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Ligand Binding Strength Explains the Distribution of
Iron in the North Atlantic Ocean

Anh L. D. Pham''® and Takamitsu Ito!

1School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA

Abstract Observations of dissolved iron (dFe) in the subtropical North Atlantic revealed remarkable
features: While the near-surface dFe concentration is low despite receiving high dust deposition, the
subsurface dFe concentration is high. We test several hypotheses that might explain this feature in an ocean
biogeochemistry model with a refined Fe cycling scheme. These hypotheses invoke a stronger lithogenic
scavenging rate, rapid biological uptake, and a weaker binding between Fe and a ubiquitous, refractory
ligand. While the standard model overestimates the surface dFe concentration, a 10-time stronger
biological uptake run causes a slight reduction in the model surface dFe. A tenfold decrease in the binding
strength of the refractory ligand, suggested by recent observations, starts reproducing the observed dFe
pattern, with a potential impact for the global nutrient distribution. An extreme value for the lithogenic
scavenging rate can also match the model dFe with observations, but this process is still poorly constrained.

1. Introduction

Iron (Fe) is a crucial element in the marine ecosystem and biogeochemistry because it is one of the lim-
iting nutrients for phytoplankton growth (Boyd & Ellwood, 2010; Moore et al., 2013). The GEOTRACES
program is rapidly expanding the data coverage for the global Fe distribution over the last decade (Mawji
etal., 2015; Schlitzer et al., 2018), which provides an excellent opportunity to advance our understanding of
the ocean Fe cycling. One region of special interest is the oligotrophic subtropical North Atlantic, where the
concentrations of dissolved and particulate Fe and their isotopic compositions are measured along the zonal
(GA03) and meridional (GAO3e) transects by the USGT10 and USGT11 cruises (Boyle et al., 2015; Conway
& John, 2014; Fitzsimmons et al., 2015; Hatta et al., 2015). In this region, the biological productivity is con-
sidered to be less sensitive to Fe than to macronutrients (Moore et al., 2013). However, several observational
and experimental studies showed that the availability of Fe here can limit the growth of nitrogen-fixing
cyanobacteria and the phosphate acquisition by microbial community (Browning et al., 2017; Moore et al.,
2006, 2009). In addition, this region has a dynamic Fe cycling with multiple Fe supplies from both internal
cycling and external inputs (Conway & John, 2014; Hatta et al., 2015). Moreover, globally significant water
masses are formed in the North Atlantic, and their preformed dissolved Fe (dFe) can influence the far field
via long-range transports (Conway et al., 2018). It is thus important to understand processes controlling the
dFe distribution in this region.

The zonal and meridional GAO3 transects reveal a unique feature of the dFe pattern in the subtropical North
Atlantic. Despite receiving high dFe input from the atmospheric deposition, the surface dFe concentra-
tion is relatively low (0.3-0.5 nM; Figure 1). In contrast, 9 out of 13 current ocean general circulation and
biogeochemistry models (OGCBMs) compiled by Tagliabue et al. (2016) have a relatively high surface dFe
concentration ("1-2 nM) Furthermore, the observed subsurface dFe maximum (1.4-1.6 nM; Figure 1) are
underestimated by 7 of 13 models included in Tagliabue et al. (2016). These models encapsulate our mech-
anistic understanding of the Fe cycling through parameterizations of relevant biochemical processes; thus,
these biases indicate gaps in our understanding.

