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RESEARCH

Deep learning from multiple experts 
improves identification of amyloid 
neuropathologies
Daniel R. Wong1,2,3,4,5   , Ziqi Tang2,3,4   , Nicholas C. Mew2,3,4   , Sakshi Das6, Justin Athey6, Kirsty E. McAleese7   , 
Julia K. Kofler8, Margaret E. Flanagan9,10, Ewa Borys11, Charles L. White III12   , Atul J. Butte1,5,13   , 
Brittany N. Dugger6*    and Michael J. Keiser1,2,3,4*    

Abstract 

Pathologists can label pathologies differently, making it challenging to yield consistent assessments in the absence 
of one ground truth. To address this problem, we present a deep learning (DL) approach that draws on a cohort of 
experts, weighs each contribution, and is robust to noisy labels. We collected 100,495 annotations on 20,099 candi-
date amyloid beta neuropathologies (cerebral amyloid angiopathy (CAA), and cored and diffuse plaques) from three 
institutions, independently annotated by five experts. DL methods trained on a consensus-of-two strategy yielded 
12.6–26% improvements by area under the precision recall curve (AUPRC) when compared to those that learned 
individualized annotations. This strategy surpassed individual-expert models, even when unfairly assessed on bench-
marks favoring them. Moreover, ensembling over individual models was robust to hidden random annotators. In 
blind prospective tests of 52,555 subsequent expert-annotated images, the models labeled pathologies like their 
human counterparts (consensus model AUPRC = 0.74 cored; 0.69 CAA). This study demonstrates a means to combine 
multiple ground truths into a common-ground DL model that yields consistent diagnoses informed by multiple and 
potentially variable expert opinions.

Keywords:  Amyloid beta, Histopathology, Deep learning, Consensus, Expert annotators, Algorithms
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Introduction
There are inherent differences in evaluation within the 
medical disciplines. This becomes nuanced when differ-
ences in classification could lead to high-stakes differ-
ences in prognosis, treatment, and prevention measures 
[1–3]. Pathology in particular can benefit from more 
standardized approaches that improve quality and reli-
ability of assessments, especially for imaging data [4–10]. 
However, in cases of discrepancy, it can be difficult to 

determine what is objective truth [11, 12]. Furthermore, 
medical professions such as neuropathology are facing 
dwindling workforces despite high demand for their ser-
vices [13, 14]. Hence, machine learning algorithms and 
associated workflows are needed that augment the abil-
ity of the expert in addition to taking into account each 
expert’s ground truth in model development. Here, we 
present an automated framework to learn from multiple 
neuropathology experts and provide a robust labeling co-
pilot tool that is resilient to discrepancies among differ-
ent expertises.

Alzheimer’s disease is a neurodegenerative disease 
where specific proteins accumulate in select neuroana-
tomic regions [15]. Studying these accumulations and 
accurately characterizing their presence, localization, 
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and distribution improves understanding of disease 
pathophysiology [16]. Extracellular accumulations of 
amyloid beta (Aβ) into plaques are a pathological hall-
mark of Alzheimer’s disease. Aβ aggregates form diverse 
plaque morphologies, as well as deposits within blood 
vessels, termed cerebral amyloid angiopathy (CAA) [17, 
18]. These morphologies may change with disease sever-
ity and correlate to select clinical features [19, 20]. His-
torically, the Consortium to Establish a Registry for 
Alzheimer’s Disease uses a semiquantitative measure of 
neuropathological phenotypes in its criteria [5]. Hav-
ing more consistent, quantitative, and precise anatomic 
measures of Aβ aggregates would standardize research 
endeavors, provide deeper phenotyping across institu-
tions, and aid in detection of more subtle pathophysi-
ological differences.

Pathological annotation can be a laborious and time-
intensive process that leverages the unique training of 
the expert [7, 16, 21]. In previous work, we automated a 
single expert’s annotations using DL on images of Alzhei-
mer’s disease pathologies [22]. This approach was later 
validated by an independent study with a different cohort 
[23]. However, individual bias of the expert remained, 
and it was not yet clear if these methods could scale 
across multiple experts, institutions, and data modali-
ties—all of which are critical for assessing generalizabil-
ity as well as model robustness [24]. In the current study, 
we draw on the contributions of five experts across a 
methodically and geographically diverse dataset.

Even if individual experts could be perfectly augmented 
by models trained to reflect their annotation expertise, a 
common ground truth is difficult to ascertain for chal-
lenging pathology tasks where experts may have differ-
ent interpretations. Guan and Hinton [25] trained neural 
network ensembles to mimic individual doctors, and cre-
ated a benchmark of ground-truth examples of retinal 
neuropathy diagnosis by adjudicating decisions among 
experts. Although an active discussion may be a judicial 
way to handle more difficult labeling, a consortium of 
experts is not always available, requires much labor, and 
presents confounding social factors that may bias labe-
ling. Avoiding human adjudication and performing the 
task accurately and automatically at scale—while still 
utilizing diverse expert proficiency—may be optimal and 
time-efficient as a first-pass or a second-opinion assess-
ment. Other approaches have assigned reliability scores 
to each expert, and used statistical procedures to esti-
mate ground truth [26–30]. We assessed complemen-
tary approaches, by both modeling individual learners 
and also augmenting a consensus-voting scheme among 
experts. The consensus models, i.e. wisdom of the expert 
crowd, learned the final assessment using various voting 
thresholds, resulting in different levels of sensitivity and 

precision. The flexibility to choose whether to favor sen-
sitivity or precision in a consensus scheme may be use-
ful depending on the specific labeling task. Furthermore, 
we hypothesized that learning from a consensus scheme 
would facilitate learning common signal among experts 
as opposed to the high individual bias of learning from 
just a single expert. We evaluated which of these two 
approaches was the most robust and performant—learn-
ing from individual assessments or learning from some 
consensus of experts. Finally, we built on the approach 
presented by Guan and Hinton [25], and created ensem-
bles robust to intentionally poor and noisy information.

We evaluated these models in a prospective research 
study to show the method’s capability to assist patholo-
gists. The DL models accurately adopted annotation pat-
terns of their expert counterparts. We found that models 
trained from a consensus of experts were able to (1) 
reproduce consensus annotations, (2) prospectively fil-
ter and enrich for neuropathologies in new whole slide 
images (WSIs), (3) and exceed the performance of mod-
els trained from individual experts at the same tasks. We 
found that modeling a consensus of experts was perfor-
mant even when evaluated on different benchmarks that 
were expected to favor individual models, advocating for 
the robustness of consensus learning. This methodology 
may be a powerful means to leverage diverse and com-
plementary human expertise—among pathologists and 
more generally—to create a standardized DL-based co-
pilot for pathology assessments free of human adjudica-
tion. Furthermore, we present an unprecedented dataset 
of 150,000 expert-annotated amyloid neuropathologies, 
specifically collected to support the training of individu-
alized versus cohort-wide CNN models. We are unaware 
of a dataset to determine neuropathological inter- and 
intra-rater annotations at this scale. We are certainly 
unaware of attempts to compare and contrast individual-
ized versus consensus-based CNN models for a pressing 
clinical problem at this scale. We are releasing the data-
set, the neural network code, and the trained CNN model 
weights openly and without restriction. For us, the most 
exciting, impactful, and actionable result of the study is 
that a community consensus approach to deep learning 
near universally out-performed individualized CNNs 
trained from individual experts.

