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ABSTRACT OF THE DISSERTATION

Practical Run-Time Mitigations Against Data-Oriented Attacks

By

Prabhu karthikeyan Rajasekaran

Doctor of Philosophy in Computer Science

University of California, Irvine, 2020

Professor Michael Franz, Chair

Data-oriented exploits are growing in popularity as defenders are closing attack vectors

related to control flow exploits. Data Oriented Programming (DOP), a generalization of data-

oriented attacks, stitches together data-oriented gadgets and can perform Turing-complete

computations in memory. Besides, data-oriented exploits modify the behavior of the program

without violating its control flow, and therefore cannot be stopped by ubiquitous control flow

mitigations such as Data Execution Prevention (DEP), Address Space Layout Randomization

(ASLR) and Control Flow Integrity (CFI).

A unified solution cannot address all memory corruption errors as there are different classes

of memory corruption errors and each of them requires careful considerations. The arguments

to variadic functions in C and C++ cannot be statically type-checked by the compiler and

therefore expose a significant memory corruption attack surface. In this dissertation, we

present a comprehensive approach that effectively type-checks variadic function arguments

and thus addresses the attacks that exploit variadic function related memory corruption

errors. Our evaluation shows that our solution is practical as the measured overhead is

negligible (0.45%) and effective as we show in several case studies.

To prevent data-oriented exploits from deterministically corrupting program data, a proba-

bilistic fine-grained randomization defense Data Space Randomization (DSR) was proposed.

x



DSR randomizes the representation of program data in memory to prevent illegitimate usage

of data. DSR employs static analysis to classify data objects into equivalence classes. DSR

works by masking memory load and store instructions using XOR operations. Masks are

chosen (i) to not interfere with intended data flows and (ii) such that masking likely interferes

with unintended flows introduced by malicious program inputs.

We show using two new DSR bypass attacks, one that directly discloses memory and another

using speculative execution, that the existing DSR defenses are still not secure. We then

improve upon the state of the art DSR and propose the first dynamic DSR scheme resilient

to disclosure attacks. Our mitigation continuously rerandomizes the masks used in loads and

stores, and re-masks all memory objects to remain transparent w.r.t. program execution.

Our evaluation confirms that our approach successfully thwarts these attacks with limited

run-time overhead in standard benchmarks as well as real-world applications.
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Chapter 1

Introduction

C and C++ remain the languages of choice for implementing low-level systems software such

as operating system kernels, runtime libraries, and browsers since they are efficient and

leave the programmer in full control of the underlying hardware. But that leaves the onus

on the programmer to ensure that every memory access is valid and that no computation

leads to undefined behavior. In practice, programmers routinely fall short of meeting these

responsibilities and introduce bugs that make the software systems vulnerable to exploitation.

Memory corruption errors are the fundamental building blocks upon which adversaries build

their security exploits. The two broad categories of attacks that exploit memory corruption

errors are i) control-flow attacks and ii) data-oriented attacks.

1.1 Control-flow Attacks and Defenses

Control-flow attacks corrupt instruction addresses stored in program memory such as return

addresses or function pointers to divert the program’s control flow through malicious code

injection [54], code reuse [142], or return oriented programming (ROP) [133]. The goal of
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adversaries here is to hijack the control flow of the program and execute arbitrary code of

their choice.

Given their expressiveness, sophistication and severity, mitigating control-flow attacks has

been a major focus of the security research community over the last decade. Data Execution

Prevention [104] mitigation makes data memory non-executable, essentially eliminating

traditional code injection attacks. Assumptions about the memory layout (location of return

address in stack, function pointers in virtual table, etc.) is a key aspect in constructing

control-flow attacks. Address Space Layout Randomization (ASLR) [143] is a probabilistic

mitigation that randomizes the base addresses of stack, heap, code and global data sections

to increase the failure rate of control-flow attacks. Control Flow Integrity (CFI) mitigation

pre-calculates the set of valid targets as expressed in the source program for every indirect

control flow transfer (iCFT) instruction. At run time, CFI checks if the observed target for

each indirect control flow transfer is within the allowed target set.

1.2 Data-oriented Attacks and Defenses

Due to the widespread deployment of DEP, ASLR and CFI and the resulting increase in

difficulty of launching control-flow exploits has forced the attackers to turn to data-oriented

attacks. Data-oriented attacks, as opposed to control-flow attacks, corrupt the non-control

data to manipulate the behavior of the program without violating the CFI enforcement

policies. In their seminal work Chen et al. [28] showed that memory corruption exploits can

manipulate the benign behavior of a program or leak sensitive data by corrupting non-control

but security-critical data such as configuration data, user input data, user identity data, and

decision-making data. Data-oriented attacks have grown in sophistication and have become

an appealing alternative to control-flow attacks for system compromise [74, 108, 164, 134,

118, 55, 43, 29, 122]. Hu et al. [75] even proposed Data-Oriented Programming (DOP), a

2



systematic approach to building Turing-complete data-oriented attacks.

Control-flow mitigations can provide protection against some data-oriented attacks. For

example, the ASLR randomizes the base offset addresses of data sections in program memory.

But ASLR is a coarse-grained randomization solution which can be bypassed by multi-

stage adaptive attacks that rely on information disclosure. Data-oriented attack defenses

are comprehensive and generally protect against corruption of control and non-control

data. Static Data Space Randomization(DSR) [15, 20, 14] is considered the strongest

mitigation available against data-oriented attacks yet. DSR is a promising probabilistic

exploit mitigation technique that randomizes the representation of data in memory to prevent

deterministic corruption of data or plaintext information leakage. Compared to ASLR and

compartmentalization [159, 7, 101] solutions, DSR can stop data-oriented attacks with higher

probability. DSR applies static program analysis to partition all data accesses into disjoint

buckets based on the aliasing relationships between variables. A pair of variables will be in

the same bucket if and only if the analysis determines that legitimate data flows could exist

between the two variables. At run time, the program then randomizes the representation of

memory objects that fall into different buckets. This can be implemented efficiently by using

lightweight XOR operations with a data-randomization mask (or “key”) that is unique to each

bucket.

DSR is only effective if there are many congruence buckets and the masks remain secret.

DSR implementations embed masks in code sections to perform encryption and decryption

operations to keep the masks from program memory (stack, heap and global sections). This

design choice is made to protect against mask-leakage through information disclosure attacks.

However, there are a number of possible ways to disclose masks, even if they cannot be read

directly. For instance, an adversary could leverage memory vulnerabilities to disclose masked

data. If the attacker can choose or inject data (chosen-plaintext attack, CPA), knows the

data (known-plaintext attack, KPA), or guess them with high probability, he can infer the

3



value of a mask used for a bucket and all variables in it. Since all variables in a bucket

have the same mask applied to them, this could then enable further leakage via a JIT-ROP

style attack [145]. Alternatively, adversaries could exploit a remote side channel, such as

NetSpectre [137], to directly disclose the secret key from the binary or the key cache.

1.3 Contributions

In this dissertation, we introduce the two following dynamic mitigation solutions.

1.3.1 Variadic Function Sanitizer and Mitigation

Several tools and defenses have been developed to contend with memory corruption ex-

ploits [152, 148, 89]. The current state of the art tools, however, overlook the memory

corruption attack surface created by variadic functions (e.g. printf) in C and C++ programs.

The types of the variadic arguments are dependent on the implementation of variadic functions

and requires a stateful dynamic check to prevent variadic function exploits. In Chapter 3,

we present HexVASAN, a dynamic bug finding and mitigation solution that addresses this

attack vector.

1.3.2 Dynamic Data Space Randomization

Static Data Space Randomization protects against malicious access to data. In Chapter 4, we

first demonstrate two novel attacks against DSR. Our attacks disclose DSR masks using direct

memory disclosure or side-channel attacks. This allows us to write arbitrary plaintext data

into the entire bucket whose mask we disclosed. Both of our attacks are sufficiently generic

to work against any prior implementation of DSR, including those that rely on hardware

4



support to protect keys against disclosure, because they exploit design choices in the DSR

scheme rather than implementation flaws.

We propose a new dynamic DSR scheme dubbed CoDaRR (Continuous Data Re-

Randomization) which thwarts our presented and similar attacks by dynamically

rerandomizing the masks and updating all program data accordingly.

1.3.3 Summary of Contributions

Specifically, we make the following contributions.

Chapter 3

• Design and implementation of a variadic function sanitizer HexVASAN on top of LLVM;

• A case study on large programs to show the prevalence of direct and indirect calls to

variadic functions;

• Several exploit case studies and CFI bypasses using variadic functions.

• Evaluation that shows that our method is practically deployable as the measured

overhead is negligible (0.45%) and effective as we show in several case studies.

Chapter 4

• We present two novel attacks against the current state of the art data defense DSR.

Our attacks allow us to exploit attacker-controlled write operations to write arbitrary

plaintext data to an encrypted memory location.

• We identify the key challenges towards building an additional layer of moving target

defense on top of DSR which rerandomizes the DSR keys and data. We present a
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new scheme which addresses these challenges. Our prototype, CoDaRR, supports

on-demand as well as continuous rerandomization of data. Our evaluation shows that

our rerandomization solution is resilient to the attacks against traditional DSR schemes.

• We evaluate the performance of implementation prototype using benchmark suites

as well as applications such as Nginx and Thttpd. Our experiments show acceptable

performance in most cases.
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Chapter 2

Background

Data-oriented memory corruption exploits are growing in popularity due to the widespread

adoption of control-flow exploit mitigation techniques. The first stage of a typical data-

oriented exploit involves triggering a memory corruption error [32]. To familiarize the

reader with data-oriented exploits, we dissect data-oriented exploit examples and discuss the

structure of typical real world data-oriented exploits in Section 2.1. We then outline various

types of memory corruption vulnerabilities which are the fundamental building blocks upon

which the data-oriented exploits are built.

Current generation of randomization defenses, including the current state of the art mitigation

available against data-oriented exploits – Data Space Randomization, are safe only as long as

the randomization secrets remain indeed secret. Leaking such secrets (e.g. DSR encryption

keys) can lead to adaptive multi-stage exploits that bypass these mitigations. Transient

execution attacks have evolved in recent years and can assist in leaking randomization secrets

of the programs protected by techniques such as DSR. In Section 2.3, we describe side-channel

and transient execution attacks that we use in our DSR bypass attacks that we present in

Chapter 4.
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2.1 Data-Oriented Attacks

Data-oriented attacks manipulate the behavior of the program without violating CFI enforce-

ment policies. Data-oriented attacks can be as simple as changing a single bit in program

memory akin to the example shown in listing 2.1 or sophisticated multi-stage techniques;

based on this insight Cheng et al. [32] classify data-oriented attacks into two categories 1)

Direct Data Manipulation (DDM); and 2) Data Oriented Programming (DOP).

2.1.1 Direct Data Manipulation

In DDM exploits, the adversaries manipulate the target data directly to compromise the

security of the system. The necessary prerequisite for DDM is that the attacker knows the

exact memory location of the target non-control data. By analyzing the binary [70, 158, 130]

or source code (in case of open sourced projects), or by reusing the runtime randomized

address stored in the memory [74], the attackers can derive the target memory location. The

memory corruption bugs outlined in Section 2.2 offer adversaries the attack surface necessary

to build exploits that allow for arbitrary memory writes.

DDM attacks may corrupt one or more memory locations to achieve the intended malicious

goal [108]. Listing 2.1 shows a simple example of a real world vulnerable SSH server code in

which (non-control) decision-making data [28] is corrupted creating a DDM exploit.

Notice that the local variable authenticated declared in line 3 is used in deciding whether a

remote user has passed the authentication check (line 17). The function call packet read in

line 6 invokes detect attack function internally which has an integer overflow vulnerability (see

Section 2.2.5). The attacker using this memory corruption vulnerability can simply overwrite

the value of the security-critical variable authenticated to a non-zero value bypassing the

remote authentication check.
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1 void do_authentication(char* user,...){
2 ...
3 int authenticated=0;
4 ...
5 while(!authenticated){
6 type=packet_read(); //Corrupt authenticated
7 /* Calls detect_attack() internally */
8 switch(type){
9 ...

10 case SSH_CMSG_AUTH_PASSWORD:
11 if(auth_password(user,password)) {
12 authenticated=1;
13 break;
14 }
15 case ...
16 }
17 if(authenticated) break;
18 }
19

20 do_authenticated(pw);
21 /* Perform session preparation*/
22 }

Listing 2.1: Vulnerable SSH server

2.1.2 Data Oriented Programming

DDM is a prerequisite for DOP exploits. But DOP techniques are more sophisticated and

expressive. The attackers, in DOP exploits, perform arbitrary computations in program

memory [75] by chaining the execution of DOP gadgets. To build a successful DOP attack,

the adversary must first identify DOP gadgets, then stitch them in an orderly fashion so that

the Control Flow Integrity (CFI) policies are not violated while making sure that the data

corruption goals are met.

Hu et al. [75] proposed MINDOP a simple Turing-complete mini-language with a virtual

instruction set and virtual register operands to systematically construct DOP payloads. They

introduced DOP gadgets which are instruction sequences in the vulnerable program that can

mimic the operations defined by the MINDOP language. The MINDOP language (shown in
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Semantics C Instructions DOP Gadgets

arithmetic/logical a op b *p op *q
assignment a = b *p = *q

load a = *b *p = **q
store *a = b **p = *q
jump goto L vpc = &input

Conditional jump if a goto L vpc = &input if *p

Table 2.1: Simulating MINDOP Data Oriented Programming Gadgets in C

Table 2.1) has 6 kinds of virtual instructions, each operating on virtual register operands.

The first four virtual instructions are arithmetic/logical calculation, assignment, load and

store operations. The last two are conditional and unconditional jumps which allow the

implementation of control structures in a MINDOP virtual program. The control structure

allows chaining of gadgets, and the x86 code sequences that simulate the virtual control

operations are referred to as gadget dispatchers. Each virtual operation in MINDOP can be

simulated by real x86 instruction sequences available in the vulnerable program and these

sequences are common in real-world programs.

For example, Hu et al. [75] presented a DOP attack on ProFTPd server that leaks the

OpenSSL private key stored in heap memory. This attack leverages an arbitrary memory

write ability offered by a buffer overflow vulnerability (CVE-2006-5815) to i) build a data

exfiltration channel from server to client, ii) replace data shown to the client with that of

program’s internal state (e.g. data pointers) and once the target private key’s location was

calculated with a series of interactions with the server, iii) leak the key once again using the

exfiltration channel.

Ispoglou et al. [80] recently proposed Block-Oriented Programming (BOP) and introduced

block-oriented programming compiler (BOPC) that helps further in automatic generation of

DOP exploits. BOP follows the DOP exploit model but the BOP gadgets are entire basic

blocks. BOPC given a target binary and DOP attack payload identifies DOP gadgets (basic
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blocks) and stitches them together in a manner consistent with that of the legal control flow

of the program.

The data-oriented attack examples and the techniques that are available to build these

attacks outlined in this section demonstrates the severity, effectiveness and sophistication of

data-oriented exploits and why they deserve careful attention from security researchers.

2.2 Memory Corruption Vulnerabilities

For performance reasons, C and C++ do not verify that a memory access is valid at run-time

and invalid memory accesses are considered undefined behavior. Moreover, there is no unified

solution that fits all memory corruption errors; we must contend with well-defined behaviors

in C and C++ that are potentially dangerous due to the absence of type and memory

safety. We briefly describe in this section the memory corruption bugs and how they can

be exploited. The ProFTPd data-oriented attack referenced in the previous section [75] for

example leveraged a combination of two memory corruption errors which offered the attackers

with the ability to manipulate program memory.

2.2.1 Memory Safety Violations

A program is memory safe if pointers in the program only access their intended referents,

while those intended referents are valid. The intended referent of a pointer is the object from

whose base address the pointer was derived. Depending on the type of the referent, it is

either valid between its allocation and deallocation (for heap-allocated referents), between

a function call and its return (for stack-allocated referents), between the creation and the

destruction of its associated thread (for thread-local referents), or indefinitely (for global

referents).
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1 struct A { char name[7]; bool isAdmin; };
2 struct A a; char buf[8];
3 memcpy(/* dst */ a.name, /* src */ buf, sizeof(buf));

Listing 2.2: Intra-object overflow vulnerability which can be exploited to overwrite security-
critical non-control data

Memory safety violations are among the most severe security vulnerabilities and have

been studied extensively in the literature [152, 157]. Their exploitation can lead to code

injection [10], control-flow hijacking [147, 111, 142], privilege escalation [28], information

leakage [151], and program crashes.

