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ABSTRACT OF THE THESIS 

Genomic Features Underlying  

Andean High-Altitude Adaptive Hemoglobin Levels 

by 

Kimberly Tanya Zhu 

 

Master of Arts in Anthropology 

University of California, Los Angeles, 2018 

Professor Abigail Winslow Bigham, Chair 

Humans have inhabited the Andean Altiplano for over 11,000 years, where the partial 

pressure of oxygen is 35% lower than at sea level. Peruvian Quechua who thrive in this 

environment display a suite of adaptive phenotypes, such as elevated hemoglobin concentration 

([Hb]). The genetic architecture contributing to this adaptive phenotype is currently unknown. To 

identify genomic regions associated with elevated [Hb] among Peruvian Quechua, we identified 

single nucleotide polymorphisms (SNPs) that display strong signatures of positive selection 

using four statistics: LSBL, iHS, XP-EHH, and XP-nSL. We then performed a genome-wide 

association study (GWAS) for elevated [Hb], restricting our analysis to SNPs showing evidence 

of past natural selection. As GWAS nominated SNPs often have small effect sizes and 

represent a small portion of all associated SNPs, we aggregated SNP effects across the 

genome by creating a phenotype prediction model using LASSO regression. From this 

investigation, we created a comprehensive list of putative regions of selection and found several 

genomic loci that are weakly associated with [Hb]. By investigating elevated hemoglobin 

concentration from a genomic perspective, this study contributes novel insights into the genetic 

basis of adaptive evolution among Peruvian Quechua, as well as the role of positive selection in 

shaping trait variation. 
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INTRODUCTION 

High altitude provides a natural laboratory to understand human evolutionary change by 

positive natural selection. Humans have inhabited the Andean Altiplano (average altitude of 

3,660 meters (m)) for over 11,000 years (Rademaker et al 2014). At this altitude, the partial 

pressure of oxygen is approximately 35% lower than at sea level. This reduced availability of 

oxygen limits aerobic metabolism, thereby challenging human growth, development, and 

reproduction (Beall 2006, Storz & Scott 2019). Humans evolved under the atmospheric 

conditions found at sea level with limited exposure to mild hypoxia (Hochachka 1998). High-

altitude hypoxia provides a powerful selective pressure that necessitates human adaptation.  

Human populations inhabiting the Tibetan plateau, Ethiopian highlands, and the Andean 

altiplano have met this challenge, each with a unique suite of adaptive phenotypes.  

The Andean adaptive pattern is characterized by elevated hemoglobin concentrations ([Hb]), 

elevated oxygen (O2) saturation, and an overall increase in arterial O2 content (Beall et al. 

1998). Elevated [Hb] found in Andeans works to offset the reduction in atmospheric O2 by 

increasing arterial O2 content. However, this elevated [Hb] also increases blood viscosity, 

resulting in erythrocytosis and potentially requires increased cardiovascular musculature.  

Excessive erythrocytosis is understood to play a critical role in chronic mountain sickness, which 

is a fatal disease that affects residents of high-altitude zones. Conversely, Tibetans show no 

significant variation in [Hb] at altitudes up to 4,000 m. compared to values found at sea-level 

(Beall et al. 1998). At altitudes above 4,000 m, mean [Hb] in Tibetans was found to be ~15.8 

gm/dL (Beall 2006).  

 Genomic scans for natural selection performed among high-altitude native populations 

have revealed genomic regions associated with adaptation to hypoxia. Among Tibetans, both 

EPAS1 and EGLN1 have been found to be under strong positive selection (Beall et al. 2010, 

Bigham et al. 2010, Simonson et al. 2010). They are part of the hypoxia inducible factor (HIF) 
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pathway, an evolutionary ancient system that regulates metabolic and erythropoietic responses 

to oxygen concentration at the organismal and cellular level. EGLN1 encodes for PHD2, a HIF 

regulator. EPAS1 is a paralog of HIF1A and is a regulatory gene in the HIF pathway responsible 

for inducing transcription in downstream genes in response to decreased oxygen levels. SNPs 

in these genes associate with the low hemoglobin phenotype of Tibetan adaptation perhaps 

through a loss-of-function mutation for EGLN1 (Song et al., 2020), although a gain-of-function 

for this locus has also been proposed (Lorenzo et al, 2014).  Among Andeans, multiple genes 

exhibiting evidence for recent positive selection in the HIF pathway including EGLN1 and 

EPAS1 have been identified (Bigham et al., 2010; Foll et al., 2014). However, despite EGLN1 

and EPAS1 SNP associations with [Hb] identified among Tibetans, no significant SNP 

associations with [Hb] among Andeans have been identified for these two genes (Bigham et al., 

2013). Critically, there has been no research investigating the genetic architecture underlying 

elevated hemoglobin levels among Andeans at a genome-wide level. To date, we do not know 

the genes involved in regulating this phenotype, nor the extent of polygenicity that may be 

underlying this trait.  

To investigate whether Andean elevated [Hb] is a result of positive natural selection and 

genomic adaptation, we performed a genome-wide selection scan and association study using 

genome-wide SNP genotype data from Peruvian Quechuas study. participants recruited based 

on a migrant study design. We identified genomic loci showing signatures of positive natural 

selection and expected some of these genomic loci to be significantly associated with the 

adaptive phenotype of elevated [Hb].  

