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Abstract

Advancing Visual Analytics Using Dimensionality Reduction

High-dimensional data analysis is a major target application for visualization. When

analyzing high-dimensional data, dimensionality reduction (DR) plays a pivotal role

as it uncovers the intrinsic features of the data. Current DRmethods, however, provide

little support in terms of the interpretability in their results, usability with respect to

interactive visualizations, and flexibility for handling various data types. This disser-

tation investigates the problem stated above and presents a set of novel DR methods

coupled with interactive visualization, in which four different topics are addressed:

(1) interpretation of DR results, (2) analysis of time-dependent multivariate data, (3)

design of multivariate streaming data visualization, and (4) introduction of a new ap-

proach to comparative network analysis. Illustrative case studies demonstrate the new

capabilities greatly enhance the collective power of visual analytics and DR.
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Chapter 1
Introduction

Visual analytics of high-dimensional data is a major research topic in the visualiza-

tion community [158, 159]. Various visualization methods (e.g., the parallel coordi-

nates [117], scatterplot matrices [106], and star coordinates [127]) have been introduced

to visually present high-dimensional information in the given space (typically 2D on a

computer screen) that viewers can perceive and interpret. Besides these visualization

methods, dimensionality reduction (DR) is a widely used approach to examining high-

dimensional data by computing a 2Dprojection of the data, which effectively provides a

visual overview of the relationships across the high-dimensional data points [181,198].

The strength of DR methods is their ability to uncover the similarity between data

points as spatial proximity. In DR results, by referring to the “similarity ≈ proxim-

ity” [245] relationship, we can intuitively find meaningful patterns, such as clusters

and outliers. Many fields of study, including biology [113], social science [224], and

machine learning [187], aptly require analyzing high-dimensional data and thus rely

on DR methods.

Despite the benefits of DR, current DR methods suffer from several critical prob-

lems when applied to visual analytics. The first problem is the lack of interpretability.

This problem particularly occurs with nonlinear DR methods, such as t-SNE [233] and

UMAP [170]. These methods are becoming more frequently used due to their ability

to uncover the intrinsic structure of large, complex high-dimensional data. How-

ever, unlike linear DR methods, such as principal component analysis (PCA), many of

the nonlinear DR methods used for visualizations do not provide a parametric map-

ping between the original high-dimensional space and the projected low-dimensional

space [231]. Therefore, it is difficult to understandhow theseDRmethods havedepicted
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meaningful patterns (e.g., clusters) in the lower-dimensional representations.

Another problem is insufficient usability with interactive visualizations. Most of

the DR methods are developed within the statistics or machine learning communi-

ties [52, 234] and, consequently, these methods carry little considerations of utilizing

them in interactive visualizations. For example, when interactively adjusting a hyper-

parameter or updating data points used for a DR method, the generated results can

vary significantly from the previous ones. This makes it difficult to keep track of the

changes through the interactions.

Lastly, existingDRmethods have limited flexibility in supporting certain data types

and analyses. Currently availableDRmethods used for 2D or 3Dvisualizations [52,234]

can only be applied to data that can be formed into a feature matrix (i.e., a matrix of

instances × features), such as a single-time-point multivariate data. Consequently,

for multivariate time-series data or network data, for example, both of which are in-

creasingly important to model various phenomena, the existing DR methods cannot

be directly used for analysis since these data types are conventionally represented as a

dynamic feature matrix (i.e., a matrix of timestamps × instances × features) and as an

adjacency matrix (i.e., a matrix of instances × instances), respectively.

This dissertation focuses on enhancing and developing DRmethods as well as their

associated interactive visualizations, each of which addresses one or a combination of

the aforementioned three challenges.

1.1 Background
The following subsections describe the terminologies used in this dissertation and the

previous works in visual analytics using dimensionality reduction.

1.1.1 Dimensionality Reduction (DR)
Dimensionality reduction (or representation learning) is the transformation that aims

to process a high-dimensional dataset X represented as an =× 3 matrix (=: the number

of data points, 3: the number of dimensions) into a lower-dimensional dataset Y

represented as an = × 3′ matrix (3′: the number of dimensions where 3′ < 3) while
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maximally preserving certain information, such as the structural characteristics of the

high-dimensional dataset [234]. DR methods can be categorized as either linear or

nonlinear DR. A brief introduction to each type of DR is provided below.

1.1.1.1 Linear Dimensionality Reduction

Linear dimensionality reduction can be defined as DR that produces a linear transfor-

mation matrix W (or projection matrix) represented as a 3× 3′ matrix [52]. By using

W, a lower-dimensional dataset Y can be obtained with Y = XW. By solving a different

optimization problem, each linearDRmethod obtains a projectionmatrixW. For exam-

ple, PCA [114, 125] maximizes data variance captured in a lower-dimensional dataset

Y. Linear discriminant analysis [118], with a class label for each data point, maximizes

inter-class variance while minimizing intra-class variance.

1.1.1.2 Nonlinear Dimensionality Reduction

Nonlinear dimensionality reduction aims to capture nonlinear structure of a high-

dimensional dataset X onto a lower-dimensional dataset Y. While some of the nonlin-

ear DR methods provide a parametric mapping from X to Y (e.g., kernel PCA [200]),

other methods such as t-SNE [233], LargeVis [219], and UMAP [170] do not. The latter

methods first generate a neighbor graph where each edge weight between nodes (i.e.,

data points) represents a dissimilarity of the corresponding nodes; then the methods

maximally preserve local neighborhoods for each data point. These methods have the

advantage of preserving local neighborhood relationships—an important capability

when visually looking for clusters and outliers—and are commonly used for visualiza-

tions.

1.1.2 Visual Analytics

A definition of visual analysis by Keim et al. [128] states that “visual analytics com-

bines automated analysis techniques with interactive visualizations for an effective

understanding, reasoning and decision making on the basis of very large and complex

data sets.” Visual analytics can be described as an analysis approach that connects

advanced analysis methods and visualizations with effective interactions. Therefore,

in visual analytics, how we choose or develop the best method for each component
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(i.e., the analysis method, visualization, and interaction) and how to combine them

effectively is critical. While there are various domains where researchers have ap-

proached this challenge [214], this dissertation specifically focuses on visual analytics

using dimensionality reduction.

1.1.2.1 Visual Analytics Using Dimensionality Reduction

Liu et al. [159] and Sacha et al. [198] provide a complete overview of visual analytics

using DR. To analyze high-dimensional data, most works utilize existing DR methods

as they are. However, as stated earlier, there are the three challenges that need to be

addressed to effectively use DR for visual analytics.

Interpretation of DR Results. A common approach used to support interpretation

of DR results is to visualize statistical charts (e.g., bar charts and boxplots) for each

feature of the user-selected groups of data points [59, 142, 167, 183, 209]. However, this

approach is not scalable when there is a large number of features (e.g., 10 features). To

address this scalability issue, a few identify the representative features of each group of

data points [124,227]. These works referred to each group’s principal components com-

puted by PCA. However, PCA only identifies the representative features within each

group and does not consider which features make one group unique when compared

with respect to the other groups. More detailed discussion can be found in Sec. 2.1.

Improvement of Usability of DRMethods for Visualizations. Most DR methods,

including PCA, multidimensional scaling (MDS), and t-SNE, often produce drastically

different projections based on a hyperparameter or incorporated data points. To mit-

igate this problem, several works enhanced existing DR methods. For example, to

analyze high-dimensional data changing over time, Rauber et al. [188] developed Dy-

namic t-SNE. Unlike t-SNE, Dynamic t-SNE offers a controllable trade-off on howmuch

temporal coherence between projections of consecutive time points is strictly kept and

how much neighborhood relationships are precisely preserved in the t-SNE results.

Several works [84, 119, 226] also improved the stability of PCA and MDS projections

whenupdating the projectionswith newdata points by adjusting the axes of projections

before and after the updates.
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Advanced data analysis support. Many different visual analytics methods and

systems are developed for multivariate time-series data, as described in the survey

by Bach et al. [17]. To utilize existing DR methods for analyzing multivariate time-

series data, one simple and common strategy is to apply DR to a feature matrix at each

time point and then show temporal changes with either animation or juxtaposition.

However, when there are many time points, this strategy produces a large amount of

DR results, which makes it difficult to find important changes (e.g., the emergence of

outliers).

Several works used DR for network comparison. For example, Fujiwara et al. [74]

compared a larger number of brain networks by providing an overview with MDS.

Similarly, to analyze a dynamic network, van den Elzen et al. [230] and Bach et al. [20]

showed the similarities of networks across time by utilizing DR. Thesemethods assume

that all networks contain the same set of nodes and the correspondence of nodes across

the networks is known. However, this assumption is a critical limitation as networks

collected from different resources typically do not have known node-correspondence.

1.2 Content Overview
This dissertation is organized into different chapters, each of which addresses the

challenges in visual analytics using DR.

Chapter 2 introduces an analysis method, called ccPCA (contrasting clusters in

PCA), which supports interpreting results generated by any DR methods, especially

for characterizing clusters that appear in DR results. By utilizing contrastive learn-

ing [4, 263], ccPCA first computes each feature’s relative contributions to the contrast

between one cluster and the other clusters and then identifies the essential features

to characterize each cluster. Additionally, this chapter presents an interactive analysis

system that utilizes ccPCAwith a scalable visualization of each cluster’s feature contri-

butions. A version [76] of the research in Chapter 2 was published in IEEE Transactions

on Visualization and Computer Graphics.

Chapter 3 describes a DR framework, MulTiDR, that processes and provides a

5



comprehensive overview of time-dependent multivariate data. Time-dependent mul-

tivariate data is represented as a 3D array of instances, time points, and attributes. To

produce a DR result from such data, we employ DR in two steps. The first DR step

reduces the three axes of the array to two, and the second DR step visualizes the data

in a lower-dimensional space. In addition, by coupling ccPCA introduced in Chapter 2

with interactive visualizations, MulTiDR enhances analysts’ ability to interpret the DR

results. A version [78] of the research in Chapter 3 was published in IEEE Transactions

on Visualization and Computer Graphics.

Chapter 4 presents an incremental DR method in order to analyze streaming mul-

tidimensional data. Unlike existing incremental methods, the incremental method in

Chapter 4 is designed with the consideration of usability with respect to visualiza-

tions. This method can provide lower-dimensional representations with coherent data

positions between the previous and updated time points. Furthermore, this method

has the capability of handling varying data dimensions. With these functionalities,

the analyst can visually identify time-varying patterns, such as anomalies and forming

clusters. A version [75] of the research in Chapter 4 was published in IEEE Transactions

on Visualization and Computer Graphics.

Chapter 5 introduces a new network analysis approach called contrastive network

representation learning (cNRL). cNRL embeds network nodes into a lower-dimensional

space that reveals unique characteristics of one network by contrasting with another.

Within this approach, we also design a method, named i-cNRL, which offers inter-

pretability in the learned results, allowing the capability to understand which specific

patterns are found in one network but not the other. A version [81] of the research in

Chapter 5 was preprinted in arXiv.

Chapter 6 presents a visual analytics framework, ContraNA, that enhances the

usability of i-cNRLwith an interactive visualization interface. ContraNA helps analyze

the uniqueness of one network relative to another by relating i-cNRL’s embedding

results to the network structures as well as explaining the learned features from i-

cNRL.We evaluate ContraNA’s usability through a controlled user study with network
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comparison tasks. A version [80] of the research in Chapter 6 was presented at IEEE

Conference on Visual Analytics Science and Technology (VAST) 2020.

Lastly, Chapter 7 concludes this dissertation with a summary of the main con-

tributions and discusses the implications to future visualization and dimensionality

reduction research.
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Chapter 2
Supporting Analysis of Dimensionality
Reduction Results

According to the recent surveys [34, 181], analyzing a DR result involves the following

tasks: (1) identifying clusters in the DR result, (2) understanding the characteristics of

the clusters, and (3) comparing the clusters with predefined classes of data points. In

the case that the DR result has interpretable axes, such as the dimensions generated

by principal components analysis (PCA) [114, 125], understanding the characteristics

of each axis and comparing the axis with the original dimensions (or features) are also

included as part of the analysis tasks.

Among the aforementioned tasks, themain task sequence is first identifying clusters

and then understanding their characteristics [34]. Many automatic methods (e.g.,

density-based clustering methods [14, 38, 68, 139]) have been introduced to identify

clusters (the first task). Also, interactive visualization has shown promise to aid both

generation of DR results and identification of clusters [181, 198]. DR incorporating

interactive visualization can involve human-in-the-loop to evaluate the DR results as

well as to adjust DR’s parameters [67,79] or input features [120,241] based on analysts’

interests and their domain knowledge. Also, interactive selection of data points over the

visualized DR results allows the analysts to manually adjust cluster members assigned

by the automatic methods [245]. However, methods to assist the second task have still

not beenwell studied, especially in the case that the data hasmany features. Reviewing

the original feature values is essential to understanding each cluster’s characteristics. To

support this task, many existing visual analytics systems [59, 142, 167, 183, 209] employ

basic statistical plots, such as histograms and parallel coordinates, for inspecting each

feature of the selected clusters. However, because these visualizations render all of the
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features’ values, they are limited in handling a large number of features. In addition,

even if we were able to show all the features, it could be very time-consuming to find

the common patterns within each cluster or find the differences among the clusters by

individually referring to the values for each of the many associated features.

To address these problems, this chapter introduces an analysis method that high-

lights those essential features for understanding characteristics of each cluster in a DR

result. This method adopts contrastive learning [263], a new emerging analysis ap-

proach for high-dimensional data. Contrastive learning aims to discover “patterns that

are specific to, or enriched in, one dataset relative to another” [2]. Among the contrastive

learning methods, contrastive principal component analysis (cPCA) [2, 3, 87] is specif-

ically chosen and enhanced for visual analysis. A new usage of cPCA, called ccPCA

(contrasting clusters in PCA), can measure each feature’s relative contribution to each

cluster’s contrast to the others. By referring to these relative contributions, users can

easily focus on the features they should review in detail. I describe the strengths of

using ccPCA with both numerical formulas and concrete examples. In addition, be-

cause cPCA requires parameter tuning to obtain a useful result, an automatic selection

method is developed to find the best parameter value.

Moreover, a heatmap-based visualization is introduced to show all the features’ con-

tributions of each cluster. By employing hierarchical clustering and matrix reordering,

the visualization helps the user find where clusters have similar features’ contributions

or how the features have similar contributions within or across clusters. Additionally,

with these methods, a scalable visualization can be provided, which can handle the

case of analyzingmany features (e.g., 100 features ormore). I build an interactive visual

analytics system using ccPCA and a heatmap-based visualization. The effectiveness

of our methods and system are demonstrated with case studies using several publicly

available datasets.
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2.1 Related Work
The relevant works to this chapter are categorized in (1) visualization for exploring DR

results and (2) discriminant analysis and contrastive learning.

2.1.1 Visualization for Exploring DR Results

Various visualizations have been developed to assist analysis tasks for a DR result [63,

134, 143, 145, 158, 159]. Here focuses on describing the works that support the afore-

mentioned main task sequence (i.e., identifying clusters and understanding clusters’

characteristics). Stahnke et al. [209] developed visualizations to help understand

multidimensional-scaling (MDS) [222] results. To support a feature comparison of

clusters in the MDS result, their visualization allows the user to manually select clus-

ters and then it depicts the selected clusters’ density plots for each of the features.

Similarly, for a cluster comparison in the DR results, other works [59, 142, 167, 183]

visualized statistical charts (e.g., bar charts and boxplots) of the features for each man-

ually or automatically selected cluster. However, because the approaches in the above

works [59,142,167,183,209] depict the statistical chart for each feature, they are not scal-

able when there is a large number of features (e.g., 10 features). Broeksema et al. [36]

took further steps to provide a summary of the DR results. They developed visualiza-

tions to help understand patterns that appeared in multiple correspondence analysis

(MCA) [1], which is a similar DR method as PCA for categorical data. They visualized

each data point’s salient feature value extracted with MCA as a colored Voronoi cell

around each projected point in the MCA result. This linking of the DR result and the

salient features helps the user interpret the DR result. Similarly, Joia et al. [124] linked

the DR result and the information of features into one plot. In addition to an automatic

selection of clusters, they obtained representative features for each cluster by using

PCA. Afterward, they visualized these features’ names as a word cloud within each

clustered region instead of showing the projected points. Turkay et al. [227] also used

PCA to obtain the representative features in the MDS result.

Among the mentioned studies, the works by Joia et al. [124] and Turkay et al. [227]

are most related to the work in this chapter in terms of identifying the representative
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features for each cluster. To identify such features, both methods refer to each cluster’s

principal components (PCs) computedbyPCA(and the correlationbetween the features

and PCs). Even though they applied PCAwithin each cluster, the computed PCsmight

capture only the global tendency in the dataset. For example, all clusters may have

similar or even the same PCs. Also, their methods cannot find features that highly

contribute to the differentiation or contrast between one cluster and the others. It is

important to provide features that make each cluster’s characteristics unique.

2.1.2 Discriminant Analysis and Contrastive Learning
Discriminant analysis, including linear discriminant analysis (LDA) [118], quadratic

discriminant analysis (QDA) [171], and mixture discriminant analysis (MDA) [109],

is a supervised learning method used for classification and DR. Discriminant analysis

methods use labeleddata points as a learning set and construct a classifier to distinguish

each class as much as possible [118]. For example, LDA finds new dimensions (or

components) which provide good separations between each class. Note that while

both PCA and LDA can be categorized as linear DR methods, PCA is an unsupervised

method and finds dimensions that maximize the variance of the input data points.

As similar to PCA, we can obtain the contribution of each original dimension (or

feature) to each component constructed by LDA. Therefore, for visual analytics, LDA

has been utilized to inform the features which have an important role to distinguish

clusters. For example,Wang et al. [241] developed linear discriminative star coordinates

(LDSC). LDSC shows each feature’s contribution to distinguishing a cluster from each

other as a length of a corresponding axis of the star coordinates [127]. To obtain a better-

clustered result, the user can use these axes as interfaces to discard the less contributed

features or change the weight of the features used for clustering.

While discriminant analysis is used for discriminating the data points based on their

classes, contrastive learning [263] focuses on finding patterns that contrast one dataset

with another. For example, contrastive PCA (cPCA) [2, 3, 87] is the extended version

of PCA for contrastive learning. cPCA takes two different datasets (i.e., target and

background), and then identifies the directions (or contrastive principal components)
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Figure 2.1: The analysis workflow.

that have a higher variance in the target dataset when compared to the background

dataset. Projection of the target dataset with these contrastive principal components

provides the patterns which are uniquely found only in the target dataset. In addition

to cPCA, several extended methods for contrastive learning have been developed (e.g.,

contrastive versions of latent Dirichlet allocation [263], hidden Markov models [263],

regressions [87], multivariate singular spectrum analysis [62], and variational autoen-

coders [4]).

To the best of my knowledge, this chapter provides the first research using a con-

trastive learning method, specifically cPCA, for interactive visual analytics. The major

advantages of using cPCA instead of PCA or LDA are demonstrated in Sec. 2.3.

2.2 Workflow and an Analysis Example
This section first defines a workflow for analyzing high dimensional data using DR,

and then provides an analysis example to motivate my work.

2.2.1 Analysis Workflow

Fig. 2.1 shows an analysis workflow using ccPCA. It starts from (a) applying a DR

method (e.g., MDS, PCA, or t-SNE [233]) on high-dimensional data. Then, the task is (b)

to identify clusters in theDR result by applying a clusteringmethod (e.g., k-means [107],

DBSCAN [68], or spectral clustering [180]) or selecting clusters manually. Afterward,

the task is to understand the clusters’ characteristics. This task has two steps. The first

step is (c) finding features (or dimensions) that have a high contribution to contrasting

each cluster with the others. For this step, we utilize cPCA [2, 3, 87], as described in
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Figure 2.2: A screenshot of the prototype system. The dimensionality reduction (DR) view (a) visual-
izes a result after DR and clustering. The feature contributions view (b) shows the measures of each
feature’s contribution to contrasting each cluster with the others. The feature values of the selected
cells in (b) are visualized as histograms, as shown in (c). In (d), we can change the settings for the
analysis methods and visualizations.

Sec. 2.3. The second step is (d) reviewing the detailed differences of values of the highly

contributed features between each corresponding cluster and the other data points.

Existing methods are used for DR and clustering while I introduce new methods for

the last two steps. With the last two steps, we can obtain an understanding of which

and how features contribute to the uniqueness of each cluster. After understanding the

selected clusters’ characteristics, as indicated with the arrows from (d) to (a) and (b),

the user can update the DR result or clusters by selecting a subset of the data points

based on their interest, changing the parameters of the algorithms, etc.

2.2.2 An Analysis Example
We analyze the Wine Recognition dataset from UCI Machine Learning Repository [65]

while following the workflow shown in Fig. 2.1. The dataset includes 178 data points

(wines) with 13 features (e.g., alcohol, color intensity, and flavanoids). First, to generate

a DR result, t-SNE [233] is used for all of the data points. Then, to detect clusters,

DBSCAN [68] is applied to the DR result. As shown in Fig. 2.2-a, three clusters are
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identified and colored with green, orange, and brown. The black data points are

outliers or noise points labeled by DBSCAN. To understand the characteristics of the

wines in each cluster, the system immediately applies our cPCA-based analysis method

for each detected cluster. Now, the features’ contributions to contrasting each cluster

are obtained. Themeasures of contributions are visualizedwith a blue-to-red divergent

colormap, as indicated in Fig. 2.2-b. As the absolute value of themeasure approaches 1,

the corresponding featurehas ahigher contribution. Finally, for each cluster, histograms

of values of the three features that have the highest contributions are visualized. The

results are shown in Fig. 2.2-c. The histograms for each target cluster are colored with

its respective cluster color, while the others are colored gray. The H-axis shows relative

frequency and its maximum limit is set to the maximum relative frequency of each pair

of the histograms.

Based on the result shown in Fig. 2.2, we can easily perceive each cluster’s char-

acteristics. For example, the green cluster has higher alcohol percentage (‘Alc’) and

flavanoids when compared to the others. The orange cluster has lower magnesium,

proline, and alcohol percentage. Also, the brown cluster has lower OD280/OD315 (i.e.,

low dilution degree), lower hue, and higher color intensity. The black outliers have

higher magnesium and proanthocyanidins (‘Proanth’).

Even though this analysis example uses relatively a small number of features and

clusters, finding these results is not a trivial task without the suggestions of highly

contributed features. For example, in Fig. 2.3, similar to the work by Kwon et al. [142],

each cluster’s feature values with parallel coordinates [117] are visualized. Without

using ccPCA, to find the same results, the user would need to review all the features

of each cluster one by one. This is not only time-consuming but also introduces a

possibility of overlooking important characteristics.

2.3 Methodology
As demonstrated in Sec. 2.2.2, when a dataset has many features, even only around ten,

reviewing the values for each feature becomes tedious. Finding features which contrast
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Figure 2.3: Parallel coordinates showing all features in the Wine Recognition dataset. The corre-
sponding polylines for the wines are highlighted with (a) black, (b) green, (c) orange, and (d) brown
clusters. It is difficult to discern the essential features from this visualization.

each cluster with the other data points is the core analysis of my approach. To do this,

we utilize cPCA [2,3] and its linearity to obtain the features’ contributions (FCs) to the

contrast.

There is a clear advantage of using cPCA over PCA [114, 125] and LDA [118], both

of which are linear DR methods. PCA has been used to find the representative fea-

tures within the selected data points [124, 227]. However, as shown in the examples

of Fig. 2.4(middle), while PCA is useful to find variations within each cluster, it can-

not consider the differences between one cluster and the others. This consideration is

important to find the unique characteristics in the target cluster. On the other hand,

LDA focuses only on distinguishing the target cluster from the others. Thus, as shown

in Fig. 2.4(left), LDA would judge whether a feature has a high contribution to distin-

guishing the target cluster even in the case where the feature has little variance in the

target cluster and zero variance in the others. This could frequently happen especially

when the number of features is large. A new cPCA-based method, ccPCA, finds the

features which are well-balanced in terms of variety (similar to PCA) and separation

(similar to LDA). Also, this balance can be controlled with the contrast parameter, as
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Figure 2.4: Comparison of features’ relative contributions of MNIST digits. LDA, PCA, and ccPCA are
compared. All of thesemethods can calculate the features’ relative contributions to the first component
by respectively referring to either LDA’s loadings, PC loadings, or cPC loadings described in Sec. 2.3.3.
Each loading is scaled in the range from -1 to 1 by dividing themaximum absolute value of the loadings.
The scaled loading for each pixel is visualized with a blue-to-red colormap. For LDA, classification
between the target digit and the others is performed. The LDA results, placed on the left column, show
that the outside pixels have high contributions. We can consider that LDA tries to distinguish each
target digit from the others by referring to the pixels that are less frequently used in the other digits.
PCA is applied to each target cluster in the same manner as the works by Joia et al. [124] and Turkay
et al. [227]. We can see that the PCA results show variations of the strokes when drawing each digit.
The cPCA results are obtained from ccPCA with the automatic selection of 
 (refer to Sec. 2.3.2).
When compared with PCA, the cPCA results clearly show the strokes contrasting the target digit with
the others. For example, for Digit 5, the pixels on the upper right have high contributions, as indicated
in dark red. When only drawing Digit 5, we tend to use these pixels, and thus, we can see that cPCA
captures Digit 5’s characteristics. Similarly, for Digit 4, we can see that there are dark red pixels around
the middle left.

described in Sec. 2.3.2.3.

2.3.1 Contrastive PCA (cPCA)

This subsection provides a brief introduction to cPCA, which is utilized to find features

contrasting a target cluster with the other data points. cPCA is developed for “the
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setting where we have multiple datasets and are interested in discovering patterns that

are specific to, or enriched in, one dataset relative to another” [2]. For instance, from

the examples provided by Abid and Zhang et al. [2], when we have a medical dataset

- of diseased patients, we would want to find trends and variations of the disease’s

influence. If we apply the classical PCA to -, the first principal component would

only present the diseased patients’ demographic variations [86], instead of showing

the variation of the disease’s effects. However, if there is another medical dataset .

of healthy patients, cPCA can utilize the fact that . could have similar demographic

variations as-, and no variations related to the disease. By taking- and. as the target

and background datasets, respectively, cPCA can find the directions (or components)

in which - has high variance but . has low variance.