Spatial Safety Violations

Accessing memory that is not (entirely) within the bounds of the intended referent of a

pointer constitutes a spatial safety violation. Buffer overflows are a typical example of a

spatial safety violation. A buffer overflow happens when the program writes beyond the end

of a buffer. If the intended referent of a vulnerable access is a subobject (e.g., a struct field),

and if an attacker writes to another subobject within the same object, then we refer to this

as an intra-object overflow.

Listing 2.2 shows an intra-object overflow vulnerability which can be exploited to perform a

privilege escalation attack.

Temporal Safety Violations

A temporal safety violation occurs when the program accesses a referent that is no longer

valid. When an object becomes invalid, which usually happens by explicitly deallocating

it, all the pointers pointing to that object become dangling. Accessing an object through a

dangling pointer is called a use-after-free. Accessing a local object outside of its scope or after
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the function returns is referred to as use-after-scope and use-after-return, respectively. This

type of bug becomes exploitable when the attacker can reuse and control the freed region, as

illustrated in Listing 2.3.

1 struct A { void (*func)(void); };
2 struct A *p = (struct A *)malloc(sizeof(struct A));
3 free(p); // Pointer becomes dangling
4 ...
5 p->func(); // Use-after-free

Listing 2.3: Use-after-free vulnerability which can be exploited to hijack the control-flow of
the program

2.2.2 Use of Uninitialized Variables

Variables have an indeterminate value until they are initialized [78, 79]. C++14 allows

this indeterminate value to propagate to other variables if both the source and destination

variables have an unsigned narrow character type. Any other use of an uninitialized variable

results in undefined behavior.

The effects of this undefined behavior depend on many factors, including the compiler and

compiler flags that were used to compile the program. In most cases, indeterminate values

are in fact the (partial) contents of previously deallocated variables that occupied the same

memory range as the uninitialized variable. As these previously deallocated variables may

sometimes hold security-sensitive values, reads of uninitialized memory may be part of an

information leakage attack, as illustrated in Listing 2.4.

2.2.3 Pointer Type Errors

C and C++ support several casting operators and language constructs that can lead memory

accesses to misinterpret the data stored in their referents, thereby violating type safety. Pointer
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1 struct A { int data[2]; };
2 struct A *p = (struct A *)malloc(sizeof(struct A));
3 p->data[0] = 0; // Partial initialization
4 send_to_untrusted_client(p, sizeof(struct A));

Listing 2.4: Use of a partially-initialized variable which becomes vulnerable as the uninitialized
value crosses a trust boundary

type errors typically result from unsafe casts. C allows all casts between pointer types, as

well as casts between integer and pointer types. The C++ reinterpret cast type conversion

operator is similarly not subject to any restrictions. The static cast and dynamic cast

operators do have restrictions. static cast forbids pointer to integer casts, and casting

between pointers to objects that are unrelated by inheritance. However, it does allow casting

of a pointer from a base class to a derived class (also called downcasting), as well as all casts

from and to the void* type. Bad-casting (often referred to as type confusion) happens when

a downcast pointer has neither the run-time type of its referent, nor one of the referent’s

ancestor types.

1 class Base { virtual void func(); };
2 class Derived : public Base { public: int extra; };
3 Base b[2];
4 Derived *d = static_cast<Derived *>(&b[0]); // Bad-casting
5 d->extra = ...; // Type-unsafe, out-of-bounds access, which
6 // overwrites the vtable pointer of b[1]

Listing 2.5: Bad-casting vulnerability leading to a type- and memory-unsafe memory access

To downcast safely, programmers must use the dynamic cast operator, which performs run-

time type checks and returns a null pointer if the check fails. Using dynamic cast is entirely

optional, however, and introduces additional run-time overhead.

Type errors can also occur when casting between function pointer types. Again, C++’s

reinterpret cast and C impose no restrictions on casts between incompatible function

pointer types. If a function is called indirectly through a function pointer of the wrong type,
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the target function might misinterpret its arguments, which leads to even more type errors.

Finally, C also allows type punning through union types. If the program reads from a

union through a different member object than the one that was used to store the data, the

underlying memory may be misinterpreted. Furthermore, if the member object used for

reading is larger than the member object used to store the data, then the upper bytes read

from the union will take unspecified values.

2.2.4 Variadic Function Misuse

C/C++ support variadic functions, which accept a variable number of variadic function

arguments in addition to a fixed number of regular function arguments. The variadic function’s

source code does not specify the number or types of these variadic arguments. Instead, the

fixed arguments and the function semantics encode the expected number and types of variadic

arguments. Variadic arguments can be accessed and simultaneously typecast using va arg. It

is, in general, impossible to statically verify that va arg accesses a valid argument, or that it

casts the argument to a valid type. This lack of static verification can lead to type errors,

spatial memory safety violations, and uses of uninitialized values.

1 char *fmt2; // User-controlled format string
2 sprintf(fmt2, user_input, ...);
3 // prints attacker-chosen stack contents if fmt2 contains
4 // too many format specifiers
5 // or overwrites memory if fmt2 contains %n
6 printf(fmt2, ...);

Listing 2.6: Simplified version of CVE-2012-0809; user-provided input was mistakenly used
as part of a larger format string passed to a printf-like function
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2.2.5 Other Vulnerabilities

There are other operations that may pose security risks in the absence of type and memory

safety. Notable examples include overflow errors which may be exploitable when such values

are used in memory allocation or pointer arithmetic operations. If an attacker-controlled

integer value is used to calculate a buffer size or an array index, the attacker could overflow

that value to allocate a smaller buffer than expected (as illustrated in Listing 2.7), or to

bypass existing array index checks, thereby triggering an out-of-bounds access.

C/C++ do not define the result of a signed integer overflow, but stipulate that unsigned

integers wrap around when they overflow. However, this wrap-around behavior is often

unintended and potentially dangerous.

1 // newsize can overflow depending on len
2 int newsize = oldsize + len + 100;
3 newsize *= 2;
4 // The new buffer may be smaller than len
5 buf = xmlRealloc(buf, newsize);
6 memcpy(buf + oldsize, string, len); // Out-of-bounds access

Listing 2.7: Simplified version of CVE-2017-5029; a signed integer overflow vulnerability that
can lead to spatial memory safety violation

Undefined behaviors such as signed integer overflows pose additional security risks when

compiler optimizations are enabled. In the presence of potential undefined behavior, compilers

are allowed to assume that the program will never reach the conditions under which this

undefined behavior is triggered. Moreover, the compiler can perform further optimization

based on this assumption [94]. Consequently, the compiler does not have to statically verify

that the program is free of potential undefined behavior, and the compiler is not obligated to

generate code that is capable of recognizing or mitigating undefined behavior.

The problem with this rationale is that optimizations based on the assumption that the

program is free from undefined behavior can sometimes lead the compiler to omit security
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checks. In CVE-2009-1897, for example, GCC infamously omitted a null pointer check

from one of the Linux kernel drivers, which led to a privilege escalation vulnerability [109].

Compiler developers regularly add such aggressive optimizations to their compilers. Some

people therefore refer to undefined behavior as time bombs [49].

1 struct sock *sk = tun->sk; // Compiler assumes tun is not
2 // a null pointer
3 if (!tun) // Check is optimized out
4 return POLLERR;

Listing 2.8: Simplified version of CVE-2009-1897; dereferencing a pointer lets the compiler
safely assume that the pointer is non-null

2.3 Side-Channel Attacks

Attackers by observing side effects of the computation performed can deduce some of the

data that is operated on by the microarchitecture. Hardware side-channel attacks have

been studied for a long time and several mitigations have been proposed to prevent against

this attack vector such as ensuring algorithms have a constant runtime. However, there

has been a renewed interest in software based side-channel attacks in the recent years. In

their seminal work Kocher et al. [86] first described how to exploit CPU caches to break

cryptographic algorithms. Several variants of attacks that exploit cache side-channels have

been published in literature [120, 125, 166, 65, 66, 97] since. In the recent past, software based

side-channel attacks have been used for building attacks that can break exploit mitigations

such as ASLR [64].
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2.3.1 Transient Execution Attacks

Transient-execution attacks are a class of microarchitectural attacks which exploit out-of-

order and speculative execution of modern CPUs to leak program data. They rely on

microarchitectural operations that were not originally intended to be part of the execution

but were carried out by the microarchitectural implementations for performance. Though

these unintended operations are never committed to architectural state, they leave side effects

which can then be inferred using traditional side-channel attacks. The execution of these

unintended operations whose results are eventually discarded is termed transient execution.

Spectre and Spectre Variant 2

Spectre attacks exploit incorrect control-flow and data-flow predictions of CPU. Mispredictions

trigger transient execution of instructions that perform unauthorized access to program data

as these operations were not intended by the control-flow of the program. By triggering these

mispredictions carefully, adversaries can encode the accessed data in the microarchitectural

state (e.g. CPU cache). Then a traditional side-channel attack can be employed to extract

the encoded data from the microarchitectural state.

Spectre attacks transiently bypass security measures such as bounds checking, memory

stores and function calls etc. to perform unauthorized access to the target data. Spectre

adversary models involve several variants. In chapter 4, we use the Spectre Variant 2 to leak

randomization secret that is part of a Data Space Randomization protected program and

explain specifically this Spectre variant here below.

The idea behind Spectre V2 is similar to that of return-oriented programming and the attacker

relies on a target Spectre Gadget that is present in the victim process’ address space. In this

variant, the goal of the attacker is to execute this gadget transiently. Unlike ROP, there is
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no need for a software vulnerability to carry out this Spectre attack variant. The attacker

instead poisons the Branch Target Buffer (BTB) to trigger a misprediction of a branch from

an indirect branch instruction to the address of the target gadget. The transient execution of

the gadget will eventually be reverted by the CPU. However, gadgets can be used to encode

security sensitive information to the cache which then can be extracted using a traditional

cache side-channel attack.

Meltdown and Meltdown-PK

Out-of-order execution of instructions after an exception can also lead to unauthorized

access to data. Meltdown attacks are a class of transient execution attacks that rely on

exception out-of-order execution scenario. CPUs in-order execution retirement mechanism

will eventually revert the out-of-order instructions added to the pipeline. But execution of

these instructions just as we saw in Spectre style attacks leave traces in microarchitectural

side-channels and can be extracted. Memory Protection Key (MPK) hardware feature on

Intel Skylake-SP processors facilitate modification of memory page access permissions from

user space (no need for syscall/hypercall). Canella et al. demonstrated that they could

successfully read values from memory protected by Intel’s Memory Protection Keys (MPK)

using a Meltdown variant they term Meltdown-PK [23]. Meltodown-PK variant exploits

side-effects of out-of-order execution on MPK. Meltdown-PK is a severe form of exploit and

there are no software workarounds like the ones for privilege level Meltdown variants.
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Chapter 3

A comprehensive approach to fixing

variadic vulnerabilities

Programming languages such as C and C++ support variadic functions, i.e., functions that

accept a variable number of arguments (e.g., printf). In this Chapter, we address the

variadic function misuse memory corruption errors.

Variadic functions are flexible, but are inherently type-unsafe. In fact, the semantics and

parameters of variadic functions are defined implicitly by their implementation. It is left to

the programmer to ensure that the caller and callee follow this implicit specification, without

the help of a static type checker. An adversary can take advantage of a mismatch between

the argument types used by the caller of a variadic function and the types expected by the

callee to violate the language semantics and to tamper with memory. Format string attacks

are the most popular example of such a mismatch.

Indirect function calls can be exploited by an adversary to divert execution through illegal

paths. CFI restricts call targets according to the function prototype which, for variadic

functions, does not include all the actual parameters. However, as shown by our case study,
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current CFI implementations are mainly limited to non-variadic functions and fail to address

this potential attack vector. Defending against such an attack requires a stateful dynamic

check.

We present a compiler based sanitizer to effectively type-check and thus prevent any attack

via variadic functions (when called directly or indirectly). The key idea is to record metadata

at the call site and verify parameters and their types at the callee whenever they are used

at runtime. Our evaluation shows that our approach is (i) practically deployable as the

measured overhead is negligible (0.45%) and (ii) effective as we show in several case studies.

3.1 Motivation

We present a new attack against widely deployed mitigations through variadic functions.

Variadic functions (such as printf) accept a varying number of arguments with varying

argument types. To implement variadic functions, the programmer implicitly encodes the

argument list in the semantics of the function and has to make sure the caller and callee

adhere to this implicit contract. In printf, the expected number of arguments and their

types are encoded implicitly in the format string, the first argument to the function. Another

frequently used scheme iterates through parameters until a condition is reached (e.g., a

parameter is NULL). Listing 3.1 shows an example of a variadic function. If an adversary can

violate the implicit contract between caller and callee, an attack may be possible.

In the general case, it is impossible to enumerate the arguments of a variadic function through

static analysis techniques. In fact, their number and types are intrinsic in how the function is

defined. This limitation enables (or facilitates) two attack vectors against variadic functions.

First, attackers can hijack indirect calls and thereby call variadic functions over control-flow

edges that are never taken during any legitimate execution of the program. Variadic functions
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that are called in this way may interpret the variadic arguments differently than the function

for which these arguments were intended, and thus violate the implicit caller-callee contract.

CFI countermeasures specifically prevent illegal calls over indirect call edges. However, even

the most precise implementations of CFI, which verify the type signature of the targets of

indirect calls, are unable to fully stop illegal calls to variadic functions.

A second attack vector involves overwriting a variadic function’s arguments directly. Such

attacks do not violate the intended control flow of a program and thus bypass all of the

widely deployed defense mechanisms. Format string attacks are a prime example of such

attacks. If an adversary can control the format string passed to, e.g., printf, she can control

how all of the following parameters are interpreted, and can potentially leak information

from the stack, or read/write to arbitrary memory locations.

The attack surface exposed by variadic functions is significant. We analyzed popular software

packages, such as Firefox, Chromium, Apache, CPython, nginx, OpenSSL, Wireshark, the

SPEC CPU2006 benchmarks, and the FreeBSD base system, and found that variadic functions

are ubiquitous. We also found that many of the variadic function calls in these packages are

indirect. We therefore conclude that both attack vectors are realistic threats. The underlying

problem that enables attacks on variadic functions is the lack of type checking. Variadic

functions generally do not (and cannot) verify that the number and type of arguments they

expect matches the number and type of arguments passed by the caller. We present our

solution, a compiler-based, dynamic sanitizer that tackles this problem by enforcing type

checks for variadic functions at run-time. Each argument that is retrieved in a variadic

function is type checked, enforcing a strict contract between caller and callee so that (i) a

maximum of the passed arguments can be retrieved and (ii) the type of the arguments used

at the callee are compatible with the types passed by the caller. Our mechanism can be used

in two operation modes: as a runtime monitor to protect programs against attacks and as

sanitizer to detect type mismatches during program testing.
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We have implemented our prototype, HexVASAN, on top of the LLVM compiler framework,

instrumenting the compiled code to record the types of each argument of a variadic function at

the call site and to check the types whenever they are retrieved. Our prototype implementation

is light-weight, resulting in negligible (0.45%) overhead for SPEC CPU2006. Our approach is

general as we show by recompiling the FreeBSD base system and effective as shown through

several exploit case studies (e.g., a format string vulnerability in sudo).

We present the following contributions:

• Design and implementation of a variadic function sanitizer on top of LLVM;

• A case study on large programs to show the prevalence of direct and indirect calls to

variadic functions;

• Several exploit case studies and CFI bypasses using variadic functions.

1 #include <stdio.h>
2 #include <stdarg.h>
3

4 int add(int start, ...) {
5 int next, total = start;
6 va_list list;
7 va_start(list, start);
8 do {
9 next = va_arg(list, int);

10 total += next;
11 } while (next != 0);
12 va_end(list);
13 return total;
14 }
15

16 int main(int argc, const char *argv[]) {
17 printf("%d\n", add(5, 1, 2, 0));
18 return 0;
19 }

Listing 3.1: Example of a variadic function in C. The function add takes a non-variadic
argument start (to initialize an accumulator variable) and a series of variadic int arguments
that are added until the terminator value 0 is met. The final value is returned.
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3.2 Background

Variadic functions are used ubiquitously in C/C++ programs. Here we introduce details

about their use and implementation on current systems, the attack surface they provide, and

how adversaries can abuse them.

3.2.1 Variadic functions

Variadic functions (such as the printf function in the C standard library) are used in C

to maximize the flexibility in the interface of a function, allowing it to accept a number of

arguments unknown at compile-time. These functions accept a variable number of arguments,

which do not necessarily have fixed types. An example of a variadic function is shown in

Listing 3.1. The function add accepts one mandatory argument (start) and a varying number

of additional arguments, which are marked by the ellipsis (...) in the function definition.