 

RESULTS  

Study Design and Participant Characteristics 

We recruited 603 individuals of high-altitude Peruvian Quechua ancestry from two 

locations in Peru, Cerro de Pasco (4,338 m) and Lima (154 m). Participants were recruited 
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using a migrant study design that included three groups: high-altitude Quechua (HAQ), migrant 

Quechua (MQ), and low-altitude Quechua (LAQ). HAQ participants were born, raised, and 

resided at high-altitude (n=301). MQ participants were born at high altitude (above 3,000 m), but 

down migrated low altitude within their lifetime (n=150). LAQ participants were born, raised, and 

resided at low altitude (n=152). HAQ study participants were recruited in Cerro de Pasco, Peru 

whereas MQ and LAQ study participants were recruited in Lima, Peru. Study participants 

characteristics are provided in Table 1. Two HAQ individuals did not provide a blood sample for 

[Hb] measurement and were excluded from the hemoglobin analyses. All participants were 

between the ages of 18 and 35 (average 24.7 ± 5.13). Forty-nine percent of the total participant 

cohort was female. HAQ study participants weighed less and had higher average [Hb] than both 

LAQ and MQ. LAQ study participants were heavier and younger than MQ study participants.  

 
Table 1. Participant Characteristics. 

 All, n=603 HAQ, n= 301 LAQ, n=152 MQ, n=150 
LAQ+MQ, 

n=302 

% Female 0.5 0.48 0.5 0.53 0.52 

Age (years) 24.61 ± 5.13 24.33 ± 4.99   24.45 ± 4.58  25.49 ± 5.47 24.97 ± 5.06 

Height (cm) 158.59 ± 10.58 158.17 ± 8.18 161.02 ± 8.96 158.02 ± 7.85 159.52 ± 8.54 

Weight (kg) 61.68 ± 10.22 59.51 ± 8.21    66.34 ± 11.77  61.69 ± 9.44 64.02 ± 10.9 

[Hb] (g/dl) 15.69 ± 2.71  17.7 ± 2.19  13.76 ± 1.42  13.71 ± 1.45 13.73 ± 1.43 

 p≤0.05 vs LAQ,  p≤0.05 vs MQ,  p≤0.05 vs LAQ+MQ   

 

Genome-wide SNP data were generated using the Affymetrix (Santa Clara, CA) Axiom 

Biobank Genotyping Array consisting of ~600,000 polymorphic genetic loci for all Peruvian 

Quechua study participants. In addition, Axiom Biobank Genotyping Array data were generated 

for 101 low-altitude Indigenous Americans of Mexican Maya descent recruited from the city of 

Palenque, Chiapas, Mexico (60 m). Statistical analysis was carried out with 383,930 autosomal 

markers passing QC filtering (supplemental Table S1). We removed 23 Peruvian Quechua 

individuals and 28 Mexican Maya individuals that were first, second, or third degree relatives 
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using KING (Manichaikul et al. 2010). The resulting dataset consisted of 577 Peruvian Quechua 

participants and 71 Mexican Maya participants (supplemental Table S1). 

In order to identify Indigenous American individuals (Peruvian Quechua and Mexican Maya) 

with high degrees of non-Indigenous ancesty, we estimated global ancestry using the program 

ADMIXTURE (Alexander & Lange 2011) and performed a principal component analysis (PCA) 

using Plink 2.0 (Purcell et al. 2007, Chang et al. 2015) (Figure 1). For these analyses, we 

included publicly available data for 60 Yorubans (YRI), 45 Han Chinese from Beijing (CHB), 45 

Japanese from Tokyo (JPT), and 60 individuals of north-central European ancestry (CEU) from 

the Human Genome Diversity Project-Centre d’Etude du Polymorphisme Humain (HGDP-

CEPH) from the International Hap Map Project (International HapMap 2003). Indigenous 

American ancestry ranged from 100% to 51.15% among Peruvian Quechua and 100% to 

51.58% among Mexican Maya. On average, Peruvian Quechua study participants were found to 

have 90.51% Indigenous American ancestry, 8.28% European ancestry, and less than 1% of 

African and Asian ancestry (0.69% and 0.51%, respectively). Mexican Maya were found to have 

on average 94.59% Indigenous American ancestry, 3.98% European ancestry, 1.20% African 

ancestry, and 0.23% East Asian ancestry (Figure 1A). PCA revealed that Peruvian Quechua 

and Mexican Maya formed an Indigenous American cluster that was distinct from the CEU, YRI, 

and East Asian populations (Figure 1B). 
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Figure 1. ADMIXTURE results after implementing a total Indigenous Ancestry cutoff of 80% for 
Peruvian Quechua and Mexican Maya participants (A). Principal Component Analysis (PCA) 
after implementing the total Indigenous Ancestry cutoff of 80% (B). 
 

Peruvian Quechua genomes show signatures of natural selection 

To test for evidence of recent positive selection, we performed a selection scan using 

four statistics: Locus Specific Branch Length (LSBL) (Shriver et al. 2004) and three haplotypes 

tests of selection 1. Cross-population number of segregating loci (XP-nSL) (Szpiech et al., 

2021), 2. Cross-population extended haplotype homozygosity (XP-EHH) (Sabeti et al. 2007; 

Pickrell et al. 2009), and 3. Integrated haplotype score (iHS) (Voight et al. 2006). These 

statistics are robust at detecting recent positive selection, including soft selective sweeps and 

selection on variants that have not yet reached fixation. We limited the selection scan to 

samples with more than 90% Indigenous ancestry, resulting in 458 Peruvian Quechua 

individuals and 60 Mexican Maya individuals. LSBL was calculated for all polymorphic variants 

in the dataset (331,122 SNPs) by comparing FST between Quechua, Maya, and East Asians. 

XP-nSL was calculated using a log-ratio of the SL statistic for the haplotype pools of Peruvian 

Quechua and Mexican Maya and included 278,532 SNPs. iHS was calculated to track 

haplotype homozygosity decay for ancestral and derived haplotypes extending from each core 

SNP using 153,176 SNPs that had known ancestral alleles. XP-EHH sums iHH statistics for 

B. 
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Peruvian Quechua and Mexican Maya in conjunction with EHH and included 279,362 SNPs. 

