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Abstract

This paper revisits the topic of how linear functions of observations having zero expectation, play an important role

in our statistical understanding of the effect of addition or deletion of a set of observations in the general linear model.

The effect of adding or dropping a group of parameters is also explained well in this manner. Several sets of update

equations were derived by previous researchers in various special cases of the general set-up that we consider here. The

results derived here bring out the common underlying principles of these update equations and help integrate these ideas.

These results also provide further insights into recursive residuals, design of experiments, deletion diagnostics and selection

of subset models.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction and preliminaries

Consider the general linear model

y ¼ Xbþ e, (1)

where the error vector e has expectation EðeÞ ¼ 0 and dispersion matrix DðeÞ ¼ s2V , V being a known matrix.
This article reviews the changes that result in the computation of the best linear unbiased estimators (BLUEs)
of estimable parametric functions, the variance–covariance matrices of such estimators, the error sum of
squares, and likelihood ratio tests for testable linear hypotheses (under normal theory), when some
observations are added or deleted, as well as when some explanatory variables are added or deleted. It
attempts to summarize and update some of the material contained in Sengupta and Jammalamadaka (2003).

There has been extensive work done in this area by various authors. Placket (1950) gave update expressions
for the least squares estimates in a linear model with V ¼ I and full rank X , when a single observation is
added. Subsequent researchers (see Mitra and Bhimasankaram, 1971; McGilchrist and Sandland, 1979;
Haslett, 1985; Bhimasankaram et al., 1995; Bhimasankaram and Jammalamadaka, 1994a, b; Jammalamadaka
e front matter r 2007 Elsevier B.V. All rights reserved.
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and Sengupta, 1999) sought to extend this work to data deletion, variable inclusion/exclusion, heteroscedastic
and correlated model errors, rank-deficient V , rank-deficient X , inclusion/exclusion of multiple observations
or variables, and so on. Another stream of research focussed on numerically stable methods of recursive
estimation in the linear model (see, e.g., Chambers, 1975; Gragg et al., 1979; Kourouklis and Paige, 1981;
Farebrother, 1988).

Our goal here is to discuss, in the most general linear model set-up, expressions which provide a good
understanding of the problem(s) and allow statistical interpretations, rather than focussing on numerically
stable computations. For instance, a good understanding of the update mechanism in the case of additional
observations can provide insights into strategies for sequential design, whereas updating for exclusion of
observations has implications in deletion diagnostics. The inclusion and exclusion of explanatory variables are
useful for comparison of various subset models. These and other applications of the update relations are
mentioned in the last section.

Following the work of Sengupta and Jammalamadaka (2003) (hereafter referred to as SJ), we will use linear
zero functions (LZF)—linear functions of y having expectation zero—as the main tool in the derivation of the
updates. See Section 4.1 of SJ for some basic results pertaining to the LZFs. The LZFs characterize the
BLUEs in the linear model: a linear function is the BLUE of its expectation if and only if it is uncorrelated
with every LZF. Every LZF is a linear function of ðI � PX Þy, where PX ¼ X ðX 0X Þ�X 0 is the orthogonal
projection matrix for the column space of X (for any matrix A, we use A� to denote a generalized inverse of
it). Thus, an ordinary linear unbiased estimator can be turned into a BLUE by the removal of its correlation
with ðI � PX Þy, by means of the following lemma (Proposition 3.1.2 of SJ).
Lemma 1.1. Let u and v be random vectors having first and second order moments with EðvÞ ¼ 0. Then the linear

compound u� Bv is uncorrelated with v if and only if

Bv ¼ Covðu; vÞ½DðvÞ��v with probability 1.

By putting u ¼ y and v ¼ ðI � PX Þy in the above lemma, one gets the following expression for the BLUE
of Xb:

cXb ¼ ½I � VðI � PX ÞfðI � PX ÞVðI � PX Þg
�ðI � PX Þ�y.

The residual vector is e ¼ y� cXb. It can be shown that

DðcXbÞ ¼ s2½V � VðI � PX ÞfðI � PX ÞVðI � PX Þg
�ðI � PX ÞV �,

DðeÞ ¼ s2VðI � PX ÞfðI � PX ÞVðI � PX Þg
�ðI � PX ÞV .

The column spaces of these matrices are CðDðcXbÞÞ ¼ CðXÞ \ CðVÞ and CðDðeÞÞ ¼ CðVðI � PX ÞÞ.

The set of elements of the vector ðI � PX Þy may be called a generating set of all LZFs in the linear model
ðy;Xb;s2VÞ in the sense that all LZFs of this model are linear functions of these LZFs. A standardized basis set

of LZFs is a generating set of LZFs having uncorrelated elements with variance s2. If z is any vector whose
elements constitute a standardized basis set of LZFs of the model ðy;Xb;s2VÞ, then it can be shown that z has
rðV : XÞ � rðXÞ elements (where rð�Þ indicates the rank of the matrix concerned), and that the value of z0z
does not depend on the choice of the standardized basis set. Further, z0z happens to be the residual sum of
squares denoted by R2

0, i.e., the minimized value of ðy� XbÞ0V�ðy� XbÞ subject to the restriction
y� Xb 2 CðVÞ. On the other hand, if z is a vector whose elements constitute merely a generating set of LZFs
of the model ðy;Xb;s2VÞ, then R2

0 ¼ z0½DðzÞ��z, and the rank of DðzÞ is always rðV : XÞ � rðXÞ, which is the
residual degrees of freedom. In particular, one can use the generating set z ¼ ðI � PX Þy.