Materials and methods
Slide preparation
43 WSIs of the temporal cortex were collected from 3 
different sites: 17 from the Alzheimer’s Disease research 
Center at the University of California, Davis, 16 from 
University of Pittsburgh, and 10 from UT Southwestern. 
See Additional file 1: Figure S1 and Additional file 2 for 
associated clinical data. Inclusion criteria provided to 
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each site was stated as follows: “archival Aβ stained slides 
containing the middle temporal lobe gyrus (other tempo-
ral gyri can be within the section as well) from cases hav-
ing a primary clinicopathological diagnosis of AD and/
or minimal AD neuropathologic changes i.e. “normal”) 
containing some level of amyloid plaques- can be diffuse, 
cored and/or neuritic (such as CERAD sparse-frequent). 
Cases containing CAA were also welcome.” Slides were 
derived from formalin-fixed paraffin-embedded sections 
and stained with an antibody directed against Aβ. UC 
Davis used the Aβ 4G8 antibody (BioLegend (formally 
Covance), San Diego, CA catalog number SIG-39200), 
University of Pittsburgh used an NAB228 antibody (Cell 
Signaling Technology, Danvers, MA catalog number 
2450), and UT Southwestern used a 6E10 antibody (Bio-
Legend (formally Covance), San Diego, CA catalog num-
ber SIG-39320). WSIs were imaged on an Aperio AT2 at 
20 × magnification at each of their respective institutions, 
and digital files were coordinated via a secure Google 
Shared Drive.

Data collection and annotation (phase‑one)
The study progressed through two phases.  We selected 
29 of the 43 WSIs at random for phase-one, and used the 
remaining 14 for phase-two. Both phases had slide repre-
sentation from each site. We color-normalized the WSIs 
according to the method presented in Reinhard [31]. Each 
WSI was uniformly tiled to 1536 × 1536 pixel non-overlap-
ping images. After tiling, we applied a hue saturation value 
(HSV) filter and smoothing technique to detect candidate 
plaques, using the python library openCV. We used differ-
ent HSV ranges for the different stain types as follows: 4G8 
HSV = (0, 40), (10, 255), (0, 220); 6E10 HSV = (0, 40), (10, 
255), (0, 220); NAB228 HSV = (0, 100), (1, 255), (0, 250).

Each candidate was center cropped to provide a 
256 × 256 pixel image. This process yielded 526,531 images 
for phase-one. We randomly selected 20,099 images from 
this set to be annotated by our seven annotators. From 
our previous study [22], we found that model performance 
began to plateau around 20,000 training examples.

For the first phase of annotation, these 20,099 images 
were shuffled and placed into a fixed order, then 
uploaded to an Amazon instance web portal for inde-
pendent annotation by seven different persons. Five of 
them were professionally trained experts (E.B., B.N.D., 
M.E.F., J.K.K., and K.E.M.), while the remaining two 
were undergraduate novices (J.A. and S.D.) with no 
formal training in neuropathology. Each person anno-
tated the same 20,099 images in the same exact order 
in a multi-label classification task using a rapid-key-
stroke based custom annotation tool (first described in 
Tang et  al. [22], with current code released in https://​
github.​com/​keise​rlab/​conse​nsus-​learn​ing-​paper). 

Each 20X image had a bounding box, and the annota-
tors were instructed to label any and all Aβ pathologies 
found within the box. Annotators had the option to 
label the pathology as any combination of three classes: 
cored, diffuse, or CAA. Since WSIs were not specifically 
selected for CAA, we did not subclassify these pathol-
ogies further (i.e. leptomeningeal vs. cortical). Each 
annotator did have the option to mark an image as “neg-
ative,” “flag,” or “not sure.” We did not use these alter-
native markings for constructing our final image labels 
(see Additional file  1: Figure S2). Hence, any Aβ class 
marked as positive was recorded as a positive anno-
tation for that class. Any classes left unmarked were 
recorded as negative. There were instances in which an 
annotator marked negative and also marked a positive 
annotation for any of the three Aβ classes. Whenever 
this occurred (which was rare, Additional file 1: Figure 
S2b), we labeled the image as positive for the amyloid 
pathology indicated.

This process yielded seven different annotation sets (one 
for each person) for the 20,099 images that were anno-
tated. From the five expert annotated sets, we constructed 
consensus-of-n annotation sets (from n = 1 to n = 5) for 
the same 20,099 images. For a given image i and Aβ class c, 
the new consensus-of-n annotation was recorded as posi-
tive if any n experts marked image i as positive for class c, 
else the image was recorded as negative.

Training and evaluation of DL models
Of the 29 WSIs for phase-one, we used 20 WSIs for train-
ing and 9 separate WSIs for the hold-out test set. The 
20,099 phase-one images were divided into a 67% train 
and 33% hold-out test split. Of the 67% training data, 
we performed four-fold cross-validation, keeping each 
fold’s image set consistent across all training and evalu-
ation protocols such that each fold always had a distinct 
set of images that were not present in any other fold. We 
chose a four-fold validation to obtain more performance 
metrics and assess model generalizability across our 
dataset. We trained one model for each fold of the cross-
validation, resulting in four models for each annotation 
set. Due to the large imbalance between the different Aβ 
classes, we performed class balancing during training. 
We calculated the ratios of diffuse to cored (r1), and dif-
fuse to CAA (r2), and replicated any image with a cored 
plaque present a total of r1 times, and any image with 
a CAA plaque present a total of r2 times. Models were 
trained to perform multi-class classification of the three 
Aβ classes, taking a 256 × 256 pixel image as input and 
returning three floating point predictions (one for each 
class) as output.

For selecting hyperparameters, we largely kept the ones 
from the original study [22] and hence did not perform 

https://github.com/keiserlab/consensus-learning-paper
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a large search. We used a four-fold cross-validation to 
select our hyperparameters, choosing ones that achieved 
the highest average AUPRC over four validation folds. 
We performed a sparse search and explored learning 
rates of 0.001, 0.0002 and weight decays of 0.03, 0.01. 
Once hyperparameters were set, we trained four CNNs 
(one CNN for each fold) for each of the twelve annota-
tion sets (seven from our individual annotators, and five 
from our consensus annotation sets). We trained mod-
els for 60 epochs (which in our previous study [22], was 
enough to allow for model performance to plateau), and 
saved the best model state that resulted in the highest 
cored AUPRC performance over the validation set. For 
an example loss curve from the consensus-of-two model, 
see Additional file 1: Figure S3. We used an Adam opti-
mizer with a learning rate of 0.001, and a weight decay of 
0.03. We used a multi-label soft margin loss as our loss 
function. During training, the input images were trans-
formed with a random horizontal flip, a random vertical 
flip, a random 180° rotation, a color jitter, and a random 
affine transform so that the model would learn to gener-
alize across different inputs. Images were normalized to 
have zero-mean and unit-variance prior to entering the 
model.

We converted each image annotation into a floating 
point representation, such that the binary labels given 
by the annotators were converted to a more specific con-
tinuous value, using information from other annotated 
bounding boxes that may be present in the image. Dur-
ing the annotation process, each 20× image possibly 
contained regions that were previously annotated in a 
different query with a different bounding box. Hence we 
had instances in which parts of bounding boxes or multi-
ple bounding boxes from different annotations (from the 
same annotator) were present in a single 20× image. For 
each image i, we used the labeled bounding box infor-
mation that the annotator provided in order to create a 
floating point representation for each class c. The floating 
point representation of c was the total sum of fractions of 
positively labeled bounding boxes for class c that exists 
within i. An image potentially had more than one posi-
tively labeled bounding box within i, or many fractions 
of positively labeled bounding boxes within i. Therefore, 
the floating point representation was possibly greater 
than 1.0, but must have been greater than or equal to 0.0. 
Finally, image i was considered positive for class c if the 
floating point representation of class c was greater than 
0.99. This final binary label was used for training and 
evaluation.

During evaluation of a model, no transforms were 
applied except for normalization. For each type of model, 
we evaluated our models by taking each model from 
each fold and evaluating it on the hold-out test set. The 

reported metrics were the average over these four evalua-
tions. For example, the reported phase-one results for the 
consensus-of-two model was the average performance 
of all four consensus-of-two models, one for each of the 
four cross-validation folds, each evaluated on the hold-
out test set. The full source code used for training and 
evaluation can be found at https://​github.​com/​keise​rlab/​
conse​nsus-​learn​ing-​paper. We used the PyTorch library 
[32] for all training and evaluation.

The CNN architecture was a simple repeated motif of 
2D convolution with a 3 × 3 filter and padding of size 
one, batch-norm, ReLU activation, and 2 × 2 max pooling 
with a stride step of size two. We started with sixteen fil-
ters, and with each application of the motif, we increased 
the number of filters by sixteen until we had 96 filters. 
We then applied a final affine layer to obtain our three 
class scores.