Statistical significance thresholds were determined for all four statistics using the empirical 

distribution, with loci in the top 5% of the distribution for each test considered statistically 

significant.  

We identified 16,557 statistically significant genomic markers for LSBL (Figure 2A). LSBL 

ranged from 0.16 to 0.98. The most extreme LSBL value was reported for the SNP, 

rs372327964, an intronic variant located in the gene GET4. We identified 7,659 statistically 

significant SNPs for iHS (Figure 2B). with values ranging from 1.97 to 6.01. The GAS6 

missense variant, rs1803628, displayed the most extreme iHS value.  For XP-EHH, 13,968 

genomic markers were identified as statistically significant (Figure 2C). Significant normalized 

XP-EHH values ranged from 1.66 to 8.71. The TRIM31 missense SNP, rs3734838, with the 

most significant XP-nSL displayed the most extreme XP-EHH value. For XP-nSL, we identified 

12,095 statistically significant SNPs with values ranging from 1.66 to 8.37 (Figure 2D).  The 

TRIM31 missense variant, rs3734838, exhibited the most extreme positive normalized XP-nSL 

value.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B. 
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Figure 2. Selection scan results for LSBL(A), iHS (B), XP-EHH (C), and XP-nSL(D) are 
depicted by each plot. Top 5th percentiles are indicated by the horizonal black lines. Top SNPs 
for each statistic are labeled. 

 

 

Several regions of the genome showed clusters of significant results. As expected, the 

HLA region on chromosome six, a highly variable genomic region involved in immune system 

functioning and protection against pathogens, showed a cluster of significant results across all 

four test statistics (Figure 3). In addition to the HLA region, we detected clusters of significant 

results for several additional regions of the genome for one or more statistics. The haplotype 

tests XP-EHH and XP-nSL displayed a significant cluster around Chr3:6,940,000 (Figure 3A) 

and Chr11: 67,200,000 (Figure 3B). For the chromosome 3 region, two SNPs located within 

intronic regions of FRMD4B were the most significant SNPS for this region. rs73107500 

(normalized XP-EHH = 5.82, normalized XP-nSL = 6.43) was located at the top of this peak for 

XP-EHH, and rs9985338 (normalized XP-EHH = 5.35, normalized XP-nSL=6.87) was located at 

D. 

C. 
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the top for XP-nSL. The top SNP for the chromosome 11 region was rs35363135 (normalized 

XP-EHH = 7.27, normalized XP-nSL = 6.05). rs35363135 was located in a non-coding region of 

protein coding gene RPS6KB2. The LSBL results showed a peak located around 

Chr15:450,000,000 (Figure 3C). The top SNP in this peak was rs269866 (LSBL = 0.39), located 

in an intronic region of DUOX2. The iHS and LSBL statistics showed a peak located around 

Chr12:112,500,000 (Figure 3D). rs7971204 (normalized iHS = 4.40, normalized LSBL = 0.48) 

was the most significant SNPs in this region for iHS and LSBL, respectively. rs7971204 was 

located in an intergenic region between RBM19 and RP11-100F15. 

The union of statistically significant SNPs from all four selection scans resulted in 36,399 

selection nominated genomic loci, of which 439 were identified across all four statistics (Figure 

4, Supplementary Table S2). This agreement rate of 1.21% was expected as these 

complimentary statistics use orthogonal approaches to detect signals of selection. In order to 

reduce false positives, we identified regions of the genome showing evidence of selection for 

LSBL and one of the three haplotype tests. A total of 1,168 statistically significant SNPs were 

shared between iHS and LSBL, and 2,501 statistically significant SNPs were shared between 

XPEHH and LSBL. Between XP-nSL and LSBL, 2,671 SNPs were found to statistically 

significant (Figure 4A-C). 
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Figure 3. Selection scan statistic peaks found for Chromosomes 3 (A), 11 (B), 15 (C), and 12 
(D) are depicted in each plot. For Chromosome 12, the peak is depicted with LSBL values that 
have been multiplied by 15.  
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Figure 4. Intersection of statistically significant SNPs shared between LSBL and iHS (A), 
XPEHH (B), and XP-nSL (C). 99th percentile lines are indicated in red, and several highly 
significant SNPs in each intersection are highlighted.  
 

 

Signatures of Selection in the HIF Genes 

From our putative list of statistically significant genomic loci, we investigated loci falling 

within genes that are involved in the HIF pathway. The HIF pathway is the central oxygen 

regulating system in the human body. Previous genome-wide scans for natural selection 

identified putative evidence of natural selection for genes that are part of the HIF pathway (Beall 

et al. 2010, Bigham et al. 2010, Simonson et al. 2010). Therefore, we looked specifically within 

genes in this pathway for evidence of natural selection as these signatures may be indicative of 

the genomic response to high-altitude hypoxia specifically. Of the 90 genes involved in HIF-1 

Signaling Pathway, the Axiom Biobank array assayed genomic variants in 66 of these genes. Of 

the 66 genes that our dataset covers, 22 containing a total of 52 SNPs show evidence of natural 

selection (Supplementary Table S3). Of the 52 significant SNPs located within HIF pathway 

genes, 41 are intronic, five are located in 3’ or 5’ untranslated regions (3’UTR or 5’UTR), and six 

are non-synonymous coding SNPs. Two of the non-synonymous SNPs, rs149348765 and 

rs11549465, are located in HIF1A. rs149348765 was found to show evidence of natural 

selection via XPEHH and XP-nSL statistics (XPEHH= 3.74, XP-nSL= 4.04). rs11549465 was 

found to show evidence of natural selection via the XP-nSL statistic (XP-nSL= 1.88). The other 

four non-synonymous SNPs were located in EP300 (rs20551, iHS=3.04), PSMD2 (rs11545172, 