In the presence of the vector restriction Ab ¼ n where Ab is an estimable function, it can be shown that the
vector Abb� n (where Abb is the BLUE of Ab) is a vector LZF in the restricted model which is uncorrelated
with ðI � PX Þy and which, together with the latter set of LZFs, constitute a generating set of LZFs in the
restricted model. It follows that the residual sum of squares under the restriction or hypothesis Ab ¼ n, is
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given by

R2
H ¼ R2

0 þ ðA
bb� nÞ0½s�2DðAbbÞ��ðAbb� nÞ.

The corresponding number of degrees of freedom is rðV : XÞ � rðXÞ þ rðDðAbbÞÞ.
In the four sections that follow, we deal with the inclusion/exclusion of data and of parameters along with

the updating equations for the quantities cXb, DðcXbÞ, R2
0, R2

H and the degrees of freedom associated with these
two sums of squares, and conclude with some remarks in the final section.

2. Inclusion of observations

Let us denote the linear model with n observations by

Mn ¼ ðyn;Xnb; s2VnÞ.

In this section we track the transition from Mm ¼ ðym;Xmb; s2VmÞ to Mn for mon. We refer to Mm as the
‘initial’ model and Mn as the ‘augmented’ model. Note that each LZF in the initial model Mm is also an LZF
in the augmented model Mn. From the discussion of the foregoing section, the number of nontrivial and
uncorrelated LZFs exclusive to the augmented model, which are uncorrelated with the LZFs common to both
the models, turns out to be ½rðXn : VnÞ � rðXnÞ� � ½rðXm : VmÞ � rðXmÞ�. The clue to the update relationships
lies in the identification of these LZFs.

2.1. Linear zero functions gained

Let yn, Xn and Vn be partitioned as shown below

yn ¼
ym

yl

 !
; Xn ¼

Xm

X l

 !
; Vn ¼

Vm Vml

V lm V l

 !
, (2)

where l ¼ n�m. Let l� ¼ rðXn : VnÞ � rðXm : VmÞ. Note that

0prðXnÞ � rðXmÞpl�pl.

The integer l� coincides with l when Vn is nonsingular. Four cases can arise
(a)
 0orðXnÞ � rðXmÞ ¼ l�,

(b)
 0 ¼ rðXnÞ � rðXmÞol�,

(c)
 0 ¼ rðXnÞ � rðXmÞ ¼ l�,

(d)
 0orðXnÞ � rðXmÞol�.
Case (a) implies that there are some additional estimable linear parametric functions (LPFs) in the
augmented model, but no new LZF. In case (b), CðX 0lÞ � CðX 0mÞ, which means that there are some additional
LZFs in the augmented model but no new estimable LPF. Case (c) corresponds to no new LZF or estimable
LPF. This case can only arise when Vn is singular. Case (d) indicates that there are some additional LZFs as
well as additional estimable LPFs in the augmented model. This case can arise only if l41.

There is no new LZF to be identified in cases (a) and (c). In case (d), we can permute the rows of X l in such a
way that each of the top few rows, when appended successively to Xm, increase the rank of the matrix by 1,
and the remaining rows belong to the row space of the concatenated matrix. This permuted version of X l can
be partitioned as ðX 0l1 : X 0l2 Þ

0, where X l1 has full row rank and

r
Xm

X l1

 !
� rðXmÞ ¼ rðXnÞ � rðXmÞ.

The elements of yl , Vml and V l can also be permuted accordingly. Thus, the inclusion of the l observations can
be viewed as a two-step process: the inclusion of the first set of observations entails additional estimable LPFs
but no new LZF, as in case (a), while the inclusion of the remaining observations result in additional LZFs but
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no new estimable LPF, as in case (b). Thus, it is enough to identify the set of new LZFs in the augmented
model in case (b), which we do through the next theorem.

Theorem 2.1. In the above set-up, let l�40 and CðX 0lÞ � CðX 0mÞ. Then a vector of LZFs of the model Mn that is

uncorrelated with all the LZFs of Mm is given by

wl ¼ yl � X l
bbm � V 0mlV

�
mðym � Xm

bbmÞ. (3)

Further, all LZFs of the augmented model are linear combinations of wl and the LZFs of the initial model.

Proof. It is easy to see that yl � X l
bbm is indeed an LZF in the augmented model. The expression for wl is

obtained by making it uncorrelated with ðIm � PXm
Þym as per Theorem 1.1, and simplifying it.

We shall prove the second part of the theorem by showing that there is no LZF of the augmented model
which is uncorrelated with wl and the LZFs of the initial model. Suppose, for contradiction, that u0ðI � PXn

Þyn

is such an LZF. Consequently, it is uncorrelated with ðI � PXm
Þym and ðyl � X l

bbmÞ. Therefore,

ðI � PXm
ÞðVm : VmlÞðI � PXn

Þu ¼ 0,

ðV lm : V lÞðI � PXn
Þu� X lX

�
mðVm : VmlÞðI � PXn

Þu ¼ 0.

The first condition is equivalent to ðVm : VmlÞðI � PXn
Þu 2 CðXmÞ. It follows from this and the second

condition that

Xm

X l

 !
X�mðVm : VmlÞðI � PXn

Þu ¼
Vm Vml

V lm V l

 !
ðI � PXn

Þu,

that is, VðI � PXn
Þu 2 CðXnÞ. This implies that u0ðI � PXn

Þyn is a trivial LZF with zero variance. &

There is no unique choice of the LZF with the properties stated in Theorem 2.1. Any linear function of wl

having the same rank of the dispersion matrix would suffice. However, the expression in (3) is invariant under
the choice of the g-inverse of Vm.

