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Abstract: Attention-deficit/hyperactive disorder (ADHD) and autism spectrum disorders (ASD) are
two of the most common and vexing neurodevelopmental disorders among children. Although the
two disorders share many behavioral and neuropsychological characteristics, most MRI studies exam-
ine only one of the disorders at a time. Using graph theory combined with structural and functional
connectivity, we examined the large-scale network organization among three groups of children: a
group with ADHD (8–12 years, n 5 20), a group with ASD (7–13 years, n 5 16), and typically develop-
ing controls (TD) (8–12 years, n 5 20). We apply the concept of the rich-club organization, whereby
central, highly connected hub regions are also highly connected to themselves. We examine the brain
into two different network domains: (1) inside a rich-club network phenomena and (2) outside a rich-
club network phenomena. The ASD and ADHD groups had markedly different patterns of rich club
and non rich-club connections in both functional and structural data. The ASD group exhibited higher
connectivity in structural and functional networks but only inside the rich-club networks. These find-
ings were replicated using the autism brain imaging data exchange dataset with ASD (n 5 85) and TD

Additional Supporting Information may be found in the online
version of this article.

Contract grant number(s): R01 MH096773 and K99/R00
MH091238 (to D. A. F.); Contract grant sponsor: Simons Founda-
tion; Contract grant number(s): 177894 and R01 MH086654 and
R01 MH86654 (to J. T. N.); Contract grant sponsor: Oregon Clini-
cal and Translational Institute; Contract grant number:
UL1TR000128 (to D. A. F.).

*Correspondence to: Damien Fair, Department of Behavioral Neu-
roscience, Oregon Health & Science University, Portland, OR.
E-mail: faird@ohsu.edu

Received for publication 30 October 2013; Revised 9 May 2014;
Accepted 29 July 2014.

DOI: 10.1002/hbm.22603
Published online 13 August 2014 in Wiley Online Library
(wileyonlinelibrary.com).

r Human Brain Mapping 35:6032–6048 (2014) r

VC 2014 Wiley Periodicals, Inc.



(n 5 101). The ADHD group exhibited a lower generalized fractional anisotropy and functional connec-
tivity inside the rich-club networks, but a higher number of axonal fibers and correlation coefficient
values outside the rich club. Despite some shared biological features and frequent comorbity, these
data suggest ADHD and ASD exhibit distinct large-scale connectivity patterns in middle childhood.
Hum Brain Mapp 35:6032–6048, 2014. VC 2014 Wiley Periodicals, Inc.

Key words: attention-deficit/hyperactivity disorder; autism spectrum disorders; high angular resolu-
tion diffusion imaging; rs-fMRI; connectivity; rich-club organization; DW-MRI; diffusion
tensor imaging
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INTRODUCTION

Attention-deficit/hyperactivity disorder (ADHD) and
autism spectrum disorder (ASD) are two very common,
costly, and impairing neurodevelopmental disorders. A
recent study, surveying the years 1997–2008, concluded
that one in six children in the United States have a devel-
opmental disorder, a 17% increase over the past decade
driven largely by increases in ASD and ADHD [Boyle
et al., 2011]. These trends highlight the need for innovative
approaches to study these disorders.

Current diagnostic criteria for these disorders are based
on clusters of signs and symptoms; ADHD is characterized
by developmentally inappropriate levels of inattentive and/
or hyperactive-impulsive behavior, while ASD is character-
ized by pervasive impairments in social communication and
the presence of restricted interests and repetitive behavior
[American Psychiatric Association, 2013]. However, despite
clear differences in their formal diagnostic definitions, these
phenotypes also show significant and intriguing overlap in
terms of clinical comorbidity as well as in experimental find-
ings. Unlike the DSM-IV, the DSM-5 [APA, 2013] allows
codiagnosis of ADHD and ASD, in part because many chil-
dren with ASD have impairing and comorbid inattention
and/or hyperactivity [Rommelse et al., 2011]. This overlap
extends to more specified executive functions as well,
including set shifting, planning, and response inhibition
[Geurts et al., 2004; Happ�e et al., 2006; Pennington and
Ozonoff, 1996; Sinzig et al., 2008]. Furthermore, the two dis-
order’s constituent symptoms appear to share some degree
of common familial/genetic influences [Musser et al., 2014;
Rommelse et al., 2010; Ronald et al., 2008].

As with various behavioral measures, studies of struc-
tural and functional brain connectivity in these two popu-
lations have provided initial insight into some noticeable
overlaps in the functional and structural neuroanatomy of
the disorders; however, findings have been somewhat
inconsistent across studies. For example, structural evi-
dence from diffusion tensor imaging studies (DTI) sug-
gests reduced fractional anisotropy (FA)—a measure of
white matter integrity [Mori and Zhang, 2006]—in both
youth with ADHD and those with ASD, as revealed in
parallel conclusions from recent meta-analyses of each
conditions [Aoki et al., 2013; van Ewijk et al., 2012]. How-
ever, evidence of greater FA in specific regions including

inferior parietal, occipitoparietal, inferior frontal, and infe-
rior temporal cortex have been identified in both disorders
as well [Cheung et al., 2009; Nagel et al., 2011; Silk et al.,
2009]. Unfortunately, the two disorders have not been
directly compared in regards to structural connectivity in
the same study leaving it unclear if they actually differ in
white matter development.

As with the structural literature, resting state functional
connectivity studies in ADHD and ASD show apparent
inconsistencies. Reduced connectivity between various
brain regions have been identified in individuals with
ADHD [Fair et al., 2010; Pavuluri et al., 2009; Peterson
et al., 2009; Tomasi and Volkow, 2012; Uddin et al., 2008]
and ASD [Anderson et al. 2011; Assaf et al., 2010; Cherkas-
sky et al., 2006; Dinstein et al., 2011; Ebisch et al., 2011;
Gotts et al., 2012; Kennedy and Courchesne, 2008; Monk
et al., 2009; Mueller et. 2013; Rudie et al., 2012; von dem
Hagen et al., 2012; Weng et al., 2010]. However, increased
connectivity has also been identified in both disorders [Di
Martino et al., 2011; Keown et al., 2013; Lynch et al., 2013;
Monk et al., 2009; Supekar et al., 2013; Tien et al., 2006;
Tomasi and Volkow, 2012; Uddin et al., 2013; Washington
et al., 2014]. Again, direct comparison of the two disorders
has been limited so it is unclear in what ways they have
similar or distinct functional connectivity. Although recent
studies by [Brieber et al., 2007] based on VBM, [Christakou
et al., 2013] based on task-based fMRI, and [Di Martino
et al., 2014] using functional network centrality measures
have studied the two disorders in tandem, a comparison
of large scale structural and functional network connectiv-
ity as measured via the “rich club” (see below for formal
definition) has yet to be examined.

Overall, there is evidence that connectivity—both struc-
tural and functional—is disrupted in these two populations.
In addition, although core diagnostic criteria for ASD do not
overlap with those of ADHD, children with ASD often show
high levels of inattention and hyperactive-impulsive symp-
toms, and individuals with ADHD often show deficits in
one or more of the two primary ASD symptom domains
(social communication impairments or restricted/repetitive
behavioral patterns). To determine whether some of the
shared behavioral patterns are the result of similar functional
and/or structural neurophysiology, it is important to exam-
ine the disorders in the same study. Whereas many studies
look at particular localized seed regions and their
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connectivity, the evidence in both disorders of widespread
alterations in connectivity commends an alternative
approach. That is, it is important to consider the type and
importance of a given connection identified in the context of
the large-scale network structure of the brain, to clarify some
of the inconsistencies reported in related literature. In this
report, we use graph theoretical analyses of structural and
functional connectivity to further our understanding of the
underlying topological changes associated with ADHD and
ASD diagnoses. Specifically, we examine structural, as well
as functional, rich-club organization using high angular reso-
lution diffusion imaging (HARDI) and resting state func-
tional connectivity MRI (rs-fMRI) in children with ASD, in
children with ADHD, and in typically developing children.