The C standard defines several macros that portable programs may use to access variadic

arguments [96]. stdarg.h, the header that declares these macros, defines an opaque type,

va_list, which stores all information required to retrieve and iterate through variadic argu-

ments. In our example, the variable list of type va_list is initialized using the va_start

macro. The va_arg macro retrieves the next variadic argument from the va_list, updating

va_list to point to the next argument as a side effect. Note that, although the programmer

must specify the expected type of the variadic argument in the call to va_arg, the C standard

does not require the compiler to verify that the retrieved variable is indeed of that type.

va_list variables must be released using a call to the va_end macro so that all of the resources

assigned to the list are deallocated.

printf is an example of a more complex variadic function which takes a format string as

its first argument. This format string implicitly encodes information about the number
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of arguments and their type. Implementations of printf scan through this format string

several times to identify all format arguments and to recover the necessary space in the

output string for the specified types and formats. Interestingly, arguments do not have to

be encoded sequentially but format strings allow out-of-order access to arbitrary arguments.

This flexibility is often abused in format string attacks to access arbitrary stack locations.

3.2.2 Variadic functions ABI

The C standard does not define the calling convention for variadic functions, nor the exact

representation of the va_list structure. This information is instead part of the ABI of the

target platform.

x86-64 ABI. The AMD64 System V ABI [103], which is implemented by x86-64 GNU/Linux

platforms, dictates that the caller of a variadic function must adhere to the normal calling

conventions when passing arguments. Specifically, the first six non-floating point arguments

and the first eight floating point arguments are passed through CPU registers. The remaining

arguments, if any, are passed on the stack. If a variadic function accepts five mandatory

arguments and a variable number of variadic arguments, then all but one of these variadic

arguments will be passed on the stack. The variadic function itself moves the arguments into

a va_list variable using the va_start macro. The va_list type is defined as follows:

1 typedef struct {
2 unsigned int gp_offset;
3 unsigned int fp_offset;
4 void *overflow_arg_area;
5 void *reg_save_area;
6 } va_list[1];

va_start allocates on the stack a reg_save_area to store copies of all variadic arguments that

were passed in registers. va_start initializes the overflow_arg_area field to point to the first

variadic argument that was passed on the stack. The gp_offset and fp_offset fields are the
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offsets into the reg_save_area. They represent the first unused variadic argument that was

passed in a general purpose register or floating point register respectively.

The va_arg macro retrieves the first unused variadic argument from either the reg_save_area

or the overflow_arg_area, and either it increases the gp_offset/fp_offset field or moves the

overflow_arg_area pointer forward, to point to the next variadic argument.

Other architectures. Other architectures may implement variadic functions differently.

On 32-bit x86, for example, all variadic arguments must be passed on the stack (pushed right

to left), following the cdecl calling convention used on GNU/Linux. The variadic function

itself retrieves the first unused variadic argument directly from the stack. This simplifies the

implementation of the va_start, va_arg, and va_end macros, but it generally makes it easier

for adversaries to overwrite the variadic arguments.

3.2.3 Variadic attack surface

When calling a variadic function, the compiler statically type checks all non-variadic arguments

but does not enforce any restriction on the type or number of variadic arguments. The

programmer must follow the implicit contract between caller and callee that is only present

in the code but never enforced explicitly. Due to this high flexibility, the compiler cannot

check arguments statically. This lack of safety can lead to bugs where an adversary achieves

control over the callee by modifying the arguments, thereby influencing the interpretation of

the passed variadic arguments.

Modifying the argument or arguments that control the interpretation of variadic arguments

allows an adversary to change the behavior of the variadic function, causing the callee to

access additional or fewer arguments than specified and to change the interpretation of their

types.
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An adversary can influence variadic functions in several ways. First, if the programmer

forgot to validate the input, the adversary may directly control the arguments to the variadic

function that controls the interpretation of arguments. Second, the adversary may use an

arbitrary memory corruption elsewhere in the program to influence the argument of a variadic

function.

Variadic functions can be called statically or dynamically. Direct calls would, in theory, allow

some static checking. Indirect calls (e.g., through a function pointer), where the target of

the variadic function is not known, do not allow any static checking. Therefore, variadic

functions can only be protected through some form of runtime checker that considers the

constraints of the call site and enforces them at the callee side.

3.2.4 Format string exploits

Format string exploits are a perfect example of corrupted variadic functions. An adversary

that gains control over the format string used in printf can abuse the printf function to

leak arbitrary data on the stack or even resort to arbitrary memory corruption (if the pointer

to the target location is on the stack). For example, a format string vulnerability in the

smbclient utility (CVE-2009-1886) [113] allows an attacker to gain control over the Samba

file system by treating a filename as format string. Also, in PHP 7.x before 7.0.1, an error

handling function in zend execute API.c allows an attacker to execute arbitrary code by

using format string specifiers as class name (CVE-2015-8617) [1].

Information leaks are simple: an adversary changes the format string to print the desired

information that resides somewhere higher up on the stack by employing the desired format

string specifiers. For arbitrary memory modification, an adversary must have the target

address encoded somewhere on the stack and then reference the target through the %n modifier,

writing the number of already written bytes to that memory location.
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The GNU C standard library (glibc) enforces some protection against format string attacks

by checking if a format string is in a writable memory area [82]. For format strings, the

glibc printf implementation opens /proc/self/maps and scans for the memory area of the

format string to verify correct permissions. Moreover, a check is performed to ensure that

all arguments are consumed, so that no out-of-context stack slots can be used in the format

string exploit. These defenses stop some attacks but do not mitigate the underlying problem

that an adversary can gain control over the format string. Note that this heavyweight check

is only used if the format string argument may point to a writable memory area at compile

time. An attacker may use memory corruption to redirect the format string pointer to an

attacker-controlled area and fall back to a regular format string exploit.

3.3 Threat model

Programs frequently use variadic functions, either in the program itself or as part of a shared

library (e.g., printf in the C standard library). We assume that the program contains an

arbitrary memory corruption, allowing the adversary to modify the arguments to a variadic

function and/or the target of an indirect function call, targeting a variadic function.

Our target system deploys existing defense mechanisms like DEP, ASLR, and a strong

implementation of CFI, protecting the program against code injection and control-flow

hijacking. We assume that the adversary cannot modify the metadata of our runtime monitor.

Protecting metadata is an orthogonal engineering problem and can be solved through, e.g.,

masking (and-ing every memory access), segmentation (for x86-32), protecting the memory

region [26], or randomizing the location of sensitive data. Our threat model is a realistic

scenario for current attacks and defenses.
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3.4 Design

Our solution monitors calls to variadic functions and checks for type violations. Since the

semantics of how arguments should be interpreted by the function are intrinsic in the logic of

the function itself, it is, in general, impossible to determine the number and type of arguments

a certain variadic function accepts. For this reason, we instrument the code generated by

extending the compiler so that a check is performed at runtime. This check ensures that the

arguments consumed by the variadic function match those passed by the caller.

The high level idea is the following: record metadata about the supplied argument types at

the call site and verify that the extracted arguments match in the callee. The number of

arguments and their types is always known at the call site and can be encoded efficiently.

In the callee this information can then be used to verify individual arguments when they

are accessed. To implement such a sanitizer, we must design a metadata store, a pass that

instruments call sites, a pass that instruments callers, and a runtime library that manages the

metadata store and performs the run-time type verification. Our runtime library gracefully

terminates the program whenever a mismatch is detected and generates detailed information

about the call site and the mismatched arguments.

3.4.1 Analysis and Instrumentation

We designed our prototype, HexVASAN, as a compiler pass to be run in the compilation

pipeline right after the C/C++ frontend. The instrumentation collects a set of statically

available information about the call sites, encodes it in the LLVM module, and injects calls

to our runtime to perform checks during program execution.

Figure 3.1 provides an overview of the compilation pipeline when our solution is enabled.

Source files are first parsed by the C/C++ frontend which generates the intermediate represen-
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Figure 3.1: Overview of our compilation pipeline. Our instrumentation passes run right
after the C/C++ frontend, while our runtime library, hexvasan.a, is merged into the final
executable at link time.

tation on which our instrumentation runs. The normal compilation then proceeds, generating

instrumented object files. These object files, along with the HexVASAN runtime library, are

then passed to the linker, which creates the instrumented program binary.

3.4.2 Runtime support

Our instrumentation augments every va_list in the original program with the type information

generated by our instrumentation pass, and uses this type information to perform run-time

type checking on any variadic argument accessed through va_arg. By managing the type

information in a metadata store, and by maintaining a mapping between va_lists and their

associated type information, our approach remains fully compatible with the platform ABI.

This design also supports interfacing between instrumented programs and non-instrumented

libraries.

Our runtime support library manages the type information in two data structures. The core

data structure, called the variadic list map (VLM), associates va_list structures with the

type information produced by our instrumentation, and with a counter to track the index of

30



the last argument that was read from the list. A second data structure, the variadic call stack

(VCS), allows callers of variadic functions to store type information of variadic arguments

until the callee initializes the va_list.

Each variadic call site is instrumented with a call to pre call, that prepares the information

about the call site (a variadic call site descriptor or VCSD), and a call to post call, that

cleans it up. For each variadic function, the va start calls are instrumented with list init,

while va copy, whose purpose is to clone a va list, is instrumented through list copy. The

two run-time functions will allocate the necessary data structures to validate individual

arguments. Calls to va end are instrumented through list end to free up the corresponding

data structures.

Algorithm 1 summarizes the two phases of our analysis and instrumentation pass. The

first phase identifies all the calls to variadic functions (both direct and indirect). Note that

identifying indirect calls to variadic functions is straight-forward in a compiler framework

since, even if the target function is not statically known, its type is. Then, all the parameters

passed by that specific call site are inspected and recorded, along with their type in a

dedicated VCSD which is stored in read-only global data. At this point, a call to pre call is

injected before the variadic function call (with the newly created VCSD as a parameter) and,

symmetrically, a call to post call is inserted after the call site.

The second phase identifies all calls to va start and va copy, and consequently, the va list

variables in the program. Uses of each va list variable are inspected in an architecture-

specific way. Once all uses are identified, we inject a call to check arg before dereferencing

the argument (which always resides in memory).
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3.4.3 Challenges and Discussion

When designing a variadic function call sanitizer, several issues have to be considered. We

highlight details about the key challenges we encountered.

Multiple va lists. Functions are allowed to create multiple va_lists to access the same

variadic arguments, either through va_start or va_copy operations. We handle this by storing

a VLM entry for each individual va_list.

input : a module m
/* Phase 1 */
foreach function f in module m do

foreach variadic call c with n arguments in f do
vcsd.count ← n;
foreach argument a of type t do

vcsd.args.push(t);
end
emit call to pre call(vcsd) before c;
emit call to post call() after c;

end

end
/* Phase 2 */
foreach function f in module m do

foreach call c to va start(list) do
emit call to list init(&list) after c;

end
foreach call c to va copy(dst, src) do

emit call to list copy(&dst,&src) after c;
end
foreach call c to va end(list) do

emit call to list free(&list) after c;
end
foreach call c to va arg(list, type) do

emit call to check arg(&list, type) before c;
end

end
Algorithm 1: The instrumentation process.
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Passing va_lists as function arguments. While uncommon, variadic functions are

allowed to pass the va_list instances they create as arguments to non-variadic functions.

This allows non-variadic functions to access variadic arguments of functions higher in the

call stack. Our design takes this into account by maintaining a list map (VLM) and by

instrumenting all va_arg operations, regardless of whether or not they are in a variadic

function.

Multi-threading support. We support multiple threads by storing our per-thread runtime

state in a thread-local variable.

Metadata format. We use a constant data structure per variadic call site, the VCSD, to

hold the number of arguments and a pointer to an array of integers identifying their type.

The check arg function therefore only performs two memory accesses, the first to load the

number of arguments and the second for the type of the argument currently being checked.

To uniquely identify the data types with an integer, we built a hashing function (described in

Algorithm 2) using a set of fixed identifiers for primitive data types and hashing them in

different ways depending on how they are aggregated (pointers, union, or struct). The last

hash acts as a terminator marker for aggregate types, which allows us to, e.g., distinguish

between {struct{ int }, int} and {struct {struct{ int, int }}}. Note that an

(unlikely) hash collision only results in two different types being accepted as equal. Such

a hashing mechanism has the advantage of being deterministic across compilation units,

removing the need for keeping a global map of type-unique id pairs. Due to the information

loss during the translation from C/C++ to LLVM IR, our type system does not distinguish

between signed and unsigned types. The required metadata is static and immutable and we

mark it as read-only, protecting it from modification. However, the VCS still needs to be

protected through other mechanisms.

Handling floating point arguments. In x86-64 ABI, floating point and non-floating
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input : a type t and an initial hash value h
output : the final hash value h
h = hash(h, typeID(t));
switch typeID(t) do

case AggregateType do
/* union, struct and pointer */
foreach c in componentTypes(t) do

h = hashType(c, h);
end

case FunctionType do
h = hashType(returnType(t), h);
foreach a in argTypes(t) do

h = hashType(a, h);
end

end

end
h = hash(h, typeID(t));
return h

Algorithm 2: Algorithm describing the type hashing function hashType. typeID returns
an unique identifier for each basic type (e.g., 32-bit integer, double), type of aggregate
type (e.g., struct, union...) and functions. hash is a simple hashing function combining
two integers. componentTypes returns the components of an aggregate type, returnType
the return type of a function prototype and argTypes the type of its arguments.

point arguments are handled differently. In case of floating point arguments, the first eight

arguments are passed in the floating point registers whereas in case of non-floating point the

first six are passed in general-purpose registers. We handle both argument types.

Support for aggregate data types. According to AMD64 System V ABI, the caller

unpacks the fields of the aggregate data types (structs and unions) if the arguments fit into

registers. This makes it hard to distinguish between composite types and regular types – if

unpacked they are indistinguishable on the callee side from arguments of these types. We

support aggregate data types even if the caller unpacks them.

Attacks preserving number and type of arguments. Our mechanism prevents attacks

that change the number of arguments or the types of individual arguments. Format string

attacks that only change one modifier can therefore be detected through the type mismatch
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even if the total number of arguments remains unchanged.

Non-variadic calls to variadic functions. Consider the following code snippet:

1 typedef void (*non_variadic)(int, int);

2

3 void variadic(int, ...) { /* ... */ }

4

5 int main() {

6 non_variadic function_ptr = variadic;

7 function_ptr(1, 2);

8 }

In this case, the function call in main to function_ptr appears to the compiler as a non-variadic

function call, since the type of the function pointer is not variadic. Therefore, our pass will

not instrument the call site, leading to potential errors.

To handle such (rare) situations appropriately, we would have to instrument all non-variadic

call sites too, leading to an unjustified overhead. Moreover, the code above represents

undefined behavior in C [77, 6.3.2.3p8] and C++ [76, 5.2.10p6], and might not work on certain

architectures where the calling convention for variadic and non-variadic function calls are

not compatible. The GNU C compiler emits a warning when a function pointer is cast to

a different type, therefore we require the developer to correct the code before applying our

solution.

Central management of the global state. To allow our runtime support functions

to be linked into the base system libraries, such as the C standard library, we made it a

static library. Turning the runtime into a shared library is possible, but would prohibit its

use during the early process initialization – until the dynamic linker has processed all of

the necessary relocations. Our runtime therefore either needs to be added solely to the C
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standard library (so that it is initialized early in the startup process) or the runtime library

must carefully use weak symbols to ensure that each symbol is only defined once if multiple

libraries are compiled with our countermeasure.

C++ exceptions and longjmp. If an exception is raised while executing a variadic function

(or one of its callees), the variadic function may not get a chance to clean up the metadata

for any va_lists it has initialized, nor may the caller of this variadic function get the chance

to clean up the type information it has pushed onto the VCS. Other functions manipulating

the thread’s stack directly, such as longjmp, present similar issues.

C++ exceptions can be handled by modifying the LLVM C++ frontend (i.e., clang) to

inject an object with a lifetime spanning from immediately before a variadic function call to

immediately after. Such an object would call pre_call in its constructor and post_call in

the destructor, leveraging the exception handling mechanism to make our implementation

exception-safe. Functions like longjmp can be instrumented to purge the portions of metadata

data structures that correspond to the discarded stack area. We did not observe any such

calls in practice and leave the implementation of handling exceptions and longjump across

variadic functions as future engineering work.