A standardized basis set of LZFs in the augmented model has l� extra elements, in comparison with a
corresponding set for the initial model. Since all the LZFs of the augmented model that are uncorrelated with
those of the initial model, are linear functions of wl , the rank of DðwlÞ must be l�.

The LZF wl can be written as the prediction error yl � byl , where byl is the BLUP of yl on the basis of the
model Mm: In the special case l ¼ 1 and Vn ¼ I , Brown et al. (1975) calls this quantity the recursive residual of
the additional observation. Recursive residuals have the attractive property that these are uncorrelated. These
are used as diagnostic tools, particularly when there is a natural order among the observations (see Kianifard
and Swallow, 1996). McGilchrist and Sandland (1979) extends the recursive residual to the case of any positive
definite Vn, while Haslett (1985) extends it to the case of multiple observations (lX1). In the case of possibly
singular Vn, the vector wl is a recursive residual for yl . Jammalamadaka and Sengupta (1999) termed a scaled
version of wl as the recursive group residual of yl .

2.2. Update equations

Consider case (b)—the main case of interest for data augmentation mentioned in Section 2.1. We now use
the result of Theorem 2.1 to update various statistics.

Theorem 2.2. Under the set-up of Section 2.1, let CðX 0lÞ � CðX 0mÞ and let l� ¼ rðXn : VnÞ � rðXm : VmÞ40.
Suppose further that Ab is estimable with DðAbbmÞ not identically zero, and wl is the recursive residual given in

(3). Then
(a)
 Xm
bbn ¼ Xm

bbm � CovðXm
bbm;wlÞ½DðwlÞ�

�wl .

(b)
 DðXm

bbnÞ ¼ DðXm
bbmÞ � CovðXm

bbm;wlÞ½DðwlÞ�
�CovðwlÞ; ðXm

bbmÞ.

(c)
 R2

0n
¼ R2

0m
þ s2w0l ½DðwlÞ�

�wl .
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(d)
 The change in R2
H corresponding to the hypothesis Ab ¼ n is R2

Hn
¼ R2

Hm
þ s2ðwl � bwlÞ

0
½DðwlÞ�

DðbwlÞ�
�ðwl � bwlÞ, wherebwl ¼ Covðwl ;AbbmÞ½DðAbbmÞ�

�ðAbbm � nÞ.
(e)
 Inclusion of the l additional observations increases the degrees of freedom of R2
0 and R2

H by l� and rðDðwl�ÞÞ,
respectively.
Proof. Note that Xm
bbm is an unbiased estimator of Xmb that is already uncorrelated with the LZFs ofMm. By

making it uncorrelated with the new LZFs wl through Theorem 1.1, we have the expression of part (a). Since
Xm
bbn must be uncorrelated with the increment term in part (a), we have

DðXm
bbmÞ ¼ DðXm

bbnÞ þ CovðXm
bbm;wlÞ½DðwlÞ�

�Covðwl ;Xm
bbmÞ,

which is equivalent to the result of part (b). Part (c) follows from the characterization of R2
0 through a

standardized basis set of LZFs. By a similar argument—after wl is corrected for correlation with the additional
LZF Abbm as per Lemma 1.1—we get R2

Hn
¼ R2

Hm
þ s2w0l�½Dðwl�Þ�

�wl�, where wl� ¼ wl � Covðwl ;AbbmÞ

½DðAbbmÞ�
�ðAbbm � nÞ ¼ wl � bwl . It follows that wl� and bwl are uncorrelated, and hence, Dðwl�Þ ¼ DðwlÞ�

DðbwlÞ. Part (d) follows immediately. Part (e) is a consequence of the fact that the additional error degrees of
freedom coincide with the number of nontrivial LZFs of the augmented model that are uncorrelated with the
old ones as well as among themselves. &

The variances and covariances involved in the update formulae can be computed from the expressions given
in Section 1. The explicit algebraic expressions in the general case, given by Pordzik (1992a) and
Bhimasankaram et al. (1995) are somewhat complicated.

When a single observation is included (l ¼ 1), DðwlÞ reduces to a scalar. Here, the assumptions of
Theorem 2.2 imply that rðDðwlÞÞ is equal to 1. The rank of Dðwl�Þ must also be equal to 1 (it is zero if and only
if wl is a linear function of the BLUEs of Mm, which is impossible).

If Vm is nonsingular, the unscaled recursive group residual defined in (3) can be written as

wl ¼ sl �bsl ,

where

sl ¼ yl � V 0mlV
�1
m ym,

bsl ¼ Z l
bbm and Z l ¼ ðX l � V 0mlV

�1
m XmÞ.

(A similar decomposition is possible even if Vm is singular, but the quantities sl and bsl are not uniquely defined
in such a case.) The quantity sl is a part of yl which is uncorrelated with ym. On the other hand, bsl can be
interpreted as the BLUP of sl under the model ðym;Xb;s2VmÞ. Clearly, Covðsl ;bslÞ ¼ 0. It follows that

DðwlÞ ¼ DðslÞ þDðbslÞ,

CovðXm
bbm;wlÞ ¼ �CovðXm

bbm;bslÞ.

