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Zhu et al. (2014) developed a set of water-diversion strategies that
consist of water-diversion rule curves, diversion flows, and supply
rules to improve water diversion in inter-basin projects. The water-
diversion rule curves involve hydrological-stage and water-level
factors. An optimization model was constructed to minimize urban,
agricultural, and ecological water shortages, and the decision var-
iables were optimized by a genetic algorithm. Furthermore, three
scenarios were defined including historical operation without any
water diversions, regular operation with an even water diversion,
and operation according to optimized water-diversion rule curves.
The paper’s authors presented a case study of the Biliu reservoir in
China. They concluded that use of optimized water-diversion strat-
egies dramatically reduce supply shortages, and suggested the
design diversion capacity based on optimized analysis to range
between 100 and 220 hm3.

The following notes of this discussion are presented for consid-
eration by Zhu et al. (2014) as suggestions for their paper and future
related studies.

Optimization problems with objective function and constraints
are defined as linear or nonlinear. Recently, many linear and non-
linear optimization models have been developed and applied in
all aspects of water resources systems such as reservoir operation
(Afshar et al. 2011; Bozorg Haddad et al. 2008b, c, 2009, 2011a;
Fallah-Mehdipour et al. 2011b, 2012), cultivation rules (Moradi-
Jalal et al. 2007; Noory et al. 2012), pumping scheduling (Bozorg
Haddad and Mariño 2007; Bozorg Haddad et al. 2011b;
Rasoulzadeh-Gharibdousti et al. 2011), water distribution networks
(Bozorg Haddad et al. 2008a; Soltanjalili et al. 2010; Fallah-
Mehdipour et al. 2011a; Seifollahi-Aghmiuni et al. 2011; Ghajarnia
et al. 2011; Sabbaghpour et al. 2012), operation of aquifer systems
(Bozorg Haddad and Mariño 2011), and site selection of infrastruc-
tures (Karimi-Hosseini et al. 2011). In a linear programming
problem, the objective function and the set of constraints are linear
mathematic equations. In nonlinear programing problems, all or
some of the constraints, or the objective function, are nonlinear
mathematic equations. In the paper by Zhu et al. (2014), the

constraints and objective function [Eq. (1)] are linear equations.
Applying a linear objective function in optimization problems
may be disadvantageous, such as, for example, by increasing the
vulnerability efficiency criterion. In this discussion the vulnerabil-
ity efficiency criterion is applied to demonstrate that in order to
meet water demands with high reliability in water systems threat-
ened by drought, it is preferable to use quadratic and nonlinear
objective functions.

In the operation of water-resources systems, failures do not have
all similar severity and frequency. For instance, a 1 × 106 m3 short-
age is less impacting than a 5 × 106 m3 shortage when the water
demand equals 10 × 106 m3 demand. To illustrate this argument,
the vulnerability efficiency criterion (VEC) is useful. The VEC
is expressed as a normalized sum of differences between water
demands and releases during an operating period

λ ¼ MaxTt¼1ðDt − RtÞP
T
t¼1 Dt

ð1Þ

in which λ = vulnerability efficiency criterion during the operation
period; Rt = reservoir release during t-th period; and Dt = water
demand during the t-th period. A water system’s vulnerability to
shortages decreases with decreasing λ.

This discussion presents, for the sake of argument, a planning
problem, in which reservoir inflows, water demands, reservoir
storage, area, and water level variations with evaporation and pre-
cipitation are specified for twelve operating periods in Table 1. The
planning problem is solved for one year in which periods are one
month long. The objective is to minimize the water shortage rates in
the water-supply system. The problem is solved first using a linear
objective function, and, thereafter, it is solved using a nonlinear
objective function applying the software Lingo 11.0. The two
set of results corresponding to the solution of the water-planning
problems with linear and nonlinear objective functions are pre-
sented in Fig. 1 and Table 2. Data for this example is shown on
Table 1.