3.5 Implementation

We implemented our prototype, HexVASAN, as a sanitizer for the LLVM compiler frame-

work [91], version 3.9.1. We have chosen LLVM for its robust features on analyzing and

transforming arbitrary programs as well as extracting reliable type information. The sani-

tizer can be enabled from the C/C++ frontend (clang) by providing the -fsanitize=vasan

parameter at compile-time. No annotations or other source code changes are required for

HexVASAN. Our sanitizer does not require visibility of whole source code (see Section 3.4.3),
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but works on individual compilation units. Therefore link-time optimization (LTO) is not

required and thus fits readily into existing build systems. In addition, HexVASAN also

supports signal handlers.

HexVASAN consists of two components: a static instrumentation pass and a runtime library.

The static instrumentation pass works on LLVM IR, adding the necessary instrumentation

code to all variadic functions and their callees. The support library is statically linked to the

program and, at run-time, checks the number and type of variadic arguments as they are

used by the program. In the following we describe the two components in detail.

Static instrumentation. The implementation of the static instrumentation pass follows

the description in Section 3.4. We first iterate through all functions, looking for CallInst

instructions targeting a variadic function (either directly or indirectly), then we inspect them

and create for each one of them a read-only GlobalVariable of type vcsd t. As shown in

Listing 3.2, vcsd t is composed by an unsigned integer representing the number of arguments

of the considered call site and a pointer to an array (another GlobalVariable) with an

integer element for each argument of type t. type t is an integer uniquely identifying a data

type obtained using the hashType function presented in Algorithm 2. At this point a call to

pre call is injected before the call site, with the newly create VCSD as a parameter, and a

call to post call is injected after the call site.

During the second phase, we first identify all va_start, va_copy, and va_end operations in

the program. In the IR code, these operations appear as calls to the LLVM intrinsics

llvm.va_start, llvm.va_copy, and va_end. We instrument the operations with calls to our

runtime’s list_init, list_copy, and list_free functions respectively. We then proceed to

identify va_arg operations. Although the LLVM IR has a dedicated va_arg instruction, it is

not used on any of the platforms we tested. The va_list is instead accessed directly. Our

identification of va_arg is therefore platform-specific. On x86-64, our primary target, we

identify va_arg by recognizing accesses to the gp_offset and fp_offset fields in the x86-64
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1 struct vcsd_t {
2 unsigned count;
3 type_t *args;
4 };
5 thread_local stack<vcsd_t *> vcs;
6 thread_local map<va_list *, pair<vcsd_t *, unsigned>> vlm;
7 void pre_call(vcsd_t *arguments) {
8 vcs.push_back(arguments);
9 }

10 void post_call() {
11 vcs.pop_back();
12 }
13 void list_init(va_list *list_ptr) {
14 vlm[list_ptr] = { vcs.top(), 0 };
15 }
16 void list_free(va_list *list_ptr) {
17 vlm.erase(list_ptr);
18 }
19 void check_arg(va_list *list_ptr, type_t type) {
20 pair<vcsd_t *, unsigned> &args = vlm[list_ptr];
21 unsigned index = args.second++;
22 assert(index < args.first->count);
23 assert(args.first->args[index] == type);
24 }
25 int add(int start, ...) {
26 /* ... */
27 va_start(list, start);
28 list_init(&list);
29 do {
30 check_arg(&list, typeid(int));
31 total += va_arg(list, int);
32 } while (next != 0);
33 va_end(list);
34 list_free(&list);
35 /* ... */
36 }
37 const vcsd_t main_add_vcsd = {
38 .count = 3,
39 .args = {typeid(int), typeid(int), typeid(int)}
40 };
41 int main(int argc, const char *argv[]) {
42 /* ... */
43 pre_call(&main_add_vcsd);
44 int result = add(5, 1, 2, 0);
45 post_call();
46 printf("%d\n", result);
47 /* ... */
48 }

Listing 3.2: Simplified C++ representation of the instrumented code for Listing 3.1.38



version of the va_list structure (see Section 3.2.2). The fp_offset field is accessed whenever

the program attempts to retrieve a floating point argument from the list. The gp_offset

field is accessed to retrieve any other types of variadic arguments. We insert a call to our

runtime’s check_arg function before the instruction that accesses this field.

Listing 3.2 shows (in simplified C) how the code in Listing 3.1 would be instrumented by our

sanitizer.

Dynamic variadic type checking. The entire runtime is implemented in plain C code,

as this allows it to be linked into the standard C library without introducing a dependency

to the standard C++ library. The VCS is implemented as a thread-local stack, and the

VLM as a thread-local hash map. The pre_call and post_call functions push and pop type

information onto and from the VCS. The list_init function inserts a new entry into the

VLM, using the top element on the stack as the entry’s type information and initializing the

counter for consumed arguments to 0.

check arg looks up the type information for the va_list being accessed in the VLM and

checks if the requested argument exists (based on the counter of consumed arguments), and

if its type matches the one provided by the caller. If either of these checks fails, execution is

aborted, and the runtime will generate an error message such as the one shown in Listing 3.3.

As a consequence, the pointer to the argument is never read or written, since the pointer to

it is never dereferenced.

3.6 Evaluation

In this section we present a case study on variadic function based attacks against state-of-

the-art CFI implementations. Next, we evaluate the effectiveness of our approach as an

exploit mitigation technique. Then, we evaluate the overhead introduced by our prototype
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1 Error: Type Mismatch
2 Index is 1
3 Callee Type : 43 (32-bit Integer)
4 Caller Type : 15 (Pointer)
5 Backtrace:
6 [0] 0x4019ff <__vasan_backtrace+0x1f> at test
7 [1] 0x401837 <__vasan_check_arg+0x187> at test
8 [2] 0x8011b3afa <__vfprintf+0x20fa> at libc.so.7
9 [3] 0x8011b1816 <vfprintf_l+0x86> at libc.so.7

10 [4] 0x801200e50 <printf+0xc0> at libc.so.7
11 [5] 0x4024ae <main+0x3e> at test
12 [6] 0x4012ff <_start+0x17f> at test

Listing 3.3: Error message reported by HexVASAN

implementation on the SPEC CPU2006 integer (CINT2006) benchmarks, on Firefox using

standard JavaScript benchmarks, and on micro-benchmarks. We also evaluate how widespread

the usage of variadic functions is in SPEC CPU2006 and in Firefox 51.0.1, Chromium

58.0.3007.0, Apache 2.4.23, CPython 3.7.0, nginx 1.11.5, OpenSSL 1.1.1, Wireshark 2.2.1,

and the FreeBSD 11.0 base system.

Note that, along with testing the aforementioned software, we also developed an internal set

of regression tests. Our regression tests allow us to verify that our sanitizer correctly catches

problematic variadic function calls, and does not raise false alarms for benign calls. The test

suite explores corner cases, including trying to access arguments that have not been passed

and trying to access them using a type different from the one used at the call site.

3.6.1 Case study: CFI effectiveness

One of the attack scenarios we envision is that an attacker controls the target of an indirect

call site. If the intended target of the call site was a variadic function, the attacker could

illegally call a different variadic function that expects different variadic arguments than the

intended target (yet shares the types for all non-variadic arguments). If the intended target
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Actual target

Intended Address LLVM pi Hex
Target Prototype Taken? CFI CFI CCFI VTV CFG VASAN

Variadic
Same

Yes 7 7 7 7 7 X

No 7 X 7 7 7 X

Different
Yes X X 7 7 7 X

No X X 7 7 7 X

Non-variadic
Same

Yes X X 7 7 7 X

No X X 7 7 7 X

Different
Yes X X 7 7 7 X

No X X X 7 7 X

Overwritten
Original Arguments 7 7 7 7 7 X

Table 3.1: Detection coverage for several types of illegal calls to variadic functions. X
indicates detection, 7 indicates non-detection.

of the call site was a non-variadic function, the attacker could call a variadic function that

interprets some of the intended target’s arguments as variadic arguments.

All existing CFI mechanisms allow such attacks to some extent. The most precise CFI

mechanisms, which rely on function prototypes to classify target sets (e.g., LLVM-CFI, piCFI,

or VTV) will allow all targets with the same prototype, possibly restricting to the subset

of functions whose addresses are taken in the program. This is problematic for variadic

functions, as only non-variadic types are known statically. For example, if a function of

type int (*)(int, ...) is expected to be called from an indirect call site, then precise CFI

schemes allow calls to all other variadic functions of that type, even if those other functions

expect different types for the variadic arguments.

A second way to attack variadic functions is to overwrite their arguments directly. This

happens, for example, in format string attacks, where an attacker can overwrite the format

string to cause misinterpretation of the variadic arguments. Our implementation prototype

41



detects both of these attacks when the callee attempts to retrieve the variadic arguments using

the va_arg macro described in Section 3.2.1. Checking and enforcing the correct types for

variadic functions is only possible at runtime and any sanitizer must resort to run-time checks

to do so. CFI mechanisms must therefore be extended with a dynamic variadic argument

type check mechanism that resembles our approach to detect such violations. To show that

our tool can complement CFI, we create test programs containing several variadic functions

and one non-variadic function. The definitions of these functions are shown below.

1 int sum_ints(int n, ...);

2 int avg_longs(int n, ...);

3 int avg_doubles(int n, ...);

4 void print_longs(int n, ...);

5 void print_doubles(int n, ...);

6 int square(int n);

This program contains one indirect call site from which only the sum_ints function can be

called legally, and one indirect call site from which only the square function can be legally

called. We also introduce a memory corruption vulnerability which allows us to override the

target of both indirect calls.

We constructed the program such that sum_ints, avg_longs, print_longs, and square are all

address-taken functions. The avg_doubles and print_doubles functions are not address-taken.

Functions avg_longs, avg_doubles, print_longs, and print_doubles all expect different variadic

argument types than function sum_ints. Functions sum_ints, avg_longs, avg_doubles, and

square do, however, all have the same non-variadic prototype (int (*)(int)).

We compiled six versions of the test program, instrumenting them with, respectively, Hex-

VASAN, LLVM 3.9 Forward-Edge CFI [153], Per-Input CFI [117], CCFI [102], GCC 6.2’s

VTV [153] and Visual C++ Control Flow Guard [106]. In each version, we first built an
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attack involving a variadic function, by overriding the indirect call sites with a call to each of

the variadic functions described above. We then also tested overwriting the arguments of the

sum_ints function, without overwriting the indirect call target. Table 3.1 shows the detection

results.

LLVM Forward-Edge CFI allows calls to avg_longs and avg_doubles from the sum_ints indirect

call site because these functions have the same static type signature as the intended call target.

This implementation of CFI does not allow calls to variadic functions from non-variadic call

sites, however.

CCFI only detects calls to print_doubles, a function that is not address-taken and has a

different non-variadic prototype than square, from the square call site. It allows all of the

other illegal calls.

GCC VTV, and Visual C++ CFG allow all of the illegal calls, even if the non-variadic type

signature does not match that of the intended call target.

pi-CFI allows calls to the avg_longs function from the sum_ints indirect call site. avg_longs

is address-taken and it has the same static type signature as the intended call target. pi-CFI

does not allow illegal calls to non-address-taken functions or functions with different static

type signatures. pi-CFI also does not allow calls to variadic functions from non-variadic call

sites.

All implementations of CFI allow direct overwrites of variadic arguments, as long as the

original control flow of the program is not violated.
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3.6.2 Exploit Detection

To evaluate the effectiveness of our tool as a real-world exploit detector, we built a version of

sudo 1.8.3 with our variadic argument type checking instrumentation. sudo allows authorized

users to execute shell commands as another user, often one with a higher privilege level on the

system. If compromised, sudo can escalate the privileges of non-authorized users, making it a

popular target for attackers. Versions 1.8.0 through 1.8.3p1 of sudo contained a format string

vulnerability (CVE-2012-0809) that allowed exactly such a compromise. This vulnerability

could be exploited by passing a format string as the first argument (argv[0]) of the sudo

program. One such exploit was shown to bypass ASLR, DEP, and glibc’s FORTIFY SOURCE

protection [53]. In addition, we were able to verify that GCC 5.4.0 and clang 3.8.0 fail to

catch this exploit, even when annotating the vulnerable function with the format function

attribute [5] and setting the compiler’s format string checking (-Wformat) to the highest level.

Although it is sudo itself that calls the format string function (fprintf), our instrumentation

can only detect the violation on the callee side. We therefore had to build hardened versions

of not just the sudo binary itself, but also the C library. We chose to do this on the FreeBSD

platform, as its standard C library can be easily built using LLVM, and our implementation

therefore readily fits into the FreeBSD build process. As expected, our solution does detect

any exploit that triggers the vulnerability, producing the error message shown in Listing 3.4.

3.6.3 Prevalence of variadic functions

To collect variadic function usage in real software, we extended our instrumentation mechanism

to collect statistics about variadic functions and their calls. As shown in Table 3.2 and

Table 3.3, for each program, we collect:

Call sites. The number of function calls targeting variadic functions. We report the total
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1 $ ln -s /usr/bin/sudo %x%x%x%x
2 $ ./%x%x%x%x -D9 -A
3 --------------------------
4 Error: Index greater than Argument Count
5 Index is 1
6 Backtrace:
7 [0] 0x4053bf <__vasan_backtrace+0x1f> at sudo
8 [1] 0x405094 <__vasan_check_index+0xf4> at sudo
9 [2] 0x8015dce24 <__vfprintf+0x2174> at libc.so

10 [3] 0x8015dac52 <vfprintf_l+0x212> at libc.so
11 [4] 0x8015daab3 <vfprintf_l+0x73> at libc.so
12 [5] 0x40bdaf <sudo_debug+0xdf> at sudo
13 [6] 0x40ada3 <main+0x6c3> at sudo
14 [7] 0x40494f <_start+0x17f> at sudo

Listing 3.4: Exploit detection in sudo.

Call sites Func. Ratio

Program Tot. Ind. % Tot. A.T. Proto Tot. A.T.

Firefox 30225 1664 5.5 421 18 241 1.75 0.07

Chromium 83792 1728 2.1 794 44 396 2.01 0.11

FreeBSD 189908 7508 3.9 1368 197 367 3.73 0.53

Apache 7121 0 0 94 29 41 2.29 0.71

CPython 4183 0 0 382 0 38 10.05 0.00

nginx 1085 0 0 26 0 14 1.86 0.00

OpenSSL 4072 1 0.02 23 0 15 1.53 0.00

Wireshark 37717 0 0 469 1 110 4.26 0.01

Table 3.2: Statistics of Variadic Functions for Different Benchmarks. The second and third
columns are variadic call sites broken into “Tot.” (total) and “Ind.” (indirect); % shows the
percentage of variadic call sites. The fifth and sixth columns are for variadic functions. “A.T.”
stands for address taken. “Proto.” is the number of distinct variadic function prototypes.
“Ratio” indicates the function-per-prototypes ratio for variadic functions.

number and how many of them are indirect, since they are of particular interest for an attack

scenario where the adversary can override a function pointer.

Variadic functions. The number of variadic functions. We report their total number and
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Call sites Func. Ratio

Program Tot. Ind. % Tot. A.T. Proto Tot. A.T.

perlbench 1460 1 0.07 60 2 18 3.33 0.11

bzip2 85 0 0 3 0 3 1.00 0.00

gcc 3615 55 1.5 125 0 31 4.03 0.00

mcf 29 0 0 3 0 3 1.00 0.00

milc 424 0 0 21 0 8 2.63 0.00

namd 485 0 0 24 2 8 3.00 0.25

gobmk 2911 0 0 35 0 8 4.38 0.00

soplex 6 0 0 2 1 2 1.00 0.50

povray 1042 40 3.8 45 10 16 2.81 0.63

hmmer 671 7 1 9 1 5 1.80 0.20

sjeng 253 0 0 4 0 3 1.33 0.00

libquantum 74 0 0 91 0 7 13.00 0.00

h264ref 432 0 0 85 5 13 6.54 0.38

lbm 11 0 0 3 0 2 1.50 0.00

omnetpp 340 0 0 48 23 19 2.53 1.21

astar 42 0 0 4 1 4 1.00 0.25

sphinx3 731 0 0 20 0 5 4.00 0.00

xalancbmk 19 0 0 4 2 4 1.00 0.50

Table 3.3: Statistics of Variadic Functions for SPEC 2006 Benchmarks.

how many of them have their address taken, since CFI mechanism cannot prevent functions

with their address taken from being reachable from indirect call sites.

Variadic prototypes. The number of distinct variadic function prototypes in the program.

Functions-per-prototype. The average number of variadic functions sharing the same

prototype. This measures how many targets are available, on average, for each indirect

call sites targeting a specific prototype. In practice, this the average number of permitted

destinations for an indirect call site in the case of a perfect CFI implementation. We report
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this value both considering all the variadic functions and only those whose address is taken.