If, in addition, Xm has full column rank, then we can work directly with bbm (instead of Xm
bbm). Thus, we have

the following simplifications:

DðslÞ ¼ s2ðV l � V 0mlV
�
mVmlÞ,

DðbslÞ ¼ s2Z lðX
0
mV�1m XmÞ

�1Z 0l ,

Covðbbm;bslÞ ¼ s2ðX 0mV�1m XmÞ
�1Z 0l ¼ �Covðbbm;wlÞ,bbn ¼

bbm þ Covðbbm;bslÞ½DðslÞ þDðbslÞ�
�ðsl �bslÞ,

DðbbnÞ ¼ DðbbmÞ � Covðbbm;bslÞ½DðslÞ þDðbslÞ�
�Covðbbm;bslÞ

0,

R2
0n
¼ R2

0m
þ s2ðsl �bslÞ

0
½DðslÞ þDðbslÞ�

�ðsl �bslÞ.
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The above formulae for bbn, DðbbnÞ and R2
0n
are essentially the same as those given by McGilchrist and Sandland

(1979) (for l ¼ 1) and Haslett (1985) (for lX1).
When Vn ¼ I , we have sl ¼ yl , bsl ¼ X l

bbm, DðslÞ ¼ s2I , DðbslÞ ¼ s2X lðX
0
mXmÞ

�1X 0l and Covðbbm;bslÞ ¼

s2ðX 0mXmÞ
�1X 0l . Thus, we have the following simplification of Theorem 2.2.

Corollary 2.1. Under the above set-up, let X 0m have full rank, and Vn ¼ I . Further, let wl ¼ yl � X l
bbm, H ¼

X lðX
0
mXmÞ

�X 0l and C ¼ ðX 0mXmÞ
�X 0l . Then
(a)
 bbn ¼
bbm þ C ½I þH ��1wl .
(b)
 DðbbnÞ ¼ DðbbmÞ � s2C ½I þH ��1C 0.

(c)
 R2

0n
¼ R2

0m
þ w0l ½I þH ��1wl .
(d)
 The change in R2
H corresponding to the hypothesis Ab ¼ n is R2

Hn
¼ R2

Hm
þ ðwl � bwlÞ

0
½I þH�

C 0A0D�AAC ��1ðwl � bwlÞ, wherebwl ¼ �C 0A0D�AðA
bbm � nÞ and DA ¼ AðX 0mXmÞ

�1A0.

(e)
 The number of degrees of freedom of both R2

0 and R2
H increases by l as a result of the inclusion of the

additional observation.
Update equations like those given in Corollary 2.1 are obtained by Placket (1950) and Mitra and
Bhimasankaram (1971).

We now turn to cases (a), (c) and (d) of Section 2.1. In case (c), the additional observations of the
augmented model are essentially linear functions of the initial model. Therefore, the LZFs and the BLUEs
remain the same in the appended model. There is no change whatsoever in any statistic of interest. It has
already been explained that data augmentation in case (d) essentially consists of two steps of augmentation
classifiable as cases (a) and (b), respectively. In case (a), there is no additional LZF in the augmented model.
Hence, the BLUEs of the LPFs which are estimable in Mm, their dispersions, the error sum of squares and the
corresponding degrees of freedom are the same under the two models. The error sum of squares under the
restriction Ab ¼ n and the corresponding degrees of freedom also remains the same after data augmentation.
However, the additional observations contribute to the estimation of the LPFs that are estimable only under
the augmented model, as shown in the next theorem.

Theorem 2.3. Under the set-up used in this section, let rðX 0nÞ � rðX 0mÞ ¼ l�. Then
(a)
 X l
bbn ¼ yl � V lmV�mðym � Xm

bbmÞ.
(b)
 DðX l
bbnÞ ¼ s2V l � V lmV�mDðym � Xm

bbmÞV
�
mVml .
Proof. The LZFs of the augmented and original models coincide. Therefore, the BLUE of X lb is obtained by
adjusting yl for its covariance with the LZFs of the original model. We choose ym � Xm

bbm as a representative
vector of LZFs. If we write this vector as

ym � Xm
bbm ¼ VmðI � PXm

ÞfðI � PXm
ÞV�mðI � PXm

Þg�ðI � PXm
ÞymÞ

¼ VmRmym,

then the required BLUE is

X l
bbn ¼ yl � Covðyl ; ym � Xm

bbmÞ½Dðym � Xm
bbmÞ�

�ðym � Xm
bbmÞ

¼ yl � Covðyl ;VmRmymÞ½DðVmRmymÞ�
�ðVmRmymÞ

¼ yl � V lmV�mDðVmRmymÞ½DðVmRmymÞ�
�ðVmRmymÞ

¼ yl � V lmV�mðym � Xm
bbmÞ.

The expression of part (b) follows immediately. &
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When V lm ¼ 0, it is clear that the fitted value of yl is equal to its observed value. This may not hold when
V lma0. However, the new LZF is the BLUP of el from the original model, which is a function of the LZFs of
the initial model and it does not alter the error sum of squares or the degrees of freedom.

3. Exclusion of observations

In this section we track the transition from the model Mn ¼ ðyn;Xnb;s2VnÞ to the model
Mm ¼ ðym;Xmb;s2VmÞ, where l ¼ n�m40. We refer to Mn as the ‘initial’ model and Mm as the ‘deleted’
model.

3.1. Linear zero functions lost

Let us consider once again the four cases described in Section 2.1. No LZF is lost in cases (a) and (c). It also
follows from the discussion of that section that we only have to identify the LZFs lost in case (b). Case (d) can
be thought of as a two-step exclusion where the steps correspond to cases (b) and (a), respectively. Therefore,
we deal mainly with case (b).