Recent work has proposed that rich-club organization
may be a key topological property of the healthy human
brain. The term “rich-club organization” refers to a system
organization whereby highly connected nodes within a net-
work (e.g., the brain) show a tendency to connect with other
highly connected nodes; this concept has recently been
applied to structural and functional networks in the healthy
human brain and has indicated that the human brain indeed
shows robust rich-club organization [van den Heuvel and
Sporns, 2011]. These methods offer a novel way by which to
examine atypical neural network organization in neurodeve-
lopmental disorders, including ADHD and ASD, that inte-
grates the organizational tendencies of the entire brain
rather than attempting to isolate specific localized abnormal-
ities. Such work carries implications for dissection of the
inconsistencies inherent to the literature, discovery of poten-
tial underlying mechanisms, and identification of potential
neural endophenotypes [see Rommelse et al., 2011], all of
which could critically impact diagnostic and classification
efforts. Studies have shown that the regions in the structural
rich club include superior medial frontal/dACC, medial
parietal/PCC, insula and inferior temporal cortex, while
functional rich-club regions include areas in midline frontal,
midline posterior, insula, inferior temporal, and cingulate
cortex [Grayson et al., 2014; van den Heuvel and Sporns,
2011]. In this study, we anticipate atypical structural and
functional connectivity patterns amongst these rich-club
regions in both ADHD and ASD groups, and that the nature
of these connectivity patterns will persist with both func-
tional and structural data within each group.

MATERIALS AND METHOD

Participants

The study sample consisted of children aged 7–13 years,
including 20 typically developing controls (TD), 20 chil-
dren with ADHD (includes 8 inattentive, 1 hyperactive,
and 11 combined type by DSM-IV criteria), and 16 high-
functioning-ASD children [Supporting Information Table
1(a)]. All ADHD participants were recruited by commu-
nity outreach and were diagnosed by a research diagnostic
team that included a licensed psychologist, board certified

child psychiatrist, and licensed clinical social worker using
consensus review based on a semistructured clinical inter-
view [K-SADS; Kaufman et al., 1997] and parent and
teacher standardized ratings. The ASD children were
recruited from referrals to a tertiary autism treatment cen-
ter. For ASD participants, diagnosis was determined by a
multidisciplinary clinical team that utilized the ADOS
[Lord et al., 2000]. All children also met ASD criteria on
the ADI-R [Lord et al., 1994], using DSM-IV criteria
[American Psychiatric Association, 2000]. Children with
ASD were assessed for ADHD by the same research meth-
ods [Supporting Information Table 1(b)]; 16 children with
ASD also had a diagnosis of ADHD. Typically developing
control children (TD) were recruited as community volun-
teers. They underwent the same diagnostic evaluation as
the youth in the ADHD cohort, including review of semi-
structured clinical interview and parent and teacher stand-
ardized rating forms by the ADHD diagnostic team to
ensure they did not meet criteria for ADHD or ASD.

Exclusion criteria for all groups included neurological
disorder, seizure disorder, cerebral palsy, pediatric stroke,
history of chemotherapy, sensorimotor handicaps, closed
head injury, thyroid disorder, schizophrenia, bipolar disor-
der, current major depressive episode, fetal alcohol syn-
drome, Tourette’s disorder, severe vision impairments,
Rett’s syndrome, and IQ> 70. Children with ADHD or
ASD who were taking psychostimulant medications were
allowed in but were washed out for a minimum of 24–48
hours (depending on formulation) or at least 7 half lives of
the formulation (i.e., the period of time it takes the body
to metabolize/excrete half of the dose of the medication)
prior to neuroimaging. This action was verbally confirmed
with parents. Children taking nonstimulant psychoactive
medications (e.g., tricyclic antidepressants, SSRIs, MAO
inhibitors, or antipsychotic medication and atomoxetine)
were excluded from the study. Typically developing chil-
dren were all free of psychoactive medication.

Data Acquisition

MR data were collected during a single session for each
subject using a Siemens Tim Trio 3T Scanner with a 12-
channel head coil. Data acquisition included: (1) T1-
weighted magnetization-prepared gradient-echo image
[repetition time (TR) 5 2,300 ms, inversion time (TI) 5 900
ms, echo time (TE) 5 3.58 ms, flip angle (FA) 5 10�, 1 mm3

voxels, 160 slices, FOV 5 240 3 256 mm]; (2) T2-weighted
image for accurate registration of T1-weighted over b0
(TR 5 3200 ms, TE 5 497 ms; 1 mm3 voxels, 160 slices,
FOV 5 256 3 256 mm); (3) HARDI using an Echo Planar
Imaging (EPI) (72 different gradient directions, b-
value 5 3,000 mm/s2, TR 5 7100 ms, TE 5 112 ms, 2.5 mm3

voxels, 48 slices, FOV 5 230 3 230 mm) and (4) resting-
state functional MRI (rs-fMRI) using a gradient-echo echo-
planar imaging (EPI) sequence (TR 5 2500 ms, TE 5 30 ms,
FA5 90�, 3.8 mm3volexs, 36 slices with interleaved
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acquisition, FOV 5 240 3 240 mm). We acquired three 5-
min runs, making total of 15 min of resting state data for
each subject in the study.

T1 preprocessing

For each dataset, the T1-weighted images were used as
anatomical references to identify regions of interest (ROIs)
in the brain network. Freesurfer (http://surfer.nmr.mgh.
harvard.edu/), was used to classify white/gray matter tis-
sue and to parcellate the cortical gray matter into 68
regional labels in native space. These regions were further
subdivided into 219 [Hagmann et al., 2008] equivalent size
cortical ROIs (using connectomemapper: http://www.con-
nectomics.org/connectomemapper/). This region set was
obtained from each subject after its surface registration,
which is required for proper tractography and ensuring the
validity of comparisons between different subject groups.

HARDI Quality Assurance

Despite investigators best efforts, poor image quality is
not uncommon in MRI studies, particularly with awake,
pediatric populations. In view of the large number of
images acquired during each patient session, manual
examination of all the images for quality assurance is often
time-consuming and prone to human error. Instead, we
used MATLAB script to implement a pipeline to automati-
cally identify the images with suboptimal quality. Each
subject’s HARDI data went through the steps of this pipe-
line, which was based on frame-to-frame and slice-to-slice
intensity matching. The program reads the whole digital
imaging and communication in medicine volume and flags
the frames with unacceptably low signal intensity value
compared to other frames in the same volume. Here,
frames with difference in signal intensity, from mean of
intensities, greater than threshold1 and with difference in
signal intensity, from the maximum intensity, greater than
threshold2 were considered suboptimal quality frames.
This can be equated as:

Framesub-optimal ! ðFmean2FiÞ > thresh1 & Fmax2Fið Þ > thresh2

(1)

Here, Fmean represents the mean of all frames intensities,
Fi represents the intensity of the ith frame under consider-
ation, Fmax represents the maximum intensity of the frame
and thresh1 and thresh2 represents threshold values that
were empirically chosen.

The routine then selects the flagged frames and flags the
slices with unacceptably low signal value compared to the
other slices in that frame, in the same way. These flagged
frames and slices were then manually examined and all
datasets with suboptimal image quality, that is, dataset
with more than five flagged frames (threshold1) and five
flagged slices (threshold2), were excluded from the study.
After exclusion for motion, the final n for HARDI analysis

was 20 TD, 20 ADHD, and 8 ASD subjects. There were
no significant differences in age (p-value 5 0.8) and IQ
(p-value 5 0.08) between the eight ASD subjects included
and eight ASD subjects excluded after quality assurance.

HARDI Preprocessing and Tractography

Diffusion data processing was then performed using
connectomemapper and included four main steps, as out-
lined below.

Coregistration of the T1-weighted image and
b0 image

This step was performed using the T2-weighted image
as an intermediary, first applying a rigid body transforma-
tion of the T1-weighted image over the T2-weighted
image, and then a nonlinear registration between the T2-
weighted image and the b0 image. The additional step of
nonlinear registration allowed us to account for distortions
introduced by susceptibility artifact and eddy currents.
Skull stripping on the b0 and T2-weighted images was
performed prior to nonlinear coregistration, to ensure the
robustness of the algorithm.

HARDI reconstruction

Data reconstruction in HARDI was done using a Q-Ball
scheme [Tuch, 2004]. The diffusion data were resampled
into 2 mm3 voxel size and were reconstructed by defining
the orientation distribution function (ODF) for each voxel.
These ODFs were defined using a tessellated sphere of 181
vertices, each representing the estimated diffusion in that
direction. Up to three directions of diffusion were defined
using local maxima of the ODF.

Tractography

Using the extracted information from ODF within each
voxel, 32 evenly spaced fibers were initiated along every
direction of maximum diffusion orientation. All fibers
were propagated in back-forth directions, and continued
along the diffusion direction on reaching a new voxel. The
fiber tracking was continued unless change in tracking
direction was >60� or the tracking left the white matter
mask. In addition, fiber streamlines of length <20 mm
were considered potentially spurious and were removed.