2.3.1.1 Description of the Algorithm

Here describes how cPCA obtains such directions by using the target and background

datasets. Let - = {x8}=8=1 be the target dataset and . = {y8}<8=1 be the background

dataset where x8 ,y8 ∈ R3, = and < are the numbers of data points, and 3 is the number

of dimensions (or features). Similar to the classical PCA, for the first step, cPCA applies

centering to each dimension of - and. and then obtains their corresponding empirical

covariance matrices CX and CY. Let v be any unit vector of 3 dimensions.

Then, with a given direction v, the variances for the target and background datasets

can be written as: �-(v)
def
= vTCXv, �.(v)

def
= vTCYv. Now, the optimization that finds a

direction v∗ where - has high variance but . has low variance can be written as:

v∗ = argmax
v

�-(v)−
�.(v) = argmax
v

vT(CX−
CY)v (2.1)

where 
 is a contrast parameter (0 ≤ 
 ≤∞). The details of 
 are described in Sec. 2.3.1.2.

From Eq. 2.1, we can see that v∗ corresponds to the first eigenvector of the matrix

C def
= (CX−
CY). The eigenvectors ofC can be calculatedwith eigenvaluedecomposition

(EVD). These computedeigenvectors are called contrastiveprincipal components (cPCs)

and are orthogonal to each other. Similar to the classical PCA, by using these cPCs

(typically two cPCs), we can plot the DR result of -. An example from the work by

Abid and Zhang et al. [2] is shown in Fig. 2.5.
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Figure 2.5: cPCA results of the Mice Protein Expression dataset [112] provided by Abid and Zhang et
al. [2]. A different contrast parameter 
 value is used for each result. When 
 = 0, cPCA generates the
same result when applying PCA to the target dataset. In this result, we cannot see clear differences
between down syndrome (DS) and non-DS mice, indicated with red and blue points, respectively.
While clear differences between DS and non-DS start to appear when 
 = 1.7, we can see that DS is
further separated into two groups when 
 = 36.7. More examples can be found in the work by Abid
and Zhang et al. [2,3].

2.3.1.2 The Contrast Parameter and Semi-Automatic Selection

The contrast parameter 
 controls the trade-off between having high target variance

and low background variance. When 
 = 0, cPCs will only maximize the variance of

the target dataset. These cPCs are the same as the principal components (PCs) of the

target dataset when computedwith the classical PCA. As 
 increases, cPCswill become

more optimal directions that reduce the variance of the background dataset. Fig. 2.5

shows the example from the work by Abid and Zhang et al. [2] with different 
 values.

As shown in Fig. 2.5, the selection of 
 has a strong impact on the DR result. Thus,

Abid andZhang et al. [2,3] introduced an algorithm suggestingmultiple 
 values. Their

algorithm calculates a set of cPCs for each of the multiple values of 
 (with 40 values as

their default), and the 
 values are logarithmically spaced in a certain range (the default

is between 0.1 and 1000). Then, the similarity between each pair of the different cPCs,

each obtained with a different 
 value, is measured by calculating the product of the

cosine of the principal angles. Afterward, based on the user’s input ? (the number of

values of 
 to suggest), the algorithm finds ? clusters from the similarities with spectral

clustering [180]. Finally, the algorithm returns ? values of 
 which correspond to the

medoids of the clusters. From the suggested ? values, the algorithm returns a set of

DR results. By referring to this set, the user can choose their preferred 
 value.
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2.3.2 Finding the Direction that Contrasts a Target Cluster

As described above, cPCA discovers patterns that are specific to, or enriched in, the

target dataset relative to the background dataset. cPCA is originally designed for

the situation where the patterns the user wants to identify are included within the

target dataset -, while the background dataset . contains the structure the user wants

to remove from the target dataset. Therefore, the provided examples for {-, .} by

the authors of cPCA [2, 3] are {‘diseased subjects’, ‘control group subjects’}, {‘patients

after treatment’, ‘patients before treatment’}, {‘images mixed with interests and noises’,

‘images only including noises’}, etc.

In our case, wewant to find the directions (i.e., cPCs)which contrast one clusterwith

the other data points. If we follow the examples of- and. as stated above, - can be the

target cluster and . can be the other data points. However, in this case, cPCA will find

cPCs that only enrich the variations specific to the target cluster. For example, when

the target cluster includes diseased subjects and the other data points correspond to

healthy subjects, cPCA will find enriched variations within the diseased subjects (e.g.,

differences among multiple diseases), but will not consider the differences between

diseased and healthy subjects.

To utilize cPCA for finding the directions contrasting a target cluster with the others,

I introduce a novel usage of cPCA, named ccPCA. Instead of using the target cluster

as the target dataset - and the other data points as the background dataset ., ccPCA

uses the entire dataset as - and the data points other than the target cluster as .. With

this approach, we can find the directions that contrast the target cluster. As described

in the following subsections, ccPCA has the strengths in regards to two aspects: (1) an

implicit extension of the contrast parameter 
 and (2) a proper setting of the centroid.

The DR results shown in Fig. 2.6 provide a comparison of the classical PCA, the original

usage of cPCA (i.e., using only the target dataset as -), and ccPCA.

Let � = {e8}B8=1 be the entire dataset and  = {k8}C8=1 be the target cluster ( ⊂ �,
e8 ,k8 ∈ R3, B and C are the numbers of data points). Then, we denote ' = {r8}D8=1 as the

difference of the two sets  and � (i.e., ' = � \ and D = B − C). With these notations,
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(a) PCA (b) cPCA (
 = 2.15) (c) ccPCA (
 = 4.38)

Figure 2.6: The DR results of theWine Recognition dataset. The cluster labels generated in Sec. 2.2.2
are used. Here, PCA, cPCA, and ccPCA are used to find the (c)PC contrasting the green cluster. In
(a), the classical PCA is applied to the entire dataset. Though there is a separation of the green cluster
when using the first and second PCs, there are overlaps of the green and orange clusters when only
using the first PC (PC 1). In (b), the data points in the green cluster are used as the target dataset and
the other data points are used as the background dataset. 
 value is selected from the suggestions
using the semi-automatic selection in Sec. 2.3.1.2. We cannot see a clear separation of the green
cluster from the others. In (c), ccPCA uses the entire data points instead of only the green cluster
as the target dataset. 
 value is selected with the automatic selection method in Sec. 2.3.2.3. We
can see a better separation when compared to that of (a) and (b) even when using only the first cPC
(cPC 1).

we can say that ccPCA uses � and ' as the target - and background . datasets,

respectively.

2.3.2.1 An Implicit Extension of the Contrast Parameter

To provide a simple and clear explanation, here assumes the centering effects to the

datasets �,  , and ' are all the same (i.e., �,  , and ' have the same mean value for

each feature). After centering the target dataset � and the background dataset ', cPCA

obtains their corresponding empirical covariance matrices CE and CR. Then, cPCA cal-

culates cPCs by performing EVD to CE−
CR. Let CK be the empirical covariance ma-

trix of the target cluster  after centering. Because CK =
∑C
8=1 k8kT

8
/C, CR =

∑D
8=1 r8rT8 /D,

� =  t', and B = D + C, CE can be represented as CE = (CCK+DCR)/B. With this,
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CE−
CR can be rewritten as:

CE−
CR = (CCK+DCR)/B−
CR (2.2)

=
C

B

(
CK−

(B
−D)
C

CR

)
=
C

B

(
CK−�CR

)
(2.3)

where � = (B
−D)/C. Because 0 ≤ 
 ≤ ∞, −D/C ≤ � ≤ ∞. Note that if we use  and '

as the target and background datasets, respectively, cPCA performs EVD to CK−
CR.

Therefore, a fundamental difference between the cases of using� (i.e., the entire dataset)

and using  (i.e., only the target cluster) as the target dataset for cPCA is the difference

between 
 and �.

While 
 only takes a non-negative value, � can be a negative value. When � = −D/C,
cPCA selects the directions that maximize the variance of the entire dataset �, and

hence reduces to PCA applied on �. As � increases to 0, cPCA provides more weight to

the target cluster  than the others ' to select the directions. When � = 0, cPCA selects

the directions that maximize the variance of the target cluster  , and hence reduces to

PCA applied on  . Then, as � increases from 0 to ∞, the directions from cPCA will

become more optimal to reduce the variance of the others '. While Eq. 2.3 with � ≥ 0

has a capability to find the same directions with CK−
CR, ccPCA also searches the

directions that consider the differences between the target cluster  and the others '

by using the range � < 0.

2.3.2.2 The Centering of the Target Dataset

ccPCA not only implicitly extends the searching range of 
 of CK−
CR, but it also

uses a proper centroid of the dataset. The centering (i.e., the mean subtraction for each

feature) in cPCA is used for translating the dataset to its centroid. When using  as

the target dataset, the centroid is calculated from only the target cluster  . In contrast,

ccPCA uses � as the target dataset, and the centroid is calculated from all the data

points. Fig. 2.7 shows an example of the two methods of calculating the centroid and

the first cPC in each case. For the same reason as the classical PCA, the centering should

be applied to the entire dataset in our case. This is to ensure that the first cPC is the

direction of the maximum variance, which contrasts the differences between the target
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(a) Centroids and cPCs (b) Histogram along the green

cPC 1

(c) Histogram along the blue

cPC 1

Figure 2.7: A comparison of centering effects to the cPCA results. For this example, two sets of data
points from different 2D Gaussian distributions are generated. In (a), the green circle and arrow show
the centroid and the first cPC when using the target cluster  as the target dataset and the others as
the background dataset. The blue circle and arrow are the centroid and the first cPC when using the
entire dataset � as the target dataset. From the DR results, as shown in (b) and (c), ccPCA, using the
entire dataset � as the target dataset, generates a better separation between the target cluster and
the others.

cluster and the others.

2.3.2.3 Automatic Selection of the Best Contrast Parameter

The selection of the contrast parameter 
 is the remaining procedure. Even though

we can use the existing semi-automatic selection of 
 in Sec. 2.3.1.2, selecting the

best alpha from the multiple suggested options is tedious when analyzing multiple

clusters. Thus, I introduce a method for an automatic selection of the best 
 for our

usage. The pseudocode of this method is shown in Algo. 2.1. To understand the

characteristics of the cluster, we should find the first cPC which not only (1) shows

a clear separation between the target cluster from the others, but also (2) maintains

the variability in the target cluster well (i.e., a high variance within the target cluster).

Similar to the classical PCA, the second condition tries to preserve the target clusters’

original structure. Without the second condition, when using a large 
, cPCA may

preferentially select features where the target cluster only has subtle variability, but the

other data points have no variability (i.e., zero variance). This example can be seen in
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Algorithm 2.1 Our usage of cPCA with automatic selection of 

Inputs: datasets of the target cluster and the others  = {k8}C8=1, ' = {r8}

D
8=1; list of possible {
8}

@

8=1; a

threshold ratio of the variance �.

1: Obtain the concatenated dataset � =  t' = {e8}B8=1

2: Apply centering to � and '

3: Calculate the empirical covariance matrices CE and CR from � and '

4: Perform EVD on C = CE−
1CR

5: Obtain 1D DR results  ′ and '′ by projecting  and ' with the top eigenvector of C (the first cPC).

6: Calculate the distance �(
1) and variance +(
1)with  ′ and '′

7: best_
 = 
1, best_� = �(
1), +
1 =+(
1), best_ ′ =  ′, best_'′ = '′

8: for all 8 = 2,3, · · · , @ do in parallel

9: Perform EVD on C = CE−
8CR

10: Obtain 1D DR results  ′ and '′ by projecting  and ' with the first cPC

11: Calculate the distance �(
8) and variance +(
8)with  ′ and '′

12: if �(
8) > best_� and +(
8) ≥ �+
1 then

13: best_
 = 
8 , best_� = �(
8), best_ ′ =  ′, best_'′ = '′

14: return best_
, best_ ′, best_'′

the far right of Fig. 2.8.

Similar to the semi-automatic selection in Sec. 2.3.1.2, ccPCA’s automatic selection

lists multiple candidates of 
 (ccPCA’s default is also 40 values). These candidates

consist of 0 and a set of logarithmically spaced values given a certain range (ccPCA’s

default also ranges from 0.1 to 1000). Here we denote these alphas as {
8}@8=1 (@ is the

number of candidate values for the best 
) and assume {
8} is sorted by ascending

order (i.e., 
1 = 0). Then the method selects a value that obtains the best separation

while having enough variance in the target cluster  .

To measure the separation between the target cluster and the others along the first

cPC, the histogram intersection (HI) [216] is used, which can measure the overlaps of

the histograms of the two sets. While there are many different (dis)similarity measures

between two probability distributions, such as the Kullback-Leibler divergence [141],

HI is chosen for its robustness to outliers and low computational cost. Let�� = {ℎ� 9}19=1,

�� = {ℎ� 9}19=1 be the histograms of two given sets of real numbers � and � where 1 is
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the number of bins, ℎ� 9 and ℎ� 9 are the numbers of data points in the 9-th bin of � and

�, respectively. Both�� and�� have the same bins. The bin-width is decided by using

Scott’s normal reference rule [202] from the set of real numbers obtained by combining

� and �. The HI of the two sets � and � is defined as: �(�,�) = ∑1
9=1 min(ℎ� 9 , ℎ� 9).

Let  ′
8
and '′

8
be the data points of 1D DR results of  and ' with the first cPC

corresponding to the 8-th candidate 
 value (i.e., 
8), respectively. Then,we can calculate

the measurement of separation with the inverse HI (i.e., �( ′
8
, '′

8
)−1) for each 
8 . We

refer �( ′
8
, '′

8
)−1 as the discrepancy score �(
8).

For the variance of  ′
8
, to handle the scaling differences in each DR result, first, the

method applies the min-max scaling to  ′
8
with the minimum and maximum values

of  ′
8
t'′

8
. Then, the method calculates the variance of the scaled  ′

8
. I denote this

variance of  ′
8
as +(
8).

With the measures of �(
8) and +(
8), the automatic selection method selects the

best alpha with:

argmax

8∈{
1 ,...,
@}

�(
8) B.C. +(
8) ≥ �+(
1) (2.4)

where � (� ≥ 0) is a ratio that controls the threshold of the variance +(
8). Note that

+(
1) is the variance of  ′1 of the cPCA result with 
 = 0, which will be the same result

when applying the classical PCA to the entire dataset �. While the method allows the

user to select any non-negative value for �, � = 0.5 is used as the default to ensure

that +(
8) has at least a half of +(
1). Fig. 2.8 shows the cPCA results with different 


values. The automatic 
 selection chooses 
 = 1.06 in this case. More comprehensive

experimental results with various datasets and 
 values can be found in the online

supplementary materials listed in Appendix A.

In summary, the original cPCA is enhanced as ccPCA by using Eq. 2.1 with - = �

and . = � \ and by selecting 
 as the solution to Eq. 2.4.

Parallel calculation of the best contrast parameter: The original semi-automatic se-

lection of the contrast parameter [2, 3] calculates cPCA for each 
8 ∈ {
8}@8=1 in serial 1

(@ = 40 by default). Because the calculation of cPCA for each 
8 is independent of each

1The original cPCA implementation: https://github.com/abidlabs/contrastive
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Figure 2.8: The DR results with the first and second cPCs (top row) and the features’ (i.e., pixels’) rel-
ative contributions (bottom row) of the MNIST dataset [148] with different 
 values (refer to Sec. 2.3.3
about the features’ relative contributions). Here, we try to contrast Digit 1 with the other digits. We can
see that when 
 = 0 (reduced to applying the classical PCA for all digits), cPCA does not separate Digit
1, and the features’ contributions do not show any useful information to understand the characteristics
of Digit 1. On the other hand, when 
 = 22.85, while some of Digit 1 (e.g., points placed on the top
left) are well separated, the variance + is small. Also, from the features’ contributions, we can see
that only a few pixels in the lower left have high contributions. This is expected because these pixels
are rarely used when drawing Digit 1. The result with 
 = 1.06 produces the best discrepancy score
� and a large variance + . This 
 will be selected by Eq. 2.4. Also, we can see that cPCA highlights
the pixels around the center, which are typically used for drawing Digit 1.

other, in order to achieve faster computation, ccPCA uses multi-threads and calculates

each cPCA result, �(
8), and +(
8) in parallel. The comparison of the completion

time of the original cPCA and the implementation with and without parallelization is

available on the online supplementary materials (Appendix A).

2.3.3 Features’ Relative Contributions to the First cPC

By using cPCA, with the automatically selected 
, we can now obtain the direction

(i.e., the first cPC) that contrasts the target cluster. Next, we determine how strongly

each feature of the target cluster contributes to this direction. Similar to the classical

PCA, by using the top eigenvalue �∗ and the corresponding eigenvector v∗ (i.e., the
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first cPC) of the matrix CE − 
CR, the relative contributions can be calculated with:

w∗ =
√
�∗v∗ where w∗ = {F∗

8
}3
8=1 (−1 ≤ F∗

8
≤ 1). Analogous to the classical PCA, I call w∗

the cPC loadings of the first cPC. As |F8 | approaches 1, the 8-th feature has a stronger

contribution (or correlation) to the first cPC. Based on this value, we can decide which

features we should review to understand the target cluster. Fig. 2.4 shows an example

of the features’ contributions and comparisons with the results from LDA and PCA.

Comprehensive comparisons of LDA and PCA, using multiple datasets, can be found

in the online supplementary materials (Appendix A). As shown in Fig. 2.4, signed cPC

loadings can clearly differentiate features whose positive centered values contribute to

the negative or positive direction of the first cPC by using blue and red, respectively.

This is as opposed to taking the absolute value of the signed cPC loadings.

2.4 Visual Analytics System
To demonstrate the methods of analyzing real-world datasets, I develop a prototype

system that supports the analysis workflow shown in Fig. 2.1. A major portion of the

system’s functionality and a video of an interaction demonstration are available in the

online site (Appendix A).

2.4.1 Dimensionality Reduction View
The dimensionality reduction (DR) view, as shown in Fig. 2.2-a, is used for the first two

processes: generating a DR result and identifying clusters. In this view, first, the user

can visualize a 2D DR result of a high-dimensional dataset. t-SNE [233] (specifically,

Barnes-Hut t-SNE implementation [232]) is employed as a DR method because t-SNE

can effectively depict the local structure of the dataset, and thus, it is useful to visually

identify the clusters within the dataset. From the settings in Fig. 2.2-d, the user can

adjust the perplexity parameter of t-SNE, which controls a balance of the effects from

local and global structures of the dataset. While a larger perplexity will preserve more

of the distance relationship in the global structure, a smaller perplexity will focus on

more preserving the distance relationship among a small number of neighbors.

After obtaining theDR resultwith t-SNE, the user can identify clusters automatically
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ormanually. As a default, the automatic clusteringmethodwill be immediately applied

to the obtained DR result. As part of the automatic method, the system supports

DBSCAN [68] because the density-based clustering algorithm is able to identify clusters

with arbitrary shapes [184], which are often generated from DR. The user can change

the parameters required for DBSCAN from the settings in Fig. 2.2-d. The categorical

color of each point in the DR result is assigned to the clustering label obtained from

DBSCAN. The color black, in particular, is used to represent outliers or noise points

labeled byDBSCAN. For amanual selection of a cluster, the system supports a rectangle

selection. The user can select data points by drawing a rectangle with mouse dragging

in the DR result. Also, the user can add additional data points or unselect data points

by using different selection modes provided in the system. From these interactions,

the user can create a new cluster consisting of the selected points by clicking the “Add

Cluster” button placed at the top of Fig. 2.2-b. The system also supports basic view-level

interactions, such as zooming and panning.

2.4.2 Features’ Contributions View
The two remaining processes (i.e., finding features contrasting each cluster and compar-

ing the features’ values in detail) are performed with the features’ contributions (FCs)

view shown in Fig. 2.2-b. In the FCs view, the FCs contrasting each cluster described in

Sec. 2.3.3 are visualized as a heatmap. While each row name shows the corresponding

feature, each column name shows the cluster label (‘Z’ is used to represent the outliers,

noise points, or both). Also, to indicate the corresponding cluster in the DR view,

the background of each column name is colored with the corresponding color. Each

cluster’s FCs are scaled in the range from −1 to 1 by dividing each FC by the maximum

absolute value of the FCs (e.g., the original range from−0.1 to 0.5 will be changed to the

range from −0.2 to 1.0). Then, the scaled FCs is encoded with a blue-to-red colormap.

The next subsections describe the algorithm organizing the heatmap.

2.4.2.1 Optimal Sign Flipping of cPCs and FCs

Similar to the classical PCA, cPCA has the “sign ambiguity” problem [35, 75, 121].

Because of this problem, arbitrary sign flipping in each (c)PC occurs when performing
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Figure 2.9: Sign flipping of cPCs. The cPCA results of theWine Recognition dataset used in Sec. 2.2.2
are generated with different 
 values. Sign flipping occurs between 
 = 3.3 and 
 = 3.6; 
 = 3.6 and

 = 3.9.

EVD. An example of sign flipping in cPCA is shown in Fig. 2.9. Sign ambiguity affects

the comparison of the FCs among the clusters. Each cluster might have the opposite

direction of the first cPC only due to this sign ambiguity problem. In this case, the FCs

also have opposite signs, and thus, it is difficult to judge whether these clusters have

similar patterns in the FCs or not.

To solve this problem as much as possible, I introduce a method to optimally

reduce unnecessary sign flipping. Let v∗
8
and v∗

9
be the first cPCs of 8-th and 9-th

clusters, respectively. We can measure how the directions v∗
8
and v∗

9
are similar with

the cosine similarity sim(8 , 9) = v∗
8
· v∗

9
/(‖v∗

8
‖‖v∗

9
‖). v∗

8
and v∗

9
have the same direction

when sim(8 , 9)= 1, while v∗
8
and v∗

9
have opposite directions when sim(8 , 9)=−1. Ideally,

by flipping the signs of the first cPCs of some clusters, we want to ensure that all

of the clusters’ first cPCs face the same side (i.e., sim(8 , 9) ≥ 0 ∀8 , 9). However, the

sign flipping to a certain cluster affects all cosine similarities related to this particular

cluster. Thus, in many cases, it is theoretically impossible to obtain the result stated

above. However, alternatively, we can maximize the sum of all sim(8 , 9) with sign

flipping. This optimization can be written as:

argmax
!={!8 ,...,!;}

;∑
8=1

;∑
9=1, 9≠8

(!8v∗8) · (! 9v∗9)
‖v∗

8
‖‖v∗

9
‖ =

;∑
8=1

;∑
9=1, 9≠8

!8! 9sim(8 , 9)

B.C. !8 ,! 9 ∈ {−1,1} (2.5)

where ; is the number of clusters and ! is a set of signs.

To solve Eq. 2.5, I use a heuristic approach. ! is initialized with ! = {1,1, . . . ,1}.
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We can expect that there is a higher chance to obtain a better result if we start to flip

the sign where 8-th cluster has the largest negative value in the sum of the similarities

(
∑;
9=1!8! 9sim(8 , 9)). Therefore, the approach here first checks whether sign flipping

to the first cPC of such a cluster provides a better result in the objective function of

Eq. 2.5. If so, we flip its first cPC’s sign. Then, we repeatedly apply this procedure until∑;
9=1!8! 9sim(8 , 9) ≥ 0 for all 8 ∈ {1,2, . . . , ;} is satisfied or all clusters have been checked.

Afterward, based on the optimized set !, we allocate the new signs to respective cPC

and FCs for each cluster.

2.4.2.2 Ordering of Features and Clusters

The FCs view can be used for finding not only the heatmap cells which have high

FCs, but also the clusters which have similar FC patterns; the features which have

similar FCs within and/or among clusters. The case when the clusters have similar

FCs implies that these clusters are contrasted due to the same features, but they have

different distributions in their features’ values. When the features have similar FCs,

by reviewing the distributions of one of these features’ values, we can expect that the

other features may also have similar distributions.

To help find these patterns, the system applies reordering of the features (i.e, rows)

and clusters (i.e., columns) based on the FCs. Ordering choice is important since this

affects how easily we can find patterns in a heatmap [27]. I use a hierarchical clustering,

specifically the complete-linkage method [177], with the optimal-leaf-ordering [24].

Recent survey [27] reported that this combination tends to produce a coherent and

quality result to help reveal patterns. Fig. 2.10-a, b show the results before and after

the reordering. From Fig. 2.10-b, we can easily see a group of similar FCs.

2.4.2.3 Scalable Visualization

When the number of features is large (e.g., 100 or more), the heatmap-based visualiza-

tion would have a scalability issue. Moreover, in this case, many features could have

high FCs, and as a result, it would still be difficult to decide which features we should

review in detail. To solve this issue, I introduce an aggregation method, utilizing the

hierarchical clustering result obtained through the reordering method.
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(a) Original (b) Reordered (c) Aggregated

Figure 2.10: Reordering and aggregation of the FCs. (a) shows the original FCs. There are 8 clusters
and 60 features. (b) shows the reordered FCs in both rows (i.e., features) and columns (i.e., clusters).
With (b), we can see a group of similar FCs (e.g., the features are indicated with a yellow rectangle).
In (c), the 60 feature clusters are aggregated into 20 rows. For example, the ten features indicated
with the green rectangle in (b) is aggregated into one row indicated with the green rectangle in (c).

When the number of features is larger than threshold � (� = 40 is used by default),

the method obtains � clusters from the features by referring to the hierarchical clus-

tering result. Then, the method aggregates the FCs into one representative value: the

mean or the maximum absolute value. As a default, the method takes the maximum

absolute value to show the most prominent feature. Fig. 2.10-c shows an example of

the aggregation. Additionally, to provide a representative name for each aggregated

feature, the method chooses the name based on which FC has the maximum absolute

value. With this name, the method also shows how many features are aggregated in

each row, as shownwith a purple underline on the right side of Fig. 2.10-c (‘PctKids2Par,

9 more’).
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2.4.3 Interactions between Views

From DR View: When the user updates the clusters with the clustering method in the

DR view, the FCs view updates the heatmap with the reordering (and aggregation)

method(s). When the user adds a new cluster manually, the FCs view updates the

heatmap with the new cluster.

