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Abstract
Background Heterogeneity of hepatocellular carcinoma (HCC) presents significant challenges for therapeutic 
strategies and necessitates combinatorial treatment approaches to counteract suppressive behavior of tumor 
microenvironment and achieve improved outcomes. Here, we employed cytokines to induce memory-like behavior 
in natural killer (NK) cells, thereby enhancing their cytotoxicity against HCC. Additionally, we evaluated the potential 
benefits of combining sorafenib with this newly developed memory-like NK cell (pNK) immunochemotherapy in a 
preclinical model.

Methods HCC tumors were grown in SD rats using subcapsular implantation. Interleukin 12/18 cytokines were 
supplemented to NK cells to enhance cytotoxicity through memory activation. Tumors were diagnosed using MRI, 
and animals were randomly assigned to control, pNK immunotherapy, sorafenib chemotherapy, or combination 
therapy groups. NK cells were delivered locally via the gastrointestinal tract, while sorafenib was administered 
systemically. Therapeutic responses were monitored with weekly multi-parametric MRI scans over three weeks. 
Afterward, tumor tissues were harvested for histopathological analysis. Structural and functional changes in tumors 
were evaluated by analyzing MRI and histopathology data using ANOVA and pairwise T-test analyses.

Results The tumors were allowed to grow for six days post-cell implantation before treatment commenced. At 
baseline, tumor diameter averaged 5.27 mm without significant difference between groups (p = 0.16). Both sorafenib 
and combination therapy imposed greater burden on tumor dimensions compared to immunotherapy alone in the 
first week. By the second week of treatment, combination therapy had markedly expanded its therapeutic efficacy, 
resulting in the most significant tumor regression observed (6.05 ± 1.99 vs. 13.99 ± 8.01 mm). Histological analysis 
demonstrated significantly improved cell destruction in the tumor microenvironment associated with combination 
treatment (63.79%). Interestingly, we observed fewer viable tumor regions in the sorafenib group (38.9%) compared 
to the immunotherapy group (45.6%). Notably, there was a significantly higher presence of NK cells in the tumor 
microenvironment with combination therapy (34.79%) compared to other groups (ranging from 2.21 to 26.50%). 

Sorafenib plus memory-like natural killer cell 
immunochemotherapy boosts treatment 
response in liver cancer
Aydin Eresen1†, Zigeng Zhang1†, Guangbo Yu2, Qiaoming Hou1, Zhilin Chen3, Zeyang Yu4, Vahid Yaghmai1,5 and 
Zhuoli Zhang1,2,5,6*

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-024-12718-4&domain=pdf&date_stamp=2024-9-27


Page 2 of 12Eresen et al. BMC Cancer         (2024) 24:1215 

Background
One of the most challenging cancers globally, liver cancer 
is expected to surpass 1  million diagnoses annually [1]. 
Hepatocellular carcinoma (HCC), accounting for up to 
90% of liver cancer cases, is the seventh most prevalent 
cancer worldwide, and the second leading cause of can-
cer-related deaths [2]. The treatment of HCC has signifi-
cantly evolved with the introduction of curative-intent 
options such as liver transplantation, surgical resection, 
and local ablative therapies, which collectively offer a 
promising 5-year survival rate of approximately 70% [3]. 
Minimally invasive surgical techniques have revolution-
ized surgical resection while improvements in intraop-
erative and perioperative management strategies have 
expanded patient eligibility for surgical intervention; 
however, clinical outcomes remain comparable to tradi-
tional surgical techniques [4]. Despite ongoing efforts, 
only 40% of patients with early-stage tumors are eligible 
for potentially curative approaches. Most HCC cases are 
diagnosed at advanced stages, where the median survival 
rate is less than one year.

Emerging as a viable curative option for unresect-
able HCC patients, local ablative therapies offer promis-
ing outcomes leading to 46% of 3-year recurrence-free 
survival and 76% of overall survival (OS) rates for 
HCC tumors 3  cm or smaller [5]; however, therapeu-
tic responses for the ablative therapies against larger 
tumors are significantly reduced [6]. For patients with 
unresectable HCC lacking vascular invasion, extrahe-
patic spread, or significant liver dysfunction transarterial 
chemoembolization (TACE) remains the recommended 
first-line therapy that objective responses can exceed 
50% and improves the overall survival significantly [7, 
8]. For TACE unsuitable patients, recently approved 
systemic therapies offer a promising alternative treat-
ment strategy. Clinical trials have reported objective 
responses in approximately 30% of patients treated with 
atezolizumab plus bevacizumab, 20% with durvalumab 
plus tremelimumab, and 20% with lenvatinib mono-
therapy [9–11]. Recent achievements in HCC treatment 
are marked by the IMbrave150 study, which established 
the combination of atezolizumab and bevacizumab as 
the first-line standard of care for unresectable HCC. The 
study demonstrated superior OS, progression-free sur-
vival (PFS), and objective response rates when compared 

to sorafenib. These developments underscore both the 
progress made and the lingering debates within the field, 
emphasizing the necessity for ongoing research to opti-
mize and personalize treatment strategies for HCC [10, 
12]. Despite significant advancements, analysis suggests 
that adjuvant atezolizumab and bevacizumab may offer 
the most benefit to a specific subgroup of patients, rather 
than the entire HCC population [13]. This highlights the 
critical need for improved patient stratification to better 
align clinical outcomes with specific molecular charac-
teristics of the tumor.