Connections matrix

Connections between the ROIs were identified using the
results from the tractography and gray matter parcellation.
Two ROIs, ROI1 and ROI2, were said to be connected if a
fiber originated from either of the ROIs (e.g., ROI1) and
terminated in the other ROI (e.g., ROI2). The connections
were weighted by the total number of streamlines between
the two ROIs, and streamlines were included only if the
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two-end points were in ROI1 and ROI2. The final outcome
was a symmetric, weighted, and undirected connection
matrix of size 219 3 219 with cell values signifying the
number of streamlines between the ROI pairs.

Generalized fractional anisotropy mean

FA, in a diffusion process, is the degree of anisotropy
within a voxel, with values ranging between 0 and 1. An
analogous measure in HARDI (q-space imaging) is gener-
alized fractional anisotropy (GFA), and is defined as a
measure of variation in diffusion ODF [Tuch, 2004]. GFA,
using ODF, gives a better estimation of anisotropy than
FA in DTI, detecting multiple fiber pathways [Cohen
et al., 2008]. GFA-mean values, calculated as the mean of
GFA-values within all the voxels along all the fiber trajec-
tories between the two ROIs, were computed for each par-
cellated ROI pair. The end result was a 219 3 219
symmetric matrix where each cell value signifies the GFA-
mean value between the ROI pairs.

fMRI Preprocessing and Connectivity

The preprocessing of fMRI data includes slice-time cor-
rection, debanding, motion-correction, registration onto the
T1 image, and resampling into 3 mm3 voxel size. In addi-
tion, temporal bandpass filtering (0.009 Hz< f< 0.08 Hz),
spatial smoothing (6 mm full-width at half-maximum),
and regression of nuisance signals (i.e., global, CSF, and
white matter) were also performed [Fox et al., 2005]. The
nuisance regressors were generated and applied after the
bandpass filter consistent with recommendations by Hall-
quist et al. [2013].

Motion censoring

Every subject went through the following steps for head
motion correction. First, for every time point frame-to-
frame displacement was calculated as a scalar quantity,
given by sum of frame-wise displacement (FD) in six rigid
body parameters [Power et al., 2012]. At each time point,
the current frame with one preceding and two following
frames were excluded if the FD was greater than 0.3 mm
[Power et al., 2012]. Furthermore, subjects with more than
50% of frames removed were excluded from the study
[see Fair et al., 2013] and, thus, each dataset had at least 5
min of BOLD data remaining. On this basis, one control
and one ADHD subject were excluded from further analy-
sis leaving a final n for functional connectivity of 19
ADHD, 16 ASD, and 19 TD (with no significant differences
in age and IQ between groups). Of the remaining samples,
average frame removal in TD was 24% 6 20.08%
(mean 6 SD), in ADHD was 20% 6 18.88% and in ASD
was 29% 6 20.61% (Supporting Information Table 2). The
average time remained in TD, ADHD, and ASD were 11,
11.1, and 8.67 min, respectively.

Autism brain imaging data exchange dataset

A second dataset was used for cross validation, called
the autism brain imaging data exchange (ABIDE) dataset
[Di Martino et al., 2014] TD (n 5 114) and ASD subjects
(n 5 104) 7–14 years of age and with IQ> 70 were selected
for the functional connectivity analysis. Standard process-
ing (same as above) was done for each dataset. After cor-
recting for motion, 13 TD and 19 ASD subjects were
excluded, leaving 101 TD and 85 ASD subjects (Supporting
Information Table 3). This dataset did not include any par-
ticipants from the OHSU site.

Connections matrix

For each of the cortical ROIs, time series were computed by
averaging the signal intensity across all voxels within the ROI
for each time point. Next, cross-correlations were computed
between the time series of all ROI pairs, yielding a correlation
value between 21 and 1 for each pair. The final result was a
219 3 219-size correlation matrix for each subject.

Masking Adjacent Connections

In both structural and functional data, connectivity
shows a predominance to local and short-range connec-
tions. Although biological aspects of these phenomena are
important, they often have artifactual contributions when
measuring the connectivity of the network. In functional
data, preprocessing steps (e.g., signal blurring) and head
movement causes nonbiological signals in the neighboring
voxels. In structural data, long-range fibers are more likely
terminated due to noise.

To ensure our findings were not determined by this
potential artifact, analyses were conducted on the original
matrices and a matrices constructed by excluding connec-
tions between all neighboring ROIs. Additionally, all the
structural connections with fiber lengths <30 mm were
also excluded.

Group Networks

After computing the connection matrices for each subject
in all three cohorts (TD, ADHD, and ASD), a group-averaged
matrix was computed for both structural and functional con-
nection matrices, by following these steps. For structural
data, following prior publications, we took the following
steps. From the set of individual group structural matrices
(TD, n520; ADHD, n520; ASD, n58), only connections that
were present in at least 50% of population of a given group
were selected for averaging, while all other connections were
set to 0. The group-averaged matrix was then computed by
averaging only across the non-zero cell values of the individ-
ual subject matrices. These steps were similar to the methods
used by others [van den Heuvel and Sporns, 2011; van den
Heuvel et al., 2012], and were considered useful for mitigat-
ing noise caused by intersubject variability. For functional
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imaging data, the group-averaged matrix within each group
(TD, n519; ADHD, n519; ASD, n516) was computed by
averaging the individual subject’s correlation matrices
together. To implement graph theory on the functional data,
negative correlations were omitted, while for an unbiased
comparison of graph metric between groups, group networks
were thresholded to include only top 3% of the strongest pos-
itive correlation. However, we also validated the results
within the range of 2%–9% connection densities.

GFA Analysis

Following the same rules of group network construction,
a group-averaged matrix of GFA-mean values was com-
puted and a vector of all non-zero values was recon-
structed for each subject group. First, a one-way ANOVA
was used to test for group differences in GFA-mean val-
ues. Next, two-sample t-tests were performed to identify
which groups significantly differed in GFA values.

Graph Metrics and Analyses

We applied graph theory to analyze the structural and
functional connectivity pattern in the TD, the ASD, and
the ADHD groups. Each of the 219 cortical regions consti-
tutes a node, connections between these nodes constitutes
links, and number of streamlines (in structural)/correla-
tion values (in resting state fc-MRI) constitutes weight/
strength of the links. While the presence of streamlines
determines the connection between ROIs in structural, the
existence of functional connections was determined by the
correlation values, with only top 3% of all correlation val-
ues considered as connections. Results were also tested at
6% and 9% connection density.

Rich-club organization

The rich-club organization was analyzed on both
weighted structural and weighted functional matrices. The
weighted rich-club coefficient (/w), at degree level of k, for
a matrix was computed using equation [Colizza et al.,
2006; Opsahl et al., 2008; van den Heuvel and Sporns,
2011; Zhou and Mondragon, 2004]:

/w kð Þ5 W>k
PE>k

l51wsorted
l

(2)

Where W>k was the weighted sum of all connections� k
and the denominator was the sum of top E>k connection
weights, sum of top weighted connections with degree� k,
in the network. To identify the existence of the significant
rich-club organization in the network, rich-club coefficients
/wwere normalized relative to a set of 1,000 comparable
random networks [Bassett and Bullmore, 2009; van den
Heuvel et al., 2010]. In this study, these random matrices
for the structural and functional data were created by ran-
domizing the connections and at same time preserving the

degree distribution and sequence of the matrix [Maslov
and Sneppen, 2002]. The rich-club coefficients computed
for each random matrix were averaged across all 1,000,
denoted as /w

randomðkÞ. Weighted normalized rich-club coef-
ficient /w

norm kð Þ was calculated by the equation:

/w
normðkÞ5

/wðkÞ
/w

randomðkÞ
(3)

In addition to the Maslov–Sneppen method for rewiring,
mentioned above, we also used Hirschberger–Qi–Steuer
(H-Q-S) algorithm, keeping the transitivity intact,
described in [Zalesky et al., 2012], for normalizing the
rich-club coefficient in the functional networks.

The network was said to have a rich-club organization
when the normalized coefficient was greater than 1 for a
range of k values. To analyze the statistical significance of
the results, permutation testing [Bassett and Bullmore,
2009; van den Heuvel et al., 2010] was used. A null distri-
bution using the rich-club coefficients from 1,000 random
networks was used and a p-value was calculated for coeffi-
cient values / kð Þ>/random kð Þ as the percentage of /random

kð Þ that exceeded / kð Þ. The p-values were assigned for
each degree and those <0.05 were considered to have sig-
nificantly higher rich-club coefficient values.