Assessing consensus model and benchmark superiority
When assessing the consensus models versus the individ-
ual-expert models, we applied four different benchmark 
schemes using only the hold-out test set annotations, 
and calculated the average performance of the consen-
sus models minus the average performance of the five 
individual-expert models. “Self” means that each model 
was evaluated by its own benchmark (i.e. a model trained 
under A’s annotation set is evaluated according to the 
annotations in A’s hold-out test set). For instance, a con-
sensus-of-two model with benchmark “Self” was evalu-
ated according to how well the predictions matched with 
the hold-out test labels provided by the consensus-of-two 
annotations. This was done for each of the four consen-
sus-of-two models (one for each fold), and averaged. 
“Consensus benchmarks” means that all models were 
evaluated on how well their predictions matched on aver-
age with each of the five consensus benchmarks (consen-
sus-of-n from n = 1 to n = 5). We averaged performance 
across these five consensus benchmarks. “Individual 
benchmarks” means that all models were evaluated on 
how well their predictions matched on average with each 
expert benchmark. We averaged performance across 
these five expert benchmarks. “All benchmarks” is evalu-
ating a model across the five consensus benchmarks and 
five expert benchmarks, and then averaging these results. 
For the consensus-of-two superiority results, we per-
formed the same procedure, except only the consensus-
of-two model and consensus-of-two benchmark were 
evaluated to represent the consensus strategy.

We used a two-sample, one-sided Z-test to assess sta-
tistical significance. The null hypothesis was that the 
average of the consensus performance and the average 
of the individual experts’ performance were the same. 
The alternative hypothesis was that the average of the 

https://github.com/keiserlab/consensus-learning-paper
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consensus performance was greater than the average 
of the individual experts’ performance. P-values were 
reported using a standard lookup table. The sample sizes 
for each of the two samples (consensus and experts) are 
as follows: 20 for “self”; 100 for “consensus benchmarks”; 
100 for “individual benchmarks”; and 200 for “all bench-
marks”. Each sample was a model’s performance on a spe-
cific benchmark.

Model interpretability
We used guided Grad-CAM to obtain the saliency maps 
from the different models (https://​github.​com/​utkuo​zbu-
lak/​pytor​ch-​cnn-​visua​lizat​ions). For analyses requiring 
image binarization, we chose incremental pixel thresh-
olds such that at threshold t, any signal less than t is 
assigned 0 value, while anything greater than or equal to 
t is assigned a maximal pixel value of 255. To calculate 
the  structural similarity index measure (SSIM) between 
the novice CAM and the consensus-of-two CAM, we 
used a standard SSIM function from the skimage library.

For analyzing the CAM patterns of the novice CAMs 
versus the consensus-of-two CAMs, we constructed a 
subtraction map of the binary consensus CAM minus the 
binary novice CAM for each 256 × 256 pixel image. Each 
pixel of this map is classified as one of three classes: sig-
nal (ON) in the novice CAM and no signal (OFF) in the 
consensus CAM, or no signal in the novice CAM and sig-
nal in the consensus CAM, or a match between the two. 
For the CAM subset analysis, we calculated both the total 
fraction of the binary consensus CAM that was activated 
in the binary novice CAM at the same corresponding pixel 
locations, and also the total fraction of the novice CAM 
that was activated in the consensus CAM at the same cor-
responding pixel locations for each pixel threshold.

Ensemble training and evaluation
For each of the four folds of the cross-validation, we 
linked each of the five individual-expert CNNs trained 
from that fold with a sparse affine layer. The individual-
expert CNNs were frozen such that no backpropaga-
tion occurred in the individual-expert CNNs. The only 
weights that were updated were the sparse affine weights, 
which weight each individual-expert CNN’s final class 
output.

For each annotation set (five expert sets, and five con-
sensus annotation sets), four ensembles (one for each 
cross-validation) were trained using the same training 
data that their constituent CNNs used for training. Holis-
tically, having four cross-validation folds, five experts, 
and five consensus schemes, resulted in 40 ensemble 
models, each independently trained to reproduce a spe-
cific annotation set. Ensemble training occurred for 60 

epochs, with the same hyperparameters that were used to 
train the single CNNs.

After training, each ensemble model was evaluated 
on the images from the hold-out test set, and on every 
benchmark (five expert benchmarks, and five consen-
sus benchmarks). We aggregated ensembles that were 
trained to mirror the same annotation set but belonged 
to different cross-validation folds. Hence, every permuta-
tion of (1) ensemble model (aggregated across cross-vali-
dation folds) and (2) benchmark was assigned an average 
AUPRC score. This resulted in 100 average AUPRC scores 
(10 aggregated ensembles, 10 hold-out test benchmarks). 
To assess ensemble superiority over single CNNs for a 
given benchmark, these 100 average AUPRC scores were 
compared to the 100 average AUPRC scores of the sin-
gle (non-ensemble) CNNs. This resulted in 100 compari-
sons of ensemble models versus single CNNs, with both 
model types evaluated on equivalent benchmarks and an 
equivalent image set.

For ensembles that contained a random labeler CNN, 
we trained a separate CNN on a random annotation set 
that kept the same class ratios of cored, diffuse, and CAA 
as the ones present among the five expert annotations. 
This ratio was determined by averaging the class ratios 
of each of the five expert annotation sets. We then linked 
this CNN trained on random labels with the five expert 
CNNs using a learnable sparse affine layer. Likewise, for 
ensembles with five random labeler CNNs, we trained 
five independent CNNs on five different permutations 
of the randomly labeled annotation set. We then linked 
these five random labeler CNNs with the five expert 
CNNs using a sparse affine layer. For both the ensemble 
with a single random labeler, and the ensembles with 
multiple random labelers, we used the same training pro-
cedure as the normal ensembles (i.e. ensembles without 
any random labeler present).

In evaluating the performance of ensembles with any 
number of random labeler(s) present, we performed the 
same evaluation procedure as for the normal ensem-
bles. For comparing performance between ensembles 
with any random labeler versus performance of normal 
ensembles, we compared the final average AUPRC values 
for these two model types and for each of the ten bench-
marks. This resulted in 100 comparisons between normal 
ensembles and ensembles with a random labeler, and 100 
comparisons between normal ensembles and ensembles 
with five random labelers. In every comparison, every-
thing was kept constant except for the choice of model 
architecture.

Setup of phase‑two prospective validation and analysis
To assess use in a real-world clinical research setting, 
we designed a second, prospective, stage of the study 

https://github.com/utkuozbulak/pytorch-cnn-visualizations
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(phase-two) to assess whether models could usefully 
serve as a prospective filter by identifying comparatively 
infrequent cored plaques and CAAs for new patients. 
Whereas cored plaques and CAAs have low prevalence 
(12% and 2% in phase-one, respectively), we posited that 
models from phase-one could filter a large and previously 
unseen dataset of primarily diffuse plaques to enrich for 
these rare but important neuropathologies. We hypoth-
esized these models could prospectively predict what 
their annotators were going to label. Moreover, given our 
initial findings that a consensus-of-two model was more 
effective and robust than individual-expert models, we 
compared their prospective capabilities. Annotators were 
told only that the study would proceed in two phases, but 
were given no information regarding data selection.

All annotations were performed on the same web 
interface and by the same expert and novice annota-
tors from phase-one. Each annotator received a total of 
10,511 images to label spanning four different categories 
of images: self-repeat, consensus-repeat, self-enrich-
ment, and consensus-enrichment. The same ordering of 
these four image categories was given to each annotator 
for consistency. The exact images given to annotators 
differed only in the self-repeat and self-enrichment cat-
egories. Self-repeats and consensus-repeats were images 
previously annotated during phase-one, and were col-
lected to assess how consistently annotators were able to 
label images. By contrast, self-enrichment and consen-
sus-enrichment images came from 14 WSIs spanning 14 
new patients that were completely separate from the 29 
WSIs from phase-one.