In the simple case of data exclusion, the unscaled recursive group residual (wl) of Section 2.1 cannot be used
as a pivot for computations, as it is expressed in terms of the residuals ofMm, which is not available before the
data exclusion takes place. We need a modification of wl which can be used in the present context. Note that wl

can be written as d lðbbmÞ, where

d lðbÞ ¼ yl � X lb� V lmV�mðym � XmbÞ,

which is the part of the model error of yl that is uncorrelated with the model error of ym. SJ show that a vector
of LZFs of the model Mn that is uncorrelated with all the LZFs of Mm is given by

rl ¼ d lðbbnÞ ¼ yl � X l
bbn � V lmV�mðym � Xm

bbnÞ. (4)

Further, if rðVnÞ ¼ n, then there is no nontrivial LZF of Mn which is uncorrelated with rl and the LZFs of
Mm.

Note that the condition CðX 0lÞ � CðX 0mÞ was not needed in the proof of the above result. Thus, it covers case
(d) of Section 2.1, i.e., the case where some LZFs and estimable LPFs are lost due to data exclusion.

It can be shown that whenever CðX 0lÞ � CðX 0mÞ and Vn is nonsingular, rl and wl are linearly transformed
versions of one another. When Vn is singular, wl may not be a function of rl . In particular, rl may even have
zero dispersion whereas the dispersion matrix of wl must have rank l�. Evidently, rl can serve as a pivot for
updates in the general linear model if and only if rðDðrlÞÞ ¼ l� � ½rðXnÞ � rðXmÞ�. The latter condition is
satisfied when Vn is nonsingular.

3.2. Update equations

Let us assume that 0ol� � ½rðXnÞ � rðXmÞ� ¼ rðDðrlÞÞ, i.e., some LZFs (represented adequately by rl) are
lost because of data exclusion. We have

Xm
bbm ¼ Xm

bbn þ CovðXm
bbm; rlÞ½DðrlÞ�

�rl . (5)

The covariance on the right-hand side have to be expressed in terms of the known quantities in the current
model. From (5) it follows that

CovðXm
bbm; d lðbÞÞ

¼ CovðXm
bbn; d lðbÞÞ þ CovðXm

bbm; rlÞ½DðrlÞ�
�Covðrl ; d lðbÞÞ.

Since d lðbÞ is uncorrelated with ym while Xm
bbm is a linear function of it, the left-hand side is zero. On the other

hand, Covðrl ; d lðbÞÞ �DðrlÞ is the covariance of rl with a BLUE in Mn which must be zero. Therefore, the
second term in the right-hand side reduces to CovðXm

bbm; rlÞ, which can be replaced by �CovðXm
bbn; d lðbÞÞ in

(5). This simplification, together with the results of Theorem 2.2, leads to the update relationships given below.
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Theorem 3.1. Let 0ol� � ½rðXnÞ � rðXmÞ� ¼ rðDðrlÞÞ and Ab be estimable in either model with DðAbbnÞ not

identically zero. Then the updated statistics for the deleted model are as follows:
(a)
 Xm
bbm ¼ Xm

bbn � CovðXm
bbn; d lðbÞÞ½DðrlÞ�

�rl .

(b)
 DðXm

bbmÞ ¼ DðXm
bbnÞ þ CovðXm

bbn; d lðbÞÞ½DðrlÞ�
�Covðd lðbÞ;Xm

bbnÞ.

(c)
 R2

0m
¼ R2

0n
� s2r0l ½DðrlÞ�

�rl .
(d)
 The reduction in the error sum of squares under the restriction Ab ¼ n is given by R2
Hm
¼ R2

Hn
� s2r0l�

½Dðrl�Þ�
�rl�, where

rl� ¼ rl þ Covðd lðbÞ;AbbnÞ½DðAbbnÞ�
�ðAbbn � nÞ.
(e)
 The degrees of freedom of R2
0 and R2

H reduce by l� and rðDðrl�ÞÞ, respectively, as a result of data exclusion.
The difficulty of finding an update equation in the case rðDðrlÞÞol� � ½rðXnÞ � rðXmÞ� can be appreciated
by considering the model with

yn ¼

ym

ymþ1

ymþ2

0B@
1CA; Xn ¼

Xm

1 0

1 1

0B@
1CA; b ¼

b0
b1

 !
; Vn ¼

Vm

0

0

0B@
1CA.

If rðXmÞ ¼ 2 and Vm ¼ Im�m, then l� � ½rðXnÞ � rðXmÞ� ¼ 2, while rðDðrlÞÞ ¼ 0. It is clear that bbn ¼ ðymþ1 :

ymþ2 � ymþ1Þ
0 and DðbbnÞ ¼ 0, but bbm has to be calculated afresh. There is no way of ‘utilizing’ the computations

of the model with n observations.

Bhimasankaram and Jammalamadaka (1994a) give algebraic expressions for the updates given in Theorem
3.1 in the special case when l ¼ 1 and Vn is nonsingular. Bhimasankaram and Jammalamadaka (1994b) give
statistical interpretations of these results along the lines of Theorem 3.1. Another interesting interpretation is
given by Chib et al. (1987) in the multivariate normal case. Bhimasankaram et al. (1995) give update equations
for data exclusion in all possible cases, using the inverse partition matrix approach. Generalizing a result due
to Haslett (1999), SJ show that

Xn
bbm ¼ Xn

bbn � Bn

0

wl

 !
,

where Bn is such that Xn
bbn ¼ Bnyn. This elegant result is not amenable to recursive computation, as the right-

hand side combines a summary statistic of Mn with an LZF of Mm. One can simplify the results in the special
case of Vn ¼ I and Xm full column rank.