From FCs View: The FCs view can be used as an interface to compare the details of the

features’ values within/across features or clusters. When the user places the mouse

over a certain heatmap cell, the system shows a popup window of the histograms of

feature values of the corresponding cluster and the others (e.g., Fig. 2.2-c and Fig. 2.14-

b). The selected cluster’s histogram is colored with a categorical color representing its

cluster label, while the gray color is used for the other data points’ histogram. When

hovering over a certain (representative) feature name, the system shows a value of the

(representative) feature as the size of each data point in the DR view (e.g., Fig. 2.12-a

and Fig. 2.13-a).

Moreover, when hovering over a certain cluster label, the system highlights the

corresponding cluster in the DR view. In addition, with the popupwindow, the system

visualizes the histograms of 1D DR results of the cluster and the others. From these

histograms, the user can grasp how well the cluster is contrasted with the other data

points. Additionally, the system shows the histograms of three (representative) feature

values that have the highest absolute FCs. These histograms are useful to understand

each cluster’s characteristics quickly.

Also, to make the comparison within/across features or clusters easier, the sys-

tem allows the user to prevent the histograms from disappearing with a mouse-click.

The clicked histograms can also be moved with mouse-dragging. The corresponding

heatmap cell for each histogram is annotated with a gray line and a pair of numbers

shown in the heatmap cell and the histogram (e.g., Fig. 2.2 and Fig. 2.14-b). The gray

line can be turned on or off by clicking the “Show/Hide Histogram Indicator” placed

at the top of the FCs view.
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Figure 2.11: An analysis result of female players from the Tennis Major Tournament Match Statistics
dataset.

2.4.4 Implementation
The system is developed as a web application. To achieve fast calculation, the meth-

ods described in Sec. 2.3 are implemented with C++ and Eigen library [94] for linear

algebraic calculations. Python bindings are provided for the C++ implementation. The

source code is available online (Appendix A). The back-end of the system uses Python

with the stated bindings. The front-end visualization is implemented with a combina-

tion of Elm2, HTML5, JavaScript, WebGL, and D3 [33]. While D3 is used for the FCs

view, WebGL is used to render the data points efficiently for the DR view. WebSocket

is used to communicate between the front- and back-ends.
2Elm: https://elm-lang.org/. Accessed: 2019-3-7.
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2.5 Case Studies
The effectiveness of ccPCAand the visual analytics systemhas been shownby analyzing

the Wine Recognition [65] and MNIST [148] datasets in the previous sections. This

section presents three additional case studies with publicly available datasets. For each

case study, the corresponding dataset is preprocessed to clean up missing values in the

data or extract useful information for the analysis. All the preprocessed datasets are

available online (Appendix A).

2.5.1 Study 1: Tennis Major Tournament Match Statistics

This study analyzes the Tennis Major Tournament Match Statistics dataset from the

UCI Machine Learning Repository [65]. This dataset contains the match statistics for

both females andmales at four major tennis tournaments in 2013. The statistics include

first serve won by each player, double faults committed by each player, etc. From

this dataset, female players’ mean values for each statistic across all tournaments are

obtained. The obtained dataset consists of 174 data points (tennis players) and 13

features (statistics).

Similar to the analysis of Sec. 2.2.2, theDR resultwith t-SNE, clusterswithDBSCAN,

and FCs with ccPCA are generated. Then, to analyze each cluster’s characteristics, the

histograms of the top-3 contributed features are visualized. The result is shown in

Fig. 2.11.

FromFig. 2.11, we can see that each cluster has a different playing style. For example,

the purple cluster tends to have low ‘DBF’ (double faults committed by player), high

‘BPC’ (break points created by player), and high ‘FNL’ (final number of games won

by player). This indicates that these players had fewer mistakes in their serves and

performed well when they were the receiver, and as a result, they won more games.

Similarly, the orange cluster has high ‘WNR’ (winners earned by player) and ‘NPA’ (net

points attempted by player). These statistics will tend to be higher when a player tries

to obtain points aggressively during a rally. On the other hand, the brown cluster has

low ‘WNR’ but high ‘FSW’ (first serve won by player) and ‘TPW’ (total points won by

player). Therefore, we can say that these players tend to obtain more points with their
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Figure 2.12: A result of the Nutrient dataset. (a) shows the result after applying t-SNE and DBSCAN.
A point’s color and size show the clustering label and the value of ‘calories’, respectively. (b) shows
the FCs of each cluster. (c) shows the histograms of the selected cells in (b), as indicated with the
colored numbers in both (b) and (c).

serves.

2.5.2 Study 2: Food and Nutrient

This studyanalyzes theNutrientdataset in theUSDAFoodCompositionDatabases [221]

as an analysis example with a large number of data points. The version available on-

line3 is used for this study. This dataset consists of the nutrient content for each food.

3Nutrient Explorer: http://bl.ocks.org/syntagmatic/raw/3150059/, Accessed: 2019-3-7.
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Figure 2.13: The result after filtering out the ‘calories’ and ‘fat’ features from the Nutrient dataset.
In (a), a point size represents the value of ‘carbohydrate’. The histograms of the selected cells
in (b) are shown in (c).

The dataset has 7,637 data points (foods) and 14 features (nutrients).

This dataset has 12,507 missing values and this is 11.7% of all the values. Since

this high percentage of missing values could affect an analysis result [5], the dataset is

preprocessed to reduce this ratio to less than 5%. In this preprocessing step, features

where more than 40% of the values are missing are removed. Also, data points where

more than 40% of the feature values are missing are removed. Afterward, 7,499 data

points and 12 features remain and there are 4,447missing values (4.9% of all the values).

35



Then, the missing values are replaced with the mean of each corresponding feature.

The result after using t-SNE, DBSCAN, and ccPCA is shown in Fig. 2.12. As shown

in Fig. 2.12-b, we can see that all clusters except for the brown cluster have high FCs

in ‘calories’, ‘fat’, or both. When comparing the histograms of ‘calories’ and ‘fat’ for

each cluster, as shown in Fig. 2.12-c, each cluster, in fact, has different distributions in

‘calories’ and ‘fat’. For example, while the yellow cluster tends to have low calories and

fat, the orange cluster tends to have high values for both.

We have understood the main characteristics of each cluster. However, the effects of

the two specific features (‘calories’ and ‘fat’) are too dominant. As a result, we cannot

find any other interesting patterns. The dataset is preprocessed to filter out these two

features and generate a new result with new cluster labels, as shown in Fig. 2.13. At

this time, from Fig. 2.13-b, we can see that most of the clusters are contrasted by mainly

‘water’, ‘carbohydrate’, or both. For example, the purple and orange clusters placed in

the upper left of Fig. 2.13-a have fewer carbohydrates and more water when compared

with the pink and green clusters, as shown in Fig. 2.13-c. These two examples show that

the FCs are useful to knowwhich features have a dominant effect on cluster forming in

the DR result.

2.5.3 Study 3: Communities and Crime
As an example with a large number of features, this study analyzes the Communities

and Crime dataset [189] from the UCI Machine Learning Repository [65]. This dataset

consists of both socio-economic and crime statistics (e.g., the median family income

and the number of murders) for each community. The dataset contains 2,215 data

points (communities) and143 features (statistics) after excluding identifiers (e.g., county

codes).

Because this dataset hasmanymissing values (42,147 values, 13.3% of all the values),

as similar to Sec. 2.5.2, the features where more than 80% of the values are missing are

removed. The dataset now has 121 features and only 963 missing values (0.4% of all the

values). The missing values are replaced with the mean of each corresponding feature.

Fig. 2.14-a (top) shows the result after DR and clustering. As indicated with the
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(a) DR result (b) Aggregated FCs and histograms

Figure 2.14: The results for the Communities and Crime dataset. The top of (a) shows the result with
t-SNE and DBSCAN. In the bottom of (a), the pink cluster which was not identified by DBSCAN is
manually added. (b) shows 40 aggregated features from 121 features. Also, some of the histograms
of the original features are visualized at the left of (b).

purple rectangle, an additional cluster is manually selected as a pink cluster. Then,

the FCs are obtained, as shown in Fig. 2.14-b. Because there are many features, the

system has aggregated them into 40 features using the aggregation method described

37



in Sec. 2.4.2.3. From Fig. 2.14-b, we can say that the small clusters (yellow, purple,

brown, orange, and pink) are separated from the green cluster due to race, house

size, etc.—not due to the criminal statistics. For instance, as indicated with the green

rectangles, the brown cluster has high FCs in race percentages of African Americans

and Caucasians (‘racepctblack’ and ‘racePctWhite’). Also, the pink cluster has high FC

in ‘PctLargHouseOccup’ (percentage of all occupied households that are large).

The histograms of the features aggregated to the ‘PctLargHouseOccup and 1 more’

are visualized, as shown in the lower left of Fig. 2.14-b. We can see that both ‘Pct-

LargHouseOccup’ and ‘PctLargHouseFam’ (percentage of family households that are

large) have similar distribution patterns. These patterns can be found because the ag-

gregation method is performed after applying the optimal sign flipping and ordering

described in Sec. 2.4.2. The aggregation method is able to provide a scalable visualiza-

tion and help the user analyze many features. Another example for ‘PctPopUnderPov

and 3 more’ of the orange cluster is shown in the upper left of Fig. 2.14-b. All ‘PctPop-

UnderPov’ (percentage of people under the poverty level), ‘agePct12t21’ (percentage of

population that is 12–21), ‘agePct12t29’ (percentage of population that is 12–29), and

‘MalePctNevMarr’ (percentage of males who have never married) tend to have a higher

value in comparison to that of others.

2.6 Discussion
Generality of ccPCA. The method in this chapter utilizes cPCA [2, 3] to find features

contrasting the target cluster. I discuss the reasonwhy this approach is chosen insteadof

analyzing how theDRmethod generates clusters. If possible, the latter approachwould

be effective because the cluster formation is a result of the DRmethod. However, many

of the nonlinear DR methods used for visualization (e.g., t-SNE [233], LargeVis [219],

and UMAP [170]) generate an irreversible low-dimensional projection of the original

data structure. These methods do not have a parametric mapping between the original

and projected dimensions; therefore, it is difficult to provide information about how

these DR methods affect cluster forming. ccPCA provides flexibility for analyzing
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results from any type of DR methods.

ccPCA is introduced to understand the characteristics of the clusters identified in

the DR result. ccPCA can also be used in other situations. For example, even though

using DR before clustering is a common approach [245,250], ccPCA can support visual

analytics of clusters that are obtained from the clustering methods without going

through the DR step. This would be helpful to understand clusters’ characteristics and

to analyze the quality of the clustering methods without any effects derived from DR

(e.g., distortion in the projection space). Another example is applying ccPCA to labeled

data. ccPCA can identify the essential features to contrast a labeled group from the

others. Therefore, ccPCA would be useful to understand the characteristics of each

group and could help design classifiers based on the gained knowledge. The prototype

system demonstrated in this chapter can support these types of analysis by changing

the parts related to steps (a) and (b) in Fig. 2.1, such as the DR view and clustering

algorithms.

Advantages of using cPCA. In Sec. 2.3, I have already discussed the advantages of

using cPCA when compared with using PCA and LDA. It is also possible to compute

thediscrepancy score� introduced in Sec. 2.3.2.3 for eachoriginal featurewithout using

ccPCA and then use the score as the feature contribution. However, this approach has

a similar problem with LDA because the obtained score only shows the separation and

does not take into account the variety (i.e., variance) for each feature.

Another potential option is using the two-group differential statisticsmethods [168],

such as two-sample t-test, Wilcoxon signed-rank test, andMann-Whitney U test, to find

features that have differences between the target cluster and the others. Unlike LDA,

PCA, or cPCA, these methods cannot produce a quantitative measure for analyzing

the FCs to the contrast of the cluster. More importantly, these statistical methods are

designed to test whether there is a difference in a certain statistic (typically mean)

between two clusters. Therefore, these methods are not suitable for performing ex-

ploratory analysis on clusters when we do not know their characteristics beforehand.

Limitations. Since cPCA is used, we will need to address its limitations in terms of
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time and space complexity for a large-scale problem. Similar to the classical PCA, cPCA

computes the covariancematrices and then performs EVD. For a fixed 
, it has the same

time and space complexity with PCA, which are $(32=+ 33) and $(32), respectively,
where = is the number of data points and 3 is the number of features. Thus, cPCA can

achieve fast computation for a dataset that has a large =, but not for a dataset with a

large 3 (the experimental results are included in the online supplementary materials

(Appendix A). For PCA, incremental algorithms [182,193,244] have been developed to

solve this issue. For example, the algorithm introduced by Ross et al. [193] has the time

and space complexity of $(3<2) and $(3(:+<)), respectively, where < is the number

of data points used in each batch, and : is the number of principal components. I thus

plan to develop an incremental version of cPCA next.

2.7 Summary
Dimensionality reduction is widely used to analyze high-dimensional data for pattern

discovery and real-world problem-solving. The work in this chapter makes a tangible

contribution to interpreting and understanding DR results by introducing a visual

analyticsmethod that capitalizes on contrastive learning. Using a scalable visualization,

the method directs the user to the essential features within the data. The work, thus,

further enhances the usability of DR methods.
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Chapter 3
Multivariate Time-Series Data Analysis

Analysis of multivariate time-series data is becoming increasingly important to study

various phenomena in the real world. For example, analyzing electronic health records

(EHRs) that contain temporal changes of individuals’ various medical measures (e.g.,

blood pressure and heart rate) for cohort studies can help clinical researchers develop

healthcare plans [96, 116, 150]. Many other analysis examples can be found in other

domains, such as diagnosis of the performance of parallel computing systems [77,

95, 175], fault detection of factory assembly lines [247, 249, 262], and optimization of

transportation systems [54,156]. As seen in the emergence of the Internet of Things, the

growing capability and use of sensing devices improves the granularity, quality, and

accessibility of multivariate time-series data [60, 215]; at the same time, the increase of

the data size and dimensionality makes analysis tasks more challenging [7].

To effectively analyze and visualize large, high-dimensional data, dimensionality

reduction (DR) methods are often used [159, 198] because of their ability to provide a

succinct overview of such complex data. Currently available DRmethods designed for

2D or 3D visualization [52,234] can be only applied to data that can be formed into a 2D

matrix, such as single-time-point multivariate data (matrix rows: instances, columns:

variables), univariate time-series data (rows: instances, columns: time points), and

multivariate time-series with a single instance (rows: time points, columns: variables).

When multivariate time-series data consists of multiple instances, the data is often

represented as a third-order tensor (or 3Darray); consequently, we either cannot directly

apply some DR methods such as principal component analysis to the data or we do

not know how to properly prepare a distance matrix as an input for other DR methods

(e.g., t-SNE [233]).
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A common approach to the above problem is slicing the 3D array and then applying

a DR method to each resulting slice [17]. For instance, when slicing along a temporal

direction, where each slice represents a matrix of instances and variables, we can

visualize a set of DR results with animation or small multiples. However, when a sliced

direction has high dimensionality (e.g., 100 time points), the analyst must examine a

large amount of DR results and can easily overlook important patterns (e.g., the emerge

of outliers).

To support effective analysis ofmultivariate time-series data, this chapter introduces

a visual analytics framework, MulTiDR, which employs a two-step DR to generate an

overview of the data and supports interpreting the DR results with ccPCA described

in Chapter 2 and interactive visualization. Particularly, in the first step of DR, MulTiDR

compresses and converts a third-order tensor into a matrix, and then, in the second

step, it projects high-dimensional data points into a lower-dimensional space. Similar

to the existing DR methods, the two-step DR result shows similarities of instances,

variables, or time points and enables visual identification of essential patterns, such

as clusters and outliers. When compared with ordinary DR, the two-step DR result

is derived from two different directions (e.g., variables and time points) and could

be more difficult to understand why specific patterns appear. Thus, to support the

analysis of the two-step DR, ccPCA is integrated to identify essential aspects for the

analysts to review and interpret in detail with interactive visualization. I demonstrate

the effectiveness of MulTiDR for multivariate time-series analysis with multiple case

studies using real-world datasets and also make qualitative comparisons of MulTiDR

with other potential DR methods.

3.1 Background and Related Work
This section provides a brief description of third-order tensors and discusses relevant

works.
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3.1.1 Third-Order Tensors

A third-order tensor is a 3D array (note that first- and second-order tensors correspond

to vectors andmatrices, respectively). Each axis of a tensor is calledmode. When a third-

order tensor represents multivariate time-series data, the three modes correspond to

time points, instances (or samples), and variables (or attributes). As the main analysis

target, the description in this chapter focuses on third-order tensors of multivariate

time-series data; however, the framework, MulTiDR, is designed to be able to deal with

the other types of third-order tensors.

The notations used in this chapter follow the conventions in the literature [136].

Here we denote scalars, vectors, matrices, and third-order tensors with lowercase (e.g.,

G), boldface lowercase (e.g., x), boldface uppercase (e.g., X), and boldface Euler script

(e.g., XXX) letters, respectively. We use indices C = 1, . . . ,), = = 1, . . . , # , and 3 = 1, . . . ,�

for time points, instances, and variables, respectively. Here ), # , and � are lengths of

modes of time points, instances, and variables, respectively (i.e., a third-order tensorXXX

∈ R)×#×�).

3.1.2 Related Work
This chapter’s work relates to visual analytics of third-order tensors. A third-order

tensor commonly found in the visualization field is a “generalized” space-time cube.

A generalized space-time cube represents a 2D visualization space that changes over

time (e.g., temporal geospatial visualizations and animated 2D scatterplots). Bach et

al. [16,17] provided a comprehensive survey of visualizations of generalized space-time

cubes. They also provided a categorization of visualization strategies. The strategies

include 3D rendering (i.e., render a cube as it is), time cutting (i.e., extracting a 2D

snapshot at a particular time point), time flattening (i.e., collapsing temporal changes

into a single 2D image), time juxtaposing (i.e., arranging multiple 2D snapshots as

small multiples), space cutting (i.e., extracting a planar cut in one direction of the 2D

space), and among others. One strategy that the survey did not discuss in detail is

dimensionality reduction (DR), which can be considered as a special form of flattening.

Since MulTiDR also employs DR, here we focus on discussing the works using DR to
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visualize third-order tensors.

Similar to this chapter’swork, a target application ofmany of the existingworks is vi-

sualizing multivariate time-series data. One simple strategy is applying DR to a matrix

of instances and variables at each time point and then showing temporal changes with

animation or juxtaposition. To support such a visualization, the researchers developed

dynamic DR methods that provide coherent node positions between consecutive time

points, such as the time-based least square projection [9] and Dynamic t-SNE [188].

However, finding useful patterns, such as outliers or similar time points, is difficult

when relying on animation or juxtaposition.

Another common strategy is applying DR based on a dissimilarity of each time

point’s matrix. This strategy generates an overview of the (dis)similarities of time

points. For example, Bach et al. [20] computed the dissimilarity of each pair of 2D

images at different time points with a certain distance measure, such as a Euclidean

distance; then applied multidimensional scaling (MDS) based on their dissimilarities.

In the MDS result, a 2D image at each time point is visualized as a dot. To covey the

time information, they connected dots of two consecutive time points and colored them

according to time. Several researchers also used a similar approach to provide a visual

summary of dynamic network data [74, 230, 237]. On the other hand, Jäckle et al. [119]

visualized an MDS result in a 1D axis and used another axis to represent time. Since

MDS may produce unnecessary rotation in the result, they reduced the rotations by

flipping the H-coordinates based on their positions in the previous time point. Muelder

et al. [175] also took a similar approach but they used a graph layout algorithm as a DR

method instead ofMDS. However, all the approaches above have several problems. For

example, when two modes in each matrix slice have different types (e.g., instances and

variables), the DR result might not capture any useful patterns because each mode is

mixed together when computing dissimilarities (refer to Sec. 3.5 for concrete examples).

Also, because each dot in the DR result represents a matrix, it is difficult to identify

which instances or variables highly relate to a certain pattern appeared in the DR result

(e.g., clusters) and, consequently, the result has low interpretability.
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While the visualizations above focus on showing the time points’ similarities, some

works are to overview the instance similarities over time. For example, Fujiwara et

al. [77] used time-series distance measures, such as dynamic-time warping, to obtain

the similarity of each instance’s changes in a variable value across time. Afterward,

for each variable, they applied MDS or t-SNE to the computed similarities and then

juxtaposed the DR results for different variables. Kesavan et al. [130] extended the

same approach for streaming high-dimensional data. In contrast to MulTiDR, these

approaches handle only one variable in each DR result.

Recently, visualization researchers have started to use tensor decompositions [136,

164] to analyze or simplify third-order tensors. The two most popular tensor decom-

positions are canonical decomposition (or CP decomposition) [40, 104] and the Tucker

decomposition [225]. CP decomposition expresses a tensor as the sum of a finite num-

ber of rank-one tensors (i.e., tensor-to-vector decomposition). On the other hand, the

Tucker decomposition can be considered as a high-order version of PCA and decom-

poses a tensor to a core tensor and a matrix along each mode (i.e., tensor-to-tensor

decomposition). For example, TPFlow [156] introduces a similar method to CP de-

composition, which finds the best slice of a space-time cube, where some meaningful

patterns likely exist. Voila [39] uses the Tucker decomposition to detect anomalies from

a space-time cube. Also, TTHRESH [21] utilizes the Tucker decomposition to compress

volume data into a smaller file size. While these works extract important features or

elements from third-order tensors, MulTiDR generates an overview from a third-order

tensor for visual identification of patterns, such as clusters and outliers, and provides

interpretability in the DR result.

3.2 Algorithm Architecture
Fig. 3.1 shows a general architecture of the back-end of MulTiDR. MulTiDR provides

two major functionalities: (a) two-step DR to project a third-order tensor onto a low-

dimensional space and (b) generation of essential information for interpreting the

two-step DR results.
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Figure 3.1: General architecture of MulTiDR back-end. This figure demonstrates a case when showing
instance similarities based on their temporal changes of variable values.

3.2.1 Two-Step DR
This subsection describes howMulTiDR achieves the projection of a third-order tensor.

To make an explanation concrete and concise, here we use a case shown in Fig. 3.1-

a. The descriptions below related to ) time points, # instances, and � variables are

interchangeable between themselves.

The first step of DR is to compress a third-order tensorXXX ∈ R)×#×� into a matrix Y

∈ R#×) , where certain information (e.g., variances) of variables is preserved as much

as possible. To achieve this, we first apply tensor unfolding [136] along a variable mode

(Fig. 3.1-a 1©), which reshapes XXX to a matrix X of (# ×)) rows and � columns by

arranging all vectors (or often called fibers) of � length obtained through the slicing

of XXX along both time and instance modes. Afterward, a DR method is applied to X

and reduces � dimensions to 1 dimension (Fig. 3.1-a 2©). Now, XXX is compressed into a

vector y of length (# ×)). Based on y’s indexes correspond to the time and instance

directions of XXX, we can fold y into a matrix Y ∈ R#×) (Fig. 3.1-a 3©). Because the main

purpose of the first DR is preserving the information of variables, a linear DR method
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that can be used for data compression is suitable. For example, while we can use

PCA to preserve the variances of variables, linear discriminant analysis (LDA) is also

a potential option if the analyst wants to preserve differences between XXX and another

third-order tensor. Also, the linearity of DR is important to provide interpretability, as

described in Sec. 3.2.2..

The second step of DR is to visualize Y in a lower-dimensional space. For this step

(Fig. 3.1-a 4©), based on the analysis purpose, we can simply select any DR method that

can be applied to a matrix, such as PCA and t-SNE [233]. Through this step, Y ∈ R#×)

can be represented as Z ∈ R#×)′ ()′ < ), typically )′ ∈ {1,2,3}).
Instead of using the two-step DR above, similar to Unfold PCA [132, 133], another

potential approach is unfoldingXXX to a matrix of # rows and (�×)) columns and then

apply DR in order to reduce dimensions of (� ×)) to a lower number of dimensions.

When compared with this approach, the two-step DR has the main advantage in han-

dling different modes (e.g., variables and time points) with clear distinction, and this

benefits both identification and interpretation of patterns in XXX. For example, when

the analyst wants to review the similarities of # instances mainly based on patterns

seen along a time mode but not a variable mode, they can use the process shown in

Fig. 3.1-a. Also, as described in the next subsection, the interpretation of the DR results

becomes more straightforward because, for example, we can understand which time

points highly contribute to the characteristics of a cluster seen in the DR result. More

detailed comparisons are provided in Sec. 3.5.

There are six different combinations to generate the two-step DR result Z based on

which modes are selected as the first and second DR targets: (1st DR target mode,

2nd DR target mode) = {(time, instance), (time, variable), (instance, time), (instance,

variable), (variable, time), (variable, instance)}. The analyst can choose a preferable

combination from these based on their analysis interest. For example, when selecting

(variable, time), a two-step DR result shows instance similarities mainly based on

temporal behaviors while considering distribution differences in variables. On the

other hand, a selection of (variable, instance) generates time points’ similarities based
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on instances’ states (i.e., values of the compressed variables each instance has) at each

time point.

3.2.2 Supporting Interpretability
When analyzing the DR result, as discussed in Chapter 2, we often want to identify

clusters from the DR result and understand the characteristics of the clusters [34, 76,

181]. Similar to the existing DR methods, identification of clusters can be visually

performed on the two-step DR result (i.e., finding a set of points placed closely to each

other). However, when compared with the case of applying ordinary DR methods to

a matrix, understanding the cluster’s characteristics from a two-step DR result is more

complicated. Therefore, I provide algorithmic support for this task.

As shown in Fig. 3.1-b, MulTiDR provides two different pieces of information for the

interpretability: a, feature contributions of ) time points to a cluster’s characteristics,

and w, a parametric mapping used to compress � variables into one dimension.