XPEHH=1.76 and rs11545169, XPEHH=1.76), and PSMD9 (rs2230681, LSBL=0.06). In 

addition to the two non-synonymous SNPs located in HIF1A, two intronic SNPs were also found 

to show evidence of natural selection, rs1951795 and rs2301113. rs1951795 was detected by 

XP-nSL (XP-nSL=1.9), while signatures of selection for rs2301113 was detected by both 

XPEHH and XP-nSL (XPEHH=1.87, XP-nSL=2.07). For EPAS1 and EGLN1, two genes 
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previously identified as showing evidence of positive selection among Andean highlanders, 

evidence for natural selection was found for EPAS1 intronic SNP rs1992846 and EGLN1 

intronic SNP rs2491403. rs1992846 was found to show evidence of natural selection by two 

statistics, iHS and XP-nSL (iHS=2.29, XP-nSL=1.67). rs2491403 was found to be significant for 

LSBL (LSBL= 0.12). In addition, a single intronic SNP, rs3733829, was found to be significant 

for EGLN2. This SNP showed evidence of selection from all four statistics (LSBL=0.12, 

iHS=2.17, XPEHH= 1.4, and XP-nSL=2.6) (Supplementary Table S3).  

 

Signatures of Selection in Hb Genes 

From our putative list of statistically signficicant genomic loci, we investigated loci falling 

within genes that are related to hemoglobin. Eleven SNPs located in HBE1 were found to have 

statistically significant signals of selection. Of these 11 SNPs, all were located in intronic regions 

of HBE1. Six of these SNPs were located within 433bp of each other and were all detected by 

LSBL. Within this cluster of six SNPs, rs5006886 had the highest LSBL value (LSBL=0.067), 

while the other five SNPs shared an LSBL value of 0.064. Twelve SNPs located in HBG2 

showed significant signals of selection, all located in intronic regions of the gene. As HBG2 is 

partially overlapped with HBE1, 11 of the SNPs found to be significant in HBG2 comprise the 

totality of the SNPs found to be significant in HBE1. The one SNP located in HB2 that does not 

overlap with HBE1 was rs3802978 (LSBL=0.10) (Supplementary Table S4) 

 

Pathway Analysis 

We performed a pathway overrepresentation analysis in SNPNexus and Reactome 

(Dayem Ullah et al. 2012, Fabregat et al. 2017, Griss et al. 2020, Oscanoa et al. 2020) to 

identify gene groups and associations that were significantly overrepresented in our selection 

scan results. We limited this analysis to include all statistically significant genomic loci that are 
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overlapped with protein coding genes, and p-values were corrected via Bonferroni Correction. 

Twenty-nine pathways were found to be significantly overrepresented, of which almost all fall 

into Immune system, Metabolism of proteins, Extracellular matrix organization, Developmental 

biology, and Metabolism of RNA parent pathways (Table 2).  

Table 2: Overrepresented Pathways.  
Pathway ID Description Parent(s) Unadjusted p-

value 
R-HSA-
6805567 

Keratinization Developmental 
Biology 

0.000000 

R-HSA-
5663205 

Infectious disease Disease 0.000000 

R-HSA-
1474244 

Extracellular matrix 
organization 

Extracellular matrix 
organization 

0.000000 

R-HSA-
1474290 

Collagen formation Extracellular matrix 
organization 

0.000000 

R-HSA-
166786 

Creation of C4 and C2 
activators 

Immune System 0.000000 

R-HSA-
5690714 

CD22 mediated BCR 
regulation 

Immune System 0.000000 

R-HSA-
1799339 

SRP-dependent 
cotranslational protein 
targeting to membrane 

Metabolism of 
proteins 

0.000000 

R-HSA-
381753 

Olfactory Signaling 
Pathway 

Signal Transduction 0.000000 

R-HSA-
418555 

G alpha (s) signalling 
events 

Signal Transduction 0.000000 

R-HSA-
2168880 

Scavenging of heme from 
plasma 

Vesicle-mediated 
transport 

0.000000 

R-HSA-
1461973 

Defensins Immune System 0.000001 

R-HSA-
166663 

Initial triggering of 
complement 

Immune System 0.000001 

R-HSA-72766 Translation Metabolism of 
proteins 

0.000001 

R-HSA-
112316 

Neuronal System Neuronal System 0.000001 
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R-HSA-
2299718 

Condensation of Prophase 
Chromosomes 

Cell Cycle 0.000002 

R-HSA-
156842 

Eukaryotic Translation 
Elongation 

Metabolism of 
proteins 

0.000002 

R-HSA-
2871837 

FCERI mediated NF-kB 
activation 

Immune System 0.000003 

R-HSA-
1650814 

Collagen biosynthesis and 
modifying enzymes 

Extracellular matrix 
organization 

0.000004 

R-HSA-
2029481 

FCGR activation Immune System 0.000004 

R-HSA-
9010553 

Regulation of expression 
of SLITs and ROBOs 

Developmental 
Biology 

0.000006 

R-HSA-73857 RNA Polymerase II 
Transcription 

Gene expression 
(Transcription) 