For two decades, sorafenib has served as the standard 
care for patients with advanced-stage HCC [13], estab-
lishing itself as one of the most effective single-drug 
therapies available [1]. As the first tyrosine kinase inhibi-
tor receiving FDA approval for systemic treatment of 
HCC, sorafenib inhibits proliferation and angiogenesis 
by suppressing the activity of serine-threonine kinases 
Raf-1 and B-Raf, and receptor tyrosine kinase activity 
of VEGFR-1, 2, and 3 and PDGFR-β [14–16]. Sorafenib 
serves as the standard treatment for advanced-stage 
HCC. However, its effectiveness is limited by the com-
plex and diverse nature of the tumor, as well as the activa-
tion of multiple signaling pathways that promote cancer 
cell survival and growth [17, 18]. This limited patient 
response underscores the urgent need for developing 
novel combination strategies to suppress tumor progres-
sion and improve survival rates.

The remarkable success of immunotherapy in the 
treatment of various other cancers has led to investiga-
tions for HCC treatment [19]. During the last decade, the 
FDA has approved several immune checkpoint inhibi-
tors for the treatment of cancers including HCC [11, 12]. 
The recent FDA approval of the NK-92 cell line for clini-
cal use improved the attention of the natural killer (NK) 
cell immunotherapy strategies. Over the decade, NK 
cell immunotherapy, as an innate immune system, has 
shown promise in becoming a potent and well-tolerated 
therapy in managing a wide range of malignancies [20]. 
Previous research has shown that NK cells have immuno-
logical memory, allowing them to recall earlier exposure 
to specific memory stimuli such as antigens, cytomega-
lovirus, or cytokines [21]. In-vitro supplementation of 
IL-12/15 and IL-18 cytokines has been investigated in 
mice and human cell lines to enhance cytotoxicity for 

Although the tumor sizes in the monotherapy groups were similar, histological analysis revealed a stronger response 
in pNK cell immunotherapy group compared to the sorafenib group.

Conclusions Experimental results indicated that combination therapy significantly enhanced treatment response, 
resulting in substantial tumor growth reduction in alignment with histological analysis.

Keywords Combination therapy, Liver cancer, Memory-like natural killer cell immunotherapy, Magnetic resonance 
imaging, Sorafenib
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hematological malignancies [22, 23]. Mahgoub et al. 
expressed increasing cytotoxic function of NK cells fol-
lowing supplementation with IL-2 and IL-15 cytokines 
against HCC cells in combination with cetuximab [24]. 
This suggests that pNK cells hold promise as a strategy 
to improve the persistence and effectiveness of NK cell 
therapy in vivo.

Resistance to chemotherapeutic drugs presents a 
significant challenge for HCC treatment, frequently 
diminishing the efficacy of standard therapies [25]. The 
concurrent use of NK cell immunotherapy with sorafenib 
holds promise in overcoming such resistance by enhanc-
ing the immune response against cancer cells [26]. The 
combination harnesses capability of immune system to 
recognize and destroy cancer cells, potentially enhancing 
treatment efficacy and patient outcomes. The potential 
of combining sorafenib and NK cell immunotherapy for 
HCC is hindered by conflicting reports of both synergis-
tic and inhibitory effects [27–32]. While earlier studies 
suggested the potential of sorafenib to enhance NK cell 
function [33–35], these findings lack consensus. A recent 
study demonstrated that combining sorafenib with pNK 
significantly enhanced their cytotoxicity against HCC 
cells compared to other treatment combinations, includ-
ing single therapies [36]. This suggests that pNK cells 
hold promise as a strategy to improve the persistence 
and effectiveness of NK cell therapy in vivo. In this study, 
we further investigated the sorafenib plus transcatheter 
intraarterial administration of pNK in a rat HCC model 
and evaluated early therapeutic response using anatomi-
cal MRI and histopathological analysis.