Interestingly, each benchmark we analyzed contains calls to variadic functions and several

programs (Firefox, OpenSSL, perlbench, gcc, povray, and hmmer) even contain indirect calls

to variadic functions. In addition to calling variadic functions, each benchmark also defines

numerous variadic functions (421 for Firefox, 794 for Chromium, 1368 for FreeBSD, 469

for Wireshark, and 382 for CPython). Variadic functions are therefore prevalent and used

ubiquitously in software. Adversaries have plenty of opportunities to modify these calls and

to attack the implicit contract between caller and callee. The compiler is unable to enforce

any static safety guarantees when calling these functions, either for the number of arguments,

nor their types. In addition, many of the benchmarks have variadic functions that are called

indirectly, often with their address being taken. Looking at Firefox, a large piece of software,

the numbers are even more staggering with several thousand indirect call sites that target

variadic functions and 241 different variadic prototypes.

The prevalence of variadic functions leaves both a large attack surface for attackers to either

redirect variadic calls to alternate locations (even if defense mechanisms like CFI are present)

or to modify the arguments so that callees misinterpret the supplied arguments (similar to

extended format string attacks).

In addition, the compiler has no insight into these functions and cannot statically check if

the programmer supplied the correct parameters. Our sanitizer identified three interesting

cases in omnetpp, one of the SPEC CPU2006 benchmarks that implements a discrete event

simulator. The benchmark calls a variadic functions with a mismatched type, where it expects

a char * but receives a NULL, which has type void *. Listing 3.5 shows the offending code.

We also identify a bug in SPEC CPU2006’s perlbench. This benchmark passes the result of

a subtraction of two character pointers as an argument to a variadic function. At the call

site, this argument is a machine word-sized integer (i.e., 64-bits integer on our test platform).
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1 static sEnumBuilder _EtherMessageKind( "EtherMessageKind",
2 JAM_SIGNAL, "JAM_SIGNAL",
3 ETH_FRAME, "ETH_FRAME",
4 ETH_PAUSE, "ETH_PAUSE",
5 ETHCTRL_DATA, "ETHCTRL_DATA",
6 ETHCTRL_REGISTER_DSAP, "ETHCTRL_REGISTER_DSAP",
7 ETHCTRL_DEREGISTER_DSAP, "ETHCTRL_DEREGISTER_DSAP",
8 ETHCTRL_SENDPAUSE, "ETHCTRL_SENDPAUSE",
9 0, NULL

10 );

Listing 3.5: Variadic violation in omnetpp.

The callee truncates this argument to a 32-bit integer by calling va arg(list, int). Our

implementation prototype reports this (likely unintended) truncation as a violation.

3.6.4 Firefox

We evaluate the performance of our implementation prototype by instrumenting Firefox

(51.0.1) and using three different browser benchmark suites: Octane, JetStream, and Kraken.

Table 3.4 shows the comparison between the HexVASAN instrumented Firefox and native

Firefox. To reduce variance between individual runs, we averaged fifteen runs for each

benchmark (after one warmup run). For each run we started Firefox, ran the benchmark,

Benchmark Native HexVASAN

Octane
average 31241.80 30907.73
stddev 2449.82 2442.82
overhead -1.08%

JetStream
average 200.76 198.75
stddev 0.66 1.68
overhead -1.01%

Kraken
average [ms] 832.48 832.41
stddev [ms] 7.41 12.71
overhead 0.01%

Table 3.4: Performance overhead on Firefox benchmarks. For Octane and JetStream higher
is better, while for Kraken lower is better.
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and closed the browser. HexVASAN incurs only 1.08% and 1.01% overhead for Octane

and JetStream respectively and speeds up around 0.01% for Kraken. These numbers are

indistinguishable from measurement noise. Octane [4] and JetStream measure the time a test

takes to complete and then assign a score that is inversely proportional to the runtime, whereas

Kraken [3] measures the speed of test cases gathered from different real-world applications

and libraries.

3.6.5 SPEC CPU2006

We measure HexVASAN’s run-time overhead by running the SPEC CPU2006 integer

(CINT2006) benchmarks on an Ubuntu 14.04.5 LTS machine with an Intel Xeon E5-2660

CPU and 64 GiB of RAM. We ran each benchmark program on its reference inputs and

measured the average run-time over three runs. Figure 3.2 shows the results of these tests. We

compiled each benchmark with a vanilla clang/LLVM 3.9.1 compiler and optimization level

-O3 to establish a baseline. We then compiled the benchmarks with our modified clang/LLVM

3.9.1 compiler to generate the HexVASAN results.

The geometric mean overhead in these benchmarks was just 0.45%, indistinguishable from mea-

surement noise. The only individual benchmark result that stands out is that of libquantum.

This benchmark program performed 880M variadic function calls in a run of just 433 seconds.

3.6.6 Micro-benchmarks

Besides evaluating large benchmarks, we also measure HexVASAN’s runtime overhead on

a set of micro-benchmarks. We have written test cases for variadic functions with different

number of arguments, in which we repeatedly invoke the variadic functions. Table 3.5 shows

the comparison between the native and HexVASAN-instrumented micro-benchmarks. Overall,
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Figure 3.2: Run-time overhead of HexVASAN in the SPECint CPU2006 benchmarks, com-
pared to baseline LLVM 3.9.1 performance.

# calls Native [µs] HexVASAN [µs]

Variadic function
argument count: 3 1 0 0

100 2 12
1000 20 125

Variadic function
argument count: 12 1 0 0

100 6 22
1000 55 198

Table 3.5: Performance overhead in micro-benchmarks.

HexVASAN incurs runtime overheads of 4-6x for variadic function calls due to the additional

security checks. In real-world programs, however, variadic functions are invoked rarely, so

HexVASAN has little impact on the overall runtime performance.
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Chapter 4

Moving Beyond Data Space

Randomization

4.1 Motivation

Data-only attacks [29, 74, 75, 32] corrupt or leak program data without violating a control

flow integrity (CFI) policy. Prior work showed that these attacks are powerful enough to

escalate the program’s privileges, perform Turing-complete computation, or execute arbitrary

system calls, all while bypassing code-reuse defenses such as CFI [55, 43, 29, 74, 75, 122].

To combat data-only attacks, defenders can either retrofit memory-safety techniques such as

bounds checking into the program [148], rewrite the program in a safer programming language

or language dialect [110, 83, 50], or apply exploit mitigations such as Data-Flow Integrity

(DFI) [25], Write Integrity Testing (WIT) [8], or Data Space Randomization (DSR) [15, 20].

Historically, exploit mitigations have been a focus of research, since they usually require less

developer effort while also being applicable to legacy software.
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Data Space Randomization [15, 20] is a probabilistic exploit mitigation technique that

randomizes the representation of data in memory to prevent deterministic corruption of data

or plaintext information leakage. DSR applies static program analysis to partition all data

accesses into disjoint equivalence classes based on the aliasing relationships between variables.

A pair of variables will be in the same equivalence class if and only if the analysis determines

that legitimate data flows could exist between the two.

At run time, the program then randomizes the representation of memory objects that fall

into different classes. This can be implemented efficiently by using lightweight XOR operations

with a data-randomization mask (or “key”) that is unique to each equivalence class. The

compiler generates masks for each data partition and embeds them directly in the binary

code of the application [15, 20], or stores them in a dedicated key cache [14]. In both cases,

the masks can be protected from memory exploit-based disclosure, either by giving the binary

code pages execute-only permissions [38, 13, 59], or by modifying the CPU such that the key

cache can only be accessed through custom data access instructions [14].

DSR is only effective as long as the masks remain secret. However, there are a number

of possible ways to disclose masks, even if they cannot be read directly. For instance, an

adversary could leverage memory vulnerabilities to disclose masked data. If the attacker

can choose or inject data (chosen-plaintext attack, CPA), knows the data (known-plaintext

attack, KPA), or guess them with high probability, he can infer the value of a mask used

for an equivalence class and all variables in it. Since all variables in an equivalence class

have the same mask applied to them, this could then enable further leakage via a JIT-ROP

style attack [145]. Alternatively, adversaries could exploit a remote side channel, such as

NetSpectre [137], to directly disclose the secret key from the binary or the key cache.

In this chapter, we first demonstrate two novel attacks against DSR. Our attacks disclose

DSR masks using direct memory disclosure or side-channel attacks. This allows us to write

arbitrary plaintext data into the entire equivalence class whose mask we disclosed. Both
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of our attacks are sufficiently generic to work against any prior implementation of DSR,

including those that rely on hardware support to protect keys against disclosure, because

they exploit design choices in the DSR scheme rather than implementation flaws.

Second, we propose a new data representation rerandomization scheme which thwarts our

presented and similar attacks by dynamically rerandomizing the masks and updating all

program data accordingly. Our defense scheme supports both periodic and on-demand

rerandomization. Since purely periodic key refresh could be subject to well-timed attacks, we

provide the option to rerandomize at chosen strategic points in the execution of the protected

application, thereby ensuring that critical program actions will always trigger rerandomization.

To the best of our knowledge, we are the first to present a working rerandomization framework

to protect data.

Rerandomizing masks at run time poses unique challenges. For instance, old data represen-

tations will no longer be valid under the new mask values. This means, that all masked

values have to be tracked and updated to ensure correctness. This is non-trivial, since the

program might propagate masked values across registers and memory during execution, and

rerandomization can trigger at any point in time. To enable reliable rerandomization of

data, we add metadata sufficient to identify all masked data and the locations of the masks

themselves at any point during program execution.

In summary, our contributions are threefold:

• We present two novel attacks against the current state of the art data defense DSR.

Our attacks allow us to exploit attacker-controlled write operations to write arbitrary

plaintext data to an encrypted memory location.

• We identify the key challenges towards building an additional layer of moving target

defense on top of DSR which rerandomizes the DSR keys and data. We present a

new scheme which addresses these challenges. Our prototype, CoDaRR (Continuous

53



Data Re-Randomization), supports on-demand as well as continuous rerandomization

of data. Our evaluation shows that our rerandomization solution is resilient to the

attacks against traditional DSR schemes.

• We evaluate the performance of implementation prototype using benchmark suites

as well as applications such as Nginx and Thttpd. Our experiments show acceptable

performance in most cases.

4.2 Background

Data Space Randomization DSR thwarts data flows that cannot occur in memory-safe

executions of the program by encrypting program variables when they are stored to memory

and decrypting them when they are loaded. This way, when the program uses the base

pointer of one variable to access a variable in a different equivalence class, the resulting access

uses the wrong DR key and yields unpredictable program behavior. An ideal implementation

of DSR has the following properties:

1. the DR key used for each memory access should be known a priori and embedded into

the binary statically as a read-only constant or an instruction operand;

2. program variables and struct fields should share the same DR key only when they truly

alias;

3. the program should randomly generate new masks with high entropy at load time;

4. the program should use strong cryptographic primitives to encrypt memory.

Such an ideal implementation would probabilistically stop most memory corruption attacks,

regardless of whether they hijack the control flow of the program or not. Two of the four
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1 int a, b, c;
2 int * ptr, * ptr2, * ptr3;
3

4 if (cond == 1) {
5 ptr = &a; ptr2 = &b;
6 foo(ptr);
7 } else {
8 ptr = &b; ptr2 = &c;
9 foo(ptr3);

10 }
11

12 *ptr = 2;
13

14 void foo(int * p) { /* ... */ }

Listing 4.1: A simple C program with pointer aliasing

properties (2 and 4) are infeasible in practice, however. To implement property 2, the program

needs to know the target object for every memory access instruction, as well as the offset

within the target. This requires the compiler to run a fully precise flow-, context-, and

field-sensitive pointer analysis, which is undecidable in the general case [88, 131], and does not

scale to large programs even when approximated. Implementing property 4 is not practical

either because of the high run-time overhead it would incur. Existing implementations of

DSR therefore relax both of these properties.

Key Assignment To make DSR practical, existing implementations statically assign masks

to memory read and write instructions based on the set of objects they can access. Because

most programs use pointers, DSR must take pointer aliasing into account when doing so.

Consider, for example, the program shown in Listing 4.1. In this program, variable ptr may

point to variables a or b, depending on which path the program executed. The program

assigns the value 2 to the target of variable ptr and, since both of the possible targets are

stored in memory, the value should be encrypted. To allow for encryption with a single, static

DR key, DSR assigns the same masks to all variables in ptr’s points-to set. All memory

accesses to a variable in ptr’s points-to set must similarly use the same DR key. This leads
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the DSR implementation to merge points-to sets and to construct “equivalence classes” out

of pointers with overlapping points-to sets. In the example, pointers ptr and ptr2 are put in

the same equivalence class because they can both target variable b. Similarly, variables a, b,

and c will be encrypted with the same key so they can be accessed from either pointer.

Bhatkar and Sekar’s implementation of DSR [15] constructs equivalence classes using Steens-

gaard’s pointer analysis algorithm [149]. This algorithm runs a flow- and context-insensitive

pass over all program statements and merges the points-to sets of both pointers when-

ever one pointer is assigned to another. Formally, the analysis would generate constraint

POINTS TO(p) = POINTS TO(q) for every assignment statement p = q. Cadar et

al.’s DSR implementation [20] uses Andersen’s pointer analysis [11], which builds subset

constraints for all program statements. Under this analysis, an assignment of p = q would

generate constraint POINTS TO(p) ⊇ POINTS TO(q). Contrary to Bhatkar and Sekar’s

implementation, Cadar et al.’s implementation computes equivalence classes in a separate

step after calculating points-to sets, whereas in the former implementation, every points-to

set is an equivalence class. Belleville et al.’s HARD uses a context-sensitive version of

Steensgaard’s analysis [14]. The advantage of this implementation is that it can specialize

the call to function foo based on its calling context, thereby avoiding the need to collapse

ptr and ptr3’s points-to sets into the same equivalence class because function argument p

might point to both sets (in different calling contexts).

Lightweight Encryption After constructing the equivalence classes, the DSR scheme

inserts the necessary encryption and decryption operations. All existing implementations use

XOR masking for this purpose. While XOR masking is not cryptographically secure under

key reuse it is more efficient than using symmetric ciphers. Software implementations of

DSR embed the XOR keys directly into the binary code of the program and insert metadata

to mark the locations of the keys. In this way, the DSR runtime component can randomly
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choose keys at program startup and rewrite the binary code in memory. Previous work by

Belleville et al. [14] reported an average run-time overhead of 40.96% in fully instrumented

programs with context-sensitive masks.

Belleville et al. [14] further presented a hardware implementation of DSR, which stores the

masks in a protected memory key table that is backed by a dedicated cache. At run time,

the encryption operations look up XOR keys in the key table by their index. Therefore, this

implementation is more resilient to direct disclosure attacks, since the XOR keys do not

appear anywhere in the binary code of the program. This dedicated hardware support for

masked loads and stores reduces the overhead of DSR to 6.61%.

4.3 Attacking DSR

All randomizing mitigations rely on keeping secret information from an adversary. In the

case of data space randomization, this secret information is the random XOR key used to

mask data in memory. If the attacker can disclose the mask for a targeted class of data, they

can undo the effects of DSR and proceed with a traditional memory-corruption attack. In

the following motivating attacks against compile-time DSR, we show that we can disclose a

mask and bypass DSR by leaking information from the target.

We discuss two different approaches to leaking the secret key and demonstrate that, with a

single masked word value from the heap, we can break the guarantees of DSR. First we show

a family of attacks that exploits the cryptographic weakness of the XOR masking used in all

prior DSR implementations. We then demonstrate a side-channel attack that can disclose

keys regardless of the chosen encryption primitive without relying on any properties of the

targeted data. To show the practical viability of our attacks, we instantiate them to bypass a

DSR protecting the Nginx web server.
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4.3.1 Threat Model

The goal of an adversary in this setting is to derandomize and modify DSR-protected

data in order to facilitate a data-only exploit, bypassing deployed control-flow hijacking

defenses. We note that such multi-step exploits are increasingly popular and common in

practice [29, 35, 74, 75, 43, 55, 80].

In our attacks we show how an adversary can disclose information from the protected

application in one of two ways: (i) disclosing masked data directly via a memory disclosure

vulnerability, or (ii) gradually disclosing data via a side-channel attack such as Spectre [85]

or its remote variant NetSpectre [137]. After exploiting one of these disclosure attacks, we

assume the attacker can then control a memory-corruption vulnerability sufficient to write to

the targeted address once they have computed the required payload.