0.000006 

R-HSA-
156902 

Peptide chain elongation Metabolism of 
proteins 

0.000006 

R-HSA-
6809371 

Formation of the cornified 
envelope 

Developmental 
Biology 

0.000009 

R-HSA-
5689880 

Ub-specific processing 
proteases 

Metabolism of 
proteins 

0.000009 

R-HSA-72163 mRNA Splicing - Major 
Pathway 

Metabolism of RNA 0.000010 

R-HSA-72172 mRNA Splicing Metabolism of RNA 0.000011 

R-HSA-
9633012 

Response of EIF2AK4 
(GCN2) to amino acid 
deficiency 

Cellular responses 
to external stimuli 

0.000013 

R-HSA-
6803157 

Antimicrobial peptides Immune System 0.000013 

R-HSA-
975956 

Nonsense Mediated 
Decay (NMD) independent 
of the Exon Junction 
Complex (EJC) 

Metabolism of RNA 0.000013 
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Signatures of Selection in Pathways of Interest 

The Cellular response to hypoxia pathway included 48 SNPs in six genes that showed 

evidence of selection. Two of three participants in the Cellular response to hypoxia pathway, 

Regulation of gene expression by Hypoxia-inducible Factor (R-HSA-1234158), and Oxygen-

dependent proline hydroxylation of Hypoxia-inducible Factor Alpha (R-HSA-1234176) were 

found to contain 14 SNPs in six genes and 41 SNPs in 17 genes, respectively. The Hemostasis 

Parent Pathway (R-HSA-109582) was found to contain 786 SNPs and 237 genes from our 

putative list of selection signals (Table 2). Each of the seven pathways that interact in this 

parent pathway included SNPs with evidence for selection. The top three pathways in the 

Hemostasis Parent Pathway by p-value were Platelet homeostasis, Platelet Adhesion to 

exposed collagen, and Factors involved in megakaryocyte development and platelet production 

(Table 3). Of the 10 Muscle contraction participating pathways that were associated with loci 

from our list of SNPs under selection, eight were related to cardiac conduction. Overall, the 

Cardiac conduction pathway (R-HSA-5576891) was found to include 291 SNPs in 61 genes 

found to be under selection, and all of this pathway’s seven participating pathways contained 

SNPs with evidence of selection (Table 2). These participating pathways include Phase 0-rapid 

depolarization (R-HSA-5576892), Phase1- inactivation of fast Na+ channels (R-HSA-5576894), 

Phase 2- plateau phase (R-HSA-5576893), Phase 3- rapid repolarization (R-HSA-5576890), 

Phase 4- resting membrane potential (R-HSA-5576886), Ion homeostasis (R-HSA-5578775), 

and Physiological factors (R-HSA-5578768) (Table 3). 

 

Genome Wide Association Study 

To identify associations between loci that show signals of positive selection and our phenotype 

of interest, we performed two GWA studies.  We first performed a GWAS that included all 519 

Peruvian Quechua individuals with 80% or more total indigenous ancestry, for which we had 

[Hb] phenotype data. Since our study is focused on finding a genetic basis for an adaptive 
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phenotype that we hypothesize to have recently undergone positive natural selection, we limited 

our analysis to include SNPs that were statistically significant at the 5% level for one or more 

tests for positive selection. This limitation was imposed to focus our analysis on genomic loci 

under recent positive selection while maximizing our statistical power given our sample size. We 

used an additive model of inheritance and included both sex and recruitment altitude as 

covariates. None of the PCs were identified to be significantly associated with [Hb], so no 

control for population stratification was added. We did not identify any significant associations 

with [Hb]. The top three variants were rs884510 (MA = C, MAF = 0.25, Beta = 0.39, 95% 

confidence interval (CI): 0.22 to 0.57), rs16829653 (MA = G, MAF = 0.18, Beta = -0.43, 95% CI: 

-0.64 to -0.22, FDR_BH = 0.76), and rs12696086 (MA = C, MAF = 0.13, Beta = -0.45, 95% CI: -

0.67 to -0.23, FDR_BH = 0.757921) (Figure 5A, Table 4). rs884510 was located at 

Chr12:54,972,299 in the non-coding region of PDE1B and in the intronic region of PPP1R1A. 

rs16829653 was located at Chr3:158,569,149, and rs12696086 was located at 

Chr3:158,663,753. They are both located in between an upstream pseudogene, GPR79, and a 

downstream protein coding gene IQCJ-SCHIP1.  

 

Table 3: Pathways of Interest. 

Parent Pathway Pathway 
identifier 

Pathway name Unadjusted 
p-value 

Cellular Responses 
to External Stimuli 

R-HSA-8953897 Cellular responses to external 
stimuli 

0.000 

 
R-HSA-2262752 Cellular responses to stress 0.000 

 
R-HSA-1234174 Cellular response to hypoxia 0.384 

 
R-HSA-1234158 Regulation of gene expression by 

Hypoxia-inducible Factor 
0.192 

 
R-HSA-1234176 Oxygen-dependent proline 

hydroxylation of Hypoxia-inducible 
Factor Alpha 

0.352 
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Hemostasis Parent R-HSA-109582 Hemostasis 0.035 
 

R-HSA-418346 Platelet homeostasis 0.003 
 

R-HSA-392851 Prostacyclin signalling through 
prostacyclin receptor 

0.461 

 
R-HSA-418360 Platelet calcium homeostasis 0.038 

 
R-HSA-392154 Nitric oxide stimulates guanylate 

cyclase 
0.000 

 
R-HSA-432142 Platelet sensitization by LDL 0.604 

 
R-HSA-983231 Factors involved in 

megakaryocyte development and 
platelet production 

0.174 

 
R-HSA-75892 Platelet Adhesion to exposed 

collagen 
0.097 

Cardiac Conduction R-HSA-397014 Muscle contraction 0.000 
 

R-HSA-5576891 Cardiac conduction 0.002 
 

R-HSA-5576892 Phase 0 - rapid depolarisation 0.007 
 

R-HSA-5576894 Phase 1 - inactivation of fast Na+ 
channels 

0.222 

 
R-HSA-5576893 Phase 2 - plateau phase 0.051 

 
R-HSA-5576890 Phase 3 - rapid repolarisation 0.718 

 
R-HSA-5576886 Phase 4 - resting membrane 

potential 
0.806 

 
R-HSA-5578775 Ion homeostasis 0.054 

 
R-HSA-5578768 Physiological factors 1.000 

 

We performed a second GWAS, restricting our analysis to HAQ (n = 277). This GWAS 

was also limited to include SNPs that were statistically significant at for one or more tests for 

positive selection in order to focus the analysis on genomic loci showing signatures of recent 

positive selection and to maximize statistical power. We used an additive model of inheritance 

and included sex as a covariate. Again, we did not identify any significant associations with [Hb]. 