For the self-repeat images, which are simply repeats of 
a subset of images the annotators already saw in phase-
one, we first selected a total of 600 images. We first 
selected all of the images that were marked as positive for 
CAA. CAA was rarely annotated during phase-one, and 
we wanted to include all of them. Once all of the CAAs 
were included, we selected a random subset of images 
that were marked as positive for cored until we had 400 
images. If there weren’t enough cored positive images to 
make up 400, then we took as many as possible. For the 
remaining images we randomly selected diffuse positive 
images to make up a total of 600 images. We enforced 
having no duplicates. We then triplicated and randomly 
rotated these 600 images by 90° increments, and shuf-
fled the resulting 1800 images. This entire procedure of 
obtaining the self-enrichment image set was done inde-
pendently for each expert and each undergraduate nov-
ice, resulting in different sets of self-repeat images given 
to different annotators.

Likewise for the consensus-repeat set, we took images 
exclusively from the set of phase-one images that the 
annotators already labeled. For each of the three Aβ 

classes, we randomly selected 250 images that were posi-
tive for this class according to a consensus-of-two strat-
egy. From this list of images, we removed duplicates, 
which occurred because some images were positive for 
multiple Aβ classes according to a consensus-of-two. 
This resulted in a total of 745 images, which were then 
triplicated and randomly shuffled, resulting in our final 
consensus-repeat set of 2235 images. This set was given 
identically to all of the annotators during phase-two.

For the self-enrichment images assigned to annota-
tor A, we used the individual-expert CNN trained on 
A’s phase-one annotations to enrich for images that the 
model predicted as having an important but minor-
ity plaque present (cored or CAA). We chose to use 
the models from fold three of the cross-validation for 
enrichment because this yielded the greatest perfor-
mance over the validation set. All images came from a 
hold-out set of images that the annotators did not see 
during phase-one of annotation. This hold-out set con-
sisted of 275,880 images total. From this hold-out set, we 
randomly selected 800 images with a model prediction 
threshold > 0.90 for the cored class. Next, the 275,880 
images were sorted according to the model’s CAA pre-
diction confidence, and the top 800 images with highest 
CAA confidence were included. After collecting this set 
of 1600 images, we included all of the image neighbors 
that had at least a 20% bounding box overlap of a plaque 
with any of these 1600 images. Afterwards, we randomly 
shuffled this resulting list, and took a random subset of 
3000 images to use for our final self-enrichment set. This 
procedure was repeated for each of our seven human 
annotators. We calculated the overall intra-rater agree-
ment for each annotator by averaging the accuracy of 
how consistent each annotator was over each set of rep-
licated images. Each replicated set had four total images 
(one annotation from phase-one, and three annotations 
from phase-two).

For consensus-enrichment images, we used predictions 
from the consensus-of-two model to enrich for images. 
We randomly pulled 750 images that the consensus-of-
two model predicted as positive for cored, and an addi-
tional 750 images that the same model predicted as 
positive for CAA. From this resulting set of 1500 images, 
we found their image neighbors that had at least a 20% 
bounding box overlap of a plaque with any of the 1500 
images. We randomly selected from these neighbors 
until we had a total of 3476 images for the final con-
sensus-enrichment set. If an image achieved high rank 
by both self-enrichment and consensus-enrichment, 
it was assigned with equal probability to either self or 
consensus.

These four image sets were given to the annota-
tors, such that the ordering of the image category was 
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randomly shuffled, but fixed and identical among each 
annotator. Upon completion of annotation, we analyzed 
the model’s prospective performance to match annota-
tions given during phase-two. We stipulated two different 
benchmarks that could be derived from these new anno-
tations: the individual-expert benchmark, which simply 
assigned what the individual annotator labeled as the 
truth labels, and the consensus benchmark, which used 
the consensus-of-two strategy to assign truth labels. We 
used the individual CNN models to make class predic-
tions for the 10,511 images of phase-two, independent of 
the human annotators and their labels. We did the same 
for the consensus-of-two model, and made class predic-
tions for each of the 10,511 images. Model predictions 
were completely hidden from the annotators, as well as 
any experimental details of how the images were selected. 
For phase-two analysis, we define an individual-expert 
model as a model trained on one of the expert’s annota-
tion sets from phase-one, and a consensus model as the 
model trained on the consensus-of-two annotation set 
from phase-one. All label data used to assess model per-
formance during phase-two came from this second phase 
of annotation.

To assess performance of individual-expert models 
under the individual benchmark, we compared the 
predictions of each individual-expert model trained on 
annotator A with the labels that annotator A gave dur-
ing phase-two (undergraduate novices were excluded 
from this analysis). This was repeated for each expert 
annotator model and the five results were averaged. To 
assess performance of individual-expert models under 
a consensus-of-two benchmark, we compared the indi-
vidual-expert model’s predictions with the labels pro-
vided by a consensus-of-two scheme. This was done 
for each expert annotator model and the five results 
were averaged. For the consensus model and individual 
benchmark case, we compared the consensus model’s 
predictions with the labels provided by annotator A. 
This was repeated for each of the five professional 
annotator labels, and these five results were averaged. 
For the consensus model and consensus benchmark 

case, we compared the consensus model’s predictions 
with the label set provided by a consensus-of-two 
strategy. There was only one consensus-of-two model 
and one consensus benchmark, resulting in no vari-
ability and no averaging.

Results
We curated a multi‑annotator dataset and found 
annotation differences among experts and consensus 
schemes
In prior work [22], we developed a convolutional neural 
network (CNN) pipeline to automatically identify three 
different Aβ neuropathologies for a single expert. In this 
current study, we generalized this method to five experts 
(NP1-NP5) and two novice annotators (UG1 and UG2). 
Oftentimes, pragmatic DL applications are trained on 
data with limited diversity, resulting in inability to effec-
tively generalize to data outside their training corpus 
[33]. To counter this, we validated our method using a 
dataset of 43 WSIs obtained from three different institu-
tions, where each used different histological staining pro-
cedures (Methods). Additional file 1: Figure S1 contains 
demographic information on these 43 research patients.

We organized the study into two phases of data collec-
tion. In phase-one, we collected independent annotations 
from the seven annotators on the same 20,099 images 
derived from 29 WSIs. As in previous work, we color-
normalized the WSIs [31], identified candidate Aβ aggre-
gates with conventional computer vision techniques, and 
center-cropped these candidates to provide 256 × 256 
pixel images for final annotation (Methods). We arranged 
these candidates in a randomly shuffled but fixed order-
ing, and uploaded them to a custom web interface for 
expert annotation (Fig.  1a). We recruited five neuropa-
thology experts and two undergraduate novices from 
five different medical institutions to annotate the images. 
Annotators performed a multi-labeling task and indepen-
dently labeled an image as any combination of “cored,” 
“diffuse,” and “CAA.” The annotators also had options of 
marking “negative,” “flag,” and “not sure,” but we did not 

Fig. 1  We curated annotations of Aβ neuropathologies from multiple experts, and found differing degrees of consensus. a Five experts (NP) and 
two undergraduate novices (UG) used a custom web portal for annotation. Each annotator labeled the same set of images in the same order. 
From the expert annotations, we constructed consensus-of-n labels (n = 1 to n = 5) for the same 20,099 images. b Average class distributions 
are consistent across the seven annotators. The y-axis plots average frequency, while the x-axis plots the Aβ class. c Representative images 
illustrating consensus-of-n strategies applied to each Aβ class, with rows progressing from top to bottom in order of increasing consensus. For 
a consensus-of-n image, at least n experts labeled the image as positive for the designated class. Each image was randomly and independently 
chosen from the set of images. d Positive annotation distributions differ by Aβ class. The x-axis plots the exact (not cumulative) number of 
annotators who gave a positive label. Hence, when e = 1 and e = 5 this is equivalent to a consensus-of-one and consensus-of-five respectively. For 
e = 2, 3, or 4, this is not equivalent to an at-least-n consensus strategy. The y-axis plots the frequency. Each class has a different count of total positive 
labels (indicated in the legend). This total count represents the total number of images with at least one expert identifying the class. Each image 
may have multiple classes present

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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use these to alter our image labels (Additional file 1: Fig-
ure S2). As in previous work, the diffuse class was most 
prevalent (Fig. 1b).