Alternative objective functions

Minimize f1 ¼
XT
t¼1

ðDt − RtÞ linear case ð2Þ

Table 1. Problem Data

t
Q

(106 m3)
Ev

(mm)
D

(106 m3)
SMin

(106 m3)
SMax

(106 m3) Sð0Þ
1 3.29 0.020 7.19 20 for all t 290 for all t 22 for all t
2 4.40 0.004 5.15
3 10.29 −0.001 11.04
4 10.73 −0.013 4.20
5 9.82 −0.017 9.50
6 11.76 −0.015 5.27
7 6.58 −0.002 12.99
8 3.11 0.006 8.88
9 2.77 0.031 17.38
10 2.40 0.039 10.51
11 2.11 0.039 10.06
12 2.04 0.037 7.99

Note: D = water demand; Ev = evaporation–precipitation; Q = inflow to
reservoir; t = time period.
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Minimize f2 ¼
XT
t¼1

ðDt − RtÞ2 nonlinear case ð3Þ

Constraints (apply to linear and nonlinear objective functions)

Stþ1 ¼ St þQt − Spt − Rt − Lt t ¼ 0; 1; 2; : : : ; T − 1 ð4Þ
in which So = initial storage (known); and ST = final storage.

Lt ¼ Evt ×

�
At þ Atþ1

2

�
ð5Þ

Spt ×

�
1 − St

Smax

�
¼ 0 ð6Þ

At ¼ kðStÞ ð7Þ
where k = function that converts storage (Sk) to reservoir water
area (Ak)

0 ≤ Rt ≤ Dt ð8Þ

SMin ≤ St ≤ Smax ð9Þ

where f1 = objective function in linear case; f2 = objective function
in nonlinear case; St = reservoir storage water volume; St =
reservoir storage water volume with initial storage S0; Qt = inflow
discharge to the reservoir; Rt = reservoir release; SMax = maximum
reservoir storage capacity; SMin = minimum reservoir storage
capacity; Spt = spillage; Evt = difference between evaporation
and precipitation expressed as a depth of water; At = reservoir area;
and Lt = volumetric difference between evaporation and precipita-
tion. In addition, in Table 2, Def(1) and Def(2) are the reservoir
shortages (Dt − Rt) rates for the linear and nonlinear cases, respec-
tively; λð1Þ and λð2Þ are the reservoir VECs [Eq. (1)] for the linear
and nonlinear cases, respectively; f�1 = value of the optimized
objective function in the linear state; f�2 = value of the optimized
objective function in the nonlinear case; Sð1Þ and Sð2Þ represent the
reservoir storage in each period for the linear and nonlinear cases,
respectively.

According to Table 2 and Fig. 1, the solution to the water-
planning problem with linear objective function supplies 100%
of the water demand in eight months, but at the same time, the sys-
tem also endures severe failures and its VEC equals 15%, to be
compared with a VEC about five smaller and equal to 2.9% in
the nonlinear case. Furthermore, f�1 is approximately four times
more than f�2.

Zhu et al. (2014) added a dipub parameter, the number of cumu-
lative shortage periods to Eq. (2) in their paper to prevent causing
consecutive water shortages, and attempted to minimize the latter
parameter. The dipub parameter only influences the resiliency
efficiency criterion, but does not prevent serious failure in a
water-supply system. Therefore, it does not improve the vulnerabil-
ity efficiency criterion, which produces severe water shortages, as
the results of this discussion example illustrate.

The results of Fig. 1 show there are no consecutive failures in
the solutions corresponding to the linear case. Nonetheless, in the
7th and 9th months, the supply rates equal zero. These failure rates
can cause severe stress in the water-supply system. Moreover, in
many water-supply projects, the allowable supply percentage of
demand is achieved using a nonlinear objective function.
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Fig. 1. Monthly demands (D) and releases R (106 m3) for linear (1)
and nonlinear (2) cases
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