Methods
Cell culture and tumor model development
The N1-S1 cell line is widely utilized in the develop-
ment of HCC research for studying critical aspects for 
elucidating HCC progression and developing efficacious 
therapeutic strategies due to its distinctive attributes that 
effectively bridge the gap between in vitro and in vivo 
investigations [37]. The syngeneic nature of the N1-S1 
line with Sprague Dawley rats obviates graft rejection, 
enabling the implantation of HCC cells and subsequent 
study of tumor development within an immunocompe-
tent host that constitutes a significant advantage over 
xenograft models that rely on immunodeficient mice. 
Therefore, the unique confluence of syngeneic origin, 
rapid tumor formation, and well-characterized properties 
elevates the N1-S1 cell line to a pivotal role in vitro HCC 
tumor modeling. For our study, the N1-S1 rat HCC cell 
line was purchased from ATCC (Manassas, VA), and the 
rat NK cell line (RNK-16) was kindly provided by Thomas 
L. Olson (University of Virginia, Charlottesville, VA). 
Both cell lines were cultured according to the suggested 
protocols and incubated at 37 °C in a humid atmosphere 

containing 5% CO2 and 95% air. Tumor cell viability 
(> 90%) was validated before tumor cell implantation. For 
generation of pNK cells, RNK-16 cells were cultured in 
fresh medium supplemented with 5 ng/mL of IL-12 and 
40 ng/mL of IL-18 cytokines for 24  h [36], rinsed with 
PBS, and allowed to rest for another 24 h before experi-
ments. Cell viability was measured using Countess II 
(Life Technologies, Carlsbad CA).

All procedures were conducted in adherence to the 
animal protocol authorized by the Institutional Animal 
Care and Use Committee of our institution. The liver of 
the subjects was exposed via incision and 1.5 × 106 N1-S1 
cells were injected subcapsular under anesthesia induced 
via 2% isoflurane with 3  L/min of oxygen. Hemostatic 
gauze was placed with medium pressure to prevent leak-
age and the incision was closed by performing a two-
layer closure technique. Pain medicine (0.05  mg/kg of 
buprenorphine, and 2 mg/kg of meloxicam) was admin-
istered subcutaneously, and animals were allowed to 
recover in cages with food and water available ad libitum. 
Tumors were allowed to grow while the animals were 
observed daily for any signs of distress.

Therapeutic strategy
Upon tumors reaching an approximate size of 5  mm 
on T1w and T2w MRI, twenty-four animals were ran-
domly assigned into the control group (n = 6), sorafenib 
group (n = 6), pNK cell immunotherapy group (n = 6), 
and sorafenib plus pNK (combination) immunoche-
motherapy group (n = 6). For the sorafenib treatment 
group, a stock solution of 20  mg/ml was prepared by 
diluting sorafenib tosylate in a 1:1 solution of castor 
oil (Kolliphor® EL, Sigma Aldrich, St Louis, MO) and 
95% ethanol. The dosage of the sorafenib was deter-
mined according to previous studies [38–40]. A daily 
dosage of 10  mg/kg sorafenib was administered using a 
bulb-tipped gastric gavage needle while animals were 
restrained. Afterward, the rats were placed in their cages 
and observed for 10  min to identify any indications of 
difficulty breathing or discomfort. The animals in pNK 
cell immunotherapy and combination groups underwent 
catheterization of the proper hepatic artery following the 
procedure described by Sheu et al. [41], three days after 
the baseline scans. Briefly, the portal triad above the first 
loop of the duodenum was surgically exposed, the com-
mon hepatic artery was temporarily ligated with a 2 − 0 
suture to prevent bleeding, and a 4 − 0 suture was uti-
lized to permanently ligate the gastroduodenal artery to 
prevent backward flow of the cells to the bowels. A 24G 
microcatheter (Terumo SurFlash®, Somerset, NJ) was 
inserted distal to this ligation point in the gastroduode-
nal artery and then guided into the proper hepatic artery. 
Subsequently, 0.1 mL of heparin was infused through a 
catheter, followed by the administration of 107pNK cells 
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with 0.5 mL of PBS and 0.2 mL of saline flush [42]. The 
catheter was removed, and a 4 − 0 suture was employed to 
permanently litigate the gastroduodenal artery.

MRI and histology analysis
The animals were imaged via 3T Philips MRI with a 
commercial wrist coil under anesthesia. The animals 
underwent weekly MRI examinations until 2 weeks post-
treatment or recruitment to monitor tumor growth and 
evaluate treatment response in vivo. The HCC tumors 
were located with a T1w MRI sequence (Repetition 
time (TR): 200 ms, echo time (TE): 2.45 ms, slice thick-
ness (ST): 2  mm (no gap), flip angle (FA): 90º, field of 
view (FOV): 50 × 50 mm2, number of signal acquisitions 
(NSA): 4). MRI sequences and parameters were as fol-
lows: (a) T2w: TR: 3500 ms, TE: 63.177, ST: 2  mm (no 
gap), NSA: 4, FOV: 50 × 50 mm2, NSA: 4; (b) T1w: TR: 
200 ms, TE: 2.45 ms, ST: 2 mm (no gap), FA: 90º, FOV: 
50 × 50 mm2, NSA: 4. ITK-SNAP (v.4.0) was used for out-
lining the tumor tissues based on T1w and T2w MRI data 
and translated to all the acquired images following affine 
transformation [43]. Tumor growth was measured as fol-
lows, ∆Di,j = (Di −Dj) /Dj  where Di  and Dj  are the 
tumor dimensions in the longest axis at ith and jth time 
points. MATLAB (v.9.10, MathWorks, Natick, MA) was 
employed for image processing and quantitative analysis.