To draw on the complementary proficiencies of multi-
ple experts, we introduced the concept of a “consensus-
of-n” strategy to label pathologies. In the consensus-of-n 
strategy, an image was labeled positive for plaque p if at 
least n experts positively labeled the image as presenting 
p. Otherwise, the image was assigned as negative for p. 
A consensus-of-one was the most permissive strategy, in 
which only one expert needed to positively identify p for 
this image to be labeled as positive for p. A consensus-
of-one (logical set union) maximizes sensitivity, while a 
stricter consensus-of-five (logical set intersection) maxi-
mizes precision. We created five different annotation 
datasets by applying the consensus-of-n strategy to the 
experts’ annotations, from n = 1 to n = 5. Each consen-
sus annotation dataset combined information from all 
five experts’ annotations using this thresholding scheme, 
and consisted of labels for the same set of independently 
annotated 20,099 images. Images for each Aβ class and 
each consensus strategy are shown in Fig. 1c.

Qualitatively, we saw more phenotypic uniformity as 
more agreement was reached from n = 1 to n = 5. This 
held especially for the diffuse class in which some n = 1 
images resembled the phenotype for cored plaques, but 
as we increased to n = 5, the classical phenotype emerged 
of sparse and scattered Aβ protein. A complete consen-
sus-of-five experts was reached for 65% of images labeled 
as a diffuse plaque from any expert (Fig.  1d). For the 
CAA class, the classical ring structure around blood ves-
sels emerged as n increased. Complete consensus-of-five 
was reached for 33% of images with any CAA annotation 
(Fig. 1d). We did not specify CAA subtypes [34, 35]. For 
the cored class however, there was no smooth qualita-
tive progression, visually indicating more differences and 
idiosyncrasies in identification. Complete agreement on 
a positive label only occured for 11% of cored-plaque 
labeled images. There were many cases in which only one 
annotator identified a particular cored plaque, with this 
consensus-of-one scenario making up the majority (44%) 
of cored-plaque images (Fig. 1d).

To assess patterns of inter-rater agreement, we calcu-
lated the Cohen’s kappa coefficient [36] between every 
pair of experts (Fig.  2). There was low average agree-
ment for the diffuse class (kappa = 0.46 ± 0.11) despite 
the fact that a complete consensus (n = 5) for it was the 
most common case out of any consensus. Hence, for dif-
fuse cases without complete agreement, experts varied 
greatly. For CAA cases, average inter-rater agreement 
was much higher (kappa = 0.76 ± 0.10). Agreement for 

the cored cases was low (kappa = 0.50 ± 0.08). No sin-
gle expert was a clear outlier in annotation across all Aβ 
classes. NP2 differed most with the other annotators for 
the diffuse and CAA classes, and NP4 differed most for 
the cored class.

CNNs mimic human annotators, and consensus CNNs 
mimic a consensus of experts
CNNs are a powerful class of DL networks particu-
larly useful for analyzing image data [37–39]. We found 
CNNs accurately learned the specific annotation behav-
ior of both humans and consensus strategies. Using the 
five expert annotation datasets, we trained CNNs to 
reproduce each human’s annotations. We also trained 
independent CNNs to reproduce each consensus-of-n 
strategy.

We randomly assigned each WSI to either the train-
ing set or test set. Of the 20,099 center-cropped images, 
we held out 33% as a test set, and the remaining train-
ing images were split into a fourfold cross-validation 
(Methods). Both the models trained on individual-expert 
annotations and the models trained on the consensus 
annotations generalized and performed well on the hold-
out test set (Fig. 3); they had high area under the receiver 
operating characteristic (AUROC) and area under the 
precision recall curve (AUPRC). We evaluated each 
model according to the labels of the annotation dataset 
on which it was trained. The consensus models mimicked 
consensus strategies, and the individual-expert models 
mimicked their corresponding expert annotators. Inter-
estingly, the individual-expert models captured their 
human inter-rater agreement patterns, further suggest-
ing that they were mimicking their human counterparts 
(Additional file  1: Figure S4). For every scoring metric 
and Aβ class, consensus models performed slightly bet-
ter than individual-expert models (Fig.  3). On average, 
they were able to more accurately reproduce the con-
sensus strategies than the individual-expert models were 
able to reproduce their specific human annotators. There 
were substantial performance differences among the Aβ 
classes. All models were able to accurately reproduce the 
annotations of the diffuse class, which was far more ubiq-
uitous than cored and CAA. For these crucial but minor-
ity classes, AUROC and AUPRC performance was lower 
likely due to less available training examples (e.g., 1–2% 
for CAA class prevalence, depending on label strategy). 
Performance by stain was largely consistent, except for 
the CAA class with 6E10 staining, which had lower and 
more variable performance (Additional file 1: Figure S5). 
Color-normalization had little effect on performance, 
except for the CAA class (Additional file 1: Figure S6).
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Consensus provided superior models and annotation 
benchmarks
We found that learning from a consensus strategy 
resulted in consistently higher model performance than 
learning from individual-expert annotations. Since there 
was no clear best or established evaluation benchmark 
strategy across the test-set images (with each image hav-
ing five independent expert annotations), we compared 
the consensus models with the individual-expert models 
using four different benchmark schemes (Fig. 4a).

For all four benchmark schemes, the consensus mod-
els had superior average AUPRC performance versus 
individual-expert models (Fig.  4b). We found this sur-
prising, especially for the “individual benchmarks” case 

in which all models were evaluated with the different 
experts’ annotation benchmarks. We had expected indi-
vidual-expert models to perform the best on this bench-
mark, because they were trained specifically to mimic 
these same annotators. Instead, we observed the consen-
sus models—which in this scenario were trained under a 
different annotation dataset than the one that they were 
being evaluated with—consistently performed better 
on average than the individual-expert models across all 
Aβ classes (Fig. 4b). Of the five consensus schemes, the 
consensus-of-two model achieved the highest average 
AUPRC (0.70 ± 0.24) and AUROC (0.88 ± 0.13) when 
evaluated against all benchmarks and all Aβ classes. 
On average, this consensus-of-two model substantially 

Fig. 2  Inter-rater agreement varies by class and annotator. a Venn diagrams by class, with overlaps of each permutation of NP1 through NP5. Each 
overlap shows the count of how many images are all positively annotated by the experts included in that overlap. Areas are not to scale. b Kappa 
coefficients [36] indicating agreement between each pair of experts. A high kappa coefficient indicates high inter-rater agreement between two 
annotators, with kappa = 1.0 indicating perfect agreement, and kappa = 0.0 indicating no agreement other than what would be expected by 
random chance
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outperformed individual-expert models for all bench-
mark schemes and for all Aβ classes, except for the 

diffuse class in which performance was roughly equiva-
lent (Fig. 4c).

When we did the converse and compared annota-
tion benchmarks as opposed to comparing models, we 
observed annotation datasets from consensus-of-n 
strategies provided a more robust benchmark yielding 
greater apparent average model performance, regardless 
of which models we evaluated (Additional file  1: Figure 
S7a, b). Similarly, regardless of training strategy, models 
performed better on the consensus-of-two benchmark 
than on individual-expert benchmarks, for all Aβ classes 
(Additional file 1: Figure S7c).

Model interpretation reflected differences in human 
expertise
Models learned human-interpretable, pathologically-
relevant, and granular visual features for each Aβ class. 
By incorporating saliency mapping methods [40, 41] to 
interpret the model’s rationale, we found models focused 
on pixels corresponding to boundaries of Aβ pathologies 
and excluding boundaries of extraneous deposits in a way 
that was task (i.e., pathology) specific—even though this 
granularity of information was not provided during train-
ing (Fig. 5a).