4. Exclusion of explanatory variables

In the present section and the next, we examine the connection between the models MðkÞ ¼ ðy;X ðkÞbðkÞ;s
2VÞ

and MðhÞ ¼ ðy;X ðhÞbðhÞ;s
2VÞ ðk4hÞ; where the subscript within parentheses represents the number of

explanatory variables in the model, X ðkÞ ¼ ðX ðhÞ : X ðjÞÞ, and bðkÞ ¼ ð
bðhÞ
bðjÞ
Þ. We shall refer to MðkÞ and MðhÞ as the

larger and smaller model, respectively.
The modelMðhÞ can be viewed as a restricted version of the modelMðkÞ, where the restriction is bðjÞ ¼ 0. For

the consistency of the smaller model with the data, we assume that ðI � PV Þy 2 CððI � PV ÞX ðhÞÞ. It follows
that the data is consistent with the larger model as well.

We consider the transition from the larger to the smaller model (MðkÞ to MðhÞ) in this section, and the
reverse transition in Section 5.

4.1. Linear zero functions gained

It is easy to see that every LZF in the larger model is an LZF in the smaller model. A standardized basis of
LZFs for the model with k parameters contains rðX ðkÞ : VÞ � rðX ðkÞÞ LZFs. If this set is extended to a
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standardized basis for the smaller model, then the number of uncorrelated LZFs exclusive to the smaller
model is j� ¼ rðX ðhÞ : VÞ � rðX ðkÞ : VÞ � rðX ðhÞÞ þ rðX ðkÞÞ. It is clear that 0pj�prðX ðjÞÞ.

We first show that the above expression for j� can be simplified to rðX ðkÞÞ � rðX ðhÞÞ, if we dispose of a
pathological special case. Suppose that x is an explanatory variable exclusive to the larger model which is not
in CðX ðhÞ : VÞ. Then l ¼ ðI � PX ðhÞ:V Þx must be a nontrivial vector. Consistency of the smaller model dictates
that l 0y ¼ 0 with probability 1, while that of the larger model requires l 0y ¼ ðl 0xÞb ¼ klk2b, where b is the
coefficient of x in the larger model. These two conditions hold simultaneously only if b is identically zero, that
is, when x is useless as an explanatory variable. We now assume that there is no useless explanatory variable in

the larger model, that is, rðX ðkÞ : VÞ ¼ rðX ðhÞ : VÞ. Consequently j� ¼ rðX ðkÞÞ � rðX ðhÞÞ.
Another trivial case occurs when j� ¼ 0. Under this condition, the explanatory variables exclusive to the

larger model are redundant in the presence of the other explanatory variables, so that each model is a
reparametrization of the other. The various statistics of interest under the two models are essentially the same.
The case of main interest is 0oj�prðX ðjÞÞ.

Recall that j� is the maximum number of uncorrelated LZFs in the smaller model that are uncorrelated with
all the LZFs in the larger model. A vector of LZFs having this property must be a BLUE in the larger model.
The following result provides a set of such linear functions.

Theorem 4.1. The linear function m ¼ ðI � PX ðhÞ ÞX ðjÞ
bbðjÞ, is a vector of BLUEs in the model MðkÞ and a vector of

LZFs in the model MðhÞ. Further, rðDðmÞÞ ¼ j�.

Proof. The parametric function ðI � PX ðhÞ ÞX ðkÞbðkÞ is estimable in the larger model. The BLUE of this function
is m. Under the smaller model, EðmÞ ¼ 0. Since the column space of DðX ðkÞbbðkÞÞ is CðX ðkÞÞ \ CðVÞ (see Section 1),
that of DðmÞ must be CððI � PX ðhÞ ÞX ðkÞÞ \ CððI � PX ðhÞ ÞVÞ. Note that

CððI � PX ðhÞ ÞX ðkÞÞ � CððI � PX ðhÞ ÞðX ðkÞ : VÞÞ

¼ CððI � PX ðhÞ ÞðX ðhÞ : VÞÞ ¼ CððI � PX ðhÞ ÞVÞ.

Hence, CðDðmÞÞ ¼ CððI � PX ðhÞ ÞX ðkÞÞ. Consequently, rðDðmÞÞ ¼ rððI � PX ðhÞ ÞX ðkÞÞ ¼ j�. &

The quantity m introduced in the above theorem is a special case of Abb� n with A ¼ ðI � PX ðhÞ ÞX ðkÞ and
n ¼ 0. The equivalent linear restriction is essentially the ‘testable part’ of the generally untestable restriction
bðjÞ ¼ 0.

4.2. Update equations

The only functions of bðhÞ that are estimable under the larger model are linear combinations of
ðI � PX ðjÞ ÞX ðhÞbðhÞ. This is only a subset of the linear combinations of X ðhÞbðhÞ, all of which are estimable in the
smaller model. The rank of ðI � PX ðjÞ ÞX ðhÞ is j�, which is the maximum number of uncorrelated LZFs which are
exclusive to the smaller model. Hence, a necessary and sufficient condition for all the estimable functions in the
smaller model to be estimable under the larger model is that j� ¼ rðX ðjÞÞ.

Even if 0oj�orðX ðjÞÞ, there may be some functions of bðhÞ that are estimable under both the models. We
now proceed to obtain the update of the BLUE of such a function when the last j explanatory variables are
dropped from the larger model. Once again, we use a ‘tilde’ for the estimators under the smaller model and a
‘hat’ for those under the larger model.

The results given below follow along the lines of Theorem 2.2.