When the animals reached the study endpoint, livers 
were harvested, and a 4 mm thick tissue block was imme-
diately fixed in 10% formalin. Tissues were embedded in 
paraffin wax and 5 µm sections of paraffin-embedded 
liver tissues were stained with H&E (cell viability) and 
CD56+ antibody (NK cells). The histology slides were dig-
itized via the Hamamatsu whole slide scanner and ana-
lyzed with QuPath (v0.4.3) [44]. The blinded researchers 
analyzed five randomly selected regions to quantify the 
viable tumor cells and NK cells in the corresponding 
images at 40× magnification.

Statistical analysis
The statistical analyses were conducted using Graph-
Pad Prism (La Jolla, CA). One-way ANOVA and pair-
wise T-tests were performed to evaluate the significance 
(p < 0.05) of the findings. Data are expressed as the 
mean ± standard deviation or standard error. The data 
generated in this study are available upon request from 
the corresponding author.

The characteristics of the tumor microenvironment 
were captured using T1w and T2w MRI data, from which 
first-order statistical features (mean, standard deviation, 
third moment, entropy, kurtosis, and skewness) were 
extracted. The correlation between MRI data and histo-
logical measurements was assessed through multivari-
able analysis of the intensity distribution characteristics 
of the T1w and T2w MRI data. We explored the predic-
tive potential of these features in forecasting histological 
tumor markers obtained via pathological analysis. Specif-
ically, we investigated the association between quantita-
tive structural MRI characteristics and histopathological 
markers for the noninvasive assessment of the tumor 
microenvironment.

Results
In vitro cytotoxicity analysis
The efficacy of pNK cells was evaluated by assessing cyto-
toxicity against the N1-S1 rat HCC cell line, using a 10:1 
effector-to-target ratio. Following a 24-hour cytokine 
supplementation of NK cells, tumor cell viability was 
analyzed across the control, NK, and pNK groups using 
flow cytometry. The results demonstrated a significant 
increase in cell death efficacy in the treatment groups 
(NK and pNK) compared to the control group (p < 0.001, 
Fig.  1). Furthermore, cytokine treatment significantly 
enhanced the cytotoxic function of NK cells against HCC 
cells (p < 0.01). The observed percentages of cell death 
were 21.98 ± 2.16% in the control group, 39.34 ± 0.17% 
in the NK group, and 45.18 ± 0.57% in the pNK group. 
These findings collectively suggest that pNK cells can 

Fig. 1 Development of memory-like rat NK cells (pNK) via supplementation of IL-12 plus IL-18 through optimization of NK cell viability and cytotoxicity. 
The concentration of IL-12 (A) cytokines was associated with more potent cytotoxicity than IL-18 (B) as well as weakening cell viability with more IL-12 
(C). (**: p < 0.01, ***: p < 0.001)
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significantly enhance cytotoxic function while maintain-
ing effector cell viability.

In vivo tumor size measurement on MR images
The morphology of the HCC tumors and therapeu-
tic outcomes following different treatment strategies 
were investigated by performing a preclinical study 
focusing on an orthotopic rat tumor model. Animals 
were anesthetized and liver regions were exposed via 
abdominal incision. Approximately 1.5  million N1-S1 
cells injected into the subcapsular regions of the liver 
were grown for five days and subjects were assigned 
to one of the four groups (control, pNK cell immuno-
therapy, sorafenib treatment, and combination ther-
apy) following validation of the tumor size via baseline 
MRI. In our experiments, all animals implanted with 
tumor cells developed tumors after 5 days and were 
detected by multi-parametric MRI acquisitions. The 
tumors were quantitatively evaluated based on T1w 
and T2w MRI characteristics at each time point and 
quantitatively assessed for longitudinal changes. 
Tumor dimensions were measured by an expert radiol-
ogist following weekly MRI scans. The representative 
weekly T1w and T2w MRI data of HCC tumors from 
the control, sorafenib therapy, pNK cell immunother-
apy, and combination groups are presented in Fig. 2 to 
qualitatively evaluate the disease characteristics. HCC 
tumor sizes at baseline were similar in all the groups 
(5.27 ± 1.74  mm), without any significant difference 

among the groups (p = 0.16). After diagnosis of tumors, 
subjects were randomly assigned to groups and started 
to receive appropriate therapeutic regimens.