Several hypotheses have been suggested to explain this unique feature and resolve the systematic model
biases. First, a recent model study suggested a stronger scavenging by lithogenic particles as a possible mech-
anism to decrease the surface dFe where dust deposition is high (Ye & Volker, 2017). Second, the Fe uptake
rate of phytoplankton can significantly increase under the high dust plume to rapidly consume dFe. Twin-
ing and Baines (2013) and Twining et al. (2015) showed a threefold higher quota for Fe in the North Atlantic
cells, compared with those measured in the Pacific and Southern Oceans. However, the efficiency of these
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Figure 1. Atmospheric dFe deposition over the Atlantic Ocean used in this study. Blue and magenta lines indicate the
tracks of the meridional GAO3e and zonal GA03 cruises from GEOTRACES program, respectively. dFe = dissolved iron.

two mechanisms depends on the concentration and binding strength of organic ligands due to their dFe
protection against removal processes (Tagliabue et al., 2017). Ye and Vélker (2017) pointed out that if their
model uses a dynamic ligand scheme instead of a globally uniform ligand concentration of 1 nM, it requires
a greater lithogenic scavenging rate in order to bring the model surface dFe concentration closer to obser-
vations. While there has been significant advances in our understanding of ligands thanks to the expanding
GEOTRACES data set and experimental studies (Boiteau & Repeta, 2015; Buck et al., 2015; Gerringa et al.,
2016), there still is a significant uncertainty in the ligand sources, sinks, and binding strength with free Fe
(Hassler et al., 2017). This leads to uncertainties on the relative importance of retention and removal pro-
cesses in regulating the dFe distribution in the subtropical North Atlantic and how these processes might
change in the future (Hutchins & Boyd, 2016; Tagliabue et al., 2016).

The objective of this study is to explore which mechanism would best explain the Fe distribution in the
subtropical North Atlantic by performing a suite of sensitivity experiments in an OGCBM. Specifically, we
purposefully alter different aspects of the model Fe parameter in each experiment and analyze the resulting
dFe pattern. The model includes all major processes controlling the ocean Fe cycling such as dFe inputs
from atmospheric dust, bottom sediment and hydrothermal sources, dFe scavenging onto and release from
lithogenic and organic particles, and dFe retention by spatially varying ligands. The development of this
model is documented in a recent publication, which shows major improvements in the large-scale ocean
dFe distribution (Pham & Ito, 2018).

2. Model Configuration and Experimental Design

2.1. Model Configuration

The ocean biogeochemistry model used in this study is essentially the same as the model used in our recent
study (Pham & Ito, 2018), which is based on the Massachusetts Institute of Technology general circulation
model (MITgcm; Marshall, Adcroft, et al., 1997, Marshall, Hill, et al., 1997). The ocean bathymetry is con-
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figured in a 1° X 1° horizontal resolution and 23 nonuniform vertical levels with the vertical grid ranging
from 10 m at the surface to 500 m in the deep ocean. Mesoscale eddies are parameterized by the isopyc-
nal tracer and thickness diffusion scheme (Gent & Mcwilliams, 1990; Redi, 1982; Solomon, 1971), and the
mixed-layer processes are parameterized by the K-Profile Parameterization scheme (Large et al., 1994). The
model is run offline, using climatological monthly circulation fields obtained from the Estimating the Cir-
culation and Climate of the Ocean version 3 (Wunsch & Heimbach, 2007). The biogeochemical aspect of
the model is mostly the same as in Pham and Ito (2018), which carries six tracers: dissolved inorganic car-
bon, alkalinity, phosphate (PO;"), dissolved organic phosphorus (DOP), dFe, and oxygen (O,). Biological
production is modulated by the availability of nutrients (POi‘ and dFe) and light through Monod function.