The top three variants from this GWAS were rs2971753 (MA = C, MAF = 0.061, Beta = -3.08, 

95% CI: -3.45 to -2.72, FDR_BH = 0.32), rs56069023 (MA = G, MAF = 0.20, Beta = -0.71, 95% 

CI: 0.38 to 1.04, FDR_BH = 0.32), and rs587706 (MA = T, MAF = 0.40, Beta = -0.55, 95% CI: -
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0.81 to -0.29, FDR_BH = 0.32) (Figure 5B, Table 4). rs2971753 was located at Chr7:2,971,753 

and overlapped the AC093106.5 pseudogene. rs56069023 was located at Chr13:24,932,135 

and was located in between lincRNA LINC00566 and CYCSP33, a pseudogene. rs587706 was 

located at Chr6:124,807,814 and was found in an intronic region of NKAIN2. 

 

 

Figure 5. Manhattan plots for the genome wide association study for [Hb] phenotype. The top 
Manhattan plot shows results for the GWAS performed with all Peruvian Quechua participants 
passing QC and admixture filtering (A). The bottom Manhattan plot shows results for the GWAS 
restricted to participants that passed QC and admixture filtering (B).  
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LASSO Regression 

GWAS nominated SNPs typically have small effect sizes and represent a small portion 

of all truly associated SNPs. Penalized regression approaches such as the least absolute 

shrinkage and selection operator (LASSO) can result in lower mean squared errors (MSEs) and 

improved prediction accuracy (Hastie et al. 2009) and have the capability to reduce the number 

of predictor variables (genomic loci) that typically greatly outweigh the number of response 

variables (samples) in genome wide association tests (Waldmann et al. 2013). Therefore, we 

performed a LASSO regression as an independent validation to test the robusticity of the GWAS 

results. We divided the data into a training dataset (66%) and a test dataset (33%) via random 

selection. A regression model was fit to the training data in glmnet in R (Friedman et al 2010, R 

Core Team). We tested elastic net models with alphas ranging from 0 to 1. We found that the 

mean squared error was minimized when alpha = 1, supporting use of a LASSO model as 

opposed to elastic net or RIDGE regression models. The model fit with this alpha parameter 

included no genomic loci, verifying the GWAS results.  

 

DISCUSSION 

The genetic architecture underlying elevated [Hb] as an adaptive phenotype under high-

altitude hypoxia is not well understood. We performed a genome wide selection scan and 

association study to test for genotype associations with [Hb]. We identified 1) several genomic 

loci showing signatures of selection, 2) several genomic loci under positive selection that show 

weak associations with [Hb], and 3) no genomic loci under positive selection that are 

significantly associated with [Hb]. The selection scan we performed resulted in an extensive list 

of putative regions of selection. This list included numerous genes that were associated with 

responses to hypoxia, cardiac muscle contraction, hemoglobin, and nitric oxide. The lack of 



 

 20 

evidence for a genetic basis of high-altitude adaptive elevated [Hb] provided by this study does 

not preclude the possibility that this trait has a genetic basis, nor does it prove that this trait is 

entirely developmentally or epigenetically based.  

By performing a genome wide selection scan, we have produced a comprehensive list of 

putative genomic regions under selection. These genomic regions include several genes in the 

HIF pathway, two hemoglobin related genes, and several genes related to cardiac conduction. 

The HIF pathway is activated when cellular oxygen demand surpasses oxygen supply (cellular 

hypoxia). HIF pathway activation results in up-regulation of genomic regions involved in 

glycolysis, erythropoiesis, and angiogenesis. The up-regulation of these genes promotes the 

cellular response to hypoxia (Cavadas et al. 2013). In particular, we identified evidence of 

positive selection for four genes important in the HIF pathway, EGLN1, EGLN2, EPAS1, and 

HIF1A. EGLN1 codes for the PHD2 enzyme, which interacts with and degrades the HIF-2a 

protein. Under conditions of hypoxia, PHD2 enzymes have reduced activity, resulting in an 

increased stabilization of HIF-2a proteins, which increases blood cell and blood vessel formation 

capacity. Similarly, EGLN2 encodes for the PHD1 enzyme, and both EGLN1 and EGLN2 are 

involved in the degradation of HIF-1a (Zhang et al. 2019). HIF1A encodes for a protein subunit 

of HIF-1, which acts as a master regulator of cellular and systemic responses to hypoxia. HIF-1 

activates transcription of an array of genomic regions to increase oxygen delivery and metabolic 

adaptation to hypoxia. Two non-synonymous coding variants located in HIF1A, rs149348765 

and rs11549465, showed signatures of selection. Further investigation of these two variants and 

their implication in vitro could yield important insights on the genetic alterations that alter the 

activity of genes in the HIF pathway, and ultimately Andean adaptations to high-altitude hypoxia.  