In this article, we extended the concept of rich-club
organizations and separated the brain networks in two
domains of connectivity defined using the rich-club phe-
nomena. This helped us to analyze the specificity of over/
under-connectivity in the structural and functional brain
networks of the ASD and the ADHD groups. The two
domains of connectivity were: (1) networks inside the rich-
club organization and (2) networks outside the rich-club
organization. The networks inside the rich-club organiza-
tion were networks with regions that have at least k or
more than k connections and networks outside the rich-
club organization were networks with regions that have
less than k connections. Graph metrics, measured in these
two domains, were computed for a range of k values for
both inside and outside the rich-club organization. For a
better understanding and to avoid the redundancy in
results, we used a higher k value range for inside and
lower k value range for outside the rich-club organization.

Connectivity index (b)

The connectivity index is a simple measurement that
represents the average number of connections per node in
a given network and computed as the ratio of the total
number of connection (E) to the total number of nodes
(N). The term can be formulated as:

b5
E

N
(4)

This term provides a level of network connectivity by
measuring the network’s complexity. Connectivity indices
were computed for networks inside and outside the rich-
club organization.
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Connectedness coefficient (j)

To compare the connectivity between two different sized
brain networks is often not straightforward, as network
connectivity is influenced by its number of nodes (N) and
average degree (k), and, thus, comparison of graph metrics
(such as clustering coefficient, connectivity index, path
length, and participation coefficient) between networks
can yield spurious results due to the N-k dependence [van
Wijk et al., 2010]. To minimize the effect of size of the net-
work, we implemented a novel graph metric, called con-
nectedness coefficient, given by the product of the
network’s rich-club coefficient and its connectivity index.
The rich-club coefficient is less influenced by larger net-
works where nodes have high chances to link with other
nodes in the networks, while the connectivity index is less
biased to smaller networks where the chances of having
total number of connections to total number of possible
connections is close to 1. Thus, the connectedness coeffi-
cient minimizes the network’s N-k dependence and pro-
vides us with a more unbiased measurement to compare
the structural and functional network connectivity between
our three groups of subjects. To have a better understand-
ing of connectedness coefficient, we have showed some
small sample networks with rich-club coefficients, connec-
tivity indices, and connectedness coefficients calculated
(Supporting Information Fig. 1). Connectedness coefficients
were measured for two different network domains of rich-
club organization (refer result section).

The connectedness coefficient for unweighted (j) and
weighted (jw) matrices are given by the following equa-
tions, respectively:

j5
2E2

N2ðN21Þ
(5)

jw5
W2

N:Wsorted
l

(6)

Statistical significance

Differences in the connectedness coefficients between
groups were tested for significance using two different
methods: (1) permutation testing: for each ith iteration of the
group’s random network M1i M2i, the difference between
connectedness coefficients for M1i and for M2i yielded a null
distribution of 1,000 random differences and (2) by random-
izing labels between groups (Supporting Information Figs.
3–5): for each permutation, the first group contains a ran-
dom mix of subjects from the second group and from its
own group, and randomizations were done likewise for the
second group. The difference in the coefficients were then
computed for the new randomized networks, yielding a
null distribution of 1,000 random differences. Using either
of these distributions, a p-value was assigned to each
observed difference as the percentage of random differences

that exceeded the difference value and coefficients with p-
value< 0.05 were considered significant.

RESULTS

As shown in Supporting Information Table 1(a), there
was no statistically significant difference in age and full
scale IQ between the three groups in the OHSU sample.
The results from the primary analyses were then cross-
validated using ABIDE dataset.

Structural

Higher rich-club organization in ASD group

We began our analyses by first identifying the structural
rich-club organization in the three cohorts (ASD, TD, and

Figure 1.

Rich-club organization in structural group networks of ASD, TD,

and ADHD. Rich-club coefficients normalized relative to random

are shown in blue (ASD), green (controls), and red (ADHD)

colors. The coefficients are plotted against degree, between 1

and 20. Shaded regions shows the significant (p< 0.05) higher

coefficients.
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ADHD). All three groups showed the existence of signifi-
cant rich-club organization in their weighted structural
connectivity network, shown in Figure 1. The regions com-
prising rich-club organization were distributed bilaterally
and include anterior and posterior cingulate cortex, supe-
rior frontal, superior parietal, and insula cortex, as well as
the inferior temporal for TD group. Children with ASD
showed similar regions and extending more along anterior
cingulate, superior frontal and inferior temporal cortex,
while children with ADHD also showed similar regions
but narrowing along superior frontal, posterior cingulate,
inferior temporal, and superior parietal regions. From Fig-
ure 1, we observed that the rich-club organization in the
ASD group existed for a higher value of k (degree) than in
the ADHD or TD, indicating a higher number of connec-
tions in the ASD group. When compared for the difference
in the /norm between groups, subjects with ASD showed

significantly higher rich-club coefficients, at high k level
than both the TD and ADHD, indicating over-
connectedness between the rich-club nodes (Supporting
Information Fig. 2). Figure 2 displays the brain pictures of
the rich-club regions at k� 13 and the corresponding
spring embedding graph showing these regions in the
ASD, TD, and ADHD groups. As visualized in Figure 2,
subjects with ASD showed more rich-club regions with
over-connectedness among them than TD, while subjects
with ADHD showed fewer rich-club regions with under-
connectivity among them than the TD group.

High connectedness coefficient inside rich club for
ASD group

To analyze whether the over-connectedness in the ASD
and under-connectedness in the ADHD group, as seen

Figure 2.

Spatial topography and spring embedded graphs of structural rich club in ASD, control, and

ADHD (top–bottom). Rich-club regions at k� 13 are shown for all the three groups. Regions

are colored based on their degree distribution (yellow to red). On the right-hand side are the

corresponding spring embedded graphs for each group where regions are depicted as circles and

links between them are the solid lines between them.
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from the spring embedded graph in Figure 2, were specific
to rich-club regions or to a whole brain network, we next
compared the unweighted and weighted connectedness
coefficients among the three groups (Fig. 3), using the two
domains mentioned above. We chose a range of 13� k� 20
for inside rich-club organization and range 5� k� 13 for
outside the rich-club organization. Figure 3 shows graphs
of unweighted and weighted connectedness coefficients
plotted against k for networks inside and outside the rich-
club organization. Subjects with ASD showed a signifi-
cantly higher connectedness coefficient inside the rich-club
organization than the TD and ADHD participants; how-
ever, we did not see any significant difference outside
the rich-club organization. These findings suggest that the
higher connectedness in the ASD group is specific to the
rich-club regions. Significant differences for connectedness
coefficients were also tested by randomizing group labels
(Supporting Information Figs. 3–5). We observed signifi-
cant reduced connectedness coefficients inside the rich
club, while increased coefficients outside the rich club for
children with ADHD (Supporting Information Fig. 4).
Children with ASD showed higher connectedness coeffi-
cients inside the rich club, while and lower coefficients
outside the rich-club organization (Supporting Information
Fig. 3).

Lower GFA-mean in ADHD group and more streamlines

in ASD group inside rich-club organization

To investigate the cause of over-connectedness in ASD
group and under-connectedness in ADHD group inside
rich-club organization, we analyzed white matter integrity
using GFA-mean matrix, and the actual number of fiber
streamlines in the ASD, ADHD, and TD groups. ANOVA
performed on all non-zero GFA-mean values of all three
groups showed reduced GFA values in the ADHD group,
with no significant differences between the ASD and the
TD groups (Supporting Information Fig. 6).

We next compared the ADHD and ASD groups GFA
values in networks inside and outside the rich-club organi-
zation. GFA values of only those regions with k� 13 were
analyzed for inside rich-club organization comparisons,
while GFA values of only those regions with k� 13 were
analyzed for outside rich-club comparisons. Two-tailed t-
tests showed significantly reduced GFA-mean in the
ADHD group inside the rich-club compared to the TD and
the ASD groups (shown in Fig. 4), while there was no sig-
nificant difference observed in GFA-mean values outside
the rich-club organization. The reduced GFA-mean values
in the ADHD group specific to rich-club organization sug-
gest its association with the lower connectivity in ADHD.

Figure 3.