As in Pham and Ito (2018), we consider three external supplies for dFe: atmospheric deposition, continen-
tal shelves, and hydrothermal vents. In this model, the biological Fe:P uptake ratio changes as a function
of the dFe concentration, which aims to represent the luxury Fe uptake of diatoms such as in the subarctic
Pacific and the Southern Ocean (Ingall et al., 2013). The majority of dFe is bound to ligands and is pro-
tected from being removed by scavenging and precipitation (Rue & Bruland, 1995). The new feature of our
model is its ability to include multiple classes of ligands with different spatial patterns and binding strengths
(Pham & Ito, 2018). This model represents three ligand classes. L, is assumed to be the biologically pro-
duced siderophores with relatively high binding strength (Adly et al., 2015; Macrellis et al., 2001). This is
parameterized as a linear function of the DOP concentration in the model, L, = a[DOP], and is given the
strongest conditional stability constant of K;; = 10'?> L/mol. L, is essentially the dissolved organic matter
produced from the remineralization of particulate organic matter (Laglera & van den Berg, 2009; Velasquez
et al., 2016; Vraspir & Butler, 2009). This component is parameterized as a linear function of the apparent
oxygen utilization (AOU), L, = fAOU, and its binding strength is set to K;, = 10" L/mol. The new feature
of this work is the inclusion of the third class (L,), representing the refractory dissolved organic carbon as
a background component with a uniform concentration, Ly = L ., (Hassler et al., 2011). Following Pham
and Ito (2018), the empirical constants in this ligand parameterization are calibrated to fit the observed lig-
and distribution in the least squares sense (a = 6.1 - 107>, f =1.3 - 107), and L g, = 1.3 nM. There is
uncertainty in the binding strength of the refractory, humic-like L,, as several studies reported to be weaker
than 10" L/mol (Gledhill & Buck, 2012); thus, we vary the magnitude of K, ; between 10'! and 10'° L/mol in
the sensitivity experiments. The two-class parameterization of Pham and Ito (2018) is essentially the same
as setting K; ; = K;, = 101! L/mol, so a decreased retention of dFe is anticipated if we use K; ; < 10" L/mol.

dFe not bound to ligands (free Fe, [Fe']) can be removed from the water column by scavenging onto lithogenic
and organic particles, based on a first-order bulk scavenging rate, and by precipitation (Pham & Ito, 2018).
While the organic scavenging process is parameterized as a function of particulate organic matter concen-
tration (Parekh et al., 2005), the lithogenic scavenging is parameterized as a first-order loss process (Pham
& Ito, 2018; Galbraith et al., 2010) with a rate coefficient, Kjp,,:

Felsggxl;g = Kinorg [Fe’] (1)

The scavenging of [Fe' ] through this process can enhance under the high dust plume when lithogenic par-
ticle concentration increases (Ye & Volker, 2017; Ye et al., 2011). To represent this effect, the inorganic
scavenging rate is scaled by the atmospheric dust deposition (JFeg,) as follows:

K

inorg —

K;

JF €dust "

nore0 ( <JFedust> ) ' (2)
where the reference scavenging coefficient, K, is the same as in Pham and Ito (2018; set to 2.0 X107 s7),
JFey, is the atmospheric dFe dust flux at each model grid cell in the surface ocean, and (JFeg,) is the
global mean dust Fe flux. Thus, Kj; ., can vary spatially in the surface water as a function of the atmospheric
dFe flux, but its value below the surface is still set to Kj, g0 In addition, the minimum value for Kj,,, is
also set as K, o0, keeping it from being extremely low under the regions of low dust deposition such as the
Southern Ocean. The exponent n for the dust-flux dependence is set to 1 for the control simulation following
Pham and Ito (2018), but it is varied in the sensitivity run. The scavenged Fe can be released back to the
water by remineralization and desorption (Pham & Ito, 2018). [Fe'] can also be lost through precipitation

(Fitzsimmons et al., 2015), parameterized in the model following the approach by Pham and Ito (2018).
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dFe loss through colloidal pumping process (Honeyman & Santschi, 1989; Tagliabue et al., 2016) is not yet
resolved in our model.

2.2. Experimental Design

First, the model was integrated for 1,000 years with a standard parameterization (Control run) to reach
a quasi steady state. Five additional experiments were then started from the end of the Control run with
perturbed parameterizations and were further run for 1,000 years to achieve new quasi steady states.
These experiments aim to evaluate the roles of various processes controlling the ocean dFe cycling in the
subtropical North Atlantic. Model experiments are set up as follows:

« “Control” run applies the ligand and scavenging parameterizations as in Pham and Ito (2018); (K;; =
10" L/mol, n = 1).

