S., Jha, S., Sanakaranarayanan, S., Tiwari, A.: Output range analysis for deep neural
networks (2017), arXiv:1709.09130

20. Dvijotham, K., Stanforth, R., Gowal, S., Mann, T., Kohli, P.: A dual approach to scalable
verification of deep networks (2018), arXiv:1803.06567

21. Fawzi, A., Frossard, P.: Manitest: Are classifiers really invariant? (2017), arXiv:1507.06535
22. Fremont, D., Yue, X., Dreossi, T., Ghosh, S., Sangiovanni-Vincentelli, A.L., Seshia, S.A.:

Scenic: Language-based scene generation. Tech. Rep. UCB/EECS-2018-8, EECS Depart-
ment, University of California, Berkeley (Apr 2018), http://www2.eecs.berkeley.
edu/Pubs/TechRpts/2018/EECS-2018-8.html

23. Friedler, S.A., Scheidegger, C., Venkatasubramanian, S.: On the (im) possibility of fairness
(2016), arXiv:1609.07236

24. Friedler, S.A., Scheidegger, C., Venkatasubramanian, S., Choudhary, S., Hamilton, E.P.,
Roth, D.: A comparative study of fairness-enhancing interventions in machine learning
(2018), arXiv:1802.04422

25. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016), http://
goodfeli.github.io/dlbook/

26. Goodfellow, I., Lee, H., Le, Q.V., Saxe, A., Ng, A.Y.: Measuring invariances in deep net-
works. In: Advances in Neural Information Processing Systems (2009)

27. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples
(2014), arXiv:1412.6572

28. Goodman, N.D., Mansinghka, V.K., Roy, D., Bonawitz, K., Tenenbaum, J.B.: Church: A
language for generative models. In: Proceedings of the Twenty-Fourth Conference on Un-
certainty in Artificial Intelligence. pp. 220–229. UAI’08 (2008)

http://arxiv.org/abs/1703.00978
http://arxiv.org/abs/1703.00978
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-8.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-8.html
http://goodfeli.github.io/dlbook/
http://goodfeli.github.io/dlbook/

29. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic programming. In:
FOSE 2014. pp. 167–181. ACM (2014)

30. Graves, A., Wayne, G., Danihelka, I.: Neural turing machines. arXiv preprint
arXiv:1410.5401 (2014)

31. Hardt, M., Price, E., Srebro, N., et al.: Equality of opportunity in supervised learning. In:
Advances in Neural Information Processing Systems (2016)

32. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural networks.
In: International Conference on Computer Aided Verification. pp. 3–29. Springer (2017)

33. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of
Artificial Intelligence Research 4, 237–285 (1996)

34. Kanbak, C., Moosavi-Dezfooli, S.M., Frossard, P.: Geometric robustness of deep networks:
analysis and improvement (2017), arXiv:1711.09115

35. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional
neural networks. In: Advances in neural information processing systems. pp. 1097–1105
(2012)

36. Kusner, M.J., Loftus, J., Russell, C., Silva, R.: Counterfactual fairness. In: Advances in Neu-
ral Information Processing Systems (2017)

37. Lowe, D.G.: Object recognition from local scale-invariant features. In: IEEE International
Conference on Computer Vision (1999)

38. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models
resistant to adversarial attacks (2017), arXiv:1706.06083

39. Milch, B., Marthi, B., Russell, S.: Blog: Relational modeling with unknown objects. In:
ICML 2004 workshop on statistical relational learning and its connections to other fields.
pp. 67–73 (2004)

40. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves,
A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep
reinforcement learning. Nature 518(7540), 529 (2015)

41. NVIDIA: Nvidia tegra drive px: Self-driving car computer (2015), http://www.
nvidia.com/object/drive-px.html

42. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The limitations
of deep learning in adversarial settings. In: Proceedings of the 1st IEEE European Sympo-
sium on Security and Privacy. arXiv preprint arXiv:1511.07528 (2016)