The animals in the sorafenib and combination 
groups received sorafenib drug solution orally each 
day after the baseline scan for seven days. More-
over, subjects in the control, pNK cell immunother-
apy, and combination groups received either saline 
or pNK cell solution according to their assignment 
four days after the baseline. In the first week of treat-
ment (Fig.  3), no significant tumor area change was 
observed between the treatment and control groups. 
However, the combination group facilitated the most 
effective therapeutic response among all treatment 
strategies (p = 0.24 vs. p= [0.44–0.48]). The tumor 
dimension reached 8.86 ± 1.42 mm at its longest point, 
whereas larger tumors were observed in the con-
trol (13.88 ± 5.08  mm), sorafenib (10.36 ± 3.20  mm), 
and pNK groups (10.98 ± 1.94  mm). Subjects in the 
sorafenib group exhibited better responses com-
pared to those in the pNK cell immunotherapy 
group (p = 0.014), potentially due to slower structural 
changes in tumors initiated by the immune response. 
Moreover, tumor area evaluation also highlighted the 
stronger tumor burden in the pNK cell immunother-
apy group compared to the sorafenib group. In the 
second week of treatment, the changes in tumor struc-
ture were readily apparent. The subjects in the com-
bination group had smaller tumors (8.86 ± 1.42  mm) 

Fig. 2 Representative MRI data to demonstrate the tumor growth pattern in different groups. Tumors were outlined (red circle) at each time point (base-
line; post 1-week and post 2-week treatment) based on T1w and T2w MRI data. In each pair, T1w (left) and T2w (right) MRI were utilized to determine 
tumor size and quantitative changes
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than those in the control (23.45 ± 5.9  mm), sorafenib 
(10.36 ± 3.20  mm), and pNK cell immunotherapy 
(10.98 ± 1.94  mm) groups, while the growth rate gap 
between the combination and other groups contin-
ued to expand substantially (p < 0.05). The average 
tumor area receiving combination therapy demon-
strated significant regression, reaching substantial 
levels of reduction (38.73%), whereas tumor burden in 
the monotherapy groups showed a slower response to 
treatment (sorafenib: 24% reduction, pNK: 16% reduc-
tion). Conversely, untreated HCC tumors continued 
to grow, albeit at a decelerating rate, with a marked 
increase in size observed (278.70%). There was no sig-
nificant difference between the sorafenib and pNK cell 
immunotherapy groups (p = 0.1784), suggesting a via-
ble immunotherapy response; however, sorafenib dem-
onstrated a significantly improved response compared 
to the control group (p = 0.0394). These results indi-
cate that sorafenib plus pNK cell immunochemother-
apy (combination therapy) could stall tumor growth.

Histopathological analysis
The viability of the tumor cells was measured by 
counting the viable cells on five randomly selected 
different regions of the H&E-stained digital histology 
slides (Fig.  4A-D). One-way ANOVA demonstrated a 

significant difference among the groups (p < 0.0001), 
and pairwise T-tests indicated that HCC treated 
with sorafenib plus pNK cell immunotherapy facili-
tated robust cell death compared to all other groups 
(p < 0.0001). HCC in the pNK group exhibited a stron-
ger therapeutic response than that in the sorafenib 
group (p = 0.027), while both groups showed significant 
advancement in cell death (p < 0.001). The pairwise 
comparison analysis of tumor viability with different 
treatment strategies is presented in Fig.  4E. NK cell 
migration to HCC tumors was measured by counting 
CD56+ cells (Fig. 4F-I). One-way ANOVA indicated a 
significant change in NK cell migration with sorafenib 
or pNK cell immunotherapy (p < 0.001). A significantly 
increased NK cell presence was observed in the combi-
nation group compared to the other monotherapy and 
control groups (p < 0.02). Moreover, HCC treated with 
pNK cell immunotherapy had stronger NK cell migra-
tion than sorafenib treatment (p = 0.027) in which 
both groups demonstrated significantly increased NK 
cells within tumors compared to untreated tumors 
(p < 0.003). Figure  4J visualizes the pairwise com-
parison of the CD56+ cells in all groups. The results 
supported advanced therapeutic outcomes via a com-
bination of sorafenib and pNK cell immunochemo-
therapy in HCC subjects.

Fig. 3 Comparison of tumor growth patterns associated with different treatment strategies. The tumors were expanded aggressively compared to treat-
ment groups in which combination therapy demonstrated the most effective therapeutic response during the experimental timeline (A-C). The standard 
deviation of the tumor diameter is visualized in B. The disparities in tumor growth rates continued to widen, with tumors subjected to combination 
therapy consistently maintaining their smaller size (D-F)
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Correlation of MRI and histopathological marker
In our analysis, we observed an increase in entropy val-
ues among the treatment groups, with sorafenib and 
combination treatments leading to significant changes 
that reflect the more complex tumor microenvironment 
associated with therapeutic effects in tumor regions 
(1.513 vs. [2.232–2.538]), with the sorafenib and combi-
nation group exhibiting strong entropy. These increased 
entropy values indicate a higher degree of randomness 
and heterogeneity within the tumor, suggesting that the 
treatments effectively disrupt the uniformity of tumor 
cell populations. Moreover, the treated tumors exhibited 
a more symmetrical intensity distribution, indicating a 
global treatment response. Combination therapy showed 
the lowest skewness among the groups (1.003 ± 0.277, 
p < 0.05), followed by the sorafenib and NK cell immu-
notherapy groups which can be interpreted as a more 
uniform treatment effect across the tumor mass. This 
uniformity may be indicative of widespread tumor cell 
death or alterations in tumor architecture. Untreated 
tumors demonstrated significantly higher kurtosis, which 
is potentially associated with increased tumor cell den-
sity in the tumor microenvironment in which elevated 
kurtosis reflects the presence of extreme intensity val-
ues, indicating dense cellular regions or areas with sig-
nificant pathological features. In contrast, treated tumors 
exhibited higher signal magnitudes and larger standard 
deviations, indicative of a more complex tumor micro-
environment. These variations in signal magnitude and 
standard deviation suggest the presence of diverse tissue 
types and responses within the treated tumors, point-
ing to a heterogeneous treatment effect. Furthermore, 
we observed a highly asymmetrical distribution of MRI 
data in the combination therapy group, followed by the 
sorafenib and NK cell immunotherapy groups, highlight-
ing the heterogeneity of the tumor microenvironment 
following treatments. The asymmetry in the intensity dis-
tribution, characterized by skewness and kurtosis, under-
scores the differential impact of various therapies on the 