Connectedness coefficients (unweighted and weighted) between

structural networks of ASD, controls, and ADHD for networks

inside and outside the rich-club organization. Graphs on the left-

hand side show the unweighted connectedness coefficients and

weighted coefficients comparison between groups inside the

rich club (13� k� 20), while right-hand side graphs shows these

comparison for networks outside the rich club (5� k� 13). Sig-

nificant differences between ASD-controls are marked with “1”

sign, ADHD-controls are marked with “o” sign, ASD-ADHD are

marked with “^” sign.
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In addition, Figure 4 (in bottom left and bottom right
graphs) shows the average number of streamlines meas-
ured inside and outside the rich-club organization. While
we observed a reduced number of streamlines inside the
rich club for the ADHD group, this finding did not reach
significance. We did, however, observed more streamlines
in the ADHD group outside the rich club.

Functional

Rich-club organization

Like the structural data, all three groups showed the
existence of significant rich-club organization in their func-
tional networks (Fig. 5). The regions in the functional rich-
club organization in TD group were distributed bilaterally
and comprises regions superior frontal, insula, anterior
cingulate, paracentral, fusiform, middle temporal, and pre-
cuneus. Children with ASD showed similar rich-club
regions with some extension along inferior parietal cortex,
with some narrowing along superior frontal and cingulate
regions. Children with ADHD also showed similar rich-
club regions albeit narrowed along superior frontal, while
extended along posterior cingulate and frontal pole (Fig.

6). The /normcomparison between the groups showed
higher phi value in the ASD group at higher k-levels than
the TD and ADHD groups, which was consistent with the
structural network, and suggests over-connectivity in the
ASD group (Supporting Information Fig. 7). Figure 6
shows the rich-club regions with k� 11 on an averaged
brain surface and the corresponding spring embedded
graphs for the three groups. In addition to the Maslov–
Sneppen method of network rewiring, we also observed
the existence of significant rich-club organization in func-
tional networks, normalized using H-Q-S method (Sup-
porting Information Fig. 8).

Higher connectedness coefficients in ASD
inside rich-club organization

Connectedness coefficients were computed for networks
inside and outside the rich-club organization. Like the
structural data, both unweighted and weighted coefficients
showed higher connectedness in the ASD inside the rich-
club organization and no difference outside the rich-club
organization, suggesting that the high functional connect-
edness is specific within the rich-club nodes (Fig. 7). In
addition, we observed lower connectedness inside the

Figure 4.

GFA and number of streamlines comparison between ASD, TD,

and ADHD for networks inside and outside the rich-club orga-

nization. Graphs on the top row shows the GFA-mean compari-

son between ASD (colored blue), controls (colored green), and

ADHD group (colored red) inside and outside rich club, respec-

tively. Graphs on the bottom row show mean of number of

fiber streamlines comparison between the TD, the ASD, and the

ADHD groups inside and outside the rich-club organization. Sig-

nificant differences between ASD-controls are marked with “1”

sign, ADHD-controls are marked with “o” sign, ASD-ADHD are

marked with “^” sign and between all three groups are marked

with “*” sign.
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rich-club organization in the ADHD group, with no signif-
icant difference outside the rich-club organization. The
results were also tested on correlation matrix with 6% con-
nection density (Supporting Information Fig. 9).

Higher connectedness coefficients in ASD inside
rich-club consistent in ABIDE data

To validate the higher connectedness in ASD group
inside the rich-club organization, we analyzed the connect-
edness coefficients in a large dataset of 85 ASD and 101
TD subjects (Supporting Information Table 3), within the
same age range from the ABIDE dataset [Di Martino et al.,
2014]. For 3% connection density, the results were similar

with ASD group characterized by higher connectedness
coefficient than TD and specifically just inside the rich-
club organization (shown in Fig. 8). The results were also
validated on functional matrix with 6% and 9% connection
density.

High correlation values in ADHD outside rich club

Consistent with the number of streamlines in structural
data, the ADHD group showed a significantly higher cor-
relation value than did the ASD and the TD groups out-
side the rich-club organization (shown in Fig. 9). We did
not observe any significant differences between groups
inside the rich club. These results were consistent with the
6% and 9% connection densities for functional matrices.

DISCUSSION

Our goal was to apply a novel approach to identifying
differences in structural and functional connectivity pat-
terns in individuals with ASD and ADHD. This approach
may allow for a clearer understanding of functional and
structural neurobiology underlying these conditions. The
approach may also help clarify the inconsistency in the lit-
erature with respect to patterns of connectivity in neurode-
velopmental disorders. Results from both structural and
functional analyses converged on a striking pattern: the
ASD group was characterized by over-connectivity inside
the rich club, while the ADHD group was characterized
by under-connectivity inside the rich club. Low GFA-mean
values (and corresponding functional correlations)
appeared to be, in part, responsible for the low rich-club
connectivity in ADHD. Conversely, the increased connec-
tivity in ASD was not accompanied by increased GFA, but
rather by increased number of connections, suggesting a
unique correlate corresponding to the increased rich-club
connectivity in ASD. Interestingly, in ASD, the functional
connections inside the rich club, despite being more
numerous, were actually weaker in magnitude than TD.

The present results may assist in clarifying inconsistent
findings in the literature with regard to ASD and ADHD.
For example, the idea of an over-connectivity syndrome in
ASD, at least in early life, has a long history [see Courch-
esne and Pierce, 2005; Wass, 2011]. Here, we show find-
ings in middle childhood and early adolescence that are
consistent with this notion both structurally and function-
ally; however, the novelty here is that this finding is spe-
cific to connections within the rich-club nodes themselves.
The inclusion of right supramarginal region inside the
rich-club organization in the ASD group may correspond
to greater gray matter thickness [Brieber et al., 2007]. Out-
side of the rich club, findings are more consistent and sup-
port reduced connectivity in ASD at a certain point in
development [Di Martino et al., 2014]. Importantly, FA val-
ues were not different relative to controls for the ASD
group either within or outside of the rich club. This

Figure 5.

Rich-club organization in functional group networks of ASD,

controls, and ADHD. Rich-club coefficients normalized relative

to random are shown in blue (ASD), green (controls), and red

(ADHD) colors. The coefficients are plotted against degree,

between 1 and 17. Shaded regions show the significant

(p< 0.05) higher coefficients.
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finding suggests that increased structural connectivity in
the ASD group was not simply a result of increased sen-
sitivity to tractography methods. In other words, tractog-
raphy measurements rely on consistent and directionally
oriented water diffusion. It can be argued that increased
and more consistent FA values along a given tract allow
that tract to be more easily identified via any given trac-
tography algorithm. Here, relative to controls, the FA val-
ues were similar in the ASD group and not increased
relative to controls, suggesting that the increased connec-
tivity is in the form of number of tracts and streamlines
were not simply a sensitivity issue with respect to the
tractography methods, but an actual increase in the num-
ber of projections—a finding consistent with recent histo-
logical studies [Courchesne and Pierce, 2005; Rudie et al.,
2013].

Importantly, the structural and functional connectivity
findings were consistent in identifying that the number of
connections between rich-club nodes is increased in ASD—
findings consistent with some work in the current literature
[Keown et al., 2013; Monk et al., 2009; Supekar et al., 2013;
Uddin et al., 2013]. However, this increase in the number of
fibers does not result in increased correlation strengths with
regard to functional connectivity. Rather, overall functional
correlation coefficients are decreased in ASD, which would
imply that this atypical organization in the ASD population
leads to disordered and inefficient communication between
regions. This particular finding may be highlighting why
simply comparing TD with ASD populations across many
functional connections shows reduced connectivity overall
[Di Martino et al., 2011] when the actual number of connec-
tions that exists is actually higher.

Figure 6.

Spatial topography and spring embedded graphs of functional rich club in ASD, control, and

ADHD (top–bottom). Rich-club regions at k� 11 are shown for all three groups. Regions are

colored based on their degree distribution (yellow to red). On the right-hand side are the spring

embedded graphs for each group where regions are depicted as circles and links between them

are the solid lines between them.
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Findings in the ADHD group were distinct from the ASD
group in many ways. In the ADHD group, our findings of
lower levels of structural and functional connectivity (Sup-
porting Information Figures 4 and 7) inside rich-club net-
works demonstrates that although these rich-club regions are
highly connected regions in the network, the connectivity
among these regions is reduced. Moreover, lower GFA-mean
values for networks within the rich club explained this lower
connectivity inside the rich-club network. Here, as opposed
to the ASD findings, the reduced FA values in ADHD may
be highlighting reduced ability for the tractography algo-
rithms to identify tracts and streamlines. Thus, it is not clear
whether reduced connectivity within the rich club is a result
of reduced sensitivity due to lower FA in ADHD, reduced
underlying structural connectivity, or both. Nonetheless, our
findings suggest that reduced FA and structural and func-
tional connectivity highlighted in the literature with regard
to ADHD are specific to the rich-club nodes. Importantly,
however, the ADHD group was not simply characterized by
reduced connectivity. Rather, outside the rich club this popu-
lation had a higher number of streamlines and correlation
values demonstrating the marked complexity of the network
dynamics within this disorder.