To investigate the impact of field expertise, we also 
trained models from the annotations of two under-
graduate novices. We observed that a model trained on 
a consensus of two experts had more focused and spe-
cific feature saliency than a model trained on an individ-
ual undergraduate novice. To visualize what parts of an 
image were important to a model’s decision making, we 
used guided gradient-weighted class activation mapping, 
or “guided Grad-CAM” [40] (Methods). When we com-
pared class activation maps (CAMs) of the two models—
consensus-of-two versus an undergraduate novice—we 
observed the CAMs of the novice’s model were more dif-
fuse than CAMs of the consensus-of-two model (Fig. 5a). 

Fig. 3  We trained models to learn human annotation behavior and 
consensus strategies. Consensus models matched or outperformed 
individual-expert models in average AUROC and AUPRC, per stacked 
bar graphs. Error bars show one standard deviation in each direction. 
The y-axis indicates the score on the hold-out test set for each Aβ 
class (x-axis). No novice models were included in this evaluation. 
For the AUPRC metric, the consensus model achieved 0.73 ± 0.03 
for cored, 0.98 ± 0.02 for diffuse, and 0.54 ± 0.06 for CAA. The 
individual-expert models achieved 0.67 ± 0.06 for cored, 0.98 ± 0.02 
for diffuse, and 0.48 ± 0.06 for CAA. Random baseline performance 
for AUPRC is the average prevalence of positive examples. Average 
random baselines for individuals-experts were equivalent to those 
of consensus strategies (variance of individual-experts shown): 
0.06 ± 0.02 for cored, 0.88 ± 0.06, and 0.02 ± 0.004 for CAA. For the 
AUROC metric, the consensus models achieved 0.96 ± 0.02 for cored, 
0.92 ± 0.02 for diffuse, and 0.93 ± 0.02 for CAA. The individual-expert 
models achieved 0.94 ± 0.02 for cored, 0.90 ± 0.03 for diffuse, 
and 0.92 ± 0.03 for CAA. All models were evaluated on their own 
benchmark (i.e. a consensus model was evaluated on its respective 
consensus benchmark, and an individual-expert model was 
evaluated on its expert’s benchmark)

(See figure on next page.)
Fig. 4  Consensus models performed better than individual-expert models across all benchmarks. a Four evaluation benchmark schemes to 
compare consensus models with individual-expert models. The row indicates the model and the column indicates the benchmark. For each 
evaluation scheme, the average AUPRC of the blue region (individual-expert models) is compared with the average AUPRC of the gold region 
(consensus models) over the hold-out test set. The consensus-of-two is dark-gold for emphasis. The “self benchmarks” scheme was the most 
internally-consistent scheme that evaluated each individual-expert model according to the labels of its annotator (i.e. its own benchmark). For 
consensus models, the self benchmark corresponded to labels derived from the matching consensus-of-n strategy. The “consensus benchmarks” 
scheme independently evaluated each model on every consensus-of-n annotation set from n = 1 to n = 5. The “individual benchmarks” scheme 
independently evaluated each model on each of the five individual-expert benchmarks. The “all benchmarks” scheme evaluated each model on 
its average performance across all benchmarks. b Performance gains of consensus models over individual-expert models. Values are reported as 
the absolute AUPRC difference. We calculated p-values of the comparisons using a two-sample Z-test (Methods). P-values for the self-benchmark 
are not included because the sample size (n = 20 comparisons) is not large enough to assign significance. 95% confidence intervals shown in 
parentheses. The row indicates the type of benchmark considered when evaluating the model performance differentials, while the column 
shows the Aβ class being evaluated. Highest performance differential for each Aβ class in bold. c Heatmap as in b, for only the consensus-of-two 
model versus the individual-expert models. For this consensus-of-two model evaluation, only dark-gold regions in a corresponding to the 
consensus-of-two model are compared to the blue region
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Qualitatively, the individual novice models attributed 
greater salience to pixel features that were not impor-
tant to the classification task, while the consensus-of-
two model focused on relevant morphologies. Therefore, 

the model trained on consensus across greater expertise 
appeared to be a more specific feature detector. These 
results held for both novice annotators (Additional file 1: 
Figure S8). However, subsequent studies with additional 

Fig. 4  (See legend on previous page.)
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novices are needed to investigate this trend. The consen-
sus CAMs also seemed more specific than the individual-
expert CAMs (Additional file 1: Figure S9).

Quantitatively, for each Aβ class and for each image in 
our test set, we compared its novice CAMs to its consen-
sus-of-two CAMs. For each pair of CAMs derived from 
the same image and same class, but different model, we 
binarized the CAMs across incrementing thresholds 
(Fig.  5b). The majority of activations matched between 
the novice and consensus-of-two model at the differ-
ent thresholds. In regions where they did not match, the 
novice CAMs tended to have signal while the consensus-
of-two CAM did not (Fig. 5c). Figure 5b shows binarized 
image examples at different thresholds. At high pixel 
thresholds the images became more similar as the granu-
lar features of the image were lost. Furthermore, we com-
puted the fraction of the consensus-of-two CAMs found 
within the novice CAMs, and also the fraction of the 
novice CAMs found within the consensus-of-two CAMs 
across different pixel thresholds. The consensus-of-two 
CAMs were a smaller and more focused subset of the 
novice CAMs (Fig. 5d).

Ensemble learners bolstered performance and were robust 
to intentionally noisy “annotators”
We further tested multi-rater strategies by creating 
an ensemble of individual-expert models (no novices) 
and taking a “wisdom of crowds" approach [42]. One 
approach would be to simply take the predictions of 
the different expert models and use a majority-voting 
scheme. However, weighting each model equally would 
ignore the specific and differing expertise the models 
gleaned during training. Other approaches assign differ-
ently weighted votes to different models [25, 43]. Accord-
ingly, we combined the individual-expert models in a 
learnable way, such that the resulting ensemble learned 
how to properly weight each contributing network’s Aβ 
class predictions to maximize overall performance. We 
theorized that the ensemble would learn how to combine 
the strengths of individual-expert models. The ensemble 

training did not modify the individual CNNs, but rather 
learned how to weight each constituent network to maxi-
mize performance for a given annotation benchmark 
(Fig. 6a). We created ensembles for each of the phase-one 
annotation sets: both individual-expert annotation sets, 
as well as consensus annotation sets (“Methods” section).

This ensemble approach bolstered performance, and 
improved over individual-expert CNNs in identifying 
CAAs. On average, ensembles outperformed single (non-
ensembled) CNNs (Fig. 6b). Performance differences for 
diffuse class detection were relatively unaffected, likely 
because these examples were already highly prevalent. 
Rather, we observed performance gains for the less preva-
lent but pathologically important minority classes (cored 
and CAA). For consensus ensemble cases, in which we 
trained different ensembles to reproduce consensus-of-n 
annotations from n = 1 to n = 5, the ensembles matched 
or slightly outperformed single CNNs trained to mirror 
the consensus.

Next, we investigated whether these performance gains 
were robust to having a poor annotator included in the 
ensembles (Fig. 6c). We modeled this by creating a ran-
dom labeler, who assigned randomly shuffled annotations 
that matched the average class distribution of all experts. 
When we included a random annotator CNN in the 
ensembles, the ensembles successfully learned to reject 
the noisy information from the random labeler. Perfor-
mance was largely unaffected by the random annotator 
CNN, with differences in performance averaging to less 
than 0.01 in AUPRC across every permutation of ensem-
ble model and evaluation benchmark (Fig. 6d).