We target the ideal (theoretical) DSR implementation with perfect alias analysis, i.e., we do

not rely on implementation weaknesses of any concrete DSR defense. In our direct memory

disclosure attacks we assume the DSR implementation uses XOR as the data randomization

operation. Although all previous software implementations of DSR rely on XOR masking for

performance reasons, our side-channel attack also bypasses implementations that use stronger

cryptographic primitives [15, 20, 14].

In summary, we assume the following properties:

• Vulnerable application: the target application is a user-space process containing a

memory-corruption vulnerability that can overwrite the targeted data.

• Code-injection and code-reuse defenses: control-flow hijacking attacks are pre-

vented by deployed defenses such as ASLR [123], DEP [104], and CFI [6].

• Data Space Randomization: the memory representation of the data the attacker
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AS:

AT:

V0

V0 ⊕ KW ⊕ KR 

AP:VP ⊕ KT ⊕ KR 

ℝ

!

!

ℝ

let X = V0 ⊕ KW ⊕ KR ⊕ V0 

let Y = VP ⊕ KT ⊕ KR ⊕ VP 

V ⊕ X ⊕ Y V ⊕ KT

V ⊕ KW V ⊕ KW

VP ⊕ KT

V ⊕ KT

Figure 4.1: Direct memory disclosure attack on a reused XOR key. R: read V, unmasking
with key KR, W: write V, masking with key KW .

is attempting to modify (targeted data) is randomized by DSR. We assume the DSR

implementation stores its keys as constants embedded in execute-only code memory so

that the keys are not accessible via any direct memory disclosure vulnerabilities.

4.3.2 Attack 1 – Direct Memory Disclosure

XOR masking is not secure when a key is reused to encrypt more than a single value in

memory, and we can exploit this property to derandomize data under some circumstances.

In Attack 1, we assume that the attacker can find a memory location already containing a

known plaintext value masked with the target key, KT . In practice, attackers should be able

to find many such targets because a majority number of variables are initialized with zero and

more than one variable often share the same key as sound pointer analyses typically overap-

proximate alias sets [12, 14]. Figure 4.1 illustrates an example attack on reused XOR masking.

Step 1: Derive X = KW ⊕KR. We first use attacker-controlled write operation W to write a
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known plaintext value V0 (e.g., zero) to a scratch memory location AS that will not cause

the target process to crash. We then read AS using attacker-controlled read operation R,

disclosing the value V0 ⊕KW ⊕KR. Since we know V0, we can derive X = KW ⊕KR.

Step 2: Derive Y = KT ⊕ KR. Next, we need to know the plaintext value of a memory

location masked with target key KT . If KT is only ever used to mask unknown values, this

attack will only succeed with the probability that an adversary correctly guesses the relevant

bits of one of these plaintext values. Assuming we know the plaintext value VP stored at

AP but masked with KT , we can read this value through R to disclose VP ⊕KT ⊕KR, from

which we can derive Y = KT ⊕KR.

Step 3: Overwrite target data. With the values from steps 1 and 2, we have full

control of the overwrite of AT . Assume we want to overwrite AT with value V . We

can write value V ⊕X⊕Y using W, which results in storing the value V ⊕KT to AT , as desired.

For a concrete example of this attack, consider the ngx chain s struct in Nginx. This linked

list struct has two fields, a buffer pointer and a next pointer, which are both masked with

the same key. The next field of this object is often null, so letting the address of a null

next field be AP in the above attack description means that VP = 0 and we can derive the

key for the struct, allowing us to rewrite the buffer pointer to a chosen value. While this

particular example assumes field-insensitive pointer analysis, the attack still applies as long

as the attacker can find a known or controllable encrypted value in the target class.

4.3.3 Attack 2 – Transient Execution

Even without XOR key reuse or a direct memory disclosure, the attacker may still be able

to disclose DR keys by exploiting side channel observations. Spectre [85] attacks allow an
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adversary to exfiltrate program internals, such as register contents, by causing the target

program to speculatively execute an appropriate Spectre gadget. In the following we show

how the attacker can leverage this covert channel to disclose DR keys while they are stored

in machine registers (Attack 2.a) or by speculatively reading execute-only program memory

(Attack 2.b).

Attack 2.a – Reading a mask from a register with Spectre V2

In this attack we target a DSR mask while it is stored in a register across an indirect call.

Listing 4.2 shows an example of code from Nginx that fits the requirements of this attack.

The program loads a DR key into register R15 at label a:. It then uses this key, preserves

it across the indirect call at b:, and reuses the key at c:. If an adversary can control the

prediction of the call at b:, they can cause transient execution of a chosen gadget that leaks

some bit(s) from R15.

To demonstrate the practical viability of this attack approach, we created a proof-of-concept

attack using the BTB-CA-IP Spectre variant [23] targeting the indirect call in Listing 4.2.

From an attack process co-located with the target Nginx process, we mistrain the target

branch by repeatedly executing an indirect call from the address b: to the address where the

Spectre gadget is located in the target address space. After sufficient mistraining we send a

POST request to the server which triggers the indirect call with attacker control of the third

parameter, size, which we use to control which bit of the mask the Spectre gadget will leak.

We can then observe cache effects of the speculative execution using a timing side channel

such as FLUSH+RELOAD [165] or PRIME+PROBE [154].

With the attacking and target processes pinned to the same core of an Intel Core i5-4690K

CPU, we were able to successfully leak a 64-bit mask value in about 25 seconds, although

further optimization could lower this time. We initially found that our targeted branch
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1 ngx_http_do_read_client_request_body:
2 a: MOV R15,0x17c3692abe5f0087 ; Load mask into R15
3 XOR RAX,R15 ; Mask RAX
4

...

5 b: CALL qword ptr [R14 + 0x20] ; c->recv(c, buf, size);
6

...

7 c: XOR RAX,R15 ; Mask RAX

Listing 4.2: Target indirect call in Nginx

destination address was almost always cached and could not be reliably mispredicted, so we

added a cache flush of this address before the call in Nginx. In a practical setting the attacker

could force this value out of cache by evicting its cache set with congruent loads [126, 98]. To

simplify our attack implementation we injected a Spectre gadget that leaks a bit of R15 by

loading one of two different array values depending on value of the selected bit. Our attack

observes the cache effects of this load using a FLUSH+RELOAD attack with clflush and

timing instructions we added to the target Nginx process. In practice, an adversary could

observe this covert channel from the attacking process or even remotely, as in the NetSpectre

attack [137].

Attack 2.b – Reading masks from execute-only memory with Meltdown-PK

As mentioned in Section 4.3.1, we assume masks embedded in program code are protected

from direct disclosure by execute-only memory permissions. However, because speculative

execution occurs before the CPU checks memory permissions, the attacker may be able to

speculatively compute using values from execute-only memory regions and observe side-effects

of that computation. Canella et al. demonstrated that they could successfully read values

from memory protected by Intel’s Memory Protection Keys (MPK) using a Meltdown variant

they term Meltdown-PK [23]. We speculate that such an adversary may be able to leak

masks from a remote target process by using speculative execution to suppress the resulting

exception, although we have not explored this idea further.
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4.4 Design of a countermeasure
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Figure 4.2: Overview of CoDaRR’s main components.

As we show in the previous section, all existing DSR implementations are vulnerable to real-

world attacks either based on memory corruption or through side channels. We designed our

mitigation to be resilient to such attacks. By refreshing the randomization secrets dynamically

at run time and updating the program’s memory representation accordingly, we ensure that

there is not enough time for an adversary to launch an attack after disclosing the necessary

secret information. However, since purely periodic rerandomization approaches are prone to

timing-window attacks [145, 13], we also incorporate event-driven, on-demand rerandomization.

Our mitigation is, to the best of our knowledge, the first to apply rerandomization to the

program data representation and could only be realized after we tackled the challenges

outlined in the following subsection.

4.4.1 Challenges

Several other exploit mitigations also implement rerandomization, but focus exclusively on

code while leaving the data untouched [99, 60, 16, 30, 163, 162, 31]. Designing a rerandom-

ization system for data is fundamentally more difficult than for binary code for the following

reasons:
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(C-1) Enabling dynamic rerandomization of data. All existing rerandomization ap-

proaches focus on relocating and updating code pages since this can be implemented efficiently

by routing control-flow transfers through an indirection layer to dynamically adjust code

pointers on-the-fly [163, 30, 162]. Applying a similar approach to data transfers would

incur excessive run-time overhead, however, as memory access instructions occur much more

frequently in real-world programs [9]. As a result, rerandomization of data currently remains

an open challenge.

Our primary goal is to enable dynamic rerandomization of data. To achieve this, our solution

must refresh masks and re-encrypt all encrypted data accordingly, which means that our

solution needs to accurately track all keys and encrypted data. There are several reasons

why implementing dynamic key updates is technically challenging: for instance, data accesses

under DSR are not atomic operations. A load operation, for example, takes at least two

atomic steps, since the load instruction returns a masked value that must be unmasked using

a separate instruction. Moreover, updating the keys invalidates all references to the data

that still use the old key.

(C-2) Securing the rerandomization mechanism. Our threat model assumes an at-

tacker with the ability to trigger a memory-corruption vulnerability in the victim application.

This means that application memory could be disclosed or tampered with unless it is protected

by additional defenses. For data randomization specifically, this means the masks must be

protected. In the case of static DSR, where all keys are embedded directly into the protected

application’s code, one could simply apply an execute-only memory mechanism to protect

the keys against disclosure attacks [38, 13, 59]. Rerandomization adds a layer of complexity,

since the memory that stores the masks must, at least briefly, be writable.
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(C-3) Minimizing run-time overhead. In contrast to static Data Randomization, which

happens entirely at compile time, our approach incorporates a runtime component to contin-

uously refresh the randomization secrets (i.e., masks). Minimizing any performance overhead

introduced by the runtime monitor is another key challenge.

4.4.2 Overview

Figure 4.2 shows the high-level design of our solution and the major components: a compile-

time analysis and instrumentation pass, a run-time allocation tracking mechanism embedded

into the protected program, and a run-time process monitor that refreshes keys and updates

memory.

The compiler first analyzes the source code of the application. Specifically, we compute

equivalence classes using a points-to analysis. This is similar to previous DSR schemes. In

the figure, the application defines two data structures — class-1 and class-2 — which the

analysis places into different equivalence classes (see Section 4.4.3).

To provide the information necessary for challenge C-1, we extend the compiler to add

metadata tracking the locations of masks in registers and spilled to the stack (see Section 4.4.4).

The compiler also adds metadata tracking the masks used to encrypt global values, and

dynamic instrumentation to track the masks used in the heap (see Section 4.4.5). Combined,

the static and dynamic metadata provide our run-time monitor sufficient information to

accurately locate and update encrypted values on the heap and in global data as well as DR

keys in registers and on the stack.

After compiling the protected application, we launch it along with our runtime monitoring

and rerandomization component (see Section 4.4.6). Figure 4.3 illustrates the operation of

the monitor at run time. The run-time monitor component runs as a separate process and is
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therefore fully isolated from the target application. This separation protects randomization

secrets and metadata from disclosure by an attacker from the protected process and partially

addresses challenge C-2. The runtime component pauses the execution of the protected

program whenever (i) the program triggers dynamic rerandomization or (ii) the periodic

refresh interval expires (Step 1 ). The monitor is aware of the instrumented code locations

that encrypt and decrypt masked values and has fine-grained control over the paused program.

The monitor, when pausing the program, can check if there are any in-flight, encrypted values

in registers. This can occur in two such cases: either (i) the store instruction following an

encryption operation or (ii) the decryption instruction following a load from memory has not

yet been executed. The monitor can step forward the execution of the paused program until

the pending operation is completed.

When dynamic rerandomization is triggered eventually the monitor refreshes the keys and

patches the necessary memory locations and references to use the new keys. It begins by

unmapping the old code from memory and mapping in its place a fresh code section with

new embedded keys (Step 2 ). This allows us to minimize the time required to update the

code, thus partially addressing challenge C-3, while generically supporting fine-grained code

rerandomization at the same time. Since the new code may have a different layout, the

monitor fixes up all code pointers referring to the old code as detailed in Sections 4.5.1 and

4.5.1. Next, in Step 3 the monitor must update mask values currently stored in registers

and on the stack (see Section 4.4.6). Finally, the monitor updates the encrypted data

(Steps 4 and 5 ). Using the aforementioned metadata, it locates each memory value that

needs to be updated and re-encrypts the value with its new mask.
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Figure 4.3: CoDaRR run-time rerandomization process.

4.4.3 Compile-time Analysis and Instrumentation

As our first step in preparing a program for data rerandomization, we run Lattner et al.’s [92]

Data Structure Analysis (DSA) on the program. DSA is a Steensgaard-style pointer analysis

that generates points-to sets for the whole program. We perform context-insensitive analysis

using DSA and the equivalence classes our tool computes should therefore be identical to those

constructed by Bhatkar and Sekar’s DSR [15, 20], which we use as a baseline for comparison.

We then generate a random, word-sized mask value (i.e., 64-bit keys on x86 64 platforms)

for each equivalence class and instrument the program at the compiler IR level. We add

an XOR operation before all memory stores and after all memory loads with the mask

for the corresponding equivalence class. We apply the encryption uniformly to the whole

program, and therefore do not exclude “safe” equivalence classes, contrary to prior DSR

schemes [15, 20], since these values may still be corrupted by other, unsafe writes.1 Similar

1Using an attack similar to that described in Section 4.3.2, an attacker with arbitrary read and write
primitives can derive the mask used for the arbitrary write operation in a straightforward manner.
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to prior DSR schemes [14], we only use word-sized keys and use bitwise key shifting to handle

unaligned memory accesses.

Note, that our rerandomization mechanism is agnostic to the details of the analysis and

instrumentation passes. Our approach could easily support other pointer analyses or stronger

forms of encryption.

4.4.4 Mask Table and Tracking Live Masks

After adding the DSR instrumentation, we generate a new metadata section, the Mask Table,

containing all of the masks we use in the program, laid out in a contiguous array. The

run-time monitor uses this Mask Table as a lookup table (see Section 4.4.6), but it is never

loaded into memory by the application itself. The metadata that tracks each value’s mask

refers to masks by indices in this table to avoid exposing the mask themselves to an attacker.

Mask constants must be loaded into a CPU register before they can be used to encrypt or

decrypt data in memory. As in prior work [15, 20, 14], our compiler instrumentation does not

prevent mask constants from spilling to the stack, although one could do so, potentially with

additional performance and code size overhead. To support rerandomization, our solution

therefore needs to keep track of which registers and stack slots currently store masks at the

time of rerandomization. One of the challenges to achieving this is to differentiate between

actual program values and the keys. To allow for rerandomization at any point of time during

program execution, the monitor must know exactly where these masks reside (i.e., in which

registers or stack slots) at any given time during the execution of the program.

Instrumentation to dynamically track all mask locations at run time would be slow, since the

program must load a mask into a register every encrypted memory operation. To address

this problem, we instead emit static metadata that allows the monitor to compute which
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registers and stack slots contain keys at each program execution point. Specifically, we create

an artificial local variable in debug information for every mask constant introduced by DSR,

named so that it corresponds to the mask’s index in the Mask Table. We then associate each

encryption/decryption operation that uses a mask constant with the mask’s artificial variable

in the program’s debug metadata.

The compiler emits DWARF information for mask constants by treating them as local

variables, which we force even when compiling at the highest optimization level and with

symbol table stripping enabled. This DWARF information contains the symbol name (which

references an index in the Mask Table), and describes the location of the associated value

throughout the execution of the function.

Note, that the artificial local variables we introduce do not change the runtime behavior or

logic of the program in any way, but only affect the debug information generated by the

compiler.

As is the case for the Mask Table, the compiler writes the DWARF mask metadata into

a file section which is never loaded into memory by the program itself. We only load this

section into the runtime monitor’s address space. Our DWARF mask metadata is therefore

not accessible to an attacker.

4.4.5 Value Mask Mappings

To rerandomize the data representation at run time, our solution must be able to decrypt and

re-encrypt all masked data. This requires three steps: locating all masked values, looking up

the masks for each value, and re-encrypting all locations with an updated masking key. To

support the first two steps, we generate static metadata for global and static local variables,

which we call the Static Mask Mapping, and maintain run-time variable metadata for dynamic
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allocations on the heap and stack (the Dynamic Mask Mapping). These mappings specify

the size, location, and mask of each global variable and heap object, with the mask encoded

as an index into the Mask Table.

We generate the Static Mask Mapping at compile time, after we apply the DSR instrumentation

and generate the Mask Table. To generate the run-time metadata for dynamic allocations,

we hook all memory allocation sites with a small run-time library we embed into the program.