We identified evidence of selection for two genes related to hemoglobin, HBE1 and 

HBG2. HBE1 is a protein coding gene that encodes hemoglobin subunit epsilon, a component 

of embryonic hemoglobins Hb Gower I and Hb Gower II. HBG2 is a protein coding gene that 

encodes of a one of two gamma chains that along with two alpha chains constitutes fetal 
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hemoglobin (HbF). All of the 11 SNPs located in HBE1 and the 12 SNPs located in HBG2 that 

were found to be under selection, were intronic. The signals of selection found in these genes 

may be the result of genetic adaptation involved in the increased blood flow and oxygen to 

uteroplacental circulation. This elevated blood flow and oxygen delivery has been found to be 

an important factor in protecting high-altitude Andeans and Tibetans from fetal growth 

restrictions related to hypoxia (Julian et al. 2009, Wilson et al. 2007). Alternatively, both HIF2A 

and EPAS1 are involved in increased erythropoiesis and erythroid expansion. Characteristics of 

increased erythropoiesis includes an augmentation of red blood cells containing HbF. Low-

altitude residing adults that are exposed to high altitude and high-altitude hypoxia have been 

found to have an elevated accumulation of HbF that recedes to normal levels after return to low 

altitude (Risso et al. 2011). Future studies including flow cytometry analysis of HbF expression 

using blood samples obtained from the Peruvian Quechua participants recruited at high and low 

altitudes could provide valuable insights as to whether this increased HbF accumulation occurs 

in Peruvian Quechua participants, and if so, is it the result of genetic adaptation in HBG2.    

Our GWAS did not reveal any associations with [Hb] that passed genome-wide 

significance. Several genomic loci were found to be weakly associated with [Hb]. The top three 

included rs884510, rs16829653, and rs12696086. PDE1B or PPP1R1A SNP rs884510 is 

involved in several hemostasis pathways including: cGMP effects (R-HSA-418457), Nitric oxide 

stimulates guanylate cyclase (R-HSA-392154), Platelet homeostasis (R-HSA-418346), and 

Hemostasis (R-HSA-109582). This gene is also involved in several signal transduction 

pathways. PPP1R1A is located in the Cellular responses to stress parent pathway, and its sub-

pathway, the Response of EIF2AK1 (HRI) to heme deficiency (R-HAS-9648895). rs16829653 

and rs12696086 are located in between an upstream pseudogene, GPR79, and a downstream 

read-through transcription gene IQCJ-SCHIP1. The top three associated variants for the HAQ 

restricted GWAS were rs2971753, rs56069023, and rs587706.  rs587706 is located in an 

intronic region of NKAIN2, a protein coding gene associated with Cardiovascular and 
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Hematological disease classes, specifically blood viscosity and cell adhesion molecules (GAD) 

that have been implicated in cardiovascular morphology. Cell adhesion molecules also include 

members of the immunoglobin family. Together, our findings suggest that the genomic regions 

surrounding these genes can be promising candidate regions for future investigations of the 

genetic architecture underlying adaptive [Hb] in Andeans.  

The lack of a significant genomic association found in this study is subject to select 

limitations. First, data was collected using a SNP array, rather than whole genome sequencing 

(WGS) or exome sequencing (ES). This limited representation genomic data may not include 

genomic loci located within statistically significant regions of selection that are significantly 

associated with [Hb]. Second, haplotype and genotype imputation with programs such as RFmix 

(Maples et al. 2013) was not performed on our data set. This imputation would replace 

chromosomal sections and impute indigenous chromosomal sections in their place. Instead, 

admixed individuals were removed for a more conservative approach. Finally, For LASSO 

regression and prediction, our sample size is quite small, limiting the predictive accuracy of our 

model (Fryett et al. 2020).  

Future work using our list of putative regions showing signatures of natural selection in 

addition to data that could potentially yield novel genomic loci that are significantly associated 

with [Hb]. Our list of putative regions and our data set can be used to test significant 

associations with other high-altitude adaptive phenotypes such as exhaled nitric oxide (FENO). 

On a broader scale, a future study that investigates the genomic architecture underlying [Hb] 

found in Tibetans, in addition to the predictive modeling of these trait in Han Chinese would be 

invaluable to understanding how differences in ancestral genomic architecture have resulted in 

the unique suites of high-altitude adaptations found in Tibetans and Andeans.  
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MATERIALS AND METHODS 

Participant Recruitment and Data Collection 

We recruited 603 Peruvian Quechua study participants from two locations in Peru. 301 

participants of Peruvian Quechua descent from the city of Cerro de Pasco, Peru (4, 338m) who 

had been born and raised at high altitude. We also recruited 300 participants of Peruvian 

Quechua descent from Lima, Peru (154m) who were born and raised at low altitude or had 

migrated down to low altitude during their lifetime. At the time of recruitment, all study 

participants provided written informed consent in Spanish. This study was approved by the 

Institutional Review Boards of the University of Michigan and the Universidad Peruana 

Cayetano Heredia. Additionally, we recruited 101 Indigenous American low altitude study 

participants of Mexican Maya descent who spoke the Tzeltal, Tzotil, or Ch’ol from the city of 

Palenque, Chiapas Mexico (60m). Again, study participants provided written informed consent 

in Spanish at the time of enrollment. The study was approved by the institutional review boards 

at the University of Michigan and Centro de Investigación y Docencia Económicas (CIDE 

Mexico City, Mexico). Peruvian and Mexican study participants provided three mililiters of whole 

blood for DNA extraction and measurement of [Hb]. [Hb] was measured using a HemoCue 

Hb201+ analyzer (AngelHolm Sweden).  Blood was field stabilized in cell lysis buffer. Stabilized 

blood samples were then hand-carried to the University of Michigan where DNA extraction was 

performed in the Bigham Lab for Anthropological Genomics using the Puregene Protocol 

(Qiagen, Valencia, CA). In addition, study participants provided basic biometric data including 

weight, height, sex, and age. 