In a separate experiment, we also included five inde-
pendent random labeler CNNs in the ensembles (Fig. 6e), 
and we observed the same resilience and robustness. The 
ensembles successfully learned to ignore noisy contribu-
tors, and maintained performance even at a population 
that consisted of 50% poor labelers who inserted ran-
dom information (Fig.  6f ). Hence, we found ensembles 
resulted in better performance, and were robust to mul-
tiple poor annotators at little perceived risk of random 

Fig. 5  Class activation maps (CAM) of DL models indicate progression of human expertise. a Novice CAMs are more diffuse than expert 
CAMs. The original image (leftmost column), the CAM of the novice model trained on UG1’s annotations (middle column), and the CAM of the 
consensus-of-two model (rightmost column). CAMs are plotted with a false-color map such that bright regions correspond to high intensity 
regions with high salience. b Although expert and novice CAMs differ, they converge on the same pixels. We progressively assess the structural 
similarity index (SSIM) [44] between novice CAMs and consensus-of-two CAMs across the entire test set of images. The CAMs show the most similar 
salience by SSIM (y-axis) at the highest pixel thresholds as we increment the threshold (x-axis) used to binarize the images before comparison. 
Binarized examples are shown of one CAM from a (boxed in orange). c Comparing the novice CAMs and the consensus-of-two CAMs, we classify 
each pixel location into two categories: ON in the novice CAM and OFF in the corresponding consensus CAM (yellow), or OFF in the novice CAM 
and ON in the consensus CAM (blue). ON and OFF are determined by binarizing the images at pixel threshold t (x-axis). Y-axis shows the proportions 
at which these two cases occur. Zoomed inset highlights disagreement between CAMs. d Consensus CAM pixels are mostly contained within the 
novice CAM. The x-axis plots the varying pixel thresholds, while the y-axis plots the percent overlap of either how much of the consensus CAM 
pixels are a subset of the novice CAM (orange) or how much those of the novice CAM are a subset of the consensus (cyan)

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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information. By contrast, including random annotations 
into the consensus-of-n schemes would proportionally 
dilute the training data signal.

Annotators were self‑consistent during phase‑two
We conducted phase-two annotations six months after 
the completion of phase-one, using the same web plat-
form as phase-one (Fig.  7a, Methods). Encouragingly, 
each annotator achieved high intra-rater agreement for 
all of the repeat images, and was able to consistently 
annotate and reproduce the same labels across the six-
month gap (Fig.  7b). Each expert achieved greater than 
90% intra-rater accuracy among all Aβ classes, while nov-
ices achieved greater than 88% accuracy. There was no 
significant difference in intra-rater agreement between 
self-repeats and consensus-repeats (Additional file 1: Fig-
ure S10).

Models prospectively enriched for minority Aβ classes 
and favored consensus learning
Before completing this phase of the study, it was not 
clear whether a model trained on an individual annota-
tor would prospectively perform the filtering and predic-
tion task the best, as compared to a model trained from 
expert consensus. Consequently, from the 10,511 phase-
two annotations across five expert annotators (i.e. total 
of 52,555 phase-two expert annotations), we created 
performance benchmarks to compare strategies. Mod-
els were assessed by either taking the individual expert’s 
labels as truth (called the “individual benchmarks,” five 
independent benchmarks), or by taking a consensus-of-
two experts as truth (called the “consensus benchmark”, 
one benchmark). We found that regardless of the selected 
benchmark, the consensus model performed better than 
individual-expert models in most cases, despite the fact 
that the individual-expert models were trained specifi-
cally under the same human annotators that provided the 
individual benchmarks (Fig. 7c).

Both types of models were able to perform well pro-
spectively for each Aβ class, with the consensus model 
outperforming individual-expert models on average in 

AUPRC and AUROC (by as much as 0.22 ± 0.18 for CAA 
AUPRC, Fig. 7c, d). For all classes and for all metrics, the 
consensus model evaluated on the consensus benchmark 
performed best. Furthermore, evaluating under a consen-
sus benchmark as opposed to an individual benchmark 
resulted in either the same or better performance across 
models and across success metrics. Taken together, the 
consensus model was robust to differing annotations of 
five different experts. On average, this model exceeded 
performance of individual-expert models even on their 
own benchmarks that they were trained to mimic, and 
also on the consensus benchmark (Fig. 7d).

These results held for each class and each metric, with 
the sole exception being the cored AUPRC. In this case, 
individual-expert models slightly outperformed the con-
sensus model under the individual benchmark (but not 
for the consensus benchmark, under which the consen-
sus model was superior). This was consistent with the 
phase-one observation that cored-plaque labeling had 
more idiosyncrasies (Fig.  1c). Hence, we expected indi-
vidual-expert models to be better performers on indi-
vidual benchmarks for this class. Furthermore, evaluating 
individual-expert models under a consensus benchmark 
did not improve performance over the individual bench-
mark, likely for the same reason.

Discussion
We developed a scalable, objective, and consistent way 
to automate and compile annotations of multiple neuro-
pathology experts. Four points merit emphasis: (1) We 
automated individual and consensus annotations across 
datasets from five experts and three staining procedures 
from different institutions, advocating for generalizabil-
ity; (2) When we prospectively validated these models in 
a research setting, a consensus model was robust under 
different benchmarks and provided a high-performance 
approach to automatic and standardized labeling; (3) The 
models were interpretable and showed increased pixel 
specificity with increased expertise; and (4) Ensemble 
models generally performed better and were robust to 
intentionally randomized information. We note however 

(See figure on next page.)
Fig. 6  Ensembles improve performance and are robust to false information. a Five trained individual-expert CNNs, combined by a trainable sparse 
affine layer, make up an ensemble model. The training process simply determines how to best weigh and combine each CNN’s existing class 
predictions. b Ensembling on average increases performance for each Aβ class, and for both consensus and individual benchmarks. Performance 
gains are calculated by averaging each ensemble’s AUPRC on the hold-out test set minus the corresponding individual-expert CNN’s AUPRC 
on the same set, across all ten benchmarks (Methods). c We tested ensembling with a random labeler CNN, trained using a randomly shuffled 
permutation of labels with the same class distribution ratios as the five expert annotations. d Ensemble performance is largely unaffected by 
inclusion of a random labeler CNN. Density histogram of AUPRC performance differences for each Aβ class between the normal ensemble and the 
ensemble with a single random labeler CNN. Each ensemble is evaluated on all ten benchmarks (five individual-expert benchmarks, five consensus 
benchmarks), and the absolute value of the performance differential (x-axis) is calculated and binned for each class. e Ensemble architecture with 
multiple random labeler CNNs, each trained on a different permutation of randomly shuffled labels. f Ensemble performance is largely unaffected 
by inclusion of five random labeler CNNs. Same density histogram as in d, but comparison is between normal ensemble and ensemble with five 
random labeler CNNs injected
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that the experimental task differed from the daily practice 
of neuropathological annotation, where experts would 
commonly assess these objects using varying magnifica-
tions and localizations.

DL requires annotated datasets that define how to train 
a model and quantify its success. However, the classifica-
tion of neuropathologies continues to evolve, with differ-
ent experts having different focus areas. Consequently, 
two competing hypotheses regarding the best annotation 
strategy might be reasonable. In the first, a DL model 
trained on an individual might best leverage that single 
expert’s unique intuition and decision-making proce-
dures for edge cases. Conversely, in a second strategy, a 
consensus approach to annotations might instead lever-
age a wisdom-of-the-crowd logic to remove individual 
variance in a consolidated consensus model, as long as 
there is common underlying signal across the cohort. 
Depending on the consensus strategy, such a consoli-
dated model could balance between strict-but-conserv-
ative expert consensus (the logical intersection) versus 
an inclusive but potentially overly-permissive consensus 
(the logical union).

In this study, we found that a balanced consensus-of-
two strategy slightly favoring permissiveness performed 
better in nearly every model-training and model-bench-
marking scenario (Fig.  4c). This was striking, as the 
consensus-trained model outperformed the individ-
ual-expert models even when unfairly assessed against 
those self-same individual-expert benchmarks (Fig.  4). 
One might reasonably have otherwise expected indi-
vidual-expert models to better encode their particular 
expert’s pathological training and intuition, but this was 
generally not the case. We conclude from this observa-
tion that neuropathological labeling across thousands 
of independent annotations was sufficiently consistent 
across the cohort that a permissive consensus model 
computationally codified commonly-held expertise 
in neuropathological identification—despite notice-
able differences in individual annotations (Fig. 2). We are 

unaware of any previously published work that operated 
on a cohort of independent expert annotations at this 
scale. Whereas other DL pathology applications rely on 
the independent assessments of individual pathologists 
[45, 25, 46, 47, 22, 48], we believe this is the first study 
to demonstrate that learning expert consensus within 
pathology provides robust and superior performance 
over learning individual assessments.