Our allocation hook stores the location, size, and mask index of the newly allocated object in

the Dynamic Mask Mapping. Our deallocation hook invalidates the metadata.

The Static Mask Mapping is only on located disk and is never loaded into the protected

program’s address space. The Dynamic Mask Mapping is stored in a shadow memory region

in the program’s address space, and could therefore be a target for an attacker. However,

since the metadata only refers to masks by their index in the Mask Table, disclosure does

not reveal the mask values themselves. We refer to Section 4.7.2 for an in-depth discussion

on the security of the Dynamic Mask Mapping.

4.4.6 Run-time Monitor

As depicted in Figure 4.3, our run-time monitor is a standalone application that attaches

to the protected process and rerandomizes its masks periodically or on demand. When

rerandomization is triggered, the monitor first suspends all threads in the program, then

updates all masks in the code, in registers, and on the stack. Next, it decrypts all encrypted

variables with the old masks and re-encrypts them with the new masks. Finally, it resumes

all program threads and repeats this process on set intervals. The protected program can

also trigger rerandomization at strategic points during execution.
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Updating Code

(Step 2 )

To replace masks in the binary code, we replace all code segments in the program with

entirely new code segments. Before rerandomization we compile one or more additional variant

binaries with different random masks. During rerandomization, we remove the executable

code segment of the original binary from memory and map in the executable code segment

from a new binary. This approach ensures that we update all masks correctly, without having

to mark their locations in the code and minimizes the time required to update the masks for

large programs. We do, however, have to account for differences in the code layouts between

the original binary and the new binary we mapped in. We do this by updating all code

pointers using a strategy laid out in Section 4.5.1.

We could instead use a binary rewriter component to patch the code in-place as some of

the existing code rerandomization tools do. Our approach, in our view, is the most generic

strategy for DR key replacement as it allows us to use either pre-compiled variants or variants

generated at run time by a separate binary rewriter. We discuss this design choice further in

Section 4.7.1.

Updating Masks In Registers and Stack

(Step 3 )

After replacing the code segment and updating code pointers, we generate call stack infor-

mation for all threads in the program and identify all active stack frames. Next, we consult

the DWARF mask metadata (see Section 4.4.4) to identify all registers and stack slots that

currently hold masks. For each mask, we look up its index in the Mask Table of the new

variant, and we replace the mask value with the new mask.
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Re-Encrypting Global, Stack and Heap Data

(Steps 4 & 5 )

Next, we iterate through all global variables marked in the Static Mask Mapping (see

Section 4.4.5), look up their location, size, and masks, and re-encrypt them with the

corresponding mask in the new binary. Also included in the Static Mask Mapping are

static local variables, which are actually allocated in the global data section, so we re-encrypt

these allocations along with the globals.

Finally, we re-encrypt heap objects and dynamically allocated stack objects by consulting

the Dynamic Mask Mapping in the program’s shadow memory region.

4.5 Details of our proof-of-concept implementation

We implemented our compile-time analysis and instrumentation passes on top of Clang/LLVM

v3.8. We based our static DSR instrumentation on an existing implementation of DSR [132],

and modified the instrumentation passes to generate the necessary mask metadata (see

Section 4.4.4) and to add calls to our run-time heap metadata management functions (see

Section 4.4.5). However, our proposed data rerandomization techniques are not tied to a

particular implementation of DSR. We can extend support to other implementations by

making similar changes to the compile-time instrumentation passes.

We developed the run-time monitor as a Linux application that attaches to the protected

process with the ptrace API. In our current implementation, the monitor waits in the

background until the rerandomization interval has expired, at which point we attach the

monitor to the program and start the rerandomization process. The monitor can also be

initiated with chosen rerandomization points (program counter values) in the program to
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trigger rerandomization strategically. This latter approach works by setting breakpoints on

specific code paths. By hitting a breakpoint, the program generates an exception, which the

monitor catches.

4.5.1 Code Pointer Fixups

To minimize the rerandomization overhead and support fine-grained code layout randomiza-

tion, the monitor rerandomizes masks by replacing the entire code segment of the program

with code from a different binary. This means we have to adjust some code pointers after

applying rerandomization. Our current implementation does not dynamically track the

location of code pointers. We instead use heuristics to find and update a part of the relevant

pointers. While these heuristics do not guarantee correctness, similar ones were used in

prior work [99], and we found them to be sufficient for the programs we tested with. Prior

work [163, 30, 162] has proposed mechanisms to allow more precise updates of code pointers,

any of which could be added to our approach.

Updating Return Addresses

After mapping in the new code segments, we start by updating all return addresses to reflect

the new code layout. We use the following heuristic to calculate the updated return addresses:

first, we disassemble the original binary and variant binaries with new DSR masks using

capstone. We construct a ReturnAddressMap for the original program binary and all variants

using Algorithm 3.

Identifying a corresponding return address in the new variants for a given return address in

the process becomes trivial once we have ReturnAddressMaps for all variants. We prepare

this data ahead of time before we attach the monitor to the program for rerandomization.
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Function CollectReturnAddresses(Binary) is
declare ReturnAddressMap;
foreach Function in Binary do

PreviousIns = nullptr;
CallNumber=0;
foreach Ins in Function do

if IsCallInstruction(PreviousIns) then
ReturnAddress = Ins.Address;
ReturnAddressMap.insert(Function, CallNumber++, ReturnAddress);

end
PreviousIns=Ins;

end
return ReturnAddressMap

end
Algorithm 3: Collecting possible return addresses from a disassembled binary.

During rerandomization, we unwind the program stack using libunwind and update the

return addresses in the stack with new return addresses. This process assumes that equivalent

call instructions always appear in the same order in all variant binaries, which holds true

even when we apply a software diversity transformation such as function reordering [90].

Basic-block level reordering would require a more sophisticated matching process.

Updating Function Pointers

We first scan the stack, heap, and registers for values in the range of the code section

addresses. We replace all pointers we find with the addresses of the corresponding functions

in the new binary. This heuristic might misidentify constants as function pointers, but all

pointers it identifies correctly will also be updated correctly, as long as the new binary has

the same functions. RuntimeASLR implements a similar strategy, but complements it with

an offline pointer tracking analysis to distinguish actual function pointer values from constant

values [99]. One could add such an analysis to our implementation to improve upon our

function pointer updating precision if desired.
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4.5.2 Optimizations

One of the main challenges (C-3) we set out to meet was to minimize the impact of our

rerandomization mechanism on the program’s run-time performance. As part of our solution,

we chose to update masks by removing the entire code segment of the original program

and to map in the code segment from a different pre-compiled binary. On top of this, our

monitor does extensive caching of metadata and pre-computes most data structures involved

in the rerandomization process. Specifically, our implementation caches the metadata sections

containing the Mask Table and Static Mask Mapping (see Sections 4.4.4 and 4.4.5) and the

debug metadata sections containing the DSR mask metadata (see Section 4.4.4), for the

binary being rerandomized, as well as those of other potential variants. We also pre-compute

the ReturnAddressMap structures ahead of time (see Section 4.5.1). Finally, to read and write

the protected program’s memory efficiently, we map the relevant parts of its address space

directly into the monitor using the /proc/pid/mem/ interface.

4.6 Evaluation

We evaluated and analyzed the performance and security of our soultion, CoDaRR, in

depth using standard benchmark suites, server applications, as well as real-world application

scenarios. For all our experiments, we used an Intel Core i7-8700K machine with 32GB of

RAM.

4.6.1 Performance

We evaluated the performance impact of our rerandomization in the context of two popular and

widely used web server applications, Thttpd and Nginx, and the impact of our instrumentation
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# Equivalence Classes
Allocation Count

Max Avg

Nginx 886 2,947 7.3
Thttpd 508 569 2.94

Table 4.1: Total number of static equivalence classes and number of allocations per class.

Globals Heap Registers and Stack Spills

Nginx 10,586 4,320 38
Thttpd 4,597 136 16

Table 4.2: Average number of bytes rewritten at dynamic rerandomization time. Globals
and Heap columns show bytes re-encrypted; Registers and Stack Spills are in-flight masks
replaced.

using standard benchmarks.

For context, Table 4.1 shows the number of equivalence classes as determined by the DSR

analysis for each server application, along with the average and maximum number of allocation

sites in each class.

Impact of Rerandomization

To assess the performance impact under realistic conditions we tested the version 1.12.0 of the

Nginx web server with our rerandomization enabled for different rerandomization intervals.

We then ran ApacheBench version 2.3 to generate web traffic, configuring it to send a total

of 5, 000, 000 web page requests over 200 concurrent network connections, serving a static

web page for each of these requests.

The average throughput of the Nginx process due to rerandomization in those experiments is

shown in Figure 4.4. As expected, the overall transfer rate (i.e., KB/sec) due to rerandomiza-

tion drops as rerandomization is triggered more frequently. However, throughput stabilizes

between 2.5s and 3s, approaching average baseline DSR throughput (i.e., 40774.81 KB/s
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Figure 4.4: Average throughput of Nginx when protected by CoDaRR. We plot the median
transfer rate for 5M requests against different rerandomization intervals going from 500ms to
10s. The green line shows throughput for baseline DSR without rerandomization.

depicted as the green line in Figure 4.4). Notably, the throughput degradation due to

rerandomization is 3.85% at around 2.3s intervals, the minimum time required to execute

a JIT-ROP attack. As we discuss in more detail in Section 4.6.2, the fastest JIT-ROP

attack takes 2.3s, while successful BROP and side-channel attacks would take in the order of

minutes. This means that our approach provides practical performance at rerandomization

intervals that would effectively mitigate these types of attacks. We conducted the same

experiment for Thttpd and observed similar results as shown in Figure 4.5. This shows that

our implementation can handle even complex server applications such as Nginx and Thttpd,

while offering practical performance despite frequent rerandomization. The measurements

faster than DSR baseline for long rerandomization intervals in Figures [ 4.4, 4.5] are simply

noisy measurements of throughput.
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Figure 4.5: Average throughput of Thttpd using the same configuration as in Figure 4.4.

Table 4.2 shows the average amount of data, in bytes, rewritten by the run-time monitor

during the rerandomization process in the preceding experiments. Nginx, a larger service,

naturally required re-encrypting more data than Thttpd, a minimal service. The Registers

and Stack Spills column shows the average number of bytes of live mask values that the

monitor had to replace in registers or stack slots (see Section 4.4.4). In our experiments we

observed no dynamic stack allocated values that needed to be re-encrypted, which is simply

a consequence of these particular applications not storing any encryptable objects on the

stack at the random program locations where the monitor triggered rerandomization.
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Figure 4.6: SPEC 2006 performance of CoDaRR instrumentation (without rerandomization).
Each column shows the median run time of the benchmark with CoDaRR, normalized to the
median run time without our tool.

Impact of Dynamic Metadata Tracking

Compared to static DSR approaches, CoDaRR’s instrumentation should not add observable

performance overhead for running applications since most of our metadata is produced at

compile time; this does not affect the application’s run-time behavior. The only part that

affects the program’s run-time behavior is metadata tracking for heap and dynamic local

variables. To assess the overall run-time overhead of our dynamic metadata tracking, we

instrumented and ran the SPEC CINT 2006 benchmark suite, including all C and C++

benchmarks. We ran all benchmarks three times in their standard configuration on reference

inputs, and report CoDaRR’s run-time overhead in Figure 4.6. The run-time overhead is

normalized to baseline performance (without DSR instrumentation), and depicts the impact

of dynamic metadata tracking (i.e., not rerandomization, which we evaluate separately in
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Section 4.6.1). The average overhead added by our instrumentation was 0.98% (of the 42.12%

total overhead, 41.14% was incurred by the baseline DSR itself [14] without CoDaRR).

Although prior DSR implementations did not run SPEC 2006, these results are consistent

with the overheads reported in the prior work [14]. Note that, to thoroughly measure the

impact of our approach with a large workload, we experimented upon the DSR approach that

encrypts all data in memory [14]. Thus, the baseline DSR overhead would be much lower if

we base other DSR approaches that encrypt only a limited set of data [15, 20]. Moreover,

recent research shows that this DSR instrumentation overhead can be reduced significantly

with dedicated hardware support to about 6% [14].

4.6.2 Security Analysis

We now turn towards the security guarantees of our solution. Recall, that in our threat

model (Section 4.3.1) we assume a strong adversary with two fundamentally different ways of

disclosing data, (i) exploiting a memory-corruption vulnerability or (ii) exploiting a remote

side channel such as NetSpectre [137].

Memory Corruption Attacks

By XOR-encrypting all program data with per-equivalence class keys, DSR schemes offer

strong protection against adversaries that leak or corrupt data using memory corruption

bugs. As we showed in Section 4.3.2, however, DSR does not completely rule out successful

memory corruption attacks, since adversaries may be able to infer encryption keys through

known plaintext attacks. Inferred keys can then be used to adapt the subsequent exploit

and circumvent the defense. This strategy of leaking randomization secrets to adapt the

subsequent exploit has been used successfully to circumvent code-centric defenses in the

past [17, 145]. These attacks can, however, be very slow. For instance, the fastest JIT-ROP
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attack succeeded within 2.3s [145], while a successful BROP attack takes in the order of

minutes time (i.e., up to 20 minutes for yaSSL) [17].

Our rerandomization approach counters adaptive data-oriented exploits in two ways. First,

we enable explicit rerandomization of the application at run time by exposing an API

to application developers. This way, our rerandomization approach can leverage expert

knowledge about the program structure, e.g., to enforce rerandomization for security sensitive

parts of server applications such as refreshing keys before handling new client connections

or upon receiving certain trigger events (e.g., SIGSEGV). From the perspective of the

attacker this disrupts any attempts of correlating disclosed information between separate

connections. As a result, run time rerandomization mitigates adaptive strategies like BROP

which rely on correlation between connections. Second, we additionally employ a continuous

rerandomization with an adjustable timing window of at most 2 seconds. This puts a significant

time constraint on the attacker, successfully thwarting JIT-ROP style attacks.

Side Channel Attacks

In contrast to memory-corruption based attacks, side channel attacks are limited to informa-

tion disclosure. This is why, in the context of DSR-based defenses, an adversary has to use

the side channel to leak the DSR key data in the first step. We demonstrated one example of

such an attack in Section 4.3. We were able to leak a DSR key from a register by mistraining

the branch predictor with Spectre V2 [85]. This attack succeeded within 25 seconds, although

we believe that further optimization could lower this time somewhat. Still, with our default

setting of at least one rerandomization event every 2 seconds, our implementation should be

able to defend against Spectre-style attacks.

Furthermore, this attack required a local attacker process pinned to the same physical CPU

core as the DSR-protected process. In a more realistic scenario, the attacker would not have
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control over a local process, and would have to resort to remote side channel attacks such

as NetSpectre instead [137]. NetSpectre leaks bits from the application memory at a much

slower rate of about 1 bit per minute. Leaking a single byte of a DSR key would therefore

take 8 minutes, which is much longer than our periodic rerandomization interval.

Finally, we would like to point out that (contrary to the protected application) the monitor

component does not expose any external interface, and hence, would not be vulnerable to

such exploits based on speculative execution.

4.7 Discussion

4.7.1 Generating Variants

For our research prototype, we pre-compiled binaries with randomized DR keys and code

layouts for our variants. Alternatively, it would be straightforward to use binary rewriting to

produce new variants at runtime as part of the rerandomization process. This rewriter would

simply need to know where DR key constants are located in the binary and replace these

constants. Previous work [31, 60, 162, 163] has shown binary rewriting approaches can be

employed for fine-grained code layout rerandomization.

4.7.2 Attack Against Heap Metadata

In order not to introduce another attack surface, we keep metadata out of the protected

process memory as much as possible. We must store heap metadata in memory at run

time (Section 4.4.5), and thus we need to consider the security implications of this in-

process metadata. The attacker may try to leak the content of this metadata which would

allow an adversary to read heap object addresses and the associated indices into the Data

82



Randomization key table. Using this information, the attacker could infer what heap

allocations are in the same equivalent class. Knowing these indices, however, will not allow

the attacker to learn the actual DR keys that used to encrypt the heap data because the key

table itself is never loaded into process memory. Recall that we assume DR keys used in

masking operations are embedded as constants into code memory without read permissions.