Theorem 4.2. Under the above set-up, let rðX ðkÞ : VÞ ¼ rðX ðhÞ : VÞ, and j�¼rðX ðkÞÞ � rðX ðhÞÞ. Let AbðhÞ be

estimable under the larger model. Then
(a)
 AebðhÞ ¼ AbbðhÞ � CovðAbbðhÞ; mÞ½DðmÞ��m; where m ¼ ðI � PX ðhÞ ÞX ðjÞ
bbðjÞ.
(b)
 DðAebðhÞÞ ¼ DðAbbðhÞÞ � CovðAbbðhÞ; mÞ½DðmÞ��Covðm;AbbðhÞÞ.

(c)
 R2

0ðhÞ
¼ R2

0ðkÞ
þ m0½s�2DðmÞ��m.
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(d)
 The change in R2
H corresponding to the hypothesis AbðhÞ ¼ n is

R2
H ðhÞ
¼ R2

H ðkÞ
þ m0�½s

�2Dðm�Þ�
�m�, where

m� ¼ m � Covðm;AbbðhÞÞ½DðAbbðhÞÞ��ðAbbðhÞ � nÞ.
(e)
 As a result of exclusion of the explanatory variables, the degrees of freedom of R2
0 and R2

H increase by j� and

rðDðm�ÞÞ, respectively. &
Depending on the special case at hand, one may use a different form of m that would have the requisite
properties. For instance, if j� ¼ rðX ðjÞÞ, it can be chosen as X ðjÞbbðjÞ. If j� ¼ j, m can be chosen as bbðjÞ:

The vector m� of part (d) is the BLUE of ðI � PX ðhÞ ÞX ðjÞbðjÞ in the larger model under the restriction AbðhÞ ¼ n:
If bðkÞ is entirely estimable under the original model, then we haveebðhÞ ¼ bbðhÞ � CovðbbðhÞ;bbðjÞÞ½DðbbðjÞÞ��bbðjÞ,

DðebðhÞÞ ¼ DðbbðhÞÞ � CovðbbðhÞ; bbðjÞÞ½DðbbðjÞÞ��CovðbbðhÞ;bbðjÞÞ0,
ebðjÞ ¼ 0; DðebðjÞÞ ¼ 0.

These updates only involve bbðkÞ and its dispersion.
Bhimasankaram and Jammalamadaka (1994b) give the update formulae for the exclusion of a single

explanatory variable when V is nonsingular and these can be obtained as a special case of Theorem 4.2.

5. Inclusion of explanatory variables

We now consider the transition from the modelMðhÞ ¼ ðy;X ðhÞbðhÞ;s
2VÞ to the modelMðkÞ ¼ ðy;X ðkÞbðkÞ;s

2VÞ
ðk4hÞ; where X ðkÞ ¼ ðX ðhÞ : X ðjÞÞ, and bðkÞ ¼ ðb

0
ðhÞ : bðjÞÞ

0. As in Section 4, we refer to MðkÞ as the larger model,
and to MðhÞ as the smaller model.

5.1. Linear zero functions lost

We need a pivot which can be computed in terms of the statistics of the smaller model. Such a vector is
presented below.

Theorem 5.1. A vector of LZFs in the smaller model that is also a BLUE in the larger model is

t ¼ X 0ðjÞðI � PX ðhÞ ÞfðI � PX ðhÞ ÞVðI � PX ðhÞ Þg
�ðI � PX ðhÞ Þy. (6)

Further, rðDðtÞÞ ¼ j�.

Proof. It is clear that t is an LZF in the smaller model. Let l 0y be an LZF in the augmented model. We can
conclude without loss of generality that X 0ðjÞl ¼ 0 and X 0ðhÞl ¼ 0. Writing l as ðI � PX ðhÞ Þs, we have,

Covðt; l 0yÞ

¼ s2X 0ðjÞðI � PX ðhÞ ÞfðI � PX ðhÞ ÞVðI � PX ðhÞ Þg
�ðI � PX ðhÞ ÞVðI � PX ðhÞ Þs

¼ s2X 0ðjÞðI � PX ðhÞ Þs ¼ s2X 0ðjÞl ¼ 0.

Here, we have used the fact that CðI � PX ðhÞ ÞX ðjÞÞ is a subset of CððI � PX ðhÞ ÞVÞ or CððI � PX ðhÞ ÞVðI � PX ðhÞ ÞÞ,
which follows from the assumption X ðjÞ 2 CðX ðhÞ : VÞ. Being uncorrelated with all LZFs in the larger model, t
must be a BLUE there. The rank condition follows from the fact that CðDðy� X ðhÞebðhÞÞÞ ¼ CðVðI � PX ðhÞ ÞÞ,
i.e., CðDðtÞÞ ¼ CðX 0ðjÞðI � PX ðhÞ ÞÞ: &

Recall that CðX ðjÞÞ is assumed to be a subset of CðX ðhÞ : VÞ. If X ðjÞ ¼ X ðhÞB þ VC , then t is the same as
C 0yres, where yres is the residual of y from the smaller model. The vector t can also be interpreted as
X 0ðjÞresV

�yres where X ðjÞres ¼ RX ðjÞ, the ‘residual’ of X ðjÞ when regressed (one column at a time) on X ðhÞ.
Similarly, DðtÞ is the same as s2X 0ðjÞresV

�X ðjÞres :
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The expectations of m and t, defined in Theorems 4.1 and 5.1, respectively, are linear functions of bðjÞ. These
linear parametric functions are estimable in the model ðyres;X ðjÞresbðjÞ; s

2WÞ, where W ¼ RV . Moreover, m and
t are BLUEs of the corresponding parametric functions in this ‘residual’ model, which is obtained from the
original (larger) model by pre-multiplying both the systematic and error parts by R. When V is positive
definite and a single explanatory variable is included, the BLUE of the coefficient of the new variable in the
augmented model can be interpreted as the estimated (simple) regression coefficient in the ‘residual’ model.