Genotype data was generated using the Affymetrix Biobank Genotyping Array, which 

returned genetic data for 592,123 genomic loci. Publicly available data were obtained for 60 

Yorubans (YRI), 45 Han Chinese from Beijing, 45 Japanese from Tokyo, and 60 individuals of 

north-central European ancestry from the Centre d’Etude du Polymorphisme Humain (CEPH) 
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from the International Hap Map Project (International HapMap 2003). These data were used as 

reference data during admixture analysis and in the selection scan. 

 

Quality Control filtering 

 Genotype data were quality control filtered using Plink 2.0 (Purcell et al. 2007, Chang 

2015) to only include autosomal markers with genotyping missingness rates less than 5%. 

Three thousand four hundred and ninety variants were removed from the HapMap data set. No 

variants were removed from the Peruvian or Mexican datasets. No individuals were removed 

based off of the missingness cutoff of 1%. Thirty-one loci were manually identified as being 

called for the incorrect allele and removed. These loci were removed from downstream 

analyses. Sample relatedness was estimated using KING (Manichaikul et al. 2010) 

implemented in Plink 2.0. Twenty-three Peruvian Quechua individuals 28 Mexican Maya 

individuals showing 3rd degree relationships or higher were identified and removed. For pairs of 

related individuals, the individual with the higher genotyping rate was retained in the dataset.  

 

Phase estimation 

The quality control filtered data set was first converted from a Plink .bed file format to 

.vcf file format, then indexed using BCFtools (Li et al. 2009). Haplotype phasing and genotype 

imputation were performed using the Michigan Imputation Server (Das et al. 2016). Phasing 

was performed using Eagle (Loh et al. 2016) and the 1000 Genomes reference panel v5 

(Genomes Project et al, 2015).  

 

Admixture Analysis 

We performed an admixture analysis using the unphased data set. This reduces the over-

estimation of admixture produced by switching errors that can occur during haplotype phasing. 
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We removed 40,960 insertion/deletion markers, filtered alleles with a minor allele frequency less 

than 2.5%, and pruned out markers that were in tight linkage disequilibrium (LD) (r^2>0.8). 

Admixture estimates for each individual were obtained using 256,150 markers in the program 

ADMIXTURE (Alexander & Lange 2011). The number of populations (K) was estimated to be 

K=5 corresponding to individuals from Peruvian Quechua, Mexican Maya, CEU, YRI, and EAS 

populations.  

 

Selection Scan 

We extracted ancestral allele information from publicly available 1000 Genomes data 

using BCFtools (Li et al. 2009), then input these ancestral alleles as reference allele in Plink 2.0 

(Purcell et al. 2007). LSBL (Shriver et al. 2004) was calculated using 458 Peruvian Quechua 

and 60 Mexican Maya individuals with over 90% Indigenous ancestry, as well as 88 East Asian 

individuals from data provided by the International Hap Map Project. Monomorphic SNPs were 

removed from the dataset, leaving 331,122 variants. Pairwise FST was calculated between each 

population and was then used to calculate LSBL. Genetic markers falling in the top 5% of LSBL 

empirical distribution were determined to be statistically significant. Three haplotype-based tests 

of selection were applied using the programs Selscan v1.3.0 and Norm (Szpiech & Hernandez 

2014). XP-nSL (Szpiech et al. 2021) was calculated for Peruvian Quechua were compared to 

the Mexican Maya as reference. XP-nSL results were normalized using Norm. Second, iHS 

(Voight et al. 2006) was calculated for Peruvian Quechua with Mexican Maya was reference, 

then normalized using Norm. Third, XP-EHH (Sabeti et al. 2007) was calculated for Peruvian 

Quechua, again using the Mexican Maya as reference, then normalized using Norm.  
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Pathway Analysis 

All SNPs found to be significantly under selection were input to SNPNexus (Dayem Ullah et al. 

2012, Oscanoa et al. 2020) to determine overlapped genes or nearest upstream and 

downstream genes. Pathway analysis was performed in Reactome (Fabregat et al. 2017, Griss 

et al. 2020). 

 

Genome Wide Association Study 

We combined these statistically significant markers to create a genomic data set to be 

used in the GWAS. Covariates were selected from a pool of participant phenotype data and the 

PCA performed with all remaining participants after the admixture analysis. We tested a linear 

regression model with Sex, Altitude, Age, Height, Weight, and principal components 1 to 5. Of 

these, only Sex and Altitude were found to be significant covariates, which was then verified 

using a student’s t-test and a Barlett test. With the 519 Peruvian Quechua samples retained in 

the 0.8 Admixture cutoff, we performed a GWAS that included the top 5% of SNPs under 

selection. After a minor allele frequency cutoff of 0.05 we performed a linear association using 

an additive inheritance model to test using [Hb] as the key phenotype, and sex and altitude as 

covariates. An additional GWAS was performed with the same dataset but limited to the 277 

Peruvian Quechua participants who were recruited at high altitude.  

 

LASSO Regression 

To build our LASSO regression model, we used the covariate, phenotype, and genotype 

data that was previously used in the GWAS. We converted this data into 0 1 2 genotypes, and 

centered and scaled our predictor variable ([Hb]) and parameters (covariates and SNPs). We 

then used glmnet in R (Friedman et al 2010, R Core Team) to fit a regression model to the data. 

Using a training dataset that contained 66% of the total data, we tested Ridge, LASSO, and 
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Elastic net models (alpha ranging from 0 to 1 in increments of 0.02) and found that the mean 

squared error of our model was minimized when alpha=1, which results in a LASSO regression 

model. We then created a set (consisting of the 33% of the total data that was excluded from 

the training set) to predict [Hb], then compared the predicted values against the observed.  
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