tumor microenvironment. Combination therapy may 
induce a more varied response, affecting different tumor 
regions in distinct ways.

To gain deeper insights into the effectiveness of thera-
pies, we further investigated the complex interaction 
between tumor measurements and histopathological 
evaluations of the tumor microenvironment. The final 
logistic regression model for T1w MRI, utilizing three 
variables (mean, entropy, and skewness), demonstrated a 
strong positive correlation with the percentage of tumor 
necrosis (r = 0.699) and a mean squared error (MSE) 
of 0.3479 (Fig.  5A and C). In comparison, a regression 
model incorporating four histogram measurements 
(mean, standard deviation, third moment, and kurtosis) 
exhibited a slightly lower correlation with necrotic tissue 
measurements from histology (r = 0.6434) and a higher 
MSE of 1.0223 (Fig. 5B and D).

For assessing NK cell migration, more complex regres-
sion models were generated. A model including four 
predictors from T1w MRI data (mean, third moment, 
entropy, and kurtosis) resulted in a positive correla-
tion (r = 0.6241) with an MSE of 1.0774 (Fig.  5E and 
G). In contrast, a model with five predictors extracted 
from T2w MRI data (standard deviation, third moment, 
entropy, kurtosis, and skewness) showed a weaker corre-
lation (r = 0.5905) and a higher error rate (MSE = 1.3903) 
(Fig. 5F and H).

Discussion
In this current study, we investigated the potential ben-
efit of the combination of sorafenib and pNK cell immu-
nochemotherapy against HCC. Our findings revealed 
significant structural and morphological improvements 
within the tumor microenvironment following combina-
tion treatment. Furthermore, the combination therapy 
appeared to impede tumor progression and facilitate 
enhanced NK cell infiltration, suggesting a heightened 
anti-tumor immune response. To augment the cytotoxic 
activity of pNK cells, we employed IL-12/18 cytokine 

Fig. 4 Histology analysis. The tumors treated with combination therapy demonstrated significantly fewer viable cells (A-E) and higher NK cell migration 
in the tumor microenvironment than the monotherapy and control groups (F-J). Although the tumor size was similar, the destruction in the tumor mi-
croenvironment was stronger among those who received pNK cell immunotherapy than sorafenib treatment. (*: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: 
p < 0.0001)
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stimulation due to their well-documented capacity to 
activate the immune system against tumors. While the 
clinical translation of IL-12/18 for HCC therapy remains 
an active area of investigation, advancements in delivery 
methods and combination strategies hold promise for 
their future application for HCC treatment.

The therapeutic landscape for first-line treatment of 
advanced HCC has undergone a remarkable transfor-
mation in recent years [45]. While the Barcelona Clinic 
Liver Cancer (BCLC) staging system remains the cor-
nerstone for guiding therapy selection, meticulously tai-
loring interventions to disease severity, the emergence 
of immune checkpoint inhibitors (ICIs) has ushered in 
a paradigm shift in treatment efficacy. Atezolizumab, 
tremelimumab, durvalumab, and tislelizumab offer 
patients with advanced HCC demonstrably improved OS 
and PFS compared to traditional therapies like sorafenib 
[46–48]. Furthermore, researchers are actively exploring 
the potential of combination therapies to synergize the 
power of ICIs with other agents [46–48]. This includes 
VEGF or TKI such as lenvatinib and cabozantinib [49, 
50]. Promising early results from the IMbrave150, COS-
MIC-312, and LEAP-002 trials suggest that these com-
binations could further enhance patient outcomes [12, 
51, 52]. The addition of TIGIT inhibitors to established 
regimens represents an exciting new frontier [53]. While 
early data from the MORPHEUS trial hint at potential 
benefits, larger, rigorously designed trials are necessary 
to definitively confirm their efficacy in this context [54]. 

Similarly, IMMUNIB trial, despite demonstrating prom-
ising survival benefits, warrants further investigation due 
to its similarities with LEAP-002 trial [55]. Undeterred 
by these challenges, the pursuit of even more efficacious 
therapies for advanced HCC remains relentless. Ongo-
ing research strives to refine treatment options, optimize 
combination strategies, and ultimately improve the prog-
nosis for patients battling this aggressive malignancy. 
With the continuous influx of innovative approaches and 
a commitment to personalized medicine, the future of 
first-line treatment for advanced HCC appears increas-
ingly promising.