« “Stronger scav.” run allows a stronger inorganic scavenging rate in the surface water under the high dust
deposition; (K;; = 10! L/mol, n = 1.5).

« “Stronger uptake” run has the same setup as the Control run but with a 10 times bigger biological uptake
ratio between Fe and phosphorus (P).

« “Weaker L3” run sets a weaker binding strength for L,; (K;, = 10'° L/mol, n = 1).

« “Stronger scav. + weaker L3” run is the combination of the Weaker L3 run and Stronger scav. runs; (K, ; =
10 L/mol, n = 1.5).

« “Stronger scav. 2” run allows a stronger inorganic scavenging rate under the high dust deposition for the
whole euphotic layer (0-200 m); (K;; = 10! L/mol, n = 1.5).

The second and fourth runs examine the relative roles of ligand and scavenging in modulating the subtropi-
cal North Atlantic Fe cycling. The effect of increasing the power law dependence (n) in the second and sixth
experiments roughly translates to a 1,000-fold increase in the net scavenging rate relative to the reference
value (Kjpqrgo) under the high dust plume. The difference between these two runs is that the Stronger scav.
2 allows the increase in inorganic scavenging rate not only at the surface water but also throughout the sur-
face water column (200 m). These experiments explore the uncertainty regarding the impact of a potentially
high lithogenic scavenging rate on the upper ocean dFe distribution in the subtropical North Atlantic. The
Stronger uptake run investigates the uncertainty associated with the Fe-P uptake ratio of phytoplankton, as
reported by a wide range for this value in Twining and Baines (2013). Twining et al. (2015) shows a threefold
higher quota for Fe in the North Atlantic cells, compared with those measured in the Pacific and Southern
Ocean, which may have an impact on the surface dFe concentration in this region.

3. Mechanisms Controlling the DFe Distribution in the Subtropical North
Atlantic

Our model-data comparison is focused in the upper 1,000 m; thus, we zoom in the depth from 0 to 1,000 m
in Figures 2 and 3 and compress the rest of the water column. In addition, the pattern correlations between
model runs and observations and mean model biases are calculated for the surface (0-250 m), subsurface
(250-1,000 m), and the upper 1,000-m waters (Table S1).

The Control run reproduces some features of the subsurface dFe maximum signals observed in both the
western and eastern margins, which are formed by remineralization and/or by the dFe release from the adja-
cent reduced sediments (Hatta et al., 2015). However, as is the case with most models included in Tagliabue
et al. (2016), it overestimates the surface dFe concentration by “0.7-0.8 nM and underestimates the vertical
and horizontal extent of the middepth dFe maximum in the eastern margin (Figures 2a and 3a). This leads
to a model subsurface dFe maximum shallower than observed. The strong dFe gradients around 200-600 m
from 60° to 40°W (Figure 2a) and near the surface from 30° to 40°N (Figure 3a) are not reproduced in the
model because the dFe concentration there is higher than observed. Thus, the pattern correlations between
the Control run and observations are low (0.44 and 0.54 for the upper 1,000-m water column of the GAO3e
and GAO3 transects, respectively) and the mean model biases are generally positive (0.15 and 0.26; Table S1).
Our model is also not able to reproduce the high dFe hydrothermal level observed at 3,000-4,000 m from
50° to 40°W.

A stronger inorganic scavenging rate in the surface water (Stronger scav. run) slightly decreases the surface
dFe concentration in both transects by 0.3 nM (Figures 2c and 3c), moderately increasing the pattern corre-
lations with observations for the upper 1,000-m water column relative to the control run (from 0.44 to 0.55
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Figure 2. Dissolved iron distribution along the zonal GAO03 transect: (a) Observations, (b) Control run, (c) Stronger scav. run, (d) Stronger uptake (e) Weaker L3
run, and (f) Stronger scav. + weaker L3 run . White color indicates the topography.

and from 0.54 to 0.66—Table S1). The mean model biases in the upper 1,000 m also decrease as more dFe
is scavenged by lithogenic particles. However, the subsurface (200-1,000m) dFe maximum in the eastern
margin is still shallower than observed. Observed subsurface dFe gradients in the central subtropical gyre
(around 40°W in Figure 2¢) and in the eastern subtropics (around 30°N in Figure 3c) are still not reproduced.