To obtain feature contributions a, we follow the approach in Chapter 2. As shown

in Fig. 3.1-b 1©, MulTiDR first takes  instance indices related to a target cluster and

then, from Y, extracts YK ∈ R ×) , a submatrix corresponding to these  instances, and

YR ∈ R(#− )×) , the rest of Y (i.e., YR = Y \ YK). From inputs YK and YR, contrastive

learning (CL) generates a ∈R) (Fig. 3.1-b 2©), which shows how strongly each time point

contributes to the uniqueness of a target cluster with respect to the others. By referring

to a, the analyst knows which time points in Y they should review to understand the

target cluster’s characteristics.

However, each cell of Y represents the compressed variable from � to 1 dimension.

To understand the cluster’s characteristics, we also need to know how the compressed

variable is derived from the original � variables. To do so, we can refer to a parametric

mapping vector w ∈ R� (Fig. 3.1-b 3©), which is usually provided by DR methods for

data compression (e.g., PCA). w consists of a weight for each of � variables, which is

used to project � variable values to one compressed value.
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3.2.3 Implementation Example

As described above, the back-end architecture of MulTiDR provides flexibility in the

selection of the first DR, second DR, and CL. Here describes a representative imple-

mentation example, which is used through the rest of the chapter. For the first DR, PCA

is selected because it is most popularly used for data compression when applying ma-

chine learning methods, including DR methods. UMAP [170] is chosen as the second

DR because of its effectiveness to find patterns from nonlinear relationships. Also, un-

like the other nonlinear DRmethods (e.g., t-SNE [233]), UMAP is suitable for capturing

both local and global topological structures of the data. Because of this ability, UMAP

is effective in finding patterns from both small- and large-scale data while t-SNE and

many other nonlinear DR methods are not suitable for small-scale data (e.g., data with

50 instances). Lastly, for the purpose of understanding the characteristics of clusters,

currently, ccPCA introduced in Chapter 2 is the only available option; thus ccPCA is

used as a CL method.

3.3 MulTiDR Visual Interface
MulTiDR provides a visual interface to support interactive analysis of the two-step DR

results together with the information that helps the interpretation of the results. As

shown in Fig. 3.2,MulTiDRvisual interface consists of five coordinated views: (a) a two-

step DR (TDR) view, (b) a supplemental information (SI) view, (c) a feature contribution

(FC) view, (d) a histogram comparison (HC) view, and (e) a projection mapping (PM)

view.

Fig. 3.3 shows an analysis workflow with MulTiDR visual interface. This is an

extendedworkflow from those for high-dimensional data analysis introduced in Chap-

ter 2 (refer to Fig. 2.1) for multivariate time-series analysis. After obtaining a two-step

DR result Z, feature contributions a, and a parametric mapping w, the two-step DR

result is visualized in Fig. 3.2-a. The analyst can first visually identify clusters from the

DR result (Fig. 3.3-A) and then analyze each cluster. When points in the DR result have

the auxiliary information (e.g., the location information of instances), the analyst can
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Figure 3.2: A screenshot of MulTiDR visual interface. Here the system visualizes the AirData [229], air
quality data at outdoor monitors across the US, collected in 2018. (a) A two-step DR (TDR) view draws
the DR results obtained through the two-step DR. (b) A supplemental information (SI) view supports
understanding selected points in the TDR view with the auxiliary information. (c) A feature contribution
(FC) view visualizes features (either instances, variable, or time points) and their contributions to
characteristics of each of selected clusters. (d) A histogram comparison (HC) view shows the feature
values in the first DR result Y of the selected element in (c). (e) A parametric mapping (PM) view
depicts parametric mappings generated in the first DR, specifically the mappings to the first principal
component in this example. (f) The analyst can select a type of the DR results.

Figure 3.3: Multivariate time-series analysis workflow with MulTiDR visual interface.

(B) relate the identified clusters to such information, as shown in Fig. 3.2-b. Afterward,

they can move forward to steps (C, D, E), where the information of feature contribu-

tions and parametric mapping is used to understand the clusters’ characteristics. With

Fig. 3.2-c, the analyst can start with (C) findingwhich features (i.e., columns inY) highly
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contribute to characterizing each cluster. For each of the highly contributed features,

by using Fig. 3.2-d, the analyst can (D) compare the differences of feature value distri-

butions among clusters. Since the features are obtained through the compression with

the first DR, the analyst also (E) interprets the meaning of the features by reviewing the

parametric mapping information provided in Fig. 3.2-e. As indicated with the arrows

in Fig. 3.3, the above steps often drive a continuous analysis loop in order to identify

other clusters, select other features of interest, or examine findings obtained in the other

view.

The rest of the section describes each view of MulTiDR with a concrete analysis

example using the US weekly air quality data in 2018 [229], which consists of 53

weeks, 55 counties, and 5 different air quality measures (i.e., ) = 53, # = 55, � = 5). A

demonstration video of the interface is available at the online site listed in Appendix A.

3.3.1 Visualization of Two-Step DR Results
The TDR view (Fig. 3.2-a) visualizes the results obtained through the two-step DR as

scatterplots. As described in Sec. 3.2.1, the two-stepDR can generate six different results

from a multivariate time-series dataset based on target modes of the first and second

DR (e.g., the first DR along a variable mode and the second DR along a time mode).

From these results, the analyst can select which mode’s similarities they want to show

from a drop-down menu at Fig. 3.2-f. For example, in Fig. 3.2-a, instance similarities

are selected. Consequently, as described at the top of each of scatterplots (a1 and a2),

the TDR view shows two results that are obtained by applying the first and second DR

along (variable, time) and (time, variable) at the left and right, respectively.

From the results, the analyst can visually identify clusters andmanually select them

by using a lasso selection. Selected points are labeled as one cluster and color-coded

with a categorical color. For example, in Fig. 3.2-a1, the analyst has first selected Cluster

1 (blue) and then Cluster 2 (orange). In addition to the lasso selection, TDR view also

supports fundamental interactions, such as zooming and panning. After the selection,

all other views update their visualizations. From Fig. 3.2-a1 and a2, we can see that

although the orange points in a1 are also relatively placed closely to each other in a2,
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the clusters in a1 tend to be more mixed with each other in a2. This indicates that

instances (i.e., counties) in these clusters generally have similar temporal patterns in

their representative variable values (i.e., representative air quality measure); however,

they tend to have different patterns in variable values (e.g., some of the blue points may

have high variable values but the others do not). An analysis example utilizing both of

the two different DR results is demonstrated in Sec. 3.4.3.

3.3.2 Visualization of Related Contexts
After identifying clusters, we oftenwant to understandwhat kind of points are included

in each cluster and why they are clustered by the two-step DR.

The SI view (Fig. 3.2-b) is designed for the former task. The SI view visualizes the

auxiliary information of the selected points in the TDR view if available. In Fig. 3.2-

b, the location information of the selected counties is visualized, where the blue and

orange clusters tend to be seen inmorewest and center, respectively. MulTiDRprovides

a set of predefined visualizations and selects one from them based on which mode and

dataset need to be visualized. For example, when showing the information for a time

mode of the air quality data, MulTiDR shows a calendar-based visualization to convey

the seasonal patterns. While the SI view shows the location information for an instance

mode of a geospatial dataset, when analyzing a networkdataset, the SI view canprovide

a node-link diagram. Sec. 3.4 demonstrates examples.

3.3.3 Visualization of Feature Contributions and Values
In the next step, the analyst can analyze the clusters’ characteristics with the FC view

(Fig. 3.2-c) and HC view (Fig. 3.2-d).

The FC view shows feature contributions a for each of DR results in the TDR view

(the left and right plots in Fig. 3.2-c correspond to Fig. 3.2-a1 and a2, respectively). In

default, line charts are employed for feature contributions of time points, while bar

charts are used for those of instances or variables. However, the analyst can switch

line and bar charts by clicking the button placed at the top of each of H-axes (e.g.,

“to bar chart” at the left side of the Fig. 3.2-c). Also, with the checkboxes placed at
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the far right in Fig. 3.2-c, the analyst can select showing only one of the plots to use

more screen space. Since feature contributions are obtained for each cluster, they are

visualized with the corresponding cluster color. MulTiDR scales feature contributions

between [−1,1] bydividing each set of feature contributions by theirmaximumabsolute

value. Closer to either 1 or −1 indicates higher contributions to the characterization of

a cluster. The meaning of the sign is discussed in Sec. 3.3.3.1. For features that have

high contributions, each cluster likely has different distributions from the other points.

To compare value distributions of the selected feature, as shown in Fig. 3.2-d, the

HC view shows relative frequency histograms of selected clusters (e.g., blue and or-

ange) and unselected points (gray) with the corresponding colors. The G-axis of the

histograms represents feature values (i.e., cell values in Y). The H-axis shows the rel-

ative frequency—the ratio of the number of items in each bin to the total number of

items across all bins—within each group and its maximum limit is set to the maximum

relative frequency among the histograms. From the result in Fig. 3.2-d, at the selected

week highlightedwith pink (i.e., a week ofNovember-12th, 2018), the blue cluster tends

to have much higher feature values than the others.

3.3.3.1 Sign Adjustment of Feature Contributions

ccPCA, which is used as a default CL method in MulTiDR, produces signed feature

contributions (FCs). Signed FCs have a strength of differentiating features of having

lower and having higher values within a selected cluster. For example, when looking

at Cluster 2 (orange) in Fig. 3.4-a, where the absolute FCs are shown, both time points

3© and 4© have the relatively high FCs; however, as shown in Fig. 3.4-d, while Cluster 2

tends to have high values at 3©, it has low values at 4©. On the other hand, the signed

FCs shown in Fig. 3.4-b indicates the difference of time points 3© and 4© ( 3©: negative

sign, 4©: positive sign).

Despite the usefulness of signed FCs, similar to ordinary PCA, the sign ambiguity

problem [75,76,226] in ccPCA limits their interpretability. That is, the signs are arbitrar-

ily selected and thus they do not reflect whether features contribute to having higher

or lower values than others. For example, in Fig. 3.4-b, although both Clusters 1 and
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Figure 3.4: Comparison of visualizations of feature contributions (FCs): (a) absolute FCs, (b) signed
FCs, and (c) signed FCs with sign adjustment. (d) shows the HC views corresponding to the four
selected time points 1O–4O in (a), (b), and (c).

2 have similar line shapes and strong positive FCs at 4©, as shown in Fig. 3.4-d, at this

time point, Cluster 1 (blue) tends to have high values while Cluster 2 (orange) tends to

have low values. Therefore, using the signed FCs directly produced by ccPCA might

mislead the analyst (e.g., they consider Clusters 1 and 2 are similar from Fig. 3.4-b).

To solve the above problem, I introduce a sign adjustment algorithm that optimally

matches the directions of sign and value distributions (i.e., when a sign is positive, a

cluster tends to have higher feature values than others, and vice versa). First, for each

feature, the algorithm computes Pearson’s correlation coefficient A (−1 ≤ A ≤ 1) between

all points’ cluster memberships (i.e., 0: points are non-members, 1: points are members

of the selected cluster) and their feature values. When A is closer to 1, members of the

cluster more likely have a higher feature value than non-members. On the other hand,
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closer to −1, higher possibility to have a lower feature value. Here we denote a set of

A for all features as a vector r. Next, the algorithm computes a score of agreement B

between correlation coefficients r and signed FCs a by taking their dot product (i.e., B = r

· a). B increases when an element of r and the corresponding element of a have the same

signs, while B decreases when they have the opposite signs. Also, the magnitudes of

elements of r and a can be considered as weights to decide howmuch B should increase

or decrease. As a result, B becomes a higher positive value when each pair of elements

of r and a has higher magnitudes of A and FC with the same signs. When B < 0, r and a

disagree with each other; thus, the algorithm flips signs of all elements in a.

The result after applying the sign adjustment is shown in Fig. 3.4-c. Now, we can see

that Cluster 1 and 2 have clearly different patterns in FCs. For example, while Cluster 1

has a strong positive FC at 4©, Cluster 2 has strong positive FCs at 1© and 3© and a strong

negative FC at 4©. Also, by referring to theHC views in Fig. 3.4-d, these differences well

represent differences in the distributions of feature values. For instance, at 1©, Cluster

2 tends to have high feature values but low feature values at 2©– 4©, while Cluster 1 has

high feature values at 4©. With the sign-adjusted FCs, to understand the differences

between clusters, the analyst can mainly focus on reviewing features that have much

different contributions between clusters.

Note that Sec. 2.4.2.1 in Chapter 2 also presents a sign adjustment algorithm. The

algorithm in Chapter 2 is to deal with the inconsistency of signs of FCs across clusters,

while the algorithm in this chapter focuses onmatching the directions of sign and value

distributions for each cluster to ensure that a cluster has high feature values when its

feature has a strong positive FC.

From the result shown in Fig. 3.2-c(left), now we know Cluster 1 tends to have

high feature values around the middle of November but low feature values around the

middle of April. Also, we can see that Cluster 2 tends to have the opposite patterns

from Cluster 1.

55



3.3.4 Visualization of Parametric Mappings

The last analysis step is to understand the meaning of features obtained after the first

DR of the two-step DR (i.e., columns in Y). To support this task, the PMview (Fig. 3.2-e)

visualizes a vector of parametric mapping w for each of the DR results as either line

or bar chart, as similar to the FC view. Note that w is common across all points, and

thus there is all lines or bars are colored in black. Also, using texts, at the top-right

corner of each plot in the PM view, the quality of the first DR (e.g., explained variance

ratio provided by many linear DR methods such as PCA and LDA) is informed. From

Fig. 3.2-e(left), we can see that the feature values are generated with similar weights

for all measures except for “Ozone”. Therefore, we can interpret the feature values in

Fig. 3.2-d are close to the mean of “PM2.5”, “PM10”, “CO”, and “NO2”.

3.3.5 Implementation
MulTiDR is developed as a web application. For the back-end of MulTiDR, including

the algorithms described in Sec. 3.2, the sign adjustment algorithm in Sec. 3.3.3.1, and

the generation of histogram information for the HC view, Python is used to integrate

all the existing implementations, such as UMAP [170] and ccPCA [76]. The front-end

visual interface is implemented with a combination of HTML5, JavaScript, D3 [33], and

WebGL. WebSocket is used to communicate between the front-end and back-end.

3.4 Case Studies
The effectiveness of MulTiDR has been shown through the analysis of the air quality

data in US [229]. Here we further analyze the same data from different aspects. Ad-

ditionally, this section demonstrates three additional case studies, including analyses

of a body sensing dataset, a dynamic social network, and supercomputer’s hardware

logs. For each study, each dataset is preprocessed to deal with its missing values or

extract useful information for the analysis. All the processed datasets except for the

supercomputer’s hardware logs (due to its confidentiality) and parameters used for

each DR result are available in the online site listed in Appendix A.
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Figure 3.5: Case study 1. (TDR) shows the similarity of each week’s air quality measures. (SI, FC,
PM) are the SI, FC, PM views after selecting Clusters 1 and 2 in the TDR view, respectively. (HC)
shows the HC views when selecting “NO2” and “Ozone” form (FC).

3.4.1 Study 1: Analysis of US Air Quality Data

Analysis of Weekly Patterns of Air Quality Measures. In Sec. 3.3, we have analyzed

the clusters of instances (i.e., US counties) selected in Fig. 3.2-a1. This study analyzes

the similarities of time points (weeks in 2018) based on their values of air quality

measures. For this task, we apply the two-step DR using PCA along an instance mode

(i.e., counties) and then UMAP along a variable mode (i.e., air quality measures). The

generated results are shown in Fig. 3.5.

From the TDR view shown in Fig. 3.5-TDR, we select several clearly separated

points (i.e., weeks) as clusters. For this data, the SI view provides a calendar-based

visualization and indicates the corresponding weeks for each cluster (Fig. 3.5-SI). We

notice that while the blue cluster generally relates to the weeks fromMay to the middle

of October, the orange cluster consists of the weeks from the late fall to the early spring.
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Figure 3.6: Case study 2-1. (TDR) shows similarities of physical activity measurements based on
their temporal behaviors. (FC, PM) are the FC and PM views after selecting two clusters from (TDR).
(HC) shows the HC views after selecting two different timestamps from (FC).

To understand the differences of each cluster, we refer to the FC view in Fig. 3.5-FC. The

two clusters have quite different FCs, and thus seem to have different feature values

as well. For example, in the histograms of “NO2”, as shown in Fig. 3.5-HC, Clusters 1

(blue) and 2 (orange) tends to have low and high feature values when compared with

others, respectively. On the other hand, in the histograms of “Ozone”, we can see

the opposite distributions. From the PM view (Fig. 3.5-PM), we can see that several

counties (e.g., Honolulu) have slightly higher weights than others when generating the

feature values.

In general, we can conclude that the air quality data has seasonal changes, such

as “Ozone” has higher values around the summer (blue weeks) when compared with

around the winter (orange weeks).

3.4.2 Study 2: Analysis of MHEALTH (Mobile Health) dataset
This case study analyzes the MHEALTH (Mobile HEALTH) [22, 23] dataset. This

dataset consists of physical recordings of motion and vital signs for ten volunteers
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while performing twelve physical activities. Sensors are placed on the subjects’ chest,

wrist, andankle. Themeasurements taken fromsensors includemovement experienced

by different body parts, such as acceleration with the magnitude for each of X-, Y- and

Z-directions. The sensor modalities are recorded at a sampling rate of 50 Hz. The

dataset contains points that represent bursts of highly active minutes.

Study 2-1: Categorization of Physical Activity Measurements. As shown in Fig. 3.6,

from the TDR view (Fig. 3.6-TDR), where variables’ (i.e., measurements’) similarities

are shown by applying PCA and UMAP along instance and time modes, respectively,

we select Cluster 1–2 (blue and orange). The SI view in Fig. 3.6-SI lists all measurements

related to each cluster as texts.

Afterward, we review the related information with the FC, PM and HC views

(Fig. 3.6-FC, PM, HC). From Fig. 3.6-FC, we can see that, across time, blue and orange

clusters have strong positive and negative FCs, respectively. To further investigate,

we select several timestamps and review the corresponding histograms. Fig. 3.6-HC

shows the histograms at two examples of the selected timestamps ( 1© and 2©). From

the results shown in Fig. 3.6-HC, all the measures within each cluster tend to have close

feature values (e.g., in 1©, all orange points have the low feature values). By looking at

Fig. 3.6-PM, PCA seems to generate the feature values with higher weights for Subjects

5–9 when compared to Subjects 0–4 with an explained variance of 0.45.

From the observations above, we can say that all the measures in Cluster 2, which

includes the accelerations of the chest (X-direction), the left-ankle (Y-direction), and

the right-arm (X- and Y-directions) have similar value distributions for each timestamp.

The same applies to the measures in Cluster 1.

Study 2-2: Classification of Temporal Patterns among Subjects. Next, this study

analyzes the similarities of time points in the duration of activity measurement (10

minutes). During the measurement, the subjects performed an activity set, including

standing still, walking, running, etc. We apply the two-step DR using PCA along a

variable mode and then UMAP along an instance mode. The generated results are

shown in Fig. 3.7. From the TDR view shown in Fig. 3.7-TDR, we select multiple clearly
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Figure 3.7: Case study 2-2. (TDR) shows similarities of timestamps based on subjects’ activities. (SI)
visualizes the corresponding time information with a circular layout. (FC, PM) are the FC and PM
views after selecting four clusters from (TDR). (HC) shows the HC views after selecting two different
instances from (FC).

separated clusters. In the SI view (Fig. 3.7-SI), we see that each cluster is gathered

together with a range of about 1 minute. Since the subjects were asked to perform each

activity with a duration of approximately 1 minute for collecting data, we can expect

that each cluster well represents each of the activities.

To understand the differences of each cluster, we refer to the other views (Fig. 3.7-FC,

HC, and PM). All clusters have quite different FCs in Fig. 3.7-FC. Also, by referring to

the HC views, as the examples in Fig. 3.7-HC show, each subject tends to have quite

different feature values. For example, while Subject 0 (annotated with 1©) tends to

have high feature values during the activity corresponding to Cluster 1 (blue), Subject
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2 (annotated with 2©) tends to have low feature values for Cluster 1. From the PM

view, we understand that the feature values mainly relate to the measures of gyro-

scopes and accelerations but not magnetometers or ECG signals. More specifically, the

measures related to Y-directions (e.g., “gyro R-forearm (y)”, “gyro L-ankle (y)”, “ac-

celeration chest (y)”) tend to have positive weights, while the measures of X-direction

have negative weights.

Therefore, we can conclude that, in general, the two-step DR successfully separates

time points related to a specific activity based on the differences of each activity in the

measures of X- and Y-directions.

3.4.3 Study 3: Analysis of Dynamic Contact Networks
This study provides an analysis example of dynamic networks, using a dataset of con-

tacts between high school students inMarseilles, France [72]. This dataset contains net-

work links, which represent the students’ face-to-face contacts collectedwith 20-second

intervals for several days. Temporal snapshots are constructed from this dynamic net-

work by aggregating contacts within a timewindow of 5–9 AM, 10 AM–12 PM, 1–3 PM,

4–6 PM, or after 6 PM for each day. This procedure generated 30 snapshots (i.e., net-

works) of 180 students (i.e., network nodes) with the mean of 193 contacts (i.e., network

links). To extract features of network nodes, DeepGL is applied [194], a network rep-

resentation learning method that produces features consisting of node attributes (e.g.,

gender), network centralities (e.g., degree centrality [179]), network measures (e.g., :-

core number [179]), and those of statistical values of neighbors (e.g., the mean degree

centrality of 1-hop neighbors). As a result, a tensor of ) = 30, # = 180, and � = 10 is

obtained.

Study 3-1: Categorization of Students Based on Node Features. Fig. 3.8-TDR shows a

result generated by the two-step DR using PCA along a time mode and UMAP along a

variable mode (i.e., the dots in the TDR view represent instances). The result contains

five distinct clusters and we select four of them. The resultant visualizations are shown

in Fig. 3.8-SI, HC, FC, and PM. Here, the SI view draws an overall network constructed

using a time window of the entire measurement period. From Fig. 3.8-SI, we notice
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Figure 3.8: Case study 3-1. (TDR) shows similarities of the students based on their node features
obtained with DeepGL [194]. (SI) draws a node-link diagram of the entire contact network. (FC, PM)
are the FC and PM views after selecting four clusters from (TDR). (HC) shows the HC views after
selecting two different node features from (FC).

that the blue nodes (i.e., students) in Cluster 1 can be seen in the strongly connected

regions. In contrast, the teal nodes in Cluster 4 have only a small number of links to the

others.

To further understand each cluster’s characteristics, we review the FC view (Fig. 3.8-

FC).We can see that, except for “gender”, generally Clusters 1 and 2 have strong positive

FCs, while Clusters 3 and 4 have strong negative FCs. In the HC views (Fig. 3.8-HC),

which show the histograms of 1© degree and 2© PageRank, Clusters 1 and 2 tend to

have higher values than Clusters 3 and 4. Especially, Cluster 1 has much higher values
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Figure 3.9: Case study 3-2. (TDR) shows similarities of the students based on their temporal be-
haviors. From the result at the left, where the colors correspond to the selection in Fig. 3.8-TDR, we
select Clusters A and B at the right. (SI, FC, PM) are the SI, FC, and PM views after selecting the two
clusters. (HC) shows the HC views after selecting two different timestamps from (FC).

than the others. From the PM view (Fig. 3.8-PM), we can see that the features in the FC

view are generated by using large weights around mornings whereas evenings have

close to zero weights (e.g., 6 PM on November 22nd, as highlighted).

With the above analysis, we can conclude that during school hours, the students in

Cluster 1 played a central role in communications among students as they have high

values for various network centralities.

Study 3-2: Categorization of Students Based on Temporal Communication Patterns.

Together with the results in Study 3-1, we further review the instance similarities

obtained by applying PCA along a variable mode and UMAP along a time mode.

Fig. 3.9-TDR(left) shows the two-stepDR result colored based on the selection in Fig. 3.8-

TDR. We can see that each of the currently selected clusters is generally arranged from
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left to the right. However, most students in Cluster 1 are separated into two distinct

clusters in the far left. We select the two clusters as Clusters A (green) and B (yellow),

as presented in Fig. 3.9-TDR(right). In the SI view (Fig. 3.9-SI), these two clusters are

clearly separated into the two strongly connected regions at the top and bottom. The

FC view (Fig. 3.9-SI) shows that the two clusters have different patterns in FCs across

time. We select two clear peaks, 1© (Wednesday morning) and 2© (Thursday noon), to

see their value distribution differences with the HC view (Fig. 3.9-HC). We can see that

Clusters A and B tend to have high feature values at 2© and 1©, respectively. By looking

at the PM view (Fig. 3.9-PM), the feature values represent the network centralities and

measures but not the gender.

From the above observations, we can say that the students in Cluster 1 (the central

role of the communications) can be further categorized into two different groups,

Clusters A and B, which had active communications at the different time periods.

These insights found in Studies 3-1 and 3-2 are not revealed by the visual analytics

performed on the same data by van den Elzen et al. [230]. Their approach is designed

only for comparison of network structures of temporal snapshots (i.e., network-level

comparison), and cannot find (dis)similarities of students (i.e., node-level comparison).

van den Elzen et al.’s study showed that student communications stayed similar during

the nighttime even on different days, while they had more variance in the network

structure during the daytime. MulTiDR also implies this finding in Fig. 3.8-PM, where

the nighttime has much lower weights due to their low variance. In addition, van den

Elzen et al. found that the communication network had a distinct structure at each day

and slowly changed across time of each day, which can be expected from the statistics

calculated by the authors who collected this communication network data [72]. On the

other hand, the analysis in this study using MulTiDR focuses on the categorization of

students based on their roles and behaviors in the communications, resulting in the

new insights into this network data.
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3.4.4 Study 4: Analysis of Supercomputer Hardware Logs

This study analyzes hardware logs obtained from a supercomputer. Supercomputers

are required to have high robustness and reliability to continuously run large-scale

computations. Analyzing their hardware logs is fundamental to revealing and under-

standing abnormal hardware behaviors (e.g., extreme increases of CPU temperatures),

which can lead to hardware failures or errors [95, 206].