5.2. Update equations

We now provide the update relations for the larger model where the BLUE is denoted with a ‘hat’, in terms
of the statistics of the smaller model, where the BLUE is denoted with a ‘tilde’.

Theorem 5.2. If AbðhÞ is estimable under the larger model, then
(a)
 AbbðhÞ ¼ AebðhÞ þ CovðBX�ðkÞy; tÞ½DðtÞ�
�t; where t is as in (6) and B is a matrix of the form ðA : 0Þ having k columns.
(b)
 DðAbbðhÞÞ ¼ DðAebðhÞÞ þ CovðBX�ðkÞy; tÞ½DðtÞ�
�Covðt;BX�ðkÞyÞ:
(c)
 R2
0ðkÞ
¼ R2

0ðhÞ
� s2t0½DðtÞ��t.
(d)
 R2
H ðkÞ
¼ R2

H ðhÞ
� s2t0�½Dðt�Þ�

�t�, where

t� ¼ DðtÞ½DðtÞ þ Covðt;BX�ðkÞyÞ½DðA
ebðhÞÞ��Covðt;BX�ðkÞyÞ

0
��

� ½t þ Covðt;BX�ðkÞyÞ½DðA
ebðhÞÞ��ðAebðhÞ � nÞ�.
(e)
 The increase in the degrees of freedom of R2
0 and R2

H with the exclusion of the explanatory variables are given

by j� and rðDðt�ÞÞ, respectively.
Proof. Since t contains j� uncorrelated LZFs of the smaller model that turn into BLUEs in the larger model,
we have

AebðhÞ ¼ AbbðhÞ � CovðAbbðhÞ; tÞ½DðtÞ��t.

Write AbbðhÞ as
AbbðhÞ ¼ BX�ðkÞ½X ðkÞ

bbðkÞ� ¼ BX�ðkÞy� BX�ðkÞ½y� X ðkÞbbðkÞ�.
The second term is an LZF in the larger model and hence is uncorrelated with t. Therefore,

CovðAbbðhÞ; tÞ ¼ CovðBX�ðkÞy; tÞ, and we have the expression given in part (a). Part (b) follows directly from

part (a), after observing that AebðhÞ is uncorrelated with t. Part (c) is a consequence of the characterization of

the residual sum of squares in terms of a basis set of LZFs. Part (d) is obtained similarly, after t is adjusted for

its correlation with AbbðhÞ � n which is a BLUE in the larger model under the hypothesis AbðhÞ ¼ n. The

adjusted vector is t� ¼ t � Covðt;AbbðhÞÞ½DðAbbðhÞÞ��ðAbbðhÞ � nÞ, which is further expressed in terms of the

statistics of the original model by using parts (a) and (b). Part (e) is easy to prove. &

The vector BX�ðkÞy used in parts (a) and (b) depends on the choice of the generalized inverse of X ðkÞ, but its
covariance with t does not.

6. Concluding remarks

The update equations for data inclusion can be used to derive various diagnostics for model violation, to
obtain optimal design of additional observations in a linear model (see Sengupta, 1995; Bhaumik and
Mathew, 2001) and even to derive the Kalman filter for recursive prediction in state space models. Nieto and
Guerrero (1995) and Sengupta (2004) give different derivations of the Kalman filter in the singular dispersion
case. The update equations for excluded data can be used for deriving case deletion diagnostics which were
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popularized by Belsley et al. (1980), Cook and Weisberg (1994) and others. These can also be used to do
missing plot substitution for a designed experiment suffering from limited data loss, under very general
circumstances. Update equations for inclusion/exclusion of variables have application in added variable plots
and other aspects of regression model building. Sengupta and Jammalamadaka (2003) give a review of some of
these applications.

There is some literature on updates for simultaneous change in data and model, see Haslett (1996) for
details and an application to Kalman filter.

A dropped variable amounts to setting its coefficient (in the original model) to zero. Inclusion of a linear
restriction is an extension of this operation, and can be investigated in terms of the additional LZF. Kala and
Klaczyński (1988) and Pordzik (1992b) obtain the explicit formulae for sequential inclusion of linear
restrictions in the case when V is nonsingular.

There is an interesting connection between the exclusion of observations from the homoscedastic linear
model and inclusion of some special variables to it. If we wish to drop the last l observations, then the
corresponding updates are given in Theorem 3.1. This theorem uses a key LZF, rl , which is uncorrelated with
all the LZFs of the depleted model. This LZF is lost when the observations are dropped. If V lm ¼ 0, then the
expression for rl reduces to el , the residuals of the last l observations. If, instead of dropping l observations, we
seek to include l explanatory variables (in the form of an n� l matrix Z concatenated to the columns of X),
then the appropriate ‘lost’ LZF is given by tl (see (6)). This LZF reduces to Ze in the present case, e being the
residual vector in the original model. The key LZFs in the two cases would be identical if Z is chosen to be the
last l columns of an n� n identity matrix. Since the LZFs are identical, all the updates would naturally be
identical. Thus, the dropping of the observations is equivalent to the inclusion of the explanatory variables. A
special case of this result (when V ¼ I and l ¼ 1) has been known to researchers for a long time (see, for
instance, Schall and Dunne, 1988), and has been applied to analysis of covariance with unbalanced data (see
SJ) and diagnostics in the Cox regression model (see Storer and Crowley, 1985).
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