Encapsulating a consensus strategy into a model may 
be useful when an expert cohort or adequate labeling 
time are unavailable. In such cases, having an auto-
mated algorithm to provide consistent diagnoses from 
a wisdom of crowds would be beneficial. Hence, phase-
two provided a proof-of-concept to prospectively assess 
whether these models could serve as a practical co-pilot 
and enrich for rarer but important neuropathologies 
within an unexplored dataset of n = 275,879 candidate 
neuropathologies from new patients (Fig. 7a). This repre-
sented a clinical scenario in which the pathologist wishes 
to rapidly curate sparse pathology examples, or to have 
a DL model act as an individualized assistant enriching 
for important but infrequent morphologies, which may 
improve understanding of these phenotypes and provide 
opportunity for overcoming sparsity challenges.

In the same vein of utilizing models to improve patho-
logical understanding, the models learned directly from 
the image data and became more focused in their fea-
ture detection as experience of the labeler increased 
from novice to expert consensus (Fig. 5a). These results 
suggest potential for application in the training of new 
pathologists, using models to identify critical image fea-
tures and thereby visually illustrate for new trainees the 
phenotypes relevant for labeling. A future direction is to 
explore this new opportunity of DL facilitating human 
learning, as opposed to the more common framework of 
humans facilitating DL, ultimately leading to a hybrid-
feedback loop through active learning [49].

The ensemble models may provide an opportunity of 
weighting individualized model input to tailor a specific 

Fig. 7  Models prospectively predict human annotation, with consensus models performing the most consistently. a Schematic of the phase-two 
annotation protocol. These images fall under one of four categories: self-repeat, consensus-repeat, self-enrichment, and consensus-enrichment. 
See Methods for a detailed description of these categories. Each annotator is given the same order of image categories. Gradients of different colors 
indicate images from the same category. These gradients are depicted to reinforce the fact that each annotator received a different set of images 
for the self-repeat and self-enrichment categories. b Intra-rater agreement is measured as the accuracy at which each rater consistently annotates 
repeats of the same image (both self-repeat and consensus-repeat). We include image labels from phase-one in this intra-rater calculation. The 
x-axis indicates the annotator, and the y-axis indicates intra-rater accuracy. Accuracies are averaged over each set of repeated images. Novices 
achieved an average intra-rater agreement accuracy of 0.92 for cored, 0.90 for diffuse, and 0.97 for CAA. Experts achieved an average intra-rater 
agreement accuracy of 0.93 for cored, 0.92 for diffuse, and 0.98 for CAA. c Precision recall plots and receiver operating characteristic (ROC) plots for 
the consensus model versus the individual-expert models. Two different benchmarks are used—truth according to the individual annotators, and 
truth according to a consensus-of-two scheme. The shaded regions indicate one standard deviation in each direction centered at the mean. The 
consensus model evaluated under a consensus benchmark (red line) has no variation by definition. d Summarizes panel (c). Bar graphs depict the 
average performance of the consensus model minus the average performance of the individual-expert models (y-axis). Individual benchmark for 
figure left, consensus benchmark for figure right. Error bars show one standard deviation centered at the mean

(See figure on next page.)
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annotator’s expertise to specific tasks or cases. Subse-
quent to a prediction, we can inspect the interplay of 
contributor-specific weights (Additional file  1: Figure 
S11). In this way, individualized contributions encoding 
complementary and situation-specific expertise do not 
get overwhelmed as they might otherwise under a sim-
ple vote averaging. Although we do not expect labelers to 
intentionally introduce false information, the ensembles’ 
robustness to unreliable annotations encourages assem-
bling numerous and diverse labelers to facilitate accurate 
and learnable labeling.

Several limitations to this study inform its practical 
adoption. Researchers may not have access to neces-
sary computational resources or training data for DL. 
However, cloud computing resources are becoming 
more accessible, and open-data sharing is also possible 
through data-hosting services. We are openly releas-
ing this study’s annotated datasets and trained mod-
els (https://​github.​com/​keise​rlab/​conse​nsus-​learn​
ing-​paper). Turning to limitations in interpretability 
methods, we note that guided grad-CAM devolves to 
being a visual edge-detector in some settings [50]. How-
ever, this was not the case in our study because saliency 
maps calculated on the same input image but different 
Aβ class substantially differed (Additional file  1: Figure 
S12). Nonetheless, a future direction would be explor-
ing a range of independent saliency mapping tech-
niques [51–53]. Finally, prospective effectiveness outside 
this cohort remains open to exploration. Whereas this 
study was consistent with our earlier work leveraging 
one expert annotator [22] and its independent applica-
tion at another institution [23], we expect larger cohorts 
and institutionally-diverse datasets (including persons 
from multiple socioeconomic backgrounds) with differ-
ent neuroanatomic areas and staining techniques will 
facilitate more comprehensive standards in neuropa-
thology. For instance, performance for CAA with 6E10 
was lower than for other stains (Additional file 1: Figure 
S5). This could be due to its smaller representation in 
the test set (Additional file 1: Figure S13). Although this 
study’s cohort of five experts was institutionally diverse, 
it could be improved by capturing greater variability 
from the broader community. Despite these limitations, 
the models accurately learned the annotation practices 
of five experts and of their shared expertise, indicating 
the method’s generalizability.

We imagine this neuropathology study might apply 
also to anatomic pathology and other areas of medical 
research. Any medical discipline that leverages human 
expertise could benefit from taking advantage of expert 
diversity and consensus to make automated and consist-
ent diagnoses. Models and annotated datasets developed 
and shared across the community could be progressively 

refined as ever-improving metrics and deployable tools 
of shared ground truth. Whereas we focused on auto-
matic image annotation, the concept may generalize to 
other domains and data types where expert annotation 
is crucial. Although a consensus-of-two experts was 
best in this particular study, this may not hold for other 
studies or for a different cohort or pathology, and indeed 
improved ensemble modeling techniques may be the 
strongest approach (Fig.  6). However, the resilience and 
robustness of the consensus model indicated that train-
ing from a consensus was better than relying on individ-
ual assessments, despite high expert intra-rater reliability 
even over a half-year gap (Fig. 7b). We hope that devel-
oping and openly sharing consistent, accurate, and 
automated DL methods and their datasets can facilitate 
standardization and accelerate quantitative pathology 
as a freely available community resource. These results 
point to a means to continually refine rapid and reliable 
models to identify amyloid neuropathologies, derived 
from the consensus expertise of an expanding neuro-
pathologist cohort.

Conclusion
Whereas deep learning models can learn from a sin-
gle neuropathology expert [22], we wondered whether 
models learning from an expert cohort would find com-
mon ground. Would consensus and ensemble models 
leverage the strengths of complementary expertises, or 
instead founder on different assessments? This question 
would clearly have a crucial impact on the increasing 
integration of deep learning with the practice of neu-
ropathology, however, to our knowledge, no dataset 
existed to address these questions. Thus we collected 
a dataset of 150,000 expert-annotated amyloid neuro-
pathologies. A volunteer cohort of five neuropathology 
experts from institutions across the country and world 
each independently annotated 30,000 potential amyloid 
neuropathologies. Using this dataset, we assess inter- 
and intra-rater reliability at scale. We demonstrate 
that deep learning algorithms trained from multiple 
experts via a consensus strategy is a robust, effective, 
and interpretable means to label pathologies that may 
have expert disagreement. Shareable and improvable 
common-ground tools are imperative for standardiz-
ing quantitative pathology. We show that this method is 
effective on an institutionally and methodically diverse 
dataset, as a first test of its generalizability to other 
pathological sites and tasks. Moreover, through ensem-
bling, we show the contribution of larger community 
involvement increases performance with little risk from 
confounding annotations. Performing a prospective 
study during phase-two, we also show that consensus 
learning can be used in a real-world clinical research 

https://github.com/keiserlab/consensus-learning-paper
https://github.com/keiserlab/consensus-learning-paper
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context to successfully enrich rarer pathologies. For 
broad impact and to put these tools into expert commu-
nity hands, we release the entire annotated dataset and 
open-source software to freely use as both a labeling 
tool and a resource for future research.
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