Here, we specifically review the K computer’s [172] hardware logs on January-12th,

2017. The logs were obtained from 864 compute racks, where 1,163 different measures

(e.g., CPU temperatures, circuit voltages, and cooling fan spin speeds) are collected

every 5minutes (i.e., 1,440 timestamps in a day). Therefore, the logs can be represented

as a ) ×# ×� tensor where ) = 1,440, # = 864, and � = 1,163 (in total, more than

1.4 billion elements). This case study demonstrates how MulTiDR helps the analyst

identify and characterize outliers from an extremely large-scale dataset.

Study 4-1: Identification and Characterization of Outlier Racks. As a first analysis,

we identify racks that have unusual temporal behaviors. To achieve this, we apply the

two-step DR with PCA along a variable mode and then UMAP along a time mode (i.e.,

the dots in the TDR view represent instances). The visualized DR result is shown in

Fig. 3.10-TDR. We can see that while there is a large cluster that contains many racks

(the gray points placed at the right side), some racks form small distinct clusters from

the main cluster. We select three of these small clusters (Clusters 1–3) in Fig. 3.10-TDR.

Because these outlier clusters could relate to a specific physical location (e.g., a parallel

application is often allocated to run in a specified location), we refer to the SI view

(Fig. 3.10-SI), where the physical coordinates of racks are visualized; however, these

clusters seem not to fit such a case.

To understand the clusters’ characteristics, we analyze the results with the FC, HC,

and PM views (Fig. 3.10-FC, HC, PM). In Fig. 3.10-FC, we first see that, across time,

Clusters 1, 2, and 3 generally have moderate, strong negative, and strong positive

FCs, respectively. From Fig. 3.10-FC, we select Timestamp 1© as a sample timestamp

following this general pattern and two timestamps ( 2© and 3©) that have a unique shift

65



Figure 3.10: Case study 4-1. (TDR) shows similarities of racks based on their temporal behaviors.
(SI) visualizes the racks’ physical coordinates in the K computer. (FC, PM) are the FC and PM views
after selecting three outliers from (TDR). (HC) shows the HC views after selecting three different
timestamps from (FC).

of the FCs. By looking at the HC view of Timestamp 1©, we observe that Cluster 3 (red)

has much higher feature values than the others, while Clusters 1 (blue) and 2 (orange)

have slightly higher and lower feature values than the main cluster (gray), respectively.

However, at Timestamp 2©, all the racks have similar feature values. At Timestamp

3©, when compared with Timestamp 1©, Cluster 1 has slightly fewer overlaps with

the gray bins. Next, we review the PM view (Fig. 3.10-PM), where 1,163 measures’
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Figure 3.11: Case study 4-2. (TDR) shows similarities of timestamps based on behaviors of racks at
the corresponding time. (SI) informs the selected timestamps with a clock-based visualization. More
information of Cluster 8 is shown in the FC, PM, and HC views (FC, PM, HC).

weights are shown, and notice that only the first 500 measures have weights not close

to zero. By showing these measures’ names by hovering a mouse, we know that the

first 500 measures are related to the voltages (“vol”) but not the others, including the

temperatures (“temp”) and fan information (“fan_mode”).

Therefore, we can conclude that, across time except for around 10 AM, the racks in

Cluster 3 had extremely high voltages while Cluster 1 and 2 had slightly higher and

lower voltages than most of the racks.

Study 4-2: Identification and Characterization of Outlier Timestamps. Next, we

identify timestamps, at which racks had different behaviors from a usual state, by

reviewing the two-step DR result generated by applying PCA along a variable mode

and then UMAP along an instance mode (i.e., the dots in the TDR view represent

timestamps). The visualized results are shown in Fig. 3.11.

From Fig. 3.11-TDR, we select several distinct timestamp clusters (Clusters 1–8).
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In the SI view (Fig. 3.11-SI), where the corresponding timestamps are shown with a

clock-based visualization, we can see most clusters relate to the specific time range

(e.g., timestamps in Cluster 3 are seen from about 2 to 3 PM). We can consider that

each of these clusters corresponds to the duration when performing an allocated job.

However, we can see that Cluster 8 is separated in several short time ranges in AM.

Since this pattern might relate to the abnormal behavior, we further review Cluster 8

by using the FC, PM, and HC views. From Fig. 3.11-FC, we can see that Cluster 8 has

a strong positive FC for one instance (i.e., rack), as annotated with 1©. By looking at

the HC view, we can see that, for this instance, the timestamps belonging to Cluster 8

have a much higher feature value than the other timestamps (note: here the gray bins

include all the timestamps except for those in Cluster 8). Since the parametric mapping

is the same as Study 4-1, we can say that these feature values mainly represent multiple

voltage measures. Therefore, Cluster 8 is considered as outlier timestamps by the two-

step DR because one specific rack had extremely high voltages at the corresponding

timestamps.

3.5 Qualitative Comparison
The two-step DR in MulTiDR employs data compression with DR to produce a matrix

from a third-order tensor. Instead, as discussed in Sec. 3.2.1, we can simply apply

tensor unfolding along one mode to generate a matrix and then perform DR on such

a matrix (e.g., applying DR on a matrix of # rows and (� ×)) columns to visualize

instance similarities). Another option is computing statistical measures, such as mean

values, when generating a matrix from a third-order tensor. MulTiDR contains this

approach if we consider the computation of statistical measures as one of DR methods

that generates a representative value. Here, we compare three different methods above

and discuss the advantages of the two-step DR.

More specifically, we compare two different implementations of the two-step DR,

(1) using PCA for the first DR and UMAP for the second DR (I call this method PCA &

UMAP) and (2) using the mean computation for the first DR and UMAP for the second
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Figure 3.12: Visual comparison of the DR results. Colors represent clusters selected in the result of
PCA & UMAP.

DR (Mean & UMAP), and (3) the unfolding approach (i.e., without the first DR step)

using UMAP as a DR method (Unfolding & UMAP). We apply these methods to the

datasets analyzed in Sec. 3.3 and 3.4.

Fig. 3.12 shows the DR results. Here, several distinct clusters are manually selected

from the results of PCA & UMAP and then color-code the corresponding points in the

other views based on the cluster information. In general, some of the findings described

in Sec. 3.4 from the results of PCA &UMAP cannot be uncovered by either using Mean

& UMAP or Unfolding & UMAP.

PCA&UMAP vs Mean & UMAP.Mean & UMAP generates similar results with PCA

& UMAP when PCA & UMAP generates a projection mapping consisting of almost

uniform weights (e.g., the results for the US air quality dataset); however, for the other

cases, Mean & UMAP does not show several meaningful clusters and outliers or does

not clearly discern them from the other points. A concrete example can be seen in

the instances’ similarities of the supercomputer hardware log in Fig. 3.12-a, where the

result of Mean & UMAP mainly shows a single cluster and does not reveal the outlier

clusters found with PCA&UMAP. Also, unlike PCA&UMAP, the result in Fig. 3.12-b

does not provide a clear separation of time points that are related to different physical

activities. When a target mode of the first DR has significant differences in variances
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for each index (i.e., a variable, an instance, or a time point), PCA&UMAP can preserve

more variety along the mode, and thus PCA & UMAP would produce more useful

results. However, again, the two-step DR does not restrict a DR method used for the

first DR and allows the analyst to select a preferable compression/feature selection

method, including the mean computation, PCA, LDA, etc.

PCA&UMAP vs Unfolding & UMAP.Unfolding & UMAP has quite different results

from the ones with PCA&UMAP and seems to fail to find several clusters and outliers.

For example, in the time points’ similarities of the US air quality dataset (Fig. 3.12-c),

while PCA & UMAP shows the clusters that represent the seasonal air quality change

(as described in Sec. 3.4.1), Unfolding & UMAP does not clearly display such clusters.

Moreover, similar to Mean & UMAP, the result in Fig. 3.12-d does not clearly discern

different physical activities. Also, Fig. 3.12-e does not uncover the outlier clusters seen

in the result with PCA & UMAP. This limitation of Unfolding & UMAP relates to the

fact that Unfolding & UMAP mixes two different modes together and, as a result, it

cannot discover the patterns highly related to a specificmode. Anothermajor drawback

of Unfolding & UMAP is that it makes the characterization of clusters more difficult

because of the complexity of features in the FC view, where each feature represents

a mix of two modes (e.g., variables × instances), and the massiveness of the number

of features (e.g., the supercomputer log dataset of � = 1,163 and # = 864 generates

�×# = 1,004,832 features).

3.6 Discussion
MulTiDR has been evaluated with the case studies and qualitative comparison. The

qualitative comparison has demonstrated the strength of the two-step DR when com-

pared with the other approaches. This section provides an additional discussion from

different aspects.

Limitations of Visual Scalability. MulTiDR’s visual interface overlays multiple charts

in the FC view and the HC view to make comparison of different clusters’ FCs and

feature value distributions easier. However, when many clusters are selected (e.g., ten
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clusters), these visualizations could cause too many overlaps and clutters. To deal with

such a situation, we can provide a visual comparison using small multiples and allow

the analyst to select either overlays or small multiples based on their preference.

Also, when eachmode hasmanydimensions, it becomes difficult to graspwhat kind

of dimensions has high FCs and weights from the FC and PM views, respectively. This

is especially problematic when G-axis of the FC or PM view represents a variable mode

because it often consists of variables that have different types ofmeasures (e.g., network

routers’ temperatures, voltages, sent, and received packets). For this issue, before

visualizing the information of a variable mode, we can consider applying aggregation

based on their similarities or available external information (e.g., a class of measures,

such as physical loads, including temperatures and voltages, and network loads on

routers, including sent and receive packets).

Limitations of the Two-Step DR. The two-step DR is mainly limited by the first DR

step. Because this step compresses a target mode into 1D, when the mode has many

dimensions (e.g., 1,000 variables in a variable mode), a large amount of information

could be lost. However, at the same time, the analyst can check how much of the

information is preservedby referring to aqualitymeasureprovidedby eachDRmethod,

such as explained variance ratio in PCA and LDA. When the quality is extremely low

(e.g., explained variance ratio is smaller than 0.01), the analyst can consider selecting

a subset of dimensions for their analysis. In addition, to inform the second DR’s

quality, I plan to incorporate several model-agnostic quality measures [151, 234] and

visualizations [74, 242] in the future.

Generality of the Two-Step DR. MulTiDR’s back-end algorithms described in Sec. 3.2

are used to obtain and understand a low-dimensional representation of multivariate

time-series data. However, these algorithms can be applied to other types of data that

can be formed into a third-order tensor. For example, evenwhen analyzing single-time-

point multivariate data, the analyst may want to separate variables into two different

modes, such as patients’ demographics (e.g., ages) and their medical tests (e.g., blood

pressures) for an analysis of medical datasets. In such a usage, MulTiDR’s algorithms
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can help the analyst avoid mixing the influences from two different types of variables

on the DR result.

Additional Enhancement for Time-Series Analysis. This chapter has demonstrated

the effectiveness of MulTiDR using PCA, UMAP, and ccPCA as the first DR, second

DR, and CL methods, respectively. We also can use representation learning methods

that focus on time-series analysis. For example, instead of PCA, when applying the

first DR along a time mode, we are able to use functional PCA [239], which aims to

extract representative temporal patterns, or usemultivariate singular spectrumanalysis

(MSSA) [108], which is suitable to find outlier time points. Also, we can design a CL

method that is similar to ccPCA by extending a contrastive version of MSSA [62]. Once

it becomes available, we can replace ccPCA with such a method.

Visualizations also can be enhanced for time-series analysis. For example, to convey

the temporal order of time points in the TDR view’s scatterplots, we can couple the TDR

view with the existing visualization methods described in Sec. 3.1.2, such as methods

developed by Bach et al. [20] and van den Elzen et al. [230].

3.7 Summary
This chapter has introduced a visual analytics framework, MulTiDR, which enables

us to derive and interpret low-dimensional representations of multivariate time-series

data by employing a two-step DR and contrastive learning together with interactive

visualization. As demonstrated with case studies, MulTiDR has abilities of identifying

and characterizing clusters and outliers from complex datasets. Therefore, MulTiDR

provides a new effective approach to demanding tasks of analyzing multivariate time-

series data.
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Chapter 4
Streaming Data Analysis

In many streaming data applications, including social media text-analysis [32], traf-

fic flow monitoring [39], financial fraud detection [243], computer network screen-

ing [15,248], and assembly lines performance diagnostics [249], the data is often multi-

dimensional. For these datasets, utilizing effective visualizations is crucial for perform-

ing timely analysis. However, applying dimensionality reduction (DR) to continuously

updating dataset is not a trivial task due to the following challenges: (1) the computa-

tion time needs to keep up with the data-collection rate, (2) the viewer’s mental map

needs to be preserved, and (3) the potentially non-uniform number of dimensions for

each data point needs to be handled.

The computational cost is the primary concern when using DR for streaming data.

As new data keeps coming in, the time for calculating and updating positions of data

points must be fast enough to keep the visualization up-to-date. This becomes partic-

ularly difficult when the number of data records and/or the number of dimensions is

large.

Another challenge is how to preserve a viewer’s mental map while continuously

updating the visualization from DR results. Most of the well-known DR methods,

such as PCA [125], MDS [222], and t-SNE [233], originally designed their approach

for a static setting. As a result, each time DR is directly applied to streaming data,

the projected data points’ positions could look drastically different from the positions

obtained at the previous time step. This would, therefore, easily interrupt the viewer’s

analysis process and be too difficult to maintain a mental map.

The last, and perhaps, themost challenging problem in employingDR for streaming

data analysis is caused by the non-uniform number of dimensions. In scenarios where
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an analysis is based on multiple data sources, some of the data points could have

missing features if those features have not been recorded yet. For example, when

monitoring a product assembly line, we may measure the time it takes for products to

pass through the work stations that assemble the products, and then use the measured

time as features for further analysis. However, at any given time point, some products

might have already been assembled (i.e., the full set of features is collected), while

the others are still being processed at one of the work stations (i.e., at least one of the

features is missing). In such cases, ordinary DR methods are not directly applicable as

they cannot handle data records with a variant number of dimensions.

To address the challenges mentioned above, this chapter introduces a method for

visualizing DR results for streaming data. While there are many different types of DR

methods, this chapter focuses on PCA because of its popularity for visualization [198].

To reduce the amount of computation needed at each iteration, incremental PCA [193]

is employed, which calculates the new results by using the results obtained from

the previous step as a base and then updates them according to the newly added

information. However, the traditional incremental PCAwill still rearrange data points’

positions at each successive time point. We would still then run into the problem of

disturbing the viewer’s mental map. In my method, I, therefore, apply a geometric

transformation, specifically the Procrustes transformation [31], to make the transition

of each data point’s position easier to follow. In addition, the animated transition of

data points between subsequent time points is used to reduce the viewer’s cognitive

load.

To handle data records with a non-uniform number of dimensions, I introduce a

position estimation method. It estimates where the positions of data points with an

incomplete number of features would be in the PCA result of the other data points

which would have the full set of features. I also provide a mechanism to measure

the uncertainty introduced by the estimation method. By visually presenting uncer-

tainty information, viewers can assess the trustworthiness of the displayed result. This

will help them make better decisions as well as adjust their hypotheses during the
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exploration and observation stages of the visualization.

To present the efficiency of the introduced methods, performance testing is con-

ducted. The result shows that the calculation time of the methods meets the require-

ment of supporting real-timeapplications. Furthermore, aprototype system integrating

the introduced methods is developed to demonstrate their effectiveness with in-depth

analysis of real-world datasets. Two case studies showcase how themethod can be used

for visually detecting potential anomalies and finding forming clusters from streaming

data.

4.1 Related Work
This section discusses the relevant works in streaming data visualization and dimen-

sionality reduction methods.

4.1.1 Streaming Data Visualization
Visualizing streaming data for effective analytics is an important research topic. Das-

gupta et al. [57] provided a comprehensive survey of streaming data visualization and

its challenges. One main challenge is that the visualization needs to be constantly

updated with incoming data. This introduces two major concerns: (1) cognitive load

and (2) computational cost.

Krstajic andKeim [140] summarized theproblems related to the cognitive load. They

compared the occurring changes from streaming data in well-known visualizations,

such as scatterplots and streamgraphs, and summarized the potential loss of context

from its effects. For instance, if a new data value is outside of the current axis range(s)

of a scatterplot, we would need to decide whether to update the axis range(s) or not.

In the case that we decide to make an update, the viewer’s mental map then may be

lost at the same time. On the contrary, if no update is applied, we run into the issue of

information loss.

As for overcoming the issue of computational cost, various incremental methods

have been introduced [49, 161, 218]. Tanahashi et al. [218] extended the storyline gen-

eration algorithm for streaming data. To reduce both cognitive load and calculation
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cost, they utilized the previous steps’ storylines to decide the new data points’ layout.

Crnovrsanin et al. [49] developed the incremental graph layout based on �"3 [98]—a

fast force-directed layout algorithm. To achieve faster calculation, they applied a GPU

acceleration to �"3. Also, they designed the initialization, merging, and refinement

steps of the graph layout to maintain the viewer’s mental map. In addition, they used

animation to provide smooth transitions from the previous to the current graph layout.

To support text stream analysis, Liu et al. [161] introduced a streaming tree cut algo-

rithm to detect the incoming topics in time. Also, their streamgraph visualization with

a river metaphor can depict topics at different level-of-details to explore both global

patterns from the accumulated results and local details from the new topics.

Gansner et al. [84] also worked on visualizing streaming text. They visualized topic

relationships from the text data using a node-link diagram with a map metaphor [83],

which can show clusters of texts clearly. To keep the viewer’s mental map when

updating the graph layout, they utilized MDS [222] as a graph layout algorithm. When

calculating the new positions with MDS, their algorithm uses the previous nodes’

positions as the initial positions to obtain a result that better maintains the mental map.

Also, the algorithm applies the Procrustes transformation [31] to reduce the positional

changes caused by rotation and scaling between the successive MDS results. Similarly,

Cheng et al. [43] used MDS for showing an overview of similarities between temporal

behaviors in streaming multivariate data. In addition, they introduced the concept of

sliding MDS, which visualizes temporal changes in the similarities between selected

points as line paths.

The works by Gansner et al. [84] and Cheng et al. [43] are closely related to the

work in this chapter, in which we all utilize DR methods to visualize the relationships

between the streaming data points. Both of the existing works employed MDS as their

DR methods. However, using MDS makes it difficult to incrementally update node

positions based on new data points, as it requires a recalculation of all node positions

every time a new data point appears (e.g., MDS needs several seconds to project 1,000

data points [251]). This scalability issue is particularly prominent when handling a
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large data size or if there is a frequent need to update the data. My approach solves this

scalability issue by using an incremental DR method. My approach also takes further

steps to preserve the mental map by (1) minimizing the changes between current and

incoming layouts and (2) using animation to smoothen the transition between the

layouts.

4.1.2 Dimensionality Reduction (DR) Methods

As described in Sec. 4.1.1, one of the purposes of applying DR is to summarize time-

series and/ormultivariate data, including streaming data [43]. For example, to identify

anomalies from sensor networks, Steiger et al. [211] produced an overview of the

sensors’ behaviors. They used time-series similarity measures and then plotted the

similarities with MDS. This method focuses on the comparison of each sensor’s value

over time. In contrast, some visualizations calculate the similarity of the state of all

data points at each time point, and then show their temporal differences. For example,

Bach et al. [20] visualized the similarity of multivariate data between each time point by

using MDS. van den Elzen et al. [230] also applied similar methods. Rauber et al. [188]

developedDynamic t-SNE to compare the DR result for each time step. Dynamic t-SNE

offers a controllable trade-off between how much temporal coherence is strictly kept

and howmuch neighborhood relationships are precisely preserved in the t-SNE results.

Jäckle et al. [119] introduced Temporal MDS Plots. They used G- and H-coordinates to

represent time and MDS similarity, respectively. Also, they reduced the unnecessary

rotation in the MDS results by flipping the H-coordinates based on their positions in

the previous time point.

Even though the stated existing works used DR methods for summarizing time-

series data and addressed the issue of preserving a mental map, they still run into the

issue of dealing with new data points due to the calculation cost. This issue should be

addressed for streaming data visualization. How to incorporate new data points to the

existing result is one of the open problems in DR [213]. Incremental DR methods have

beendeveloped to reduce the computation cost at each timepoint by updating the result

incrementally. For example, methods like incremental PCA [182,193,244], incremental
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Isomap [147], and incremental local linear embedding (LLE) [138] are categorized as

such.

In progressive visual analytics [176, 212, 228], researchers have started to apply

incremental DR methods. The main idea of progressive visual analytics is to provide

useful intermediate results within a reasonable latency when the computational cost

for an entire calculation is too high. Being able to produce usable results with a latency

restriction is a common requirement for streaming data visualizations. For instance,

Pezzotti et al. [185] developed Approximated t-SNE (A-tSNE). Compared with t-SNE,

A-tSNE stores the neighborhood information for each data point and only utilizes this

information to refine the layout. Therefore, updating the layout in A-tSNE can work on

each data point and its neighbors. By utilizing this characteristic, they also achieved

an incremental update of the layout when adding or deleting points. While A-tSNE

has been developed for progressive visual analytics, this is useful for streaming data

visualization as well, as shown in their case study. However, A-tSNE does not consider

the mental-map preservation, and the added or deleted points would drastically affect

the other data points’ positions. Turkay et al. [226] used incremental PCA [193] in

their system to generate an overview of multidimensional data within a second. They

also employed an animated transition since the (incremental) PCA generates arbitrary

rotations and flips in the plotted results at each iteration. The animated transition acts

as a cognitive support that helps the user understand the incrementally updated PCA

results.

The two works [185, 226] are the most related works to the work in this chapter.

However, I approach a new problemwhere the streaming data has a different length of

dimensions between eachdata point. In addition, when comparedwith the incremental

PCA, I improve the incremental PCA in terms of preserving a mental map by using

both position adjustment and animated transitions together.

78



4.2 Methodology
As mentioned, our goals are to effectively manage computational costs, preserve the

viewer’smentalmap, and copewithdata recordswithdifferent numbers of dimensions.

To meet these goals, several design considerations are made for extending an existing

incremental DR method. The resulting methodology is presented in this section. To

better illustrate the work, the online supplementary materials (Appendix A) provide

animations corresponding to Fig. 4.1, 4.3, and 4.5. The source code for a major portion

of the methods is also available online.

4.2.1 Incremental PCA
Incremental DR methods incrementally update the lower-dimensional representations

as new data points arrive [213]. Because the update only considers a small subset

of the entire dataset, both computational complexity and memory usage can be re-

duced. Incremental PCA [182,193,244] is employed because of PCA’s popularity in the

visualization community [198].

Among incremental PCA algorithms, the model by Ross et al. [193], an extension

of the Sequential Karhunen-Loeve algorithm [154], is selected. To apply the model,

several parameters need to be pre-determined: 3, the number of dimensions that a data

point has, =, the number of data points processed so far, <, the number of accumulated

new data points for the next update (the model requires < ≥ 2), and :, the number of

principal components to use. One of the main advantages of utilizing this model is its

relatively low computation and space complexity. The time and space complexities of

an ordinary PCA [125] are $(32(= +<) + 33) and $(32), respectively. In contrast, the

model by Ross et al. reduces the time and space complexity to$(3<2) and$(3(:+<)),
respectively. This is because, based on only the partial singular value decomposition

(SVD) with < new data points, the model incrementally updates the SVD for all data

points, which is required for PCA. Because we usually have a fairly small < value in

streaming data applications, the computational cost can be scaled down significantly.

There are other benefits in applying Ross et al.’s model. Unlike other incremental

PCAmethods (e.g., [100,154]), thismodel constantly updates the samplemean, which is
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subsequently used for updating the eigenbasis of PCA. As a result, utilizing the model

does not require setting up a learning phase, which addresses two common issues in

handling streaming data: (1) we do not need to wait until a certain amount of data is

accumulated to perform an update; (2) we always have an updated sample mean for

incorporating new incoming data.

Furthermore, in the model, we can set a “forgetting factor”, denoted 5 , which

provides a way to reduce the contributions of past observations (existing data points)

to the latest result. The value of 5 ranges from 0 to 1, where 5 = 1 means no past

results will be forgotten. Whereas, when 5 < 1, the contributions of past observations

are gradually decreased as new data points are obtained. The effective size of the

observation history (the number of observations that will affect the PCA result) equals

to </(1− 5 ) [193]. For example, when 5 = 0.998 and < = 2, only the most recent 1,000

observations are effective. By utilizing 5 , we can support both incremental addition of

new data points and incremental deletion of past observations. Once the number of

observations reaches the effective size, the effects of the past observations on the PCA

calculation are ignored. As a result, we can choose to either keep or delete the past

observations based on the user’s need.

In summary, the model by Ross et al. is selected because of the following reasons:

(1) the computational efficiency to incrementally update principal components ($(3<2)
time complexity), (2) the capability to update the sample mean during the incremen-

tal updates, and (3) the flexibility to change the contributions from past observations.

Especially, the last two are this model’s unique strengths when compared with other

models of incremental PCA.While the sample mean update enables to generate princi-

pal components closer to the exact solutions produced by ordinary PCA, the forgetting

factor allows analysts to adjust themodel based on their analysis focus (e.g., considering

only recent 1,000 observations to compute principal components).

4.2.2 Preserving the Viewer’s Mental Map
The results directly derived from the incremental PCAwould have an arbitrary rotation

and/or flipping of data points at subsequent time steps. Fig. 4.1-a shows an example
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(a) Without the geometric transformation

(b) With the geometric transformation

Figure 4.1: Comparison of the incremental PCA results for the Iris dataset (a) without and (b) with
the geometric transformation. The point colors represent the Iris species. For each step, two points,
highlighted in blue, are added to the result. In (a), a noticeable rotation and flipping can be seen. In
(b), the plotted result is stable across all steps.

demonstrating this issue using the Iris dataset [12, 70]. If this issue is not handled

properly, it is difficult for the viewer to follow the updates in the visualization as

the mental map can easily get lost during the analysis. My solution is to minimize

the moving distance of the same set of data points between two subsequent time

steps by applying a geometric transformation and then using animations for smoother

transitions.