Sorafenib is a multitargeted tyrosine kinase inhibitor 
that influences angiogenesis, apoptosis, and proliferation 
in cancer [56, 57]. Despite promising outcomes of clini-
cal trials, sorafenib improved OS with a minor increase 
of less than one year [14, 15] Moreover, sorafenib elic-
its a spectrum of adverse events, encapsulating diverse 
manifestations, and the emergence of drug resistance 
is incited by the substantial heterogeneity intrinsic to 
HCC, thereby engendering variances in therapeutic 
responsiveness across distinct patient cohorts [58, 59]. 
Due to complex and sequential events characterizing the 
phases of development and progression of HCC, con-
current administration of multiple therapeutic agents 
targeting pivotal pathways or essential molecules impli-
cated in hepatocarcinogenesis appears to be a promising 
approach.

Fig. 5 The prediction of tumor necrosis and NK cell migration within the tumor microenvironment, as measured by histological tumor markers, was as-
sessed using histogram-based measurements of T1w (A and E) and T2w (B and F) MRI data. Bland-Altman plots were utilized to evaluate the agreement 
between the histological gold-standard measurements and the MRI-derived predictions of tumor necrosis and NK cell migration from T1w (C and G) and 
T2w (D and H) data. While T1w MRI measurements correlated well with both tumor necrosis and NK cell migration, T2w MRI-derived models exhibited 
weaker predictive power
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In the pursuit of novel approaches for the treatment 
of liver cancer, recent investigations have highlighted 
the immense potential for combining natural com-
pounds with conventional anticancer treatments [60]. 
As a powerful compound for antitumor activities, Ber-
berine induces G1 phase cell cycle arrest in HCC cell 
lines, including Huh-7 and HepG2, through inhibition of 
the AKT pathway leading to decreased levels of S-phase 
kinase-associated protein 2 (Skp2) and increased nuclear 
translocation of FoxO3a [61]. Apigenin derivatives have 
demonstrated promising anticancer properties through 
in silico analysis, showing their ability to inhibit critical 
cancer-associated targets, such as DNA polymerase theta 
which supports the rationale for incorporating natural 
small molecules into established therapies like sorafenib, 
to enhance treatment efficacy and overcome resistance 
mechanisms [62]. Additionally, these findings advocate 
for the broader application of similar methodologies in 
liver cancer, particularly in augmenting the antitumor 
efficacy of NK cell-based immunotherapies in conjunc-
tion with sorafenib. The combination of sorafenib and 
NK cell immunotherapy with natural small compounds 
offers a multidimensional approach to overcoming medi-
cation resistance. Natural substances can sensitize cancer 
cells to sorafenib, thereby increasing their susceptibility 
to its effects, while also enhancing the immune response 
through NK cell activation. This combination therapy 
strategy has the potential to dismantle the defenses of 
resistant HCC cells, resulting in more effective and com-
prehensive cancer management. Consequently, natu-
ral small molecules show promise as adjuvant agents 
in overcoming chemotherapeutic drug resistance in 
HCC, potentially improving the overall outcomes of 
treatment regimens that include sorafenib and NK cell 
immunotherapy.

NK cells have been empirically observed to demon-
strate heightened presence within the hepatic micro-
environment, undertaking pivotal roles in immune 
surveillance during HCC [63, 64]. Of particular sig-
nificance, ligands that engage numerous activating NK 
cell receptors exhibit heightened levels of expression in 
HCC cells [65]. The disruptions in both the frequency 
and functional attributes of NK cells during HCC pro-
gression were emphasized in preclinical studies [55, 66]. 
Nevertheless, the precise mechanism by which sorafenib 
modulates NK cell function remains a subject of ongo-
ing investigation and debate. In contrast, expanded and 
activated NK cells have demonstrated potent cytotoxic-
ity against HCC cells, significantly enhancing the anti-
tumor efficacy of sorafenib and exhibiting sustained 
activity even in the presence of the drug. However, 
accumulating evidence suggests a complex interplay 
between sorafenib, macrophages, and NK cells. Previous 
research has demonstrated that sorafenib can induce a 

shift in tumor-associated macrophage (TAM) phenotype 
towards a pro-inflammatory state, thereby promoting 
NK cell activation in a cytokine- and NF-κB-dependent 
manner [29]. Zhuang et al. demonstrated that NK cells 
supplemented with IL-12/15/18 significantly reduced 
spontaneous HCC development (p < 0.01) [67]. Impor-
tantly, NK cells isolated from HCC patients displayed 
comparable cytotoxic activity against HCC cell lines 
when compared to healthy controls. These findings sug-
gest the potential application of cytokine-activated NK 
cells as an immunotherapeutic strategy for HCC. There-
fore, improving the cytotoxicity of NK cells emerges as a 
notable strategy involving the administration of sorafenib 
in combination.