Although ADHD and ASD commonly co-occur [Rom-
melse et al., 2011], share some degree of common familial/
genetic influences [Musser et al., 2014; Rommelse et al.,
2010; Ronald et al., 2008], and share common impairments
[e.g., some aspects of executive functioning, see Penning-
ton and Ozonoff, 1996], our findings identify mostly dis-
tinct connectivity patterns between the two syndromes
with regard to brain-wide network organization. These
findings may have important implications for the manner
in which these two conditions are conceptualized. Our
findings relate to a recent report by Di Martino et al [Di
Martino et al., 2014], that showed distinct connectivity pat-
terns, in some subcortical regions, and shared patterns in
the precuneus with regard to degree centrality in ASD and
ADHD. It is important to note however, that our analysis
is based on specific cortical ROIs, which is distinct from a
voxelwise analyses of this type. While there continue to be
debate on how best to characterize network characteristics
using functional data [Hagmann et al., 2012], using voxels
as nodes in a graph (or even many small ROIs) can lead to
network statistics that are biased based on the size of the
underlying area in which they are located [Hagmann
et al., 2012; Power et al., 2011, 2012]. For example, if one

Figure 7.

Connectedness coefficients comparison between functional net-

works of ASD, controls, and ADHD for networks inside and

outside the rich-club organization. Graphs on left-hand side

shows the unweighted connectedness coefficients, weighted

coefficients, and number stream lines comparison between

groups inside the rich club (11� k� 17), whereas right-hand

side graphs shows these comparison for networks outside the

rich club (3� k� 11). Significant differences between ASD-

controls are marked with “1” sign, ADHD-controls are marked

with “o” sign, ASD-ADHD are marked with “^” sign.
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has several regions or voxels that reside inside a relatively
large functional area, many measures of centrality can be
artificially skewed high simply because of the many vox-
els/regions within the area are essentially connecting with
themselves [Hagmann et al., 2012; Power et al., 2011,
2012]. In addition, we note that while the results are not
identical our findings do not to suggest that no overlap-

ping atypical circuit characteristics exist between these
populations, but rather that large-scale topological organi-
zation, as measured via the rich club, is in many ways dis-
tinct. However, the absence of left medial temporal gyrus
from the structural rich-club organization in ADHD group
(see Fig. 2) may associate with gray matter reduction in
the two groups [Brieber et al. 2007] and reduced left

Figure 8.

Connectedness coefficients comparison between functional net-

works of ASD and controls (ABIDE data) for networks inside

and outside the rich-club organization. The left-hand side graphs

shows the unweighted connectedness coefficients and weighted

coefficients comparison between groups inside the rich club

(11� k� 17), the right-hand side graphs shows these compari-

son for networks outside the rich club (3� k� 11). Significant

differences between ASD-controls are marked with “1” sign.

Figure 9.

Correlation values comparison between ASD, TD, and ADHD

group inside and outside rich-club organization. Average of cor-

relation values across various degree levels are compared

between ASD (blue), TD (green), and ADHD (red). Significant

difference, from ANOVA, are marked using “*”. Significant differ-

ences between ASD-controls are marked with “1” sign,

ADHD-controls are marked with “o” sign, ASD-ADHD are

marked with “^” sign.
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dorsolateral prefrontal cortex in the functional rich club in
ADHD and ASD groups than in TD might be associated
with the underactivation of the region in the two disorders
[Christakou et al., 2013].

LIMITATIONS

This study opens a potential new way of thinking about
the ADHD-ASD relation, but key limitations should be
noted. First is the small sample size of ASD and ADHD sub-
jects. While the findings from the structural data and func-
tional data were robust and consistent in the current sample,
and were reproduced using the functional data from the
ABIDE consortium (which included 85 ASD and 101 TD
subjects), the small sample sizes does increase the risk of
Type II errors. Second, the work does not address the
marked heterogeneity that resides within each of these disor-
ders. It is likely, if not already empirically demonstrated
[Fair et al., 2013; Gates et al., 2014; Karalunas et al., 2014],
that these populations encompass multiple subpopulations
with unique underlying brain physiology. Thus, the current
findings should be considered preliminary in that regard.
Some of the findings here are likely to be consistent across
the disordered populations, or at the least be present in a
large portion of those affected. Seeing how the identified
effects stratify across ASD populations comorbid with
ADHD [APA, 2013] will be of particular interest. Third,
region selection is an important issue when using graph
theory approaches to study brain connectivity as results may
change depending on number of regions, regions size, and
their location on cortex. Ideally regions should be selected
based on functionally segregated units [Barnes et al., 2010;
Cohen et al., 2008; Hagmann et al., 2012] or areas; unfortu-
nately, identifying a complete collection of these units in
human brain is still out of reach. Replicating the current
findings in alternative parcellation schemes will be important
in future work. Lastly, the ASD group includes two subjects
who were diagnosed based on clinic determination, as
opposed to a research reliable diagnosis in the laboratory
[see Supporting Information Table 1(b)]. While this would be
more likely to lead to Type II than Type I error, replication
with larger, carefully diagnosed samples is needed.

CONCLUSIONS

Overall, the present investigation identified distinct pat-
terns of connectivity between ASD and ADHD using a
novel approach. Because it has previously proven elusive
to identify consistent, distinct differential patterns that
characterize ASD versus ADHD across multiple domains,
it has been suggested that ADHD and ASD may be differ-
ent manifestations of the same disorder [Rommelse et al.,
2011]. This study identified distinct patterns of connectiv-
ity in ASD versus ADHD, suggesting that there may be
distinct neural mechanisms underlying the expression of
each syndrome. How these distinct patterns differentially

relate to specific symptom domains will be an important
area for future research. Additionally, whether structural
and functional connectivity patterns may constitute endo-
phenotypes is a critical question to continue to attempt to
address. Identifying endophenotypes and shared versus
distinct etiological factors are crucial steps toward under-
standing the complex genetic susceptibility and etiologic
heterogeneity for both ADHD and ASD [Castellanos and
Tannock, 2002; Rommelse et al., 2011]. Simultaneous eval-
uation of both functional and structural brain measures in
ASD and ADHD has been proposed as an important
aspect of this effort [Rommelse et al., 2011]. Further
research in this area may have important implications for
our conceptualization, classification, and treatment of neu-
rodevelopmental disorders.

REFERENCES

American Psychiatric Association (2000): Diagnostic and Statistical
Manual of Mental Disorders, 4th ed. Washington, DC: Ameri-
can Psychiatric Press.

American Psychiatric Association (2013): Diagnostic and Statistical
Manual of Mental Disorders, 5th ed. Arlington, VA: American
Psychiatric Press.

Anderson JS, Druzgal TJ, Froehlich A, DuBray MB, Lange N,
Alexander AL, Abildskov T, Nielsen JA, Cariello AN, Cooperrider
JR, Bigler ED, Lainhart JE (2011): Decreased interhemispheric func-
tional connectivity in autism. Cereb Cortex 21:1134–1146.

Aoki Y, Abe O, Nippashi Y, Yamasue H (2013): Comparison of
white matter integrity between autism spectrum disorder sub-
jects and typically developing individuals: A meta-analysis of
diffusion tensor imaging tractography studies. Mol Autism 4.

Assaf M, Jagannathan K, Calhoun VD, Miller L, Stevens MC, Sahl
R, O’Boyle JG, Schultz RT, Pearlson GD (2010): Abnormal
functional connectivity of default mode sub-networks in
autism spectrum disorder patients. Neuroimage 53:247–256.

Barnes KA, Cohen AL, Power JD, Nelson SM, Dosenbach YB,
Miezin FM, Petersen SE, Schlaggar BL (2010): Identifying Basal
Ganglia divisions in individuals using resting-state functional
connectivity MRI. Front Syst Neurosci 4.

Bassett DS, Bullmore ET (2009): Human brain networks in health
and disease. Curr Opin Neurol 22:340–347.