The PCA’s flipping issue is known as the “sign ambiguity” problem and some

possible solutions for visualizations have been proposed by Bro et al. [35], Jeong et

al. [121], and Turkay et al. [226]. However, these methods do not consider the issue of

arbitrary rotation of data points. To address both the flipping and arbitrary rotation,

the Procrustes transformation [8, 92, 201] is applied. The Procrustes transformation is

used to find the best overlap between two sets of positions (i.e., the previous and current

PCA results in our case) by using only translation, uniform scaling, rotation, reflection,
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or a combination of these transformations. The objective function to find the geometric

transformation for the best overlap can be written as:

Minimize ‖2(P′+v3T)R−P‖2 (4.1)

where P and P′ are (=× :) matrices that contain the first : principal component values

of = data points for the previous and current PCA results, respectively. = is the number

of data points found in both the previous and current PCA results. 3 is a (:×1) vector

which translates data points of P′ with v, while v = (1 1 . . .1)T is a (= × 1) vector. 2

represents the uniform scale factor (2 ∈ R). R is a (: × :) orthogonal rotation matrix,

which handles rotation and reflection.

The Procrustes transformation starts by translating P′ so that the centroid of P′ is

placedat the centroidofP. Let p̄ and p̄′ be (:×1) vectorswhich represent the centroids of

P and P′, respectively. We can compute the translation vector 3 = p̄− p̄′. Now, (P′+v3T)

represents the translated result. The next step is scaling (P′+v3T) to eliminate the

scaling differences from P. This can be achieved by matching the root mean square

distances of P and (P′+v3T) from the centroid of P. This scaling factor 2 can be

calculated as 2 = ‖P−vp̄T‖/‖P′−vp̄′T‖. Lastly, the Procrustes transformation computes

R for optimal rotation and reflection. To obtain R, singular-value decomposition (SVD)

is performed on 2PT(P′+v3T) (i.e., 2PT(P′+v3T) =UΣVT). Then, R =VUT. Refer to the

articles about the Procrustes transformation [8, 92, 201] for more information on why

this R provides the optimal rotation and reflection.

Nowwith 2, 3, and R, we can transform the data points in the current PCA result to

minimize their moving distance from the previous result. Fig. 4.1 shows a comparison

between results with and without applying the transformation. We can see that the

transformation reduces unnecessary changes across the time points. Note that the time

complexity of the Procrustes transformation is $(:2=+ :3). For visualization purpose,

usually : ≤ 3, and thus, this transformation is fast enough to handle streaming data.

Furthermore, the change of the data points is animated to maintain the coherence

between each subsequent step. This animation utilizes the staged transitions from Bach

et al. [19], whichwas originally developed for visualizing dynamic node-link diagrams.
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The transitions consist of three stages: (1) fading-out the data points that need to be

removed; (2) moving the remaining data points from their previous positions to their

new positions; (3) fading-in the new incoming data points.

4.2.3 Position Estimation for Dealing with a Non-uniform Number
of Dimensions

When the streaming data contains data points with a non-uniform number of dimen-

sions, ordinary incremental PCA cannot be directly used. This subsection first describes

the problem of applying incremental PCA for such a case and then presents an algo-

rithm that addresses the issue.

Let � be the complete number of dimensions (or features) that each data point can

contain. From thedata stream, = past data points have alreadygathered the information

from all dimensions (3 = �). On the other hand, some < new data points could have

an incomplete ; number of dimensions, ranging from anywhere between 3 = 1 and

3 = �. Consider the following example: in an online transaction stream, if we assume

that there are � steps to reach to the purchase checkout, we have stored the history

of = users’ time spent at each step. However, < new users just finished the ;-th step

(1 ≤ ; ≤ �) and, thus, we only have access to their time information for the first ; steps.

If we want to compare the < new data points to the = existing data points using a

DRmethod, one commonmethod is to fill in the unknown values with a derived value

(e.g., the mean or median value from the = data points). Another alternative is to apply

DR only to the first ; dimensions. Each approach has its limitation in streaming data

applications. The first method does not capture the characteristics of the data well (e.g.,

correlations) [64], while the second method requires a re-calculation of the PCA every

time the value of ; changes.

Fig. 4.2 shows the relationship between the data points and the results after applying

the incremental PCA for each different number of dimensions. When < new points

have ; dimensions, we can obtain the PCA results up to the ; dimensions. Because

; ≤ �, we can only apply PCA to the (=+<) data points using ; dimensions (the area

within the orange outline in Fig. 4.2-a). Alternatively, if we want to apply PCA using
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Figure 4.2: A relationship between variant dimensions and the incremental PCA results. (a) shows
the data shape. While = stored data points have 3 = � (the gray area), < new data points have ;
dimensions (the red area). (b) shows the relationships between the data and its lower-dimensional
representation generated by the incremental PCA. Gray and red points represent the stored and new
data points, respectively. The PCA can be applied to only the grey area or the area within the or-
ange border in (a). Thus, we need to apply a prediction or projection to obtain the lower-dimensional
representation for all (=+<) data points where 3 = �.

the full dimension (i.e., 3 = �), we can only do so with the = data points (the gray area

in Fig. 4.2-a).

There are twopossible solutions for employingPCA to obtain the lower-dimensional

representation for � dimensions with the (= +<) data points, as indicated with the

blue arrows in Fig. 4.2-b. The first method is to predict the values for the rest of the

dimensions by using some machine learning or estimation methods [163] (e.g., linear

regression). Then, we can apply incremental PCA to all (=+<) data points. The second

method is to project the < data points’ positions from the PCA result of 3 = ; onto

the PCA result of 3 = �. Compared to the first method, the second method executes

in a simpler manner as it does not require choosing a proper model for a specific

dataset, tuning the model used for a prediction-based method, or having an excessive

computational cost.

I, therefore, use the second method and introduce a position estimation method.

This method estimates where the positions of the new data points would be in the

PCA result of 3 = � by utilizing the distances between the new data points and the

existing points (which already have the full dimension information 3 = �) in the PCA

result of 3 = ;. The estimation method proceeds in the following manner: first, the

incremental PCA is applied for 3 = ;; then, the positions of < new data points are

projected to the PCA result of 3 = �, such that the projection maximally preserves
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the distance relationships between the new and existing data points in the PCA result

of 3 = ;. This idea is based on the assumption that a new data point will likely have

a similar relationship with the other data points in the remaining dimensions. The

objective function for this optimization problem can be written as:

argmin
�

=∑
8=1

(
BD8 −
B′D8

)2
= argmin

�

=∑
8=1
(BD8 −
 ‖x−q8 ‖)2 (4.2)

where � consists of the parameters of 
 and x (
 ∈ R, x ∈ R2). BD8 and B′
D8

are the

distances from a new data point D to the 8-th existing data point in the PCA results

of ; and � dimensions, respectively. q8 is the position of the 8-th existing data point

in the PCA result of 3 = �. x represents the estimated position of the new data point

D in the PCA result of 3 = � using this objective function. 
 is used for eliminating

the scaling difference between each PCA result. The idea of adding data points to the

DR result based on the distance relationships with the existing data points is similar

to pivot-based MDS algorithms [126, 173] which target on reducing the computational

cost.

A gradient descent algorithm [195] is applied to find the parameters � in Eq. 4.2.

Specifically, Adadelta [257] is used as this model can automatically adapt the learning

rate for each parameter without providing a default value. After obtaining �, the new

data point D at the position x are placed in the PCA result of 3 = �. Since there are <

new data points, this calculation is applied for each new point. Note that 
 may be a

different value for each new point. I chose to apply Eq. 4.2 to each new point separately

rather than finding the best common 
 for all new points, as the latter requires much

more computations.

Once the new data points obtain the values of the additional dimensions (e.g.,

changing from ; to ; + 1), the positions of the new data points will be updated by

applying this method incrementally. Fig. 4.3 shows an example of the ongoing updates

from the position estimation results. Same as Sec. 4.2.2, the transitions of the new

points’ positions are shown with the staged transitions.
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(a) Without new points (b)Estimation with 3=1 (c)Estimation with 3=2

(d)Estimation with 3=3 (e)Estimation with 3=4 (f) PCA result with newpoints

Figure 4.3: Visualizations with the position estimation method. The bus transportation dataset from
[223] is used for this visualization. Each point represents one bus and each color represents a bus
group defined by “Block ID” in [223]. The time duration between each bus stop is used as a value
for each dimension. Each bus passes through five stops and has four time durations (� = 4). The
position transitions of two new buses are shown from (a) to (f). In (a), the PCA result of 3 = � are
shown without plotting the new buses. From (b) to (e), the two buses are plotted with the position
estimation method where 3 = 1 to 3 = �. Then, the PCA result is updated in (f). The outer-ring color
represents the uncertainty as described in Sec. 4.2.4. From (c) to (e), paths of the two buses are also
visualized with the corresponding uncertainty colors. We can see that a bus with higher uncertainty
in the top-left moves farther away from the final result in (f).

4.2.4 Visualizing Uncertainty of the Position Estimation

The position estimation method introduces two uncertainties. Both uncertainties rep-

resent how inaccurately the new point is projected onto the PCA result of 3 = �. A

data point with higher uncertainty has a higher chance of moving drastically until its

position is updated again with the next incremental PCA calculation (when 3 = �).

The first uncertainty is derived from the optimization using Eq. 4.2. The cost

remaining after the optimization can indicate how the distance between each pair of
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data points in the PCA result of 3 = ; is different from the one derived from the PCA

result of 3 = �. This uncertainty is calculated in a range from 0 to 1. Similar with the

“strain” in the classical MDS [222], the uncertainty *;D (0 ≤ *;D ≤ 1) for the new data

point D with ; dimensions can be calculated with:

*;D =

(∑=
8=1

(
BD8 −
B′D8

)2∑=
8=1 B

2
D8

)1/2

(4.3)

The second uncertainty comes from the fact that a new data point does not have

the values for all of the � dimensions when the position estimation method is applied

(the new point has only ; dimensions). Calculation of this uncertainty utilizes the

principal component (PC) loading derived from the PCA. The PC loading represents

the correlation between the original variables and the PCs. This can indicate howmuch

variance each dimension contributes to each PC. The PC loading (F8 9) of 9-th dimension

to the 8-th PC can be written down as: F8 9 =
√
�8ℎ8 9 where �8 is the eigenvalue for the

8-th PC and ℎ8 9 is the 9-th element of the eigenvector h8 which corresponds to �8 .

By usingF8 9 , the uncertainty+; (0 ≤+; ≤ 1) for the newdata pointswith ; dimensions

can be written down as:

+; = 1− 1
:

:∑
8=1

©­«
∑9=;

9=1 |F8 9 |∑9=�

9=1 |F8 9 |
ª®¬ (4.4)

Here,
∑9=;

9=1 |F8 9 |/
∑9=�

9=1 |F8 9 | is the proportion of the sum of PC loading when we have

; dimensions to the sum of PC loading for all dimensions. This means how much

information of the 8-th PC is already covered when we have ; dimensions. By taking

the average of these proportions for all the PCs that are utilized in the visualization

(the first and second PCs when the result is in 2D), we can obtain a percentage that

describes how much of the visualized information of the data the PCA result of ;

dimensions explains. Therefore, by subtracting this value from 1, +; can indicate how

much information has not been considered during the position estimation process.

Note that +; remains the same for all < new points, while*;D is different for each new

data point.

To account for both uncertainties, we can compute a combined uncertainty,;D with
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,;D = �*;D +(1−�)+; for each new data point D. The value of � (0 ≤ � ≤ 1) serves as a

parameter for controlling the weight for either uncertainty. � can be defined manually

or determined automatically (see the description in the following paragraph). The

combined uncertainty ,;D is encoded with an outer-ring color for each plotted point

using a red sequential colormap, as shown inFig. 4.3. The saturated redouter-ring refers

to ahighuncertaintyvalue. In addition, a path for eachnewdatapoint’smovementwith

gradient colors is drawn to represent the uncertainties at the corresponding source and

target positions. This allows us to see the change of the data positions and uncertainties.

Selecting a proper value of � is not trivial because the user may not have a clear

criterion to follow. Thus, I provide an automatic method to help users decide the value

of �. Let �D8 be the distance between a new data point D and an existing point 8 in

the updated PCA result after D reaches 3 = �. The mean absolute error 4;D for the

estimated distance relationship of D when D has ; dimensions of the data is:

4;D =
1
=

=∑
8=1

���D8 − B′D8 �� (4.5)

,;D should be an indication of this future error 4;D . Thus, we can assume that 4;D is

proportional to,;D (i.e., 4;D ∝,;D). We calculate a proper �, as � adjusts the balance

between*;D and+; , to obtain this proportional relationship. From 4;D ∝,;D , we obtain

4;D = �*;D +)+; where � = 0� and ) = 0(1− �) (0 ∈ R). Since � can be calculated with

� = �/(�+)), we want to obtain � and ).

First, we utilize the fact that the estimated positions when ; =� have no uncertainty

for +; (i.e., +� = 0). Then, we can consider that 4�D is proportional to *�D (i.e.,

4�D ∝*�D). Second, for all dimensions 1 ≤ ; ≤ �, we approximate *;D with �[*]D =∑�
;=1*;D/� (i.e.,*;D ' �[*]D∀;). We then obtain a relationship of 4;D − 4�D ∝+; . Then,

we can approximate � with the following equations:

� =
4�D
�[*]D

, ) =

∑�
8=1(48D − 4�D)∑�

8=1+8
(4.6)

� =
�

�+) (4.7)
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Figure 4.4: Results of the automatic selection of �. The same dataset as Fig. 4.3 is used. The
left shows a scatterplot of the number of updates C and the weight �C . The right is a scatterplot of the
number of updates C and the Pearson correlation coefficient between the uncertainty,;D and the error
4;D . The blue lines show the smoothed lines with LOESS [45], while the light blue areas represent the
95% confidence intervals.

However, this � cannot be calculatedwhenweestimate theposition for the newpoint

D when we have only ; dimensions since the value of �D8 in Eq. 4.5 is still unknown at

that time. Thus, we obtain the approximated � by calculating the gradient of � from

the previous PCA result. Let �C be the � for the PCA result after updating C times (i.e.,

after applying process a3 in Fig. 4.6 C times). By using the same update method as

Adadelta [257], �C+1 can be estimated from �C with:

6C = �C −
�

�+) , Δ�C = −
'"([Δ�]C−1

'"([6]C
6C (4.8)

�C+1 = �C +Δ�C (4.9)

where '"([·] is the root mean square and �0 = 2 is set as the initial parameter for �. By

default, 2 = 0.5. This method automatically adjusts the weight �, as the PCA result is

updated. As a result, the user can keep observing the uncertainty with well-balanced

weights.

Fig. 4.4(left) shows an example of the automatically selected �. The same dataset as

Fig. 4.3 (the bus transportation dataset from TransitFeeds [223]) is used. We observe

that � keeps increasing to more than 0.5 when C < 10 (i.e., the uncertainty*;D has more

influence on the error 4;D), while we see the inverse relationship when C ≥ 70 (i.e., �

keeps decreasing from 0.5 implying that the uncertainty +; has more influence on 4;D).

Fig. 4.4(right) shows the transition of the Pearson correlation coefficient (PCC) between
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the combined uncertainty,;D and the error 4;D (more specifically, sets of,;D and 4;D
with ;={1, · · · ,�} and D={1, · · · ,<} for each C). First, we can see that ,;D and 4;D

have a positive association at each time point. Therefore, ,;D can well represent the

uncertainty of the placement of each new data point. Also, the increase of PCC can be

seen when C < 20. This indicates that the automatic update of � contributes to better

obtainment of the uncertainty,;D .

4.2.5 Automatic Tracking
Sec. 4.2.2 describes a method that helps the user follow the frequent changes that will

occur in streaming data visualizations. There are two additional considerations that

need to be taken into account. One is that the estimated position calculated from

Sec. 4.2.3 can be outside of the range [140] of the PCA result. In this case, to avoid

failing to inform the user of an important change, the visualization should update its

ranges of axes or have an indicator to notify the user that there are points outside of the

ranges. The second consideration relates to outliers when using linear DR methods,

including PCA. When the data includes an outlier, DR methods will project the outlier

to a position which is far away from other data points. For example, in Fig. 4.5-a, a

purple point at the top-right and a green point at the bottom-left are two outliers. In

this case, the user may be interested in only keeping track of the data points that are

not outliers.

To address these issues, I provide an automatic tracking mechanism that allows the

user to stay focused on the data points of their interest. Fig. 4.5 shows the process

of the automatic tracking. First, the user indicates the data points of interest through

some selection method, such as a lasso selection. For example, in Fig. 4.5-a, the user

chooses the data points by lassoing and then selects the selected data points and

incoming new data points as tracking targets from a dialog menu. Next, zooming and

panning are applied to show the selected points in the center of the scaled window,

as shown in Fig. 4.5-b. Zooming and panning will be applied again when the plotted

result is updated by either new estimated positions, the addition of new points, or a

recalculation of the PCA result (Fig. 4.5-c).
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Figure 4.5: An example of the automatic tracking. In (a), since the outliers make the result sparse,
points in the dense area are selected and then the function to track the selected points and new points
is chosen from the dialog menu. Then, zooming and panning are automatically applied to focus on
the tracking points in (b). When the positions of the tracking points are updated, the focus area is also
automatically updated, as shown in (c).

However, when a large change occurs, it is difficult for a user to preserve their

mental map. To help maintain the mental map, animated transitions are used for

zooming and panning (referred to as the view-level transitions) in addition to the three

staged animated transitions [19] (referred to as the visual-structure level transitions).

The animations are applied in the following order: panning, zooming in, removing,

moving, and adding data points for the cases of zoom-in animations. The zoom-out

animations follow the order of zooming out, panning, removing, moving, and adding

data points. I have tested multiple alternative designs. First, I used the visual-structure

level transitions and the view-level transitions in parallel. However, this caused many

changes to happen simultaneously and the result was hard to follow. Another option

was to use the visual-structure level transitions before the view-level transitions. In

this case, actions, such as removing, moving, or adding data points, could happen

outside of the axes ranges. As a result, there was a potential issue of failing to inform

the changes to the user. The last consideration was the order of zoom and pan in the

view-level transitions. When I first animated zoom and then pan, the visualization was

zoomed into the unrelated area of the selected points. This also made it difficult to

follow the changes. A similar result occurredwhen I first animated pan then zoom-out.

This issue also happened when applying zooming and panning in parallel, similar to
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Figure 4.6: A flowchart of the streaming data visualization using incremental PCA. The red, green,
blue, and yellow are process blocks that correspond to the methods for dealing with the computational
cost, the viewer’s mental map, and the non-uniform number of dimensions, the uncertainty visualiza-
tion, respectively.

the work by van Wĳk and Nuĳ [235]. Thus, I decided to employ different orders of

steps based on whether it required zooming-in or zooming-out.

In addition, a mini-map is provided to help the user grasp which part of the plot

they are looking at after panning and zooming. An example of visualization with

animated transitions can be found online (Appendix A).

4.3 Performance Evaluation
The evaluation in this section demonstrates that the methods described in the previous

section are fast enough for handling streaming data through an evaluation of compu-

tational performance for each method. As an experimental platform, iMac (Retina 5K,

27-inch, Late 2014) was used. It has 4 GHz Intel Core i7, 16 GB 1,600 MHz DDR3.

Fig. 4.6 shows the flowchart of the overall process starting from receiving the new

data points to visualizing the results. There are twomain flows onhow to dealwith new
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Table 4.1: Completion time (in milliseconds) of each process in Fig. 4.6. Graphical results are also
available online (Appendix A).

� = a1 a2 a3 b1 b2
10 100 0.011 0.006 0.003 0.914 0.002
10 1,000 0.014 0.010 0.016 4.417 0.002
10 10,000 0.067 0.091 0.144 42.357 0.002
100 100 0.029 0.004 0.022 0.900 0.110
100 1,000 0.072 0.010 0.160 4.410 0.110
100 10,000 0.949 0.085 1.578 42.338 0.110

1,000 100 0.198 0.004 0.222 0.908 8.618
1,000 1,000 0.962 0.011 1.652 4.410 8.574
1,000 10,000 24.410 0.085 15.291 42.335 8.580

data points based on whether they have the values for all � dimensions (processes a1–

a4 in Fig. 4.6) or do not (b1–b3). Since the completion time of a4 and b3mainly depends

on the duration of animated transitions, the completion times of the other processes are

onlymeasured. To run the experiment, we use synthetic datasets containing data points

with a different number of dimensions (�=10, 100, 1,000), and all values are randomly

assigned in the [−1 : 1] range. In addition, the frequency for updating the visualized

results at every 2 new data points (< = 2) is used. The geometric transformation

and position estimation method are applied for 2D points. The maximum number of

iterations for running the Adadelta optimization (Eq. 4.2) is bounded at 1,000.

Tab. 4.1 shows the completion time for each method with different numbers of the

pre-existing points (==100, 1,000, 10,000). Each completion time is the average of ten

executions. In Tab. 4.1, we can see that processes a1–a3 can be done in 40 ms even when

we have 10,000 pre-existing points with 1,000 dimensions, while b1–b2 can be done

in approximately 50 ms. Note that the completion time for process a1 increases as =

increases even though incremental PCA’s time complexity ($(3<2)) does not relate to

=. This is due to the projection step of (= +<) data points using the first : principal

components obtained from incremental PCA.These results showthat the computational

costs of the methods are low enough for supporting streaming data analysis with large

numbers of data points and features in real-time.
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4.4 Prototype System
A prototype system that integrates the methods described in Sec. 4.2 is developed.

The prototype system has three views: the (a) DR, (b) parallel-coordinates (PCP), and

(c) scatterplot-matrix (SM), as shown in Fig. 4.7. As the names indicate, the DR view

shows the projection results from the incremental PCA, the PCP view displays the data

points’ values for each dimension with parallel coordinates, and the SM view presents

the pairwise scatterplots between any of the two dimensions. While visualizing PCA

results is effective in showing an overviewof the streamingmultivariate data, it neglects

the detailed information of the data points. To supplement the DR view, the system

incorporates the parallel coordinates which can showmany dimensions of information

all at once in a limited space and reveal the trendof thedatapoints clearly [53]. However,

the parallel coordinates are not suitable for analyzing the correlation between each pair

of dimensions [53]. Thus, the system provides a scatterplot matrix for this type of

analysis. To achieve fast calculation and rendering, C++ and OpenGL are used for

visualization, Qt for the user interface, and Eigen [94] for linear algebraic calculations.

In the DR view, the system uses the point’s color to indicate a user-defined grouping

of the data points. For interactions, the system supports fundamental view operations

and selection, such as zooming, panning, lasso selection, and filtering with linking

to the other views. From a dialog menu, the user can also start to use the automatic

tracker described in Sec. 4.2.5 with multiple options: track only incoming new data

points, track only selected data points, or both.

In the PCP view, each data point is shown as a polyline. The vertical axis corre-

sponds to each dimension and its y-coordinates reflect the data points’ values of its

corresponding dimension. The user can choose whether to scale the plotted values for

each dimensionwithin a 0-to-1 range or not. Each line color shows the corresponding

group information defined in theDRview. To performbrushing& linking and filtering,

the system provides a freeform selection for the parallel coordinates’ lines. The user

can also select which dimensions to be shown in the SM view by clicking the names of

the dimensions placed at the bottom of the view. The selected dimensions are indicated
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Figure 4.7: A prototype system consisting of three views: (a) the DR view, (b) the parallel-coordinates
view, and (c) the scatterplot-matrix view.

in yellow.

The SM view shows the pair-wise scatterplots between any two of the selected

dimensions. To show the Pearson correlation coefficient for each plot, the system uses a

colored background with a pink-to-green colormap (pink: negative correlation, green:

positive correlation). This view also supports lasso selection.

4.5 Case Studies
This section demonstrates the effectiveness ofmy incremental DRmethod for streaming

multidimensional data with the prototype system. Analyses of two different types of

time-series data show how the method is used for finding useful patterns, such as

anomalies and clusters.
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Figure 4.8: An example of visual detection of an anomaly node. In (a), one node moves far away from
other nodes and goes out of view from the current visualized range. This suspicious behavior indicates
that this node could be an anomaly. Thus, we follow the node with the automatic detection in (b). To
see more details about this node, we visualize it in the PCP view. We also show the scatterplots
of the current work station (“WS_03”) and three immediate work stations (“WS_04”, “WS_05”, and
“WS_06”). (c) shows the PCP and DR views after obtaining the entire set of values of the node.

4.5.1 Study 1: Visual Diagnosis of Assembly Line Performance
We analyze real-time tracking data of an assembly line in a smart factory [249]. The

assembly line consists of a set of work stations. Each product part is moving from

one station to the next. We use the status information sent from programmable logic

controllers (PLCs) on the assembly lines when the parts arrive at the stations. Each

part at a work station is set as a data point and its cycle time is set as the data point’s

features. The cycle time is calculated by subtracting the time range that a part finished

the process of one station and has moved onto the next. There are 11 work stations

in the selected subset of the assembly line. Therefore, if a part has finished passing

through all 11 work stations, it has 10 features (cycle times). In addition, we use the

fault code to categorize the group information, which is recorded by the PLCs when

any error occurs during processing a part on a station.

We now show three examples of visual diagnosis of anomalies and errors from a

subset of the assembly line data in a single day. The full dataset consists of 1,728 product

parts (data points), 10 cycle times (features) from 11 work stations, and the fault code

(i.e., error or no error). The median of all cycle times from all parts is approximately

one minute.

The first example is shown in Fig. 4.8-a, where we notice that one node (a product

96



Figure 4.9: An example of a visual prediction of a future error. In (a), we can see that one node has
abnormal behaviors. At last, the node causes an error (indicated by orange color) as shown in (b).

part) starts to move away from other nodes by looking at the path as indicated with

a green arrow. Since this could be an anomaly, we start to track this node with the

automatic tracking. As this node passes through more work stations, we find that this

node keeps moving away from the other nodes, as shown in the DR view in Fig. 4.8-b.