A recent study found that sorafenib has an immu-
nomodulatory effect that enhances the ability of NK 
cells to kill cancer cells, such as HCC cells, by reducing 
MHC class-I molecule expression on HCC cells, which 
may facilitate sensitivity to cytotoxic responses medi-
ated by NK cells [68]. Sorafenib may improve NK cell 
infiltration and activity at the tumor site by altering the 
dynamics of the tumor microenvironment. This collab-
orative approach could lead to a miscellaneous attack 
on tumors, with sorafenib sensitizing tumor cells to 
NK cell-mediated killing and NK cells benefiting from 
an improved tumor microenvironment for their effec-
tor functions. However, comprehensive exploration of 
the synergistic interplay between sorafenib and NK cells 
remains limited. Recently, Hosseinzadeh et al. found that 
sorafenib and NK cell monotherapies could not facilitate 
the HCC xenograft growth rate, which may be associ-
ated with the cytotoxicity of the combination therapy 
and the sorafenib-associated immunosuppressive burden 
on immunodeficient mice [69]. In contrast, we followed 
an engineering strategy to improve the cytotoxicity 
and viability of rat NK cells through the activation of 
the cytokines IL-12 and IL-18 before IHA administra-
tion in combination with sorafenib to boost therapeutic 
response. The experimental results demonstrated a sig-
nificant reduction in tumor growth in the combination 
therapy group compared to the sorafenib monotherapy, 
pNK cell immunotherapy, and control groups, despite 
the absence of a synergistic effect between sorafenib and 
pNK cell immunotherapy. Furthermore, histopathologi-
cal findings corroborated MRI measurements, reveal-
ing underlying changes in the tumor microenvironment, 
including reduced tumor viability and an increased pres-
ence of NK cells. Additionally, we investigated the asso-
ciation between MRI-derived quantitative features and 
histopathological markers in assessing the tumor micro-
environment. MRI metrics demonstrated the potential 
to differentiate treatment effects, with entropy and skew-
ness showing promise as predictors of tumor necrosis. 
While T1w MRI-derived metrics correlated well with 
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both tumor necrosis and NK cell migration, T2w metrics 
exhibited weaker predictive power. These findings sug-
gest that MRI-based quantitative analysis could serve as 
a non-invasive tool for monitoring treatment response 
and understanding tumor heterogeneity. Our findings 
regarding the immunomodulatory effects of sorafenib 
on NK cell function align with previous research. Sev-
eral studies have demonstrated the ability of sorafenib to 
enhance NK cell cytotoxicity against HCC cells by down-
regulating MHC class I expression [26]. Furthermore, our 
observation that sorafenib can modify the tumor micro-
environment to favor NK cell infiltration and activity is 
consistent with the emerging understanding of the drug’s 
immunomodulatory properties. However, our results 
diverge from those of Hosseinzadeh et al., who reported 
a lack of synergy between sorafenib and NK cells in an 
HCC xenograft model [69]. This discrepancy may be 
attributed to differences in experimental design, includ-
ing the use of engineered NK cells in our study. Our find-
ings suggest that enhancing NK cell function through 
activation and expansion can overcome the immunosup-
pressive effects observed in previous studies. The cor-
relation between MRI-derived quantitative features and 
histopathological markers is a novel contribution to the 
field. While the use of MRI for assessing tumor response 
is well-established, our study provides additional insights 
into the potential of quantitative MRI analysis for char-
acterizing the tumor microenvironment and predicting 
treatment response. These results warrant further inves-
tigation to establish their clinical utility.

Several limitations were inherent in the present inves-
tigation. First, we performed a preclinical study to inves-
tigate the therapeutic response with a single rodent HCC 
model that may not replicate the heterogeneity of human 
HCC tumors. However, the rat HCC model utilized in 
our study was widely adopted for oncological experi-
ments to analyze therapeutic responses in HCC tumors 
and replicate the severity of the human model. A larger 
preclinical study integrating multiple tumor models may 
be beneficial to further evaluate the therapeutic response. 
Second, the sample size of the groups was smaller due to 
the nature of the preclinical study; however, histopatho-
logical analysis results supported the MRI findings and 
highlighted the strong support for performing phase I 
clinical trials. Last, we evaluated structural changes using 
T1w and T2w MRI data, in which the immunothera-
peutic response may take a longer time to trigger stron-
ger effects. Nevertheless, the slowing of tumor growth 
became visible in the following weeks of the study.

Conclusions
Our study investigated the therapeutic response of 
sorafenib combined with NK cell immunochemotherapy 
against HCC through a preclinical model. We compared 

the potential therapeutic effects of this combination 
therapy to those of monotherapies by monitoring tumor 
growth non-invasively via MRI and validating the results 
with histopathological analysis. Our findings suggest 
that the combination of sorafenib and pNK cell immu-
notherapy effectively elicits an antitumor response and 
slows HCC progression. This approach shows consider-
able promise for further comprehensive studies and holds 
potential for translation into clinical trials to assess treat-
ment efficacy.
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