Boyle CA, Boulet S, Schieve L, Cohen RA, Blumberg SJ, Yeargin-
Allsopp M, Visser S, Kogan MD (2011): Trends in the preva-
lence of developmental disabilities in US children, 1997–2008.
Pediatrics 127:1034–1042.

Brieber S, Neufang S, Bruning N, Kamp-Becker I, Remschmidt H,
Herpertz-Dahlmann B, Fink GR, Konrad K (2007): Structural
brain abnormalities in adolescents with autism spectrum disor-
der and patients with attention deficit/hyperactivity disorder.
J Child Psychol Psychiatry 48:1251–1258.

Castellanos FX, Tannock R (2002): Neuroscience of attention-defi-
cit/hyperactivity disorder: The search for endophenotypes.
Nat Rev Neurosci 3:617–628.

Cherkassky VL, Kana RK, Keller TA, Just MA (2006): Functional
connectivity in a baseline resting-state network in autism. Neu-
roreport 17:1687–1690.

Cheung C, Chua SE, Cheung V, Khong PL, Tai KS, Wong TK, Ho
TP, McAlonan GM (2009): White matter fractional anisotrophy

r Ray et al. r

r 6046 r



differences and correlates of diagnostic symptoms in autism.
J Child Psychol Psychiatry 50:1102–1112.

Christakou A, Murphy CM, Chantiluke K, Cubillo AI, Smith AB,
Giampietro V, Daly E, Ecker C, Robertson D, MRC AIMS con-
sortium, Murphy DG, Rubia K (2013): Disorder-specific func-
tional abnormalities during sustained attention in youth with
Attention Deficit Hyperactivity Disorder (ADHD) and with
autism. Mol Psychiatry 18:236–244.

Cohen AL, Fair DA, Miezin FM, Dosenbach NU, Schlaggar BL,
Petersen SE (2008): Defining functional areas in individual
human brains using resting functional connectivity MRI. Neu-
roimage 41:45–57.

Colizza V, Flammini A, Serrano MA, Vespignani A (2006): Detecting
rich-club ordering in complex networks. Nat Phys 2:110–115.

Courchesne E, Pierce K (2005): Why the frontal cortex in autism
might be talking only to itself: Local over-connectivity but
long-distance disconnection. Curr Opin Neurobiol 15:225–230.

Di Martino A, Kelly C, Grzadzinski R, Zuo X-N, Mennes M,
Mairena MA, Lord C, Castellanos FX, Milham MP (2011):
Aberrant striatal functional connectivity in children with
autism. Biol Psychiatry 69:847–856.

Di Martino A, Yan C-G, Li Q, Denio E, Castellanos FX, Alaerts K,
Anderson JS, Assaf M, Bookheimer SY, Dapretto M, Deen B,
Delmonte S, Dinstein I, Ertl-Wagner B, Fair DA, Gallagher L,
Kennedy DP, Keown CL, Keysers C, Lainhart JE, Lord C, Luna
B, Menon V, Minshew NJ, Monk CS, Mueller S, Muller RA,
Nebel MB, Nigg JT, O’Hearn K, Pelphrey KA, Peltier SJ, Rudie
JD, Sunaert S, Thioux M, Tyszka JM, Uddin LQ, Verhoeven JS,
Wenderoth N, Wiggins JL, Mostofsky SH, Milham MP (2014):
The autism brain imaging data exchange: Towards a large-
scale evaluation of the intrinsic brain architecture in autism.
Mol Psychiatry 19:659–667.

Dinstein I, Pierce K, Eyler L, Solso S, Malach R, Behrmann M,
Courchesne E (2011): Disrupted neural synchronization in tod-
dlers with autism. Neuron 70:1218–1225.

Ebisch SJH, Gallese V, Willems RM, Mantini D, Groen WB,
Romani GL, Buitelaar JK, Bekkering H (2011): Altered intrinsic
functional connectivity of anterior and posterior insula regions
in high-functioning participants with autism spectrum disor-
der. Hum Brain Mapp 32:1013–1028.

Fair DA, Posner J, Nagel BJ, Bathula D, Dias TGC, Mills K, Blythe
MS, Giwa A, Schmitt CF, Nigg JT (2010): Atypical default net-
work connectivity in youth with attention-deficit/hyperactivity
disorder. Biol Psychiatry 68:1084–1091.

Fair DA, Nigg JT, Iyer S, Bathula D, Mills KL, Dosenbach NUF,
Schlaggar BL, Mennes M, Gutman D, Bangaru S, Buitelaar JK,
Dickstein DP, DiMartino A, Kennedy DN, Kelly C, Luna B,
Schweitzer JB, Velanova K, Wang YF, Mostofsky S, Castellanos
FX, Milham MP (2013): Distinct neural signatures detected for
ADHD subtypes after controlling for micro-movements in resting
state functional connectivity MRI data. Front Syst Neurosci 6.

Fox MD, Snyder AZ, Vincent JL, Corbetta M, Essen DCV, Raichle
ME (2005): The human brain is intrinsically organized into
dynamic, anticorrelated functional networks. Proc Natl Acad
Sci USA 102:9673–9678.

Gates KM, Molenaar PCM, Iyer SP, Nigg JT, Fair DA (2014):
Organizing heterogeneous samples using community detection
of GIMME-derived resting state functional networks. PLoS
One 9(3):e91322.

Geurts HM, Verte S, Oosterlaan J, Roeyers H, Sergeant JA (2004):
How specific are executive functioning deficits in attention def-

icit hyperactivity disorder and autism? J Child Psychol Psychi-
atry 45:836–854.

Gotts SJ, Simmons WK, Milbury LA, Wallace GL, Cox RW, Martin
A (2012): Fractionation of social brain circuits in autism spec-
trum disorders. Brain 135:2711–2725.

Grayson DS, Ray S, Carpenter S, Iyer S, Dias TGC, Stevens C,
Nigg JT, Fair DA (2014): Structural and functional rich club
organization of the brain in children and adults. PLoS One 9:
e88297.

Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ,
Wedeen VJ, Sporns O (2008): Mapping the Structural Core of
Human Cerebral Cortex. PLoS Biol 6:e159.

Hagmann P, Grant PE, Fair DA (2012): MR connectomics: A con-
ceptual framework for studying the developing brain. Front
Syst Neurosci 6.

Hallquist MN, Hwang K, Luna B (2013): The nuisance of nuisance
regression: Spectral misspecification in a common approach to
resting-state fMRI preprocessing reintroduces noise and
obscures functional connectivity. Neuroimage 82:208–225.

Happ�e F, Ronald A, Plomin R (2006): Time to give up on a single
explanation for autism. Nat Neurosci 9:1218–1220.

Karalunas SL, Geurts HM, Konrad K, Bender S, Nigg JT (2014):
Annual Research Review: Reaction time variability in ADHD
and autism spectrum disorders: Measurement and mechanisms
of a proposed trans-diagnostic phenotype. J Child Psychol Psy-
chiatry 55:685–710.

Kaufman J, Birmaher B, Brent D, Rao U, Flynn C, Moreci P,
Williamson D, Ryan N (1997): Schedule for affective disorders
and schizophrenia for school-age children-present and lifetime
version (K-SADS-PL): Initial reliability and validity data. J Am
Acad Child Adoles Psychiatry 36:980–988.

Kennedy DP, Courchesne E (2008): The intrinsic functional organiza-
tion of the brain is altered in autism. Neuroimage 39:1877–1885.

Keown CL, Shih P, Nair A, Peterson N, Mulvey ME, M€uller R-A
(2013): Local functional overconnectivity in posterior brain
regions is associated with symptom severity in autism spec-
trum disorders. Cell Rep 5:567–572.

Lord C, Rutter M, LeCouteur A (1994): Autism diagnostic inter-
view-revised: A revised version of a diagnostic interview for
caregivers of individuals with possible pervasive developmen-
tal disorders. J Autism Dev Disord 24:659–685.

Lord C, Risi S, Lambrecht L, Cook EH Jr, Leventhal BL, DiLavore
PC, Pickles A, Rutter M (2000): The autism diagnostic observa-
tion schedule-generic: A standard measure of social and com-
munication deficits associated with the spectrum of autism.
J Autism Dev Disord 30:205–223.

Lynch CJ, Uddin LQ, Supekar K, Khouzam A, Phillips J, Menon
V (2013): Default mode network in childhood autism: Postero-
medial cortex heterogeneity and relationship with social defi-
cits. Biol Psychiatry 74:212–219.