To review inmore detail, we select this node and show its data values in each dimension

in the PCP view in Fig. 4.8-b. We can see that this node has a high value for the work

station “WS_03”. Then, we look at the scatterplot matrices for the work stations from

“WS_03” to “WS_06” (the lower-right of Fig. 4.8-b). We can see that “WS_03” has

positive correlations with “WS_04”, while it has negative correlations with “WS_05”

and “WS_06”. Therefore, if this node were to follow the same trend as the other nodes,

we should expect that this node would have a high value for “WS_04” and low values

for “WS_05” and “WS_06”, respectively. However, as shown with the PCP view at the

top of Fig. 4.8-c, the node holds a low value for “WS_04”. Since the node behaves very

differently from the other nodes, this foreshadows that this node will be an anomaly.

As a result, as shown in the DR view at the bottom of Fig. 4.8-c, the node stays far away

from the others. Despite the abnormal behavior, this does not cause an error during

the process.

As a second example, we see a case where a visually detected anomaly node causes

an error. In Fig. 4.9-a, we find that one node suddenly strays away from the others and

continues to move farther away in successive steps. Similar to the previous example,

this behavior indicates a high possibility of the node being an anomaly. As a matter of
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Figure 4.10: An example of a visual prediction of an error based on previous errors. In (a), we can see
that one node, indicated with the green arrow, comes close to the error nodes colored with orange.
From (a), we select this node and the error nodes with the lasso selection and visualized them as the
parallel coordinates in (b). We can see that the values of the node (the purple polyline) follow closely
to the values of the other nodes (the orange polylines). At two work stations after the state of (a) and
(b), the node causes an error, as shown in (c).

fact, immediately after this step, the node causes an error, as shown in Fig. 4.9-b. This

example demonstrates the functionality of the method: to visually identify a data point

that could cause an unknown error.

The third example demonstrates howwe use themethod to foresee a future error by

utilizing the known errors. As shown in Fig. 4.10-a, one node, as pointed by the green

arrow, moves to a position where several error nodes (colored orange) reside. Since

this behavior indicates that this node has a high possibility to cause the same error, we

further investigate its relationships with those error nodes. We select the related nodes

with a lasso selection in Fig. 4.10-a and visualize their values for each dimension with

the PCP view, as shown in Fig. 4.10-b. From Fig. 4.10-b, we can see that the values

of the node (represented with the purple polyline) have similar values with the error

nodes (the orange polylines) up to the sixth work station. Given this observation, we

predict that this node will cause an error in the near future. In fact, we find that this

specific node causes an error after it has passed two more work stations, as shown in

Fig. 4.10-c.

Through this case study, we find product parts that produce anomaly patterns

and/or yield errors in the assembly line. We achieved this by applying the position

estimation method on the product parts which have not passed all the work stations

yet. This shows the usefulness of the method to perform real-time monitoring on

time-series data for early anomaly detection and error reasoning.
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Figure 4.11: An example of visual detection of a new forming cluster which has delays in the MTA bus
trips. (a) shows two new nodes moved away from the originally formed cluster. (b) shows a distinct
cluster (mainly consisted of orange nodes) formed with more arrived data points. (c) shows the PCP
view of the two clusters. We can see that the values of the node (the purple polylines) show a clear
distinction to the values of the new nodes (the orange polylines). In (d), we show the PCP view with
the original scales of the values.

4.5.2 Study 2: Bus Traffic Analysis
For the second case study, we use the tracking data from the Metropolitan Trans-

portation Authority (MTA) and RTA (Regional Transportation Authority) at Nashville,

United States [223]. Nashville MTA/RTA Stops and Routes are used in mapping pro-

grams, such as Google Transit. We use the arrival times of anMTA bus from one station

to the next to calculate the transit time. Each data point in this dataset is a trip taken by

each bus. TheMTAdataset consists of many routes. For this case study, we analyze one

route that runs through downtown Nashville. The dataset consists of approximately

1,500 data points (trips).

Fig. 4.11 shows the results of processing 800 points. We can see that the incremental

PCA has split the data points into one large, distinct cluster (purple points) as seen in

Fig. 4.11-a. The newly incoming data points (the purple and orange points) promptly

deviate from the large cluster. As more incoming points are processed, we see a new

cluster forming, which mainly consists of orange nodes, as shown in Fig. 4.11-b. To

understand how the clusters are being split, we further analyze the data with the PCP

view, as shown in Fig. 4.11-c. We find that the incoming orange nodes in the new cluster

follow a different value on each bus stop when compared with the purple nodes. More

specifically, we can see that these nodes have higher time delays for the first two stops

(“NOL” and “NXI”) when compared to the purple nodes. In Fig. 4.11-c, the parallel

coordinates expand the values of each dimension to the minimum-maximum range on

the H-direction. This makes judging more difficult on which cluster has higher delays

99



in total. Alternatively, we choose to show the original values in each dimensionwithout

expanding them, as shown in Fig. 4.11-d. This allows us to see that the new cluster

does have a higher delay time in total. This example shows how we can discover and

review newly emerging clusters with my method.

As we continue to process more data points, referring to Fig. 4.12, we observe that

the data points with higher delays start to form more clusters. Fig. 4.12-a shows that

there are six additional clusters being formed. Intuitively, we could assume that there is

more correlation between the clusters that are closer to each other (i.e., the time delays

are comparable). To understand which criteria leads to these separated clusters, we

compare the values in each cluster with the PCP view. For example, in Fig. 4.12-b,

we highlight the values of the clusters which mainly contain brown or cyan nodes by

selecting from the DR view with the lasso selection. We can see that the brown lines

(“Higher_Time_Delay_5”) are mostly at the upper end of the figure when compared to

the blue lines (“Higher_Time_Delay_2”). With further investigation for each cluster, we

find the clusters that are farther apart show higher time delays. Note, for the examples

above, the coloring of the nodes is used to make the explanations clear. The findings

and patterns can be found even by using the provided selection and filtering methods

instead of using these colors.

At this point, we know how the clusters are formed. This information could be used

to gain some additional insight from the dataset based on the time of the day when the

bus trip occurred. We now then visually group the data points based on the hour of

the day, and the groups are categorized as “Morning”(5 AM–11 AM), “Afternoon”(11

AM–4 PM), “Evening”(4 PM–9 PM), and “Night”(9 PM–2 AM) trips. From Fig. 4.13,

we notice that the highest delays (orange points in the middle right) occur in the

“Afternoon” trips. In addition, the “Afternoon” trips’ nodes can be found in all the

clusters that have delays. On the other hand, from my general assumption, one might

assume that the “Night” trips would incur no delays. However, this is not true, as seen

in Fig. 4.13. Many of the “Night” trips are grouped into a cluster with delays (indicated

with the green arrow in the middle). The time duration for the groups could be varied
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Figure 4.12: The bus trips after processing more data points from Fig. 4.11. (a) shows the additional
clusters formed away from the original cluster at Fig. 4.11-a. (b) shows the PCP view of the two
selected clusters “Higher_Time_Delay_2” (cyan) and “Higher_Time_Delay_5” (brown).

Figure 4.13: The visually grouped bus trips colored by the hour of the day that each trip occurred in.

and this will change the final result of Fig. 4.13. However, we can consider that this

particular choice gives us a concrete idea of how the data is laid out in the final result.

4.6 Discussion
To preserve the viewer’s mental map, the enhanced incremental PCA introduced in this

chapter uses the Procrustes transformation consisting of translation, uniform scaling,

rotating, and reflection. For the purpose of visualizing the data, the geometric trans-

formations are not harmful because these transformations do not change the relative

distance relationships among the data points. However, if the user wants to analyze the

data based on the original PCA result, the algorithm can also provide enough informa-
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tion to restore the transformed result back to the original result. This can be achieved

by using 2, 3, and R obtained with Eq. 4.1. I would also like to note that the Procrustes

transformation can be used to reduce the total positional changes between any two sets

of data points (e.g., MDS results [83] and node-link diagrams). This can help in the

comparison of two different visualized results.

To deal with a non-uniform number of dimensions, the enhanced incremental PCA

employs the position estimation method utilizing the distance relationships among

the new and exiting data points in the PCA result. This approach is simple and

generalizable, and thus can be applied to other incremental DR methods, such as an

incremental MDS [246]. As described in Sec. 4.2.3, another potential option to handle

a non-uniform number of dimensions is to predict the missing or unknown values

using some machine learning approaches. Even though choosing a proper model for

the prediction is challenging, it is worth pursuing as a following research. With its

predictive capability, the method can then possibly be used for streaming data with

missing values in arbitrary dimensions.

4.6.1 Limitations
The enhanced incremental PCA is developed with the model by Ross et al. [193],

which requires at least two new data points to update the PCA result, as described in

Sec. 4.2.1. When streaming data visualization requires frequent updates, this limitation

is not a problem since, in most real-world scenarios, more than two new data points are

constantly received. In cases where updates do not frequently occur, we have enough

time for updating the PCA result, and thus we can use the ordinary PCA instead. Also,

my method inherits the limitation of a linear DR method and would not be suitable for

revealing the local neighbors in a complicated structure.

In addition to the incremental addition of data points, my method allows the user

to delete past observations by utilizing the forgetting factor in Ross et al.’s model [193].

However, my method does not support updating feature values of past observations

because theirmodel is not designed for such a case. Exploring differentways to support

this operation could be one direction for future work.
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Another limitation of the work is related to the animated transitions. If we keep

receiving new data points in a very short amount of time (e.g., less than a second),

the staged animated transitions [19] may not have enough time to complete. In this

situation, we could consider not employing the animation. Despite that possibility, the

method can still be effective in maintaining the mental map as it can keep the node

positions with the geometric transformation. As an additional option, we can store the

new data points for a period of time, and then update the result when there is enough

duration for the animation.

The position estimationmethod is designedmainly for cases where new data points

have an incomplete number of dimensions and keep collecting the values until they

reach the same number of dimensions as the existing data points. It is also possible to

apply the method in other situations. For example, when new data points have more

dimensions than the existing data points, we can plot the new points by applying the

incremental PCA with only the dimensions that the existing data points have. Even

though some dimensions may be discarded, the uncertainty measure can be used to

inform the user how much uncertainty is introduced. Another example is when some

dimensions of the data are no longer able to be used (e.g., at some point a work station

is removed from the assembly line). By allowing the user to select which dimensions

should be included in the PCA calculation, themethod can also be applied for this case.

The scalability of the visualization is also worth discussing. The prototype system

visualizes the PCA result as a 2D scatterplot. Therefore, the scalability issue mainly

depends on the scatterplot itself. One way we can approach this issue is to delete or

aggregate data points that are not necessary to be visualized. For example, we can

filter out old data points in the visualization (e.g., data points that are a day old) or

aggregate data points based on their similarities. This approach also solves the same

scalability issue in the data points with the outer-ring colors. A similar issue can occur

when paths are drawn to show the new data points’ movements. If there are many new

data points, it could create cluttered lines. One way to reduce this clutter is to filter the

paths. For example, we can set a criterion based on the length of their movements or
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on a chosen threshold for specific feature values.

4.7 Summary
The work in this chapter enhances the usability of a representative DR method for

interactive analysis of streaming data. The enhanced method is able to address both

the interactivity and interpretability of the visualization. The visual stability and the

capability of handling varying data dimensions offered by the incrementalmethod lead

to effective visualizations for streaming data analysis. For example, the case studies

demonstrate how time-varying data features, such as errors or clusters, could more

easily be identified.
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Chapter 5
Network Data Analysis: Contrastive
Network Representation Learning

Networks are commonly used to model various types of relationships in real-world

applications, such as social networks [50], cellular networks [41], and communication

networks [29]. Comparative analysis of networks is an essential task in practice, where

we want to identify differentiating factors between two networks or the uniqueness

of one network compared to another [66, 220]. For instance, when a neuroscientist is

studying the effect of Alzheimer’s disease on a human brain [82], they want to compare

the brain network of a patient with Alzheimer’s disease to that of a healthy subject.

Also, for collaboration networks of researchers in different fields [146], an analyst in a

funding agency may want to discover any unique ways of collaborations in the fields

for decision making.

Several approaches have been proposed for network comparison [220]. When two

different networks have the same node-set and the pairwise correspondence between

nodes is known, we can compute a similarity between two networks (e.g., a Euclidean

distance between two adjacencymatrices). When the node-correspondence is unknown

or does not exist, a network-statistics based approach is commonly used (e.g., the

clustering coefficient, network diameter, or node degree distribution). Another popular

approach is using graphlets [220]—small, connected, and non-isomorphic subgraph

patterns in a graph (e.g., the complete graph of three nodes). The similarities of two

networks can be characterized by comparing the frequency of appearance of each

graphlet in each network.

While the existing approaches can provide a (dis)similarity between different net-

works, they compare networks only based on one selected measure (e.g., node degree),
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which is often insufficient. Also, these approaches only provide network-level simi-

larities, and thus cannot compare networks in more detailed levels (e.g., a node-level).

Without such a detailed-level comparison, it is difficult to find which part of a network

relates to its uniqueness.

To address these challenges, this chapter introduces a new approach that integrates

the concept of contrastive learning (CL) [3, 263] together with network representation

learning (NRL), which I call cNRL. Within cNRL, the NRL enables the characterization

of networkswith comprehensivemeasureswithout overwhelming a userwith informa-

tion by embedding nodes into a low-dimensional space; the CL allows for discovering

unique patterns in one dataset relative to another. By leveraging the benefits of both,

we can reveal unique patterns in one network by contrasting with another, in a thor-

ough (i.e., usingmultiple essential measures to capture the network characteristics) and

detailed (i.e., analyzing a node or subnetwork level) manner.

With the above approach, I consider the generality and interpretability of cNRL,

and contribute a method called i-cNRL. First, i-cNRL is designed not to require node-

correspondences or network alignment [66], and thus is applicable to various networks.

Also, unlike many other NRL methods (e.g., node2vec [93] and graph neural networks

(GNNs) [259]), i-cNRLoffers interpretability [6], providing informationabout themean-

ing of an identified pattern and the reason why that pattern can be seen in only that

network.

In summary, this chapter’s main contributions include:

• A new approach, called contrastive network representation learning (cNRL),

which aims to reveal unique patterns in one network relative to another network.

• Amethod exemplifying cNRL, called i-cNRL, which (1) offers general applicabil-

ity, including networks without node-correspondence or network alignment, (2)

provides interpretability for helping understand revealed patterns, and (3) equips

automatic hyperparameter selection for CL.

• Experimentswithmultiplenetworkmodels and real-worlddatasets,whichdemon-

strate the capability of comparative network analysis.
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• Quantitative and qualitative comparisons with other potential designs of cNRL

methods.

5.1 Problem Definition
This section defines the problem to be addressed by contrastive network representation

learning. Given two different networks, a target network�) and a background network

��, we want to seek unique patterns in �) relative to ��. Similar to contrastive learn-

ing [263], the unique patterns can be represented as relationships (e.g., the structural

differences among network nodes) that appear in �) but do not appear in ��.

For example, when finding unique patterns in a scale-free network �) (i.e., its node-

degree distribution follows a power law) relative to a random network �� (i.e., each

node pair is connected with a fixed probability) [25], we should be able to capture the

unique patterns related to node degrees since �) has more variety in node degrees.

For practical usage, the unique patterns could relate to more complicated centralities,

measures, combinations of them, and many more. Note that, as with the existing work

of contrastive learning, cNRL does not aim to discriminate �) from ��, but to identify

unique patterns in �) .

5.2 Analysis Example
To provide an illustrative example of analysis with cNRL, I begin by comparing two

different social networks. I use theDolphin social network [165] as�) and theZachary’s

karate club network [256] as ��. Fig. 5.1-a, b depict the network structures of these

networks. The statistics of these networks can be found in Tab. 5.1 (see N1 and N2). By

comparing these two networks, wewant to reveal unique patterns in the Dolphin social

network and identify which network characteristics relate to the patterns.

i-cNRL is applied to the two networks and then plot a 2D embedding result with

contrastive PCA (cPCA) [3], as shown in Fig. 5.1-c. The G- and H-directions in Fig. 5.1-c

represent the first and second contrastive principal components (cPCs), respectively.

Details of i-cNRL and related techniques will be described in Sec. 5.4. Fig. 5.1-c shows

that the nodes in �) are more widely distributed, whereas the nodes in �� are placed
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(a) �) : Dolphin network (b) ��: Karate network (c) The result of i-cNRL
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(d) �) : Dolphin network (e) ��: Karate network (f) The result of i-cNRL

Figure 5.1: (a) and (b) show the dolphin social network and the Zachary’s karate club network, used
as �) and �� for i-cNRL, respectively. (c) shows the i-cNRL results with 2D embedding. (d), (e),
and (f) colorcode each node in (a), (b), and (c) based on the top-contributed feature (F1-10) of the
first contrastive principal component (cPC1): (Φmean)(x) with ‘eigenvector’ as the base feature x (see
Tab. 5.2).

only around the center, which reveals some patterns specific to �) when compared

with ��.

Moreover, since i-cNRL offers interpretability to the learned results, we can analyze

why the abovepatterns appear. As shown inTab. 5.2, themethodprovides cPC loadings

(refer to Sec. 2.3.3), of which the absolute value indicates how large each learned

feature contributes to each cPC direction. Each learned feature can be represented as

a combination of the relational function 5 and the base feature x [194] (see Sec. 5.4 for

details). Tab. 5.2 indicates that feature F1-10 has the highest contribution to cPC1. From
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Table 5.1: Statistics of network datasets.

ID Name # of nodes # of links Directed

N1 Dolphin [165] 62 159 False
N2 Karate [256] 34 78 False
N3 Random 100 471 True
N4 Price 100 294 True
N5 p2p-Gnutella08 [152,192] 6,301 20,777 True
N6 Price 2 6,301 18,897 True
N7 Enhanced Price 6,301 18,281 True
N8 Combined-AP/MS [48,255] 1,622 9,070 False
N9 LC-multiple [190,255] 1,536 2,925 False
N10 School-Day1 [210] 236 5,899 False
N11 School-Day2 [210] 238 5,539 False

Table 5.2: Learned features and their cPC loadings for the dolphin vs. karate example.

ID relational function 5 base feature x cPC1 cPC2

F1-1 (x) total-degree 0.00 -0.02
F1-2 (x) betweenness -0.00 -0.00
F1-3 (x) closeness 0.00 0.00
F1-4 (x) eigenvector -0.04 0.00
F1-5 (x) PageRank 0.04 0.04
F1-6 (x) Katz 0.00 -0.02
F1-7 (Φmean)(x) total-degree -0.06 -0.08
F1-8 (Φmean)(x) betweenness 0.05 -0.01
F1-9 (Φmean)(x) closeness -0.08 0.01
F1-10 (Φmean)(x) eigenvector 0.26 0.02
F1-11 (Φmean)(x) PageRank -0.11 0.15
F1-12 (Φmean)(x) Katz -0.08 -0.09
F1-13 (Φmax)(x) PageRank -0.01 0.00
F1-14 (Φmean ◦Φmean)(x) total-degree -0.06 -0.00
F1-15 (Φmean ◦Φmax)(x) PageRank 0.01 -0.00

the relational function (Φmean)(x) and the base feature ‘eigenvector’ [179], this feature

is interpreted as “the mean eigenvector centrality of the neighbors of a node.”

To investigate the relationships between this feature and the i-cNRL result, the

network nodes in Fig. 5.1-a, b, c are colorcoded based on the feature values, as shown

in Fig. 5.1-d, e, f. We can see that, in Fig. 5.1-f, the nodes around the top-left corner tend
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Figure 5.2: The general architecture for cNRL.

to have smaller feature values while the nodes around the bottom-right tend to have

higher values. By comparing with Fig. 5.1-d, we notice that these two node groups

correspond to the top-left and bottom-right communities in Fig. 5.1-d. Since the feature

value shows themean eigenvector centrality of the neighbors of a node, the nodes in the

top-left community tend to have a low eigenvector centrality including their neighbors.

On the other hand, the nodes in the right-bottom community have neighbors with

a high eigenvector centrality. Fig. 5.1-e indicates that �� does not have such clearly

separated communities by the feature values, unlike �) . Therefore, i-cNRL learns the

patterns highly related to the eigenvector centralities of each node’s neighbors, which

can clearly separate the two communities in the Dolphin social network.

5.3 cNRL Architecture
Fig. 5.2 shows a general architecture for cNRL.Notations used for the following sections

are listed in Tab. 5.3. The current CL methods [3, 4, 62, 203, 263] require target and

background featurematrices (X) andX�) sharing the same features as inputs. However,

matrices that represent target and background networks (�) and ��) such as adjacency

matrices (A) and A�) might have a different number of nodes or no correspondence

in nodes of A) and A�. Thus, we cannot directly apply the CL methods to target and

background networks (�) and��). To address this issue, the core idea of cNRL consists

of twomain steps: (1) generating feature matrices X) and X� from networks �) and ��
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Table 5.3: Summary of notations.

Notations for CNRL
�) , �� target and background networks
A) , A� adjacency matrices of �) and ��
P) , P� matrices of node attributes of �) and ��
=) , =� numbers of nodes in �) and ��
<) , <� numbers of attributes in �) and ��
;) , ;� numbers of edges in �) and ��
3, 3′ numbers of features learned by NRL and CL

X) , X� target and background feature matrices
W projection matrix learned by CL

Y) , Y� contrastive representations of X) and X�

Notations for DeepGL
x base feature (e.g., in-degree)
5 relational function

Φ−, Φ+, Φ relational feature operators for in-, out-, total neighbors
( summary measure (e.g., mean, sum, and maximum)
ℱ8 set of learned features with 8 relational feature operators
ℱ set of learned features: ℱ = {ℱ0 , · · · ,ℱℎ}
ℎ maximum numbers of relational feature operators to use

Notations for cPCA
C) , C� covariance matrices


 contrastive parameter

respectively by using NRL, and (2) applying CL on X) and X�.

Below the details of each part of the cNRL architecture are described with require-

ments on inputs, NRL, and cNRL algorithms. The description focuses only on node

feature learning to provide a simple and clear explanation. However, the architecture

is generic enough to be used for link (or edge) feature learning.

Inputs. cNRL takes �) and �� as inputs. These networks can be any combination

of being undirected or directed, unweighted or weighted, and non-attributed or at-

tributed. The numbers of �) and �� nodes (i.e., =) and =�) do not have to be the same.

Similarly, the numbers of attributes <) and <� may be different.

Network representation learning. The first step in Fig. 5.2 is applying an NRLmethod

in order to transform the inputs �) and �� to feature matrices X) and X�, respectively.
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CL requires that X) and X� share the same features by nature of its learning purpose.

Therefore, for this process, we need to use an NRL method that can produce the same

features across networks.

Contrastive learning. Once we obtain X) and X�, which have the same 3 learned

features, we can apply any of theCLmethods usingX) andX� as target and background

datasets, respectively. CL generates a parametric mapping (or a projection matrix

W) from 3 features learned by NRL to 3′ contrastive features (3′ ≤ 3). With this

projection matrix, X) and X� can be transformed to contrastive representations Y) and

Y�, respectively. As the existing CL works [3,4, 62,203,263] only produced Y) for their

analysis, the generation of Y� is optional. However, as demonstrated in Fig. 5.1-c, by

visualizing bothY) andY� in one plot, we can clearly seewhether CL has found unique

patterns in �) relative to ��.

5.4 Interpretable cNRL Method
As a specific method using the architecture above, this section introduces i-cNRL,

which employs DeepGL [194] for NRL and cPCA [3] for CL, with the design rationale

for the selection of these algorithms.

5.4.1 Network Representation Learning
As stated in Sec. 5.3, NRL needs to generate X) and X�, which have the same features.

To achieve this, we can employ any inductiveNRLmethod [194] (e.g., GraphSAGE [101]

and FastGCN [42]). However, the interpretability should be provided in the con-

trastive representations obtained by cNRL; thus, an NRL method needs to generate

interpretable features as the learned result. As a result, DeepGL is specifically used in

the first step of i-cNRL.

5.4.1.1 DeepGL

The method learns node and link features consisting of the base feature x and relational

function 5 . For a concise explanation, I describe DeepGL for only node feature learning.

A base feature x is any simple feature or measure we can obtain for each node. For

example, x can be (weighted) in-, out-, total-degree, degeneracy (or :-core numbers),
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PageRank [179], or a node attribute (e.g., gender of a node in a social network).

A relational function 5 is a combination of relational feature operators, which is applied

to a base feature. A relational feature operator summarizes base feature values of one-

hop neighbors of a node. For example, the operator can be a computation of the

mean, sum, maximum base feature values of one-hop neighbors’ of a node. Also, the

neighbors can be either in-, out-, total-neighbors. Together with the summary measure

( (e.g., mean), the operators can be denoted Φ−
(
, Φ+

(
, and Φ

(
, respectively. For example,

Φ−mean(x) computes the mean x of the in-neighbors of a node. Moreover, the relational

feature operator can be applied repeatedly. For example, 5 = (Φ+mean ◦Φ−max)(x) first
computes the maximum x of in-neighbors for each out-neighbor of a node and then

produces themean of thesemaximum values. As describedwith the examples above, x

and 5 are combinations of simple measures and operators; thus, both are interpretable.

In DeepGL, we can select as many different base features and relational feature

operators as we want to consider. The learning process contains ℎ number of it-

erations (indicated by the user), and in the end we obtain all the learned features

ℱ = {ℱ0,ℱ1, · · · ,ℱℎ}, each of which is a relational functions over a base feature 5 (x).
During each iteration, DeepGL prunes redundant features based on the similarities of

the obtained feature values. Tab. 5.2 shows an example of learned features from the

Dolphin social network [165].

5.4.1.2 Use of Transfer Learning with DeepGL for cNRL

As described above, the learned features ℱ by DeepGL are the combinations of the

base features and relational functions. Once we obtain ℱ from one network, we can

naturally compute ℱ for other networks. That is, DeepGL is inductive and can be used

for transfer learning [194].