Allowing the inorganic scavenging rate to be increased from 0 to 200 m under the high dust plume (Stronger
scav. 2 run) significantly decreases the dFe concentration in the surface water by more than 1 nM (Figure
S1). The mean model biases are significantly decreased in the upper 1,000 m to negative values (Table S1).
However, the subsurface dFe maximum in the eastern margin also decreases by more than 1 nM and further
underestimates the observed subsurface dFe concentration, even though it starts to appear in a deeper level
than the Control run. Overall, the model thermocline dFe concentration in this run underestimates the
observations, except for the extreme dFe signal around 800-1,000 m in the western margin (Figure S1).
The diminishing subsurface dFe is caused by the intense inorganic scavenging in this run, reducing the
transport of dFe from the surface to subsurface waters. In contrast, the model subsurface dFe maximum
in the western margin seems to overestimate observations, implying different formation mechanisms. The
high level of dFe here might be formed via the subsurface dFe supply from continental shelves (Hatta et al.,
2015), thus not being affected by the reduction of dFe transport from the surface. The pattern correlation
with the observation is 0.1 and is much lower than the control run (Table S1) due to a greater misfit in the
subsurface dFe concentration. The result of this sensitivity run implies that an extremely high scavenging
rate in the upper water column could eventually bring the model surface dFe concentration down to the
observed level but at the expense of further decreasing the model subsurface dFe.

The Stronger uptake run applies a 10 times higher value for the Fe-P uptake ratio (Rp), but its effect on the
surface dFe concentration seems to be relatively minor when compared with the Control run (Figures 2d and
3d). This experiment is intended to assess the ecosystem response to the high dust deposition by allowing
a higher rate of dFe uptake under the dust plume. In our model, the biological productivity in the olig-
otrophic subtropical North Atlantic region is low due to the macronutrients limitation (Moore et al., 2013).
Therefore, an increase in the uptake Fe-P ratio in this particular model did not show a major shift in the
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Figure 3. Dissolved iron distribution along the meridional GA03e transect: (a) Observations, (b) Control run, (c)
Stronger scav. run, (d) Stronger uptake, (e) Weaker L3 run, and (f) Stronger scav. + weaker L3 run. White color indicates
the topography.

regional biological activity and dFe distribution. It is beyond the scope of this study to examine the response
of nitrogen-fixing bacteria in the large and episodic dust dFe deposition (Moore et al., 2009), which requires
an explicit ecosystem component. The mean model biases slightly increase in this run (Table S1), which
may be caused by a higher R ratio of remineralization and subsequent retention of the remineralized Fe
by the subsurface ligands.

The Weaker L3 run shows significant improvements. It significantly decreases the surface dFe (*0.8 nM) and
deepens the subsurface dFe maximum (Figures 2e and 3e). When the binding strength of L, is decreased,
dust-deposited dFe is more effectively scavenged onto sinking organic particles, which then release dFe
back at mid-depth waters via remineralization. Thus, lowering the binding strength of L, is an effective
mechanism not only in reducing the model surface dFe concentration but also in redistributing the model
dFe into the thermocline. This model run also reproduces the strong dFe gradients around 200-600 m around
40°W (Figure 2e) and near the surface water around 30°N (Figure 3e). The pattern correlations between
the model and observation are greatly improved from the control run (improving from 0.44 to 0.72 for the
meridional GAO3e transect and from 0.54 to 0.89 for the zonal GA03; see Table S1). The mean model biases
also shift to underestimation of the upper 1,000 m water (—0.25 for GA03e and —0.19 for GA03). However, the
thermocline (200-1,000 m) dFe concentration is decreased in magnitude, especially in the western margin.
As discussed above, the high level of dFe in the western margin is likely to be formed by the dFe sedimentary
source, not by the redistributing of dust-deposited Fe between the surface and subsurface waters as in the
eastern margin.