An active attacker may attempt to corrupt this in-memory metadata to manipulate the

Monitor’s heap data re-encryption process. Corrupting an address entry of this metadata,

for example, the attacker may trick our run-time monitor into re-encrypting unintended

heap data, leaving the original data unchanged after rerandomization. However, this still

does not allow the attacker to manipulate the program in the intended way because after

rerandomization, the program will decrypt this data with a new encryption key. This incorrect

decryption of data will lead to incorrect, unpredictable program behavior, since the correct

plaintext value cannot be recovered.
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Chapter 5

Related Work

5.1 Dynamic Bug Finding – Sanitizers

Static tools analyze program source code and produce results that are conservatively correct

for all possible executions of the code [34, 61, 138, 22, 21]. In contrast, dynamic bug finding

tools—often called “sanitizers”—analyze a single program execution and output a precise

analysis result valid for a single run only. The biggest difference between sanitizers and

mitigation solutions is the type of security policy they enforce. Exploit mitigations deploy

a policy aimed at detecting or preventing attacks, whereas sanitizers aim to pinpoint the

precise locations of buggy program statements. Many sanitizers are now available and some

have seen widespread adoption. They play a critical role in finding security issues in programs

during pre-release testing.

Location-based access checkers can use red-zone insertion [69, 141, 19, 68, 139] or guard

pages [127, 105] to detect spatial safety violations. Either of these techniques can be combined

with reuse delay to additionally detect temporal safety violations [69, 84, 141, 19, 139, 127,

105, 48, 41]. AddressSanitizer [139] (ASan), instruments memory accesses and allocation
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sites to detect spatial memory errors, such as out-of-bounds accesses, as well as temporal

memory errors, such as use-after-free bugs.

Undefined Behavior Sanitizer [47] (UBSan) instruments various types of instructions to

detect operations whose semantics are not strictly defined by the C and C++ standards,

e.g., increments that cause signed integers to overflow, or null-pointer dereferences. Thread

Sanitizer [140] (TSAN) instruments memory accesses and atomic operations to detect data

races, deadlocks, and various misuses of synchronization primitives. Memory Sanitizer [150]

(MSAN) detects uses of uninitialized memory.

Pointer casting monitors detect illegal downcasts through the C++ static cast operator.

Illegal downcasts occur when the target type of the cast is not equal to the run-time type

(or one of its ancestor types) of the source object. UndefinedBehaviorSanitizer [47] (UBSan)

and Clang CFI [46] include checkers that verify the correctness of static cast operations

by comparing the target type to the run-time type information (RTTI) associated with the

source object. This effectively turns static cast operations into dynamic cast. The downside

is that RTTI-based tools cannot verify casts between non-polymorphic types that lack RTTI.

CaVer [93] targets verifying correctness of downcasts in C++. Downcasting converts a base

class pointer to a derived class pointer. This operation may be unsafe as it cannot be statically

determined, in general, if the pointed-to object is of the derived class type. TypeSan [67] is a

refinement of CaVer that reduces overhead and improves the sanitizer coverage.

UniSan [100] sanitizes information leaks from the kernel. It ensures that data is initialized

before leaving the kernel, preventing reads of uninitialized memory.
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5.2 Variadic Function Attack Surface Mitigations

To address the variadic function attack surface, we presented a comprehensive solution which

can either be used as an always-on runtime monitor to mitigate exploits or as a sanitizer to

detect bugs, sharing similarities with the sanitizers 5.1 that exist primarily in the LLVM

compiler.

Different control-flow hijacking mitigations offer partial protection against variadic function

attacks by preventing adversaries from calling variadic functions through control-flow edges

that do not appear in legitimate executions of the program. Among these mitigations, we

find Code Pointer Integrity (CPI) [87], a mitigation that prevents attackers from overwriting

code pointers in the program, and various implementations of Control-Flow Integrity (CFI),

a technique that does not prevent code pointer overwrites, but rather verifies the integrity of

control-flow transfers in the program [6, 161, 42, 114, 121, 128, 169, 170, 33, 40, 81, 57, 44,

116, 153, 117, 102, 107, 129, 168, 156, 167, 106, 18, 58, 115, 124].

Control-flow hijacking mitigations cannot prevent attackers from overwriting variadic ar-

guments directly. At best, they can prevent variadic functions from being called through

control-flow edges that do not appear in legitimate executions of the program. We therefore

argue that our approach and these mitigations are orthogonal. Moreover, prior research has

shown that many of the aforementioned implementations fail to fully prevent control-flow

hijacking as they are too imprecise [62, 45, 24, 52], too limited in scope [135, 146], vulner-

able to information leakage attacks [51], or vulnerable to spraying attacks [119, 63]. We

further showed in Section 3.6.1 that variadic functions exacerbate CFI’s imprecision problems,

allowing additional leeway for adversaries to attack variadic functions.

Defenses that protect against direct overwrites or misuse of variadic arguments have thus far

only focused on format string attacks, which are a subset of the possible attacks on variadic

functions. LibSafe detects potentially dangerous calls to known format string functions such
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as printf and sprintf [155]. A call is considered dangerous if a %n specifier is used to

overwrite the frame pointer or return address, or if the argument list for the printf function

is not contained within a single stack frame. FormatGuard [36] instruments calls to printf

and checks if the number of arguments passed to printf matches the number of format

specifiers used in the format string.

Shankar et al. proposed to use static taint analysis to detect calls to format string functions

where the format string originates from an untrustworthy source [144]. This approach was

later refined by Chen and Wagner [27] and used to analyze thousands of packages in the

Debian 3.1 Linux distribution. TaintCheck [112] also detects untrustworthy format strings,

but relies on dynamic taint analysis to do so.

FORTIFY SOURCE of glibc provides some lightweight checks to ensure all the arguments are

consumed. However, it can be bypassed [2] and does not check for type-mismatch. Hence,

none of these aforementioned solutions provide comprehensive protection against variadic

argument overwrites or misuse.

5.3 Security Mitigations

Given the lack of memory safety guarantees in C and C++ programs, we must operate

under the assumption that the programs written in these languages will have memory

corruption errors that can be exploited. Mitigations against memory corruption exploits can

use security enforcement policies typically based on static analysis of source or binary code.

The enforcement based mitigations may also collect information about the execution of the

program to fortify the metadata necessary to support the enforcement policies. The second

type of mitigations are randomization based mitigations which depend upon randomizing the

low level details of the process such as code layout or data representation of the program.
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Randomization based protections offer probabilistic security guarantees; more fine-grained

approaches are harder to implement but offer greater entropy.

5.3.1 Control-Flow Exploit Defenses

Data Execution Prevention (DEP) realized by W⊕X feature in operating systems is a memory

protection mechanism that makes every page in the program memory either writable or

executable. DEP essentially eliminates traditional code injection attacks as the code injected

to data sections will not be executable.

Control Flow Integrity (CFI) enforces at runtime that the control flow targets of indirect

control flow transfer instructions (iCFT) belong to a pre-determined set of targets for the

given iCFT instruction. iCFTs include indirect branches and return instructions. Indirect

branches are also referred to as forward edge control-flow instructions and CFI can employ

static source analysis to derive a conservative set of targets for a given indirect branch

instruction at compile time. And for the backward edge control-flow transfers originating

from return instructions additional dynamic information is collected to pair backward edges

with the most recent caller.

Backward edge protection offered by CFI methods are too permissive; Shadow stack mitigation

protects the return addresses by maintaining a copy of the function return addresses in a

disjoint protected stack region termed shadow stack region. When return instructions are

executed, the return address in stack memory is compared against return address stored

in shadow stack to enforce backward edge control flow integrity. DEP, CFI and Shadow

stack mitigations together can stop most code injection, code reuse and Return Oriented

Programming (ROP) exploits through their enforcement policies. DEP is supported by major

operating systems. CFI and shadow stack are available in popular compiler toolchains such

as clang/LLVM and GCC and are widely deployed to protect against control-flow attacks.
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Address Space Layout Randomization (ASLR) randomizes the base addresses of the code,

heap, stack and global memory sections in program memory. ASLR is adopted widely for both

operating system kernels and user space applications. Any code reuse exploit must compute

the location of the target gadget location to complete a successful attack. Randomizing

the base offsets increases the difficulty of this computation. ASLR is a coarse-grained

randomization solution which can be bypassed by adaptive exploits which first identify a

pointer in memory and de-randomize the target memory regions based on the knowledge

derived from the initial step.

To improve the entropy of protection against control-flow attacks more fine-grained randomiza-

tion solutions were proposed; profile guided NOP insertion [73], randomizing all instructions

in program memory [71], randomization of code generated by just-in-time (JIT) compilers [72]

and other solutions improved the state of the art randomization mitigations against code

reuse attacks.

Isomeron [37] randomizes the code layout by switching between two diversified code layouts

after every function call and return instruction execution. Since the gadget locations differ

between the two code layouts, Isomeron probabilistically breaks the chained execution of

control-flow gadgets.

Counterfeit object-oriented programming (COOP) attacks [136] exploit the virtual dispatch

mechanism used by C++. This approach invokes attacker chosen virtual methods on attacker

injected objects and bypasses coarse-grained CFI mitigation. Readactor++ [39] employs

randomization of C++ virtual tables as well as booby-trapping to stop COOP attacks.

Subversive-C [95], another COOP attack exploits Objective-C class metadata and cannot be

protected by virtual table randomization since the Objective-C class metadata is mutable.

To mitigate attacks against Objective-C runtime, Lettner et. al [95] added a message

authentication code (MAC) to every sensitive object. Their mitigation validates the integrity

of the runtime data structures before control-flow transfers that indirectly use the contents of
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the protected data structures.

Crane et al. [37] proposed a dynamic randomization scheme to prevent side-channel based

information leak attacks. They create multiple variants of program functions and apply

different diversifying transformations to each variant. The diversified layout introduces

randomized noise to observable leakage in the shared cache which improves the entropy

against side-channel attacks.

5.3.2 Data-Oriented Exploit Defenses

As the defenses against control-flow attacks evolved over time data-oriented have become

an attractive alternative for system compromise. Similar to control-flow mitigations the

data-oriented defenses had seen both enforcement and randomization based solutions. Data-

oriented attacks modify the program behavior without violating the control-flow of the

program to bypass control-flow defenses.

Write Integrity Testing (WIT) [8] enforces that the target of a memory write is in the set

of allowed objects. The policy is based on static alias analysis which determines the set of

objects that each write instruction is allowed to modify. Each write instruction and associated

objects are assigned a unique color; the enforcement policy makes sure that only the write

instructions with the correct color identifier is used to write to the target object during

execution. A color table is maintained to track object allocations, and the write operations

are checked against the color table and the associated static metadata.

Data Flow Integrity (DFI) [25] is another enforcement based mitigation against data-oriented

attacks. DFI tracks both write and read operations compared to WIT which tracks only the

write operations. DFI at run time intercepts each read instruction in the program and verifies

that the data read from memory was not corrupted by illegal data flows in the program. DFI
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pre-computes at compile time which write instructions can write to the memory read by

each read instruction. This static metadata is associated with memory locations to which

writes are performed at runtime to enforce DFI policy. Since DFI protection is applied to all

memory locations, DFI can also stop code reuse attacks that attempt to modify instruction

pointers and return addresses.

The static metadata for both WIT and DFI are generated by computing the data-flow

graph of the program at compile time. Computing data-flow graph at compile time is an

undecidable problem in the general case [88, 131], and does not scale to large programs even

when approximated resulting in a conservative analysis. For DFI enforcement, this means

some of the illegal data flows cannot be determined. WIT and DFI enforcements therefore

suffer due to the lack of precision in the underlying static analysis. Moreover, DFI adds

security checks for both read and write operations and pure software implementations of

inter-procedural DFI schemes incur a prohibitive runtime overhead of 103%. The hardware

implementation of DFI (HDFI) incurs a lower overhead but the number of protection domains

offered by HDFI is limited.

Bhatkar and Sekar [15], and Cadar et al. [20] proposed Data Space Randomization (DSR)

independently and concurrently. The static analysis used by DSR places pointers that alias

under equivalence classes; two variables are placed under the same equivalence class if the

analysis determines there can be a legitimate data flow between the two variables. Each

equivalence class is allocated an encryption key which is then used to encrypt all the data of

the equivalence class before storing them in program memory. When a variable that belongs

to one equivalence class is used to read or write data that belongs to a different equivalence

class due to illegal data flows, these operations will result in usage of wrong encryption key

for the data targeted by the operation. The protection offered by DSR like WIT and DFI

relies on the precision of the underlying static analysis but the reported runtime overhead of

40% is better than that of DFI. The hardware assisted DSR [14] brings the overhead around
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6.61% and offers improved protection against direct disclosure attacks as the encryption keys

are protected using hardware support.

5.4 Rerandomization Defenses

Rerandomization has been proposed in several prior works, but has so far only been applied

to the protected program’s memory layout and to pointers [99, 60, 16, 30, 163, 162, 31, 56].

These techniques rerandomize the memory layout of the protected application and update all

references that exist in the program accordingly. Whereas code references in executable code

are easy to identify and update, code references in data sections are not. OS-level ASR [60]

and TASR [16] therefore modify the compiler to emit location information for code pointers

in data sections.

Remix only applies intra-function randomization (i.e., basic block shuffling without cross-

ing function boundaries), which removes the need for fine-grained pointer tracking [31].

Shuffler [163], CodeArmor [30], and ReRanz [162] route control-flow transfers through an

indirection mechanism which either simplifies the code pointer updating problem by isolating

code pointers from the rest of the program’s address space [30, 163], or by enabling on-the-fly

pointer adjustments [162]. RuntimeASLR uses dynamic instrumentation tools to generate

pointer tracking policies [99]. Morpheus uses memory tagging and a customized RISC-V

processor core to tag code, data, and pointers thereto. Morpheus relies on these tags to

periodically rerandomize and re-encrypt pointers in hardware [56]. OS-level ASR [60] and

TASR [16] are the most similar to CoDaRR since we also modify the compiler to generate

location information for our masks.

Code layout rerandomization solutions cannot completely protect against data-oriented

attacks. The data-oriented attacks can operate completely on the data plane and Hu et
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al. [75] showed that even certain types of code reuse attacks can be constructed with the

help of Data Oriented Programming which cannot be detected by TASR. Shapeshifter [160]

employs rerandomization of the data layout of “whitelisted” security-critical data objects and

variables. Their rerandomization scheme triggers randomization based on number of accesses

to the “whitelisted” objects. This means, their security policy only applies to (and protects)

this subset of the data plane.

As we noted in Chapter 4, all DSR protections are vulnerable against transient execution based

adaptive attack strategies and known plaintext attacks. Unlike code layout rerandomization

solutions, there are no data representation rerandomization solutions in the literature. To the

best of our knowledge, our solution CoDaRR presented by us in Chapter 4 is the first solution

to perform representation rerandomization. In contrast to the existing work, CoDaRR

continuously rerandomizes the DSR masks and updates all program data accordingly
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Chapter 6

Conclusions

Traditional memory corruption errors, despite the myriad solutions developed over the years

towards identifying them, still offer enough attack surface to launch exploits. Data-oriented

exploits circumvent control-flow mitigations while the current generation of randomization

based data attack defenses are vulnerable to direct memory disclosure and transient execution

attacks.

Variadic functions are prevalent in popular programs (Firefox, Apache, CPython, Nginx,

Wireshark) and libraries frequently use variadic functions to offer flexibility. Current solutions,

including static type checkers and CFI implementations, do not find variadic argument type

errors or prevent attackers from exploiting calls to variadic functions. The lack of type safety

of variadic function arguments is the root cause of these exploits and we have developed

a comprehensive approach to address this problem. Our approach effectively type checks

variadic arguments at run time, imposes a negligible overhead (0.45%) on the SPEC CPU2006

benchmarks and is an effective mitigation against variadic function exploits.

In our work, we investigated the security capabilities of Data Space Randomization (DSR).

DSR diversifies the memory representation of applications by masking data values with
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randomly chosen keys. Our attacks against DSR show that all existing DSR approaches can

be bypassed. In our first attack, we corrupted deterministically memory locations protected by

DSR using memory corruption. Our second attack showed that through transient execution

we can leak DSR keys paving way for adaptive multi-stage attacks that can bypass DSR.

In response to our findings, we designed a moving target defense that rerandomizes the repre-

sentation of program data. Our approach accounts for both traditional memory corruption

exploits as well as the evolving landscape of transient execution attacks. We presented the

design of a novel DSR scheme with a fully dynamic key schedule. Our approach is to the best

of our knowledge, the first scheme to enable rerandomization of program data. Our mitigation

continuously rerandomizes protected applications at periodic randomization intervals, as

well as on-demand using event-based triggers. Our evaluation confirms that our approach is

practical, incurring limited run-time overhead in standard benchmarks, and is able to handle

complex, real-world applications, such as Nginx and Thttpd. Furthermore, our solution

is resilient against information disclosure attacks, such as our presented attacks based on

memory corruption and speculative execution.
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