Maslov S, Sneppen K (2002): Specificity and stability in topology
of protein networks. Science 296:910–913.

Monk CS, Peltier SJ, Wiggins JL, Weng SJ, Carrasco M, Risi S,
Lord C (2009): Abnormalities of intrisic functional connectivity
in autism spectrum disorders. Neuroimage 47:764–772.

Mori S, Zhang J (2006): Principles of diffusion tensor imaging and its
applications to basic neuroscience research. Neuron 51:527–539.

Mueller S, Keeser D, Samson AC, Kirsch V, Blautzik J, Grothe M,
Erat O, Hegenloh M, Coates U, Reiser MF, Hennig-Fast K,
Meindl T (2013): Convergent findings of altered functional and
structural brain connectivity in individuals with high function-
ing autism: A multimodal MRI study. PLoS One 8.

r Rich-club organization in ADHD and ASD r

r 6047 r



Musser ED, Hawkey E, Kachan-Liu SS, Lees P, Roullet J-B,
Goddard K, Steiner RD, Nigg JT (2014): Shared familial trans-
mission of autism spectrum and attention-deficit/hyperactivity
disorders. J Child Psychol Psychiatry 55:819–827.

Nagel BJ, Bathula D, Herting M, Schmitt C, Kroenke CD, Fair D,
Nigg JT (2011): Altered white matter microstructure in chil-
dren with attention-deficit/hyperactivity disorder. J Am Acad
Child Adolesc Psychiatry 50:283–292.

Opsahl T, Colizza V, Panzarasa P, Ramasco JJ (2008): Prominence
and control: The weighted rich-club effect. Phys Rev Lett 101.

Pavuluri MN, Yang S, Kamineni K, Passarotti AM, Srinivasan G,
Harral EM, Sweeney JA, Zhou XJ (2009): Diffusion tensor
imaging study of white matter fiber tracts in pediatric bipolar
disorder and attention-deficit/hyperactivity disorder. Biol Psy-
chiatry 65:586–593.

Pennington BF, Ozonoff S (1996): Executive functions and devel-
opmental psychopathology. J Child Psychol Psychiatry 37:
51–87.

Peterson BS, Potenza MN, Wang ZS, Zhu HT, Martin A, Marsh R,
Plessen KJ, Yu S (2009): An fMRI study of the effects of psy-
chostimulants on default-mode processing during Stroop task
performance in youths with ADHD. Am J Psychiatry 166:
1286–1294.

Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Church
JA, Vogel AC, Laumann TO, Miezin FM, Schlaggar BL,
Petersen SE (2011): Functional Network Organization of the
Human Brain. Neuron 72:665–678.

Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE
(2012): Spurious but systematic correlations in functional con-
nectivity MRI networks arise from subject motion. Neuroimage
59:2142–2154.

Rommelse NNJ, Franke B, Geurts HM, Hartman CA, Buitelaar JK
(2010): Shared heritability of attention-deficit/hyperactivity
disorder and autism spectrum disorder. Eur Child Adolesc
Psychiatry 19:281–295.

Rommelse NNJ, Geurts HM, Franke B, Buitelaar JK, Hartman CA
(2011): A review on cognitive and brain endophenotypes that
may be common in autism spectrum disorder and attention-
deficit/hyperactivity disorder and facilitate the search for plei-
otropic genes. Neurosci Biobehav Rev 35:1363–1396.

Ronald A, Simanoff E, Kuntsi J, Asherson P, Plomin R (2008): Evi-
dence for overlapping genetic influences on autistic and
ADHD behaviours in a community twin#sample. J Child Psy-
chol Psychiatry 49:535–542.

Rudie JD, Hernandez LM, Brown JA, Beck-Pancer D, Colich NL,
Gorrindo P, Thompson PM, Geschwind DH, Bookheimer SY,
Levitt P, Dapretto M (2012): Autism-associated promoter vari-
ant in MET impacts functional and structural brain networks.
Neuron 75, 904–915.

Rudie JD, Brown JA, Beck-Pancer D, Hernandez LM, Dennis EL,
Thompson PM, Bookheimer SY, Dapretto M (2013): Altered
functional and structural brain network organization in autism.
NeuroImage: Clinical 2:79–94.

Silk TJ, Vance A, Rinehart N, Bradshaw JL, Cunnington R (2009):
White-matter abnormalities in attention deficit hyperactivity
disorder: A diffusion tensor imaging study. Hum Brain Mapp
30:2757–2765.

Sinzig J, Morsch D, Bruning N, Schmidt MH, Lehmkuhl G (2008):
Inhibition, flexibility, working memory and planning in autism

spectrum disorders with and without comorbid ADHD-symp-
toms. Child Adolesc Psychiatry Ment Health 2.

Supekar K, Uddin LQ, Khouzam A, Phillips J, Gaillard WD,
Kenworthy LE, Yerys BE, Vaidya CJ, Menon V (2013): Brain
hyperconnectivity in children with autism and its links to
social deficits. Cell Rep 5:738–747.

Tien L, Jiang T, Wang Y, Zang Y, He Y, Liang M, Sui M, Cao Q,
Hu S, Peng M, Zhuo Y (2006): Altered resting-state functional
connectivity patterns of anterior cingulate cortex in adolescents
with attention deficit hyperactivity disorder. Neurosci Lett 400:
39–43.

Tomasi D, Volkow ND (2012): Abnormal functional connectivity
in children with attention-deficit/hyperactivity disorder. Biol
Psychiatry 71:443–450.

Tuch DS (2004): Q-ball imaging. Magn Reson Med 52:1358–1372.
Uddin LQ, Supekar K, Lynch CJ, Khouzam A, Phillips J, Feinstein

C, Ryali S, Menon V (2013): Salience network–based classifica-
tion and prediction of symptom severity in children with
autism. JAMA Psychiatry 70, 869–879.

Uddin LQ, Kelly AMC, Biswal BB, Marguiles DS, Shehzad Z,
Shaw D, Ghaffari M, Rotrosen J, Adler LA, Castellanos FX,
Milham MP (2008): Network homogeneity reveals decreased
integrity of default-mode network in ADHD. J Neurosci Meth-
ods 169:249–254.

van den Heuvel MP, Sporns O (2011): Rich-club organization of
the human connectome. J Neurosci 31:15775–15786.

van den Heuvel MP, Mandl RCW, Stam CJ, Kahn RS, Pol HEH
(2010): Aberrant frontal and temporal complex network struc-
ture in schizophrenia: A graph theoretical analysis. J Neurosci
30:15915–15926.

van den Heuvel MP, Kahn RS, Go~ni J, Sporns O (2012): High-cost,
high-capacity backbone for global brain communication. Proc
Natl Acad Sci USA 109:11372–11377.

van Ewijk H, Heslenfeld DJ, Zwiers MP, Buitelaar JK, Oosterlaan
J (2012): Diffusion tensor imaging in attention deficit/hyperac-
tivity disorder: A systematic review and meta-anlysis. Neuro-
sci Biobehav Rev 36:1093–1106.

van Wijk BCM, Stam CJ, Daffertshofer A (2010): Comparing brain
networks of different size and connectivity density using
graph theory. PLoS One 5.

von dem Hagen EA, Stoyanova RS, Baron-Cohen S, Calder AJ
(2012): Reduced functional connectivity within and between
‘social’ resting state networks in autism spectrum conditions.
Soc Cogn Affect Neurosci 8:694–701.

Washington SD, Gordon EM, Brar J, Warburton S, Sawyer AT,
Wolfe A, Mease-Ference ER, Girton L, Hailu A, Mbwana J,
Gaillard WD, Kalbfleisch ML, Vanmeter JW (2014): Dysmatura-
tion of the default mode network in autism. Hum Brain Mapp
35:1284–1296.

Wass S (2011): Distortions and disconnections: disrupted brain
connectivity in autism. Brain Cogn 75:18–28.

Weng S, Wiggins JL, Peltier SJ, Carrasco M, Risi S, Lord C, Monk
CS (2010): Alterations of resting state functional connectivity in
the default network in adolescents with autism spectrum dis-
orders. Brain Res 1313:202–214.

Zalesky A, Fornito A, Bullmore E (2012): On the use of correlation
as a measure of network connectivity. Neuroimage 60:2096–
2106.

Zhou S, Mondragon RJ (2004): The rich-club phenomenon in the
Internet topology. IEEE Comm Lett 8:180–182.

r Ray et al. r

r 6048 r


	l
	l
	l