We further examine underlying mechanisms behind changes in the sensitivity runs by analyzing changes in
the average dFe removal fluxes of each sensitivity run relative to the Control from 0 to 100 m along 30-15°W,
15-25°N. Figure 4 shows four groups of bar chart for four model scenarios with each color representing
different terms in the dFe removal fluxes. In the Strongscavl run, the inorganic scavenging increases by ~
0.18 nM/year (light blue) relative to the Control at the expense of decreasing the other sink terms, especially
the organic scavenging (dark blue). Lower concentration of dFe reduces the biological consumption (brown)
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05 : and the production of particulate organic Fe (dark blue), leading to a mod-
5 22.0 est decrease of the surface dFe concentration in this run. It is possible
T 04 ] E gi’j“' H to significantly decrease the surface dFe by further increasing inorganic
% scavenging rate (Strong scav. 2 run). Similar to the previous run, the other
o 03f 8 removal fluxes partially compensate the increased scravenging loss due to
§ the decreased availability of dFe and biological production, but the inor-
g 02F 1 ganic scavenging flux is significantly increased (~0.4 nM/year) and dom-
E, inates the dFe balance. As a result, it causes a large decrease in the surface
Q o1t 1 dFe concentration, but it also reduces the transport of dust-deposited dFe
2 from the surface to subsurface waters, leading to underestimation of the
E’, | subsurface dFe concentration. In the Strong uptake run, the biological
§ I u uptake increases by less than 0.1 nM/year (brown bar), and changes in the
O o4l J other fluxes are even smaller. The impact of increasing biological uptake
is insignificant due to the macronutrient limitation in this region. In the
~ s s w s Weaker L3 run, the total removal flux is similar to the Strong scav. 2 (2.9
Strongscav1 Strongscav2 Stronguptake WeakL3

vs. 2.8 nM/year). However, the underlying mechanisms for increasing

Figure 4. Changes in the average dFe removal fluxes (nM/year) from 0 to dFe removal fluxes are different. While the decrease of surface dFe in the

100 m along 30-15°W, 15-25°N for each sensitivity run relative to the
control run. The dark blue, light blue, yellow, and brown bars indicate the
removal fluxes from (Sco) organic scavenging, (Sci) inorganic scavenging,

Strong scav. 2 run relies solely on inorganic scavenging, the Weaker L3
run decreases ligand binding strength, thereby enhancing both organic

(Preci) precipitation, and (Bio) biological uptake, respectively. and inorganic scavenging fluxes. The difference in organic scavenging

dFe = dissolved iron.

flux (~ +0.15 nM/year) between Weaker L3 and Strong scav. 2 enhances
the downward transport of dFe through remineralization, thus improving
the model dFe distribution in the thermocline.

Combination of both mechanisms (stronger inorganic scavenging at the surface + weaker L, ) further
decreases the surface dFe concentration (Figures 2f and 3f). The eastern subsurface dFe maximum also
seems to be further decreased. While the mean bias (underestimation) is slightly enhanced (Table S1), there
is little change in the pattern of the dFe distribution between this run and the Weaker L3 run. Indeed, the
pattern correlations between model and observations are essentially the same between these two runs. Com-
parison of all the sensitivity runs in Figures 2, 3, and S1 suggests that weakening the binding strength of L,
is the mechanism that best explains dFe pattern in the subtropical North Atlantic and reduces model biases.