43. Papernot, N., McDaniel, P., Wu, X., Jha, S., Swami, A.: Distillation as a defense to adversar-
ial perturbations against deep neural networks. arXiv preprint arXiv:1511.04508 (2015)

44. Pei, K., Cao, Y., Yang, J., Jana, S.: Deepxplore: Automated whitebox testing of deep learning
systems. In: Proceedings of the 26th Symposium on Operating Systems Principles. pp. 1–18.
ACM (2017)

45. Pfeffer, A.: Figaro: An object-oriented probabilistic programming language. Tech. rep.,
Charles River Analytics (2009)

46. Rodrigues, P., Costa, J.F., Siegelmann, H.T.: Verifying properties of neural networks. In:
International Work-Conference on Artificial Neural Networks. pp. 158–165. Springer (2001)

47. Russell, S., Dietterich, T., Horvitz, E., Selman, B., Rossi, F., Hassabis, D., Legg, S., Suley-
man, M., George, D., Phoenix, S.: Letter to the editor: Research priorities for robust and
beneficial artif icial intelligence: An open letter. AI Magazine 36(4) (2015)

48. Sadigh, D., Kim, E.S., Coogan, S., Sastry, S., Seshia, S.A.: A learning based approach to
control synthesis of markov decision processes for linear temporal logic specifications. In:
Proceedings of the 53rd IEEE Conference on Decision and Control (CDC). pp. 1091–1096
(December 2014)

49. Selsam, D., Liang, P., Dill, D.L.: Developing bug-free machine learning systems with formal
mathematics. In: International Conference on Machine Learning. pp. 3047–3056 (2017)

http://www.nvidia.com/object/drive-px.html
http://www.nvidia.com/object/drive-px.html

50. Seshia, S.A.: Compositional verification without compositional specification for learning-
based systems. Tech. Rep. UCB/EECS-2017-164, EECS Department, University of
California, Berkeley (Nov 2017), http://www2.eecs.berkeley.edu/Pubs/
TechRpts/2017/EECS-2017-164.html

51. Seshia, S.A., Desai, A., Dreossi, T., Fremont, D., Ghosh, S., Kim, E., Shivakumar,
S., Vazquez-Chanlatte, M., Yue, X.: Formal specification for deep neural networks.
Tech. Rep. UCB/EECS-2018-25, EECS Department, University of California, Berke-
ley (May 2018), http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/
EECS-2018-25.html

52. Seshia, S.A., Sadigh, D., Sastry, S.S.: Towards Verified Artificial Intelligence. ArXiv e-prints
(July 2016)

53. Shin, E.C.R., Song, D., Moazzezi, R.: Recognizing functions in binaries with neural net-
works. In: 24th USENIX Security Symposium (USENIX Security 15). pp. 611–626 (2015)

54. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.:
Intriguing properties of neural networks (2013), arXiv:1312.6199

55. Taylor, B.J., Darrah, M.A.: Rule extraction as a formal method for the verification and val-
idation of neural networks. In: IEEE International Joint Conference on Neural Networks
(IJCNN). vol. 5, pp. 2915–2920. IEEE (2005)

56. Terauchi, T., Aiken, A.: Secure information flow as a safety problem. In: International Static
Analysis Symposium. pp. 352–367. Springer (2005)

57. Wen, M., Ehlers, R., Topcu, U.: Correct-by-synthesis reinforcement learning with temporal
logic constraints. In: Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International
Conference on. pp. 4983–4990 (2015)

58. Weng, T.W., Zhang, H., Chen, P.Y., Yi, J., Su, D., Gao, Y., Hsieh, C.J., Daniel, L.:
Evaluating the robustness of neural networks: An extreme value theory approach (2018),
arXiv:1801.10578

59. You, S., Ding, D., Canini, K., Pfeifer, J., Gupta, M.: Deep lattice networks and partial mono-
tonic functions. In: Advances in Neural Information Processing Systems (2017)

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-164.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-164.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-25.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-25.html

	Formal Specification for Deep Neural Networks