4. Discussion and Conclusion

The improved spatial coverage and quality of Fe data provides a unique opportunity to evaluate our under-
standing of the ocean Fe cycling (Mawji et al., 2015; Schlitzer et al., 2018). This study focused on the
subtropical North Atlantic Ocean, where current OGCBMs have difficulty reproducing the observations
(Tagliabue et al., 2016). This is an important region for studying the ocean Fe cycling because of its diverse
dFe sources and sinks and the complex internal cycling of dFe within the water column (Hatta et al., 2015;
Conway et al., 2018). Moreover, the dFe cycling in this region can have a far-reaching impact on the global
marine biogeochemistry and ecosystems because of the forming of deep water masses that transport pre-
formed Fe to far-field regions and because of its control on the growth of nitrogen-fixing bacteria. Since the
subtropical North Atlantic receives high dust deposition (Conway & John, 2014), many models included in
Tagliabue et al. (2016) show a relatively high surface dFe concentration of 1-2 nM. In contrast, the observed
surface dFe is relatively low with a magnitude of 0.3-0.5 nM (Hatta et al., 2015). On the one hand, this
indicates that these models underestimate the near-surface dFe sink including scavenging and/or biological
uptake. On the other hand, the degree to which these mechanisms can decrease the surface dFe depends on
the concentration and binding strength of ligands, which are still uncertain (Gledhill & Buck, 2012; Hassler
et al., 2017). This study examines the mechanism behind the observed dFe patterns in the subtropical North
Atlantic through model experiments in an OGCBM with an improved Fe cycling scheme (Pham & Ito, 2018).

The sensitivity run with a 10 times higher value for the biological uptake ratio Rgp only has a negligi-
ble impact on the 0- to 1,000-m dFe pattern due to the macronutrient-limited biological production in this
region. A sensitivity run with a stronger lithogenic scavenging rate lowers the surface dFe concentration,
but it causes a significant negative bias in the thermocline dFe concentration. In contrast, a sensitivity run
with a 10 times weaker refractory ligand class significantly reduces the model surface dFe while sustaining
the subsurface dFe maximum at a similar level to observations by increasing the release of scavenged Fe
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in the thermocline. This leads to a significant improvement in the pattern correlation between model and
observations.

The observed ligand data have been greatly expanded over the last few years thanks to the GEOTRACES
program (Buck et al., 2015, 2018; Gerringa et al., 2015). Several modeling studies have taken advantage of
these data to develop a dynamic ligand scheme in OGCBMs, which could significantly improve the model
ligand and dFe representations (Volker & Tagliabue, 2015). However, given a large uncertainty in the lig-
and binding strength, those models still represent only one ligand class, which is considered to be the most
dominant and has the binding strength of 10!! L/mol (Vilker & Tagliabue, 2015; Ye & Vélker, 2017). Our
results argue for the inclusion of different ligand classes, each with distinct sources and binding strength.
Representing the refractory ligand L, with a weak binding strength of 10'° L/mol significantly improved
our model in the subtropical North Atlantic. Our results are thus in line with a recent review on the ligand
classification, which suggests a ligand spectrum of three groups (Hassler et al., 2017). In addition, the mod-
eled binding strength of L, (K = 10'° L/mol) is consistent with the measurement of Buck et al. (2015) for
the weakest ligand class along the GA03 transect. Nevertheless, our simple ligand parameterization should
be considered as only a first step toward a mechanistic ligand model, which should dynamically represent
a continuum of ligand classes, rather than a few discrete ones. The long-lived refractory dissolved organic
carbon ligand class can be a crucial factor for the Fe cycling in the subtropical North Atlantic, where ligand
sources from microbial activity and remineralization are limited due to the low biological production (Buck
et al., 2015). Given the ubiquitous and longevity of this ligand class, its binding strength and concentration
could have an important impact on the global Fe distribution, especially for the Fe-depleted surface waters.
Strong lithogenic scavenging and high biological Fe uptake could also play some roles, but their effects are
likely confined within regions of high dust deposition.
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