In cNRL, we need to decide which network(s), �) and/or ��, should be used for

learning ℱ . One possible choice is applying DeepGL for both to learn the features

ℱ) and ℱ�. Then, we can use the union of these features (i.e., ℱ) ∪ℱ�) for producing
feature matrices X) and X�. Since cNRL aims to identify unique patterns in �) relative

to ��, only a set of features capturing �) ’s characteristics is required. Thus, DeepGL is
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applied to �) and the learned features for both �) and �� are used to generate X) and

X�. It can also avoid unnecessary computation for learning ℱ� from ��.

5.4.2 Contrastive Learning
The above NRL step generates feature matrices X) and X�. The remaining step is

learning contrastive representations Y) and Y� through CL. While we can use any

CL method, one of the goals is to provide interpretability. Since DeepGL generates

interpretable features for X) and X�, we can provide interpretable Y) and Y� by using

a method that reveals interpretable relationships between 3 features learned by NLR

and 3′ features learned by CL. Among current CL methods [3, 4, 62, 203, 263], only

contrastive PCA (cPCA) [3] can provide such relationships by utilizing the linearity of

its algorithm in a similar manner to the classical PCA [125]. Thus, cPCA is selected for

the second step of i-cNRL, though, it can be replaced with any other interpretable CL

methods developed in the future.

5.4.2.1 Contrastive PCA (cPCA)

Here, I briefly introduce cPCA described in Sec. 2.3.1 again. Similar to the classical

PCA, cPCA first applies centering to each feature of X) and X� and then obtains

their corresponding covariance matrices C) and C�. Let v be any unit vector of 3

length. Then, with a given direction v, the variances for X) and X� can be written as:

�2
)
(v) def

= vTC)v, �2
�
(v) def

= vTC�v. The optimization that finds a direction v∗ where X) has

high variance but X� has low variance can thus be written as:

v∗ = argmax
v

�2
)(v)−
�

2
�(v) = argmax

v
vT(C) −
C�)v (5.1)

where 
 is a contrast parameter (0 ≤ 
 ≤∞). Similar to the classical PCA, we can obtain

top-3′ cPCs as the learned features. With projection matrix W consisting of 3′ cPCs

(i.e., W is a 3× 3′ matrix), we can obtain the contrastive representation Y) of X) .

The above contrast parameter 
 controls the trade-off between having high target

variance and low background variance. When 
 = 0, cPCs only maximize the variance

ofX) , the sameas those in the classical PCA.As 
 increases, cPCsplace greater emphasis

on directions that reduce the variance of X�. Fig. 5.3 shows the results of cPCA with
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Figure 5.3: The cPCA results with different 
 values, applied on feature matrices X) and X� generated
from �) (the dolphin network) and �� (the Karate network) in Fig. 5.1. When 
 = 0, the result is the
same with applying PCA on X) . A decrease of X�’s variances is observed as 
 increases. The result
with 
 = 72 corresponds to the results in Fig. 5.1.

different 
 values. Because 
 has a strong impact on the result, Abid andZhang et al. [3]

introduced the semi-automatic selection of 
 utilizing spectral clustering [180]. i-cNRL

goes one step further to provide a fully automatic selection of 
 (see Sec. 5.4.2.3).

5.4.2.2 Representation Learning with cPCA in cNRL

Byapplying cPCAtoX) andX�, we cangenerate theprojectionmatrixW andcontrastive

representations Y) and Y�. Because each learned feature by DeepGL could have a

different scale, as a default, i-cNRL applies the standardization to each of X) and X�

for both learning and projection.

To provide interpretable relationships between NLR features 3 and CL features 3′,

cPC loadings are computed as introduced in Sec. 2.3.3. These cPC loadings indicate

how strongly each of the 3 input features contributes to the corresponding cPC. Tab. 5.2

shows an example of cPC loadings for the first and second cPCs. As demonstrated in

Sec. 5.2, by referring to a list of the learned features via NRL and cPC loadings, we can

interpret the obtained representations Y) and Y�.

5.4.2.3 Automatic Contrastive Parameter Selection

I now showhow to automatically select the parameter 
 in cPCA. Sincewewant tomax-

imize the variation in the target feature matrix while simultaneously minimizing the

variation in the background feature matrix, we can solve the following ratio problem:

max
W>W=�3′

tr(W>C)W)
tr(W>C�W) . (5.2)
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While directly solving (5.2) may be difficult, there is a convenient iterative algorithm

due to Dinkelbach [61]. The algorithm consists of two steps. Given WC , we perform

• 
C←
tr(W>C C)WC)
tr(W>C C�WC)

• WC+1← arg max
W>W=�3′

tr(W>(C) −
CC�)W).

Clearly, 
C is just the objective value of our ratio problem (5.2) evaluated at the current

solution WC . It is easy to show that 
C monotonically increases to the maximum value,

and the convergence is usually very quick (e.g., less than 10 iterations). Conveniently,

the second step for finding the next solution WC+1 is just the original cPCA problem,

where we use 
C as the trade-off parameter. We can also regard cPCA as a (crude)

one-shot algorithm for the ratio problem (5.2) where the user specifies 
. One problem

of the method above is that 
C reaches close to infinite when C� is nearly singular. To

avoid this, my method simply adds a small constant value &, as a default & = 10−3, to

each diagonal element of C�. Note that the above algorithm of Dinkelbach [61] has

been used in discriminant analysis [97,122], whosemotivation is entirely different from

contrastive learning.

5.4.3 Complexity Analysis
The time and space complexities of i-cNRL are comparable to those of DeepGL and

cPCA. DeepGL’s time and space complexities for learning from �) are O(3(;) + 3=)))
and O(3=)), respectively, where ;) is the number of links in �) . Note that the time

and space complexities for computing base features are assumed lower than these.

When including the transfer learning step to obtain X�, the space complexity becomes

O(3(=) + =�)). For a fixed 
, cPCA has the similar time and space complexities with

PCA, which are O(32(=) +=�)+ 33)) and O(32). Even with the automatic selection of 


in Sec. 5.4.2.3, we can assume that these complexities stay the same. This is because the

automatic selection usually only needs a small number of iterations (e.g., less than 10)

and does not require storing of additional information. Thus, in total, i-cNRL has the

time complexity O(3(;) + 3(=) +=�)+ 32)) and the space complexity O(3(=) +=� + 3)).
However, in practice, 3, the number of features learned byNRL, should bemuch smaller
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than the numbers of nodes and links of �) and ��. Under this assumption, the time

and space complexities are O(3(;) + 3(=) + =�))) and O(3(=) + =�)), respectively. This

indicates that the computational cost is largely due to DeepGL.

5.5 Related Work
To the best of my knowledge, my work is the first to introduce contrastive learning

for networks and provide a general and interpretable method under this approach.

There exists little work in the exact area. Thus, we here review typical NRL and CL

techniques.

5.5.1 Network Representation Learning (NRL)
Various NRL methods have been developed for learning latent representations of net-

work nodes and/or links. For a comprehensive description of NRL methods, refer to

the recent survey papers [37, 259]. Here focuses on describing the closely related work

using inductive and cross-network embedding methods.

5.5.1.1 Inductive NRL

GraphSAGE [101] is an inductive NRL method that shares many similar ideas with

DeepGL [194]. Analogous to the relational functions 5 in DeepGL, GraphSAGE learns

aggregator functions. However, GraphSAGE proposes more complex aggregators us-

ing LSTM and max-pooling concepts, compared to DeepGL’s simple aggregators (e.g.,

mean). Moreover, GraphSAGE tunes parameters required by the aggregators and ma-

trices that decide the weight for each learned feature, instead of the feature pruning in

DeepGL. These differences might enable GraphSAGE to better capture complex charac-

teristics of networks without manual parameter tuning; however, the learned features

might be difficult to interpret. FastGCN [42] takes a similar approach toGraphSAGE ex-

cept that FastGCN employs node sampling to savememory space. Also, HetGNN [258]

enhances the aggregators to learn representations of heterogeneous networks. Thus,

these methods, including other GNN variants [259] (e.g., GAT [236] and h/cGAO [85]),

still suffer from lack of interpretability in the learned features. Although GNNEx-

plainer [253] aims to provide interpretable explanations for predictions made by these
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methods, it does not support explaining the learned features themselves.

5.5.1.2 Cross-Network Embedding

The inductive methods learn the features that can be generalized for unobserved nodes

or other networks from one input network. On the contrary, the cross-networkmethods

generate embeddings directly frommultiple input networks. Most of the cross-network

methods focus on finding similarities of nodes across networks, such as for node classi-

fication [204], network similarity calculation [166], and network alignment [110]. While

CrossMVA [44] is developedmainly for network alignment, it can produce embeddings

that contain both similarity and dissimilarity information. However, a major drawback

of CrossMVA is that anchor nodes are necessary as inputs (i.e., at least we need to know

a small portion of node-correspondence), which we cannot obtain in many cases (e.g.,

the example in Sec. 5.2). Also, CrossMVA’s embeddings of the dissimilarity informa-

tion only preserve discriminative structures across networks; as a result, it cannot find

unique patterns in a specific network.

5.5.2 Contrastive Learning (CL)
Unlike discriminant analysis, such as linear discriminant analysis [122], which aims to

discriminate data points based on their classes, CL [263] focuses onfindingpatterns that

contrast one dataset with another [3]. Several extended CL machine learning methods

have been developed. For example, there are contrastive versions of latent Dirichlet

allocation, hidden Markov models, and regressions [87, 263]. More recently, including

cPCA [3], CL methods for representation learning have been introduced [3, 4, 62, 203].

For example, Dirie et al. [62] proposed contrastive multivariate singular spectrum

analysis (cMSSA) for decomposition of time-series data. Similar to cPCA, cMSSA could

provide the interpretability by computing the PC loadings; however, cMSSA is not

suitable for our case that handles non-time series data. On the other hand, contrastive

variational autoencoder (cVAE) [4, 203] can be used as a CL method in cNRL. The

strength of cVAE over cPCA is that it can find unique patterns in a target dataset even

when its data points and latent features have nonlinear relationships. However, cVAE

relies on multiple layers of neural networks (NNs), and thus the results of cVAE are
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difficult to interpret as similar to other NN-based methods. Therefore, to use cVAE for

interpretable cNRL, we need additional effort to help interpret the results.

5.6 Experimental Evaluation
The previous sections have introduced the concepts of cNRL and i-cNRL, as well as the

related work. Sec. 5.2 has also demonstrated the effectiveness of i-cNRL in comparing

social networks. To further evaluate the method, we first test i-cNRL with synthetic

datasets that are generatedwith popular networkmodels. Then, we see several analysis

examples using i-cNRLwith publicly available real-world datasets (see Tab. 5.1). Lastly,

Sec. 5.6.3 provides quantitative and qualitative comparisons among i-cNRL and other

potential cNRL implementations. Each subsection lists only the information closely

related to the findings. Details of learning parameters and results are provided in

Appendix B.3.

5.6.1 Evaluation with Network Models
i-cNRL is applied to compare two types of synthetic networks: random and scale-free net-

works (N3 and N4 in Tab. 5.1). The random and scale-free networks are generated with

the Gilbert’s random graph [25] and the Price’s preferential attachment models [179],

respectively. Here we see two 2D embedding results, using one network as �) and the

other as �� (Fig. 5.4-a, b). Each of the results shows unique patterns in �) . The cPC

loadings in Tab. 5.4 show that the Price network’s unique patterns are related to the

degree centralities (e.g., total-degree). This seems to be due to the fact that most nodes

have the same number of links in a randomnetworkwhile a scale-free network contains

hubs with a large number of links. In contrast, we can see that the random network’s

uniqueness is mostly related to :-core numbers. This is because the Price’s model gen-

erates a network by adding a new node and then connecting it to another fixed number

of nodes (e.g., 3 nodes) which are selected with a certain computed probability. As a

result, all nodes in the network have the same :-core numbers (e.g., 3-core).
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α=264

(a) �) : Price, ��: Random

α=705

(b) �) : Random, ��: Price

Figure 5.4: Results for Sec. 5.6.1 with 2D embeddings by i-cNRL.

Table 5.4: The features with the top-3 absolute loadings for cPC 1 for different pairs of networks
highlighted in gray.

ID relational function 5 base feature x cPC 1 cPC 2

�) : Price, ��: Random (Sec. 5.6.1)
F2-1 (x) total-degree 0.55 0.00
F2-1 (x) out-degree -0.40 0.00
F2-3 (x) Katz -0.19 0.06
�) : Random, ��: Price (Sec. 5.6.1)
F3-1 (x) :-core 1.00 -0.13
F3-2 (x) total-degree 0.18 0.47
F3-3 (x) in-degree -0.10 -0.25
�) : p2p-Gnutella08 , ��: Price 2 (Sec. 5.6.2.1)
F4-1 (x) :-core 1.01 -0.10
F4-2 (x) total-degree 0.22 0.30
F4-3 (x) in-degree -0.12 -0.17
�) : p2p-Gnutella08 , ��: Enhanced Price (Sec. 5.6.2.1)
F5-1 (x) total-degree -0.23 0.00
F5-2 (x) in-degree 0.12 0.05
F5-3 (x) Katz 0.10 -0.05
�) : LC-multiple , ��: Combined-AP/MS (Sec. 5.6.2.2)
F6-1 (Φmean)(x) Katz 0.36 0.00
F6-2 (Φmean)(x) eigenvector -0.19 -0.01
F6-3 (Φmean)(x) total-degree -0.14 0.02
�) : School-Day2 , ��: School-Day1 (Sec. 5.6.2.3)
F7-1 (Φmean ◦Φmax)(x) PageRank 0.15 0.02
F7-2 (Φmean ◦Φmax)(x) closeness 0.11 -0.04
F7-3 (Φmean ◦Φmax)(x) betweenness -0.09 -0.01
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(a) �) : p2p-Gnutella08, ��: Price 2
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(b) �) : p2p-Gnutella08, ��: Price 2

Figure 5.5: Results for Sec. 5.6.2.1. (a) presents the 2D embedding by i-cNRL. (b) shows the nodes
in (a) colored by the :-core number (F4-1 in Tab. 5.4).

5.6.2 Case Studies
5.6.2.1 Study 1: Network Model Refinement

Designing a network model that can simulate real-world networks is fundamental to

understand network formation mechanisms, to perform hypothetical analyses (e.g., if

there will be growth of the number of nodes, what will happen?), to generate more

available datasets for machine learning, and so on [90]. This case study demonstrates

the usage of i-cNRL to guide a refinement of network models.

Here, we use a peer-to-peer (P2P) network, specifically the Gnutella peer-to-peer

file sharing network [192] available in SNAP1 (N5 in Tab. 5.1) as a modeling subject.

Once we have a P2P network generation model, we can use it for analyzing network

robustness, studying effective searching strategies on a P2P network, etc [157].

P2P networks are often scale-free [157], so we use the Price’s model [179] to mimic

a P2P network. To identify the characteristics that the Price’s model does not simulate

well, the P2P network (N5) and the Price network (N6) are set as �) and ��, respectively.

The result is shown in Fig. 5.5-a. From the cPC loadings in Tab. 5.4, we notice that

the :-core number (F4-1) has a strong contribution to cPC1. Thus, we colorcode the

result based on the :-core number, as shown in Fig. 5.5-b. We can clearly see that

1SNAP, https://snap.stanford.edu/, accessed: 2019-2-11
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the P2P network has variations in the :-core number, but the Price network does not.

Because the :-core number indicates that a node at least connects to other : nodes, the

Price network makes a significant difference in the network robustness from the P2P

network.

From the result above, we refine the Pricemodel to generate various :-core numbers.

As discussed in Sec. 5.6.1, the problem comes from the fact that the Price’s model

always adds a new node with a fixed number of links. Similar to the dual-Barabási-

Albert model [174], we can avoid the problem by attaching a new node to a variable

number of links according to a probability distribution. Specifically, we set the model

to select the number of links from 1 to 10 with specified probabilities (for details, refer

to Sec. B.3.3.2). Then, we generate a network with this model, which is referred to as

the Enhanced Price (N7) network in Tab. 5.1. Next, we apply i-cNRL to the P2P (as �))

and enhanced Price (as ��) networks. The resultant cPC loadings are listed in Tab. 5.4.

While �) seems to still have the uniqueness in degree centralities, it does not in the

:-core number. By iteratively performing refinement procedures such as the one above,

we can build a better network model to simulate real-world networks.

5.6.2.2 Study 2: Comparison of Two Networks

This case study compares “interactome” networks—networks of physical DNA-, RNA-,

and protein-protein interactions [255]. Specifically, we compare two interactome net-

works, Combined-AP/MS (N8 in Tab. 5.1) and LC-multiple (N9), available in CCSB

Interactome Database2. Both networks represent the interactome of the yeast S. cere-

visiae; however, they are obtained through different analysis approaches. Combined-

AP/MS is generated from two studiesusing a “high-throughput” approach, specifically,

affinity purification/mass spectrometry (AP/MS) [48]. In contrast, LC-multiple is the

literature-curated (LC) network from multiple “low-throughput” experiments [190].

Because each analysis approach has its own strength in identifying the yeast’s inter-

actions, the generated networks may vary. Comparing these networks is essential to

understand the quality and characteristics of each approach [255].

2CCSB Interactome Database, http://interactome.dfci.harvard.edu/, accessed: 2019-1-28
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(d) ��: Combined-AP/MS

Figure 5.6: Results for Sec. 5.6.2.2. (a) presents the 2D embedding by i-cNRL. (b) shows the nodes
in (a) colored by the feature— 5 : (Φmean)(x), x: the Katz centrality (F6-1 in Tab. 5.4). (c) and (d) show
the network structures with the same colorcoding.

Hereweanalyze theuniqueness inLC-multiple byusingLC-multiple andCombined-

AP/MS as �) and ��, respectively. The 2D embedding result by i-cNRL is shown in

Fig. 5.6-a. We first notice that, in �) , there are two distinct regions: one spreading out

towards the top-left and the other in the bottom-right quadrant. To understand why

this pattern appears, we obtain the cPC loadings (Tab. 5.4) and color the nodes based

on values of the feature that has the top cPC loading for cPC1 (i.e., F6-1, 5 : (Φmean)(x)
and x: the Katz centrality). The result is shown in Fig. 5.6-b. We observe that either
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going to the left or right side along cPC1 tends to produce a high value of this feature,

as annotated with the green and teal rectangles, respectively. While this feature has a

strong positive loading for cPC1, another feature in Tab. 5.4—F6-2, 5 : (Φmean)(x) and
x: the eigenvector centrality—has a strong negative loading. Therefore, if a node has

a higher value for F6-2, it tends to be placed on the more left side in Fig. 5.6-b. This

indicates that the green rectangle region in Fig. 5.6-b seems to have high values for

both of these features while the teal region has low values for the latter feature (F6-2).

This could happen because the eigenvector centrality tends to be low when a node is in

a weakly connected region [179] while the Katz centrality is high whenever a node is

linked by many others.

To visually observe the above patterns, the network structures of �) and �� are

drawn with SFDP [115] and then colored based on the values of F6-1 (Fig. 5.6-c, d).

Here only shows the largest component [179] of each network (i.e., the nodes connected

with only several nodes are filtered out). Fig. 5.6-d shows that one strongly connected

region around the center contains all nodes with high feature values. On the other

hand, in Fig. 5.6-c, multiple regions contain nodes with high feature values. To further

investigate this pattern, we select the nodes corresponding to the green and teal regions

in Fig. 5.6-b and then highlight these nodes in Fig. 5.6-c. Afterward, we zoom into the

related regions of the highlighted nodes. Fig. 5.6-c 1© shows a region related to the

nodes in the green rectangle, while Fig. 5.6-c 2© and 3© are two example regions related

to the teal rectangle region. We can see that the nodes in Fig. 5.6-c 1© are strongly

connected, but not in Fig. 5.6-c 2© and 3©. From these observations, i-cNRL reveals that

only �) has two different types of nodes linked to the high Katz centrality node(s) in

either strongly or weakly connected region.

5.6.2.3 Study 3: Analysis of Network Changes

As an example of analyzing dynamic networks, this case study compares two different

days of contact networks in a primary school3 [210]. The networks represent face-to-face

contact patterns between students and teachers, which are collectedwith RFID devices.

3Available in SocioPatterns, http://www.sociopatterns.org/, accessed: 2019-1-28
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(f) �) : Day 2, ��: Day 1

(g) �) : Day 2 (h) ��: Day 1
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α=44

(i) �) : Day 2, ��: Day 1

Figure 5.7: Results for Sec. 5.6.2.3. (a) and (b) show the network structures of �) and ��. (c)
presents the 2D embedding by i-cNRL. (d-f) show the colorcoded nodes in (a-c) based on the feature—
5 : (Φmean ◦Φmax)(x), x: the PageRank (F7-1 in Tab. 5.4). (g-i) show the nodes colored by the class
name where the first number indicates the grade (e.g., ‘1-A’ is the first grade class). The networks
include ‘teacher’ nodes.
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Information of the network at each day is listed in Tab. 5.1 (N10 and N11). Fig. 5.7-a, b

visualize the network structures drawn using SFDP. These networks also have multiple

node attributes including genders, grades, and class names. In addition to multiple

network centralities, we utilize the attribute information by including gender as the

base feature, i.e., encoding ‘male’, ‘female’, and ‘unknown’ as -1, 1, and 0, respectively.

To analyze changes in contact patterns, we set the networks of the second day and

the first day as �) and ��, respectively. Fig. 5.7-c shows the 2D embedding result. To

interpret �) ’s unique patterns, we review the cPC loadings listed in Tab. 5.4 and color

the nodes in Fig. 5.7-a, b, c based on the learned feature F7-1— 5 : (Φmean ◦Φmax)(x), x:

PageRank. The results are shown in Fig. 5.7-d, e, f. We can see that i-cNRLdiscovers that

�) has both strongly (colored with more yellow in Fig. 5.7-d, f) and weakly connected

regions from others (colored with more purple), while all of ��’s nodes have relatively

strong connections between each other, as seen in the laid-out result in Fig. 5.7-b.

According to the study by Stehlé et al. [210], the students tended to have more

contact within the same class than between classes. To relate the class information and

the found unique patterns, the nodes (i.e., students) are colorcoded based on their class,

as shown in Fig. 5.7-g, h, i. From these results, we notice that i-cNRL well separates

groups of students who have less (e.g., gray, pink, or teal nodes) and more (e.g., orange

nodes) contact between classes in �) .

5.6.3 Comparison with Other Potential Designs

i-cNRL utilizes DeepGL and cPCA for cNRL’s two essential components, NRL and CL,

to provide interpretable results. However, if the interpretability is not required, we can

replace each of the learning methods with other alternatives. Here we compare three

different designs for cNRL: (1) DeepGL & cPCA, (2) GraphSAGE [101] & cPCA, and (3)

DeepGL & cVAE [4,203].

5.6.3.1 Quantitative Results

Here we compare the quality of contrastive representations obtained with each de-

sign. A good contrastive representation should more widely distribute nodes in the

target network than the background, and it should also show different patterns in the

126



target and background networks. For example, as shown in Fig. 5.3, cPCA (
 = 72)

provides a better contrastive representation than PCA (
 = 0). To compare the aspects

above, we use three different dissimilarity measures: dispersion ratio, Bhattacharyya

distance [30], and Kullback-Leibler (KL) divergence [240] from a set of nodes in Y� to

that inY) . The dispersion ratio represents howwidely nodes inY) are scattered relative

to Y�. The Bhattacharyya distance indicates closeness or overlaps of nodes in Y) and

Y�. The KL divergence of Y) from Y� shows the difference between their probability

distributions of nodes. For all the above measures, the higher the value, the better the

method design.

We calculate the dispersion ratio of Y) to Y� with: tr(Y′>
)

Y′
)
)/=)

tr(Y′>
�

Y′
�
)/=� , where Y′

)
and Y′

�

are the scaled matrices of Y) and Y� obtained by applying the standardization to a

concatenated matrix of Y) and Y�. We use Y′
)
and Y′

�
, instead of Y) and Y�, to

avoid the scaling differences in the embedding’s axes across the three designs. For the

Bhattacharyya distance and KL divergence, since we do not have the exact probability

distributions of Y) and Y�, the estimation methods described in the works by Bi et

al. [30] and Wang et al. [240] are employed.

For GraphSAGE, the GraphSAGE-maxpool model is selected because it produces

better results [101]. We use the default parameter values indicated by the authors of

GraphSage [101] and cVAE [4], except that we set 24 as the number of features leaned

by GraphSAGE (see Sec. B.3.4). For the input features of GraphSAGE, we set the same

base features used for DeepGL (see Tab. B.1 for details). We obtain 2D embeddings

with the cPCs (with cPCA) or salient latent variables (with cVAE). Since cVAE relies on

the probabilistic encoders, the results could be different for each trial, and thus we

compute the mean value of each measure for 10 trials.

Tab. 5.5 shows a comparison of the three methods on different networks using the

measures above. We can see that in general DeepGL & cPCA and GraphSAGE & cPCA

have better scores than DeepGL & cVAE. Between DeepGL & cPCA and Graph-

SAGE & cPCA, DeepGL & cPCA tends to provide better results except for the dolphin

and Karate networks, which have small numbers of nodes.
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Table 5.5: Comparison of contrastive representation quality.

dispersion ratio Bhattacharyya KL of Y) from Y�

DG& GS& DG& DG& GS& DG& DG& GS& DG&
�) �� cPCA cPCA cVAE cPCA cPCA cVAE cPCA cPCA cVAE

Dolphin Karate 174 9,754 1.78 1.40 1.73 0.93 6.82 12.76 0.83
P2P Price 2 21,744 1,801 2.46 7.52 4.72 1.00 45.73 14.09 36.13
LC-multi. C.-AP/MS 376 54 2.95 1.52 1.76 0.29 18.49 16.61 15.01
Sch.-Day2 Sch.-Day1 57 6 1.93 1.81 0.61 0.56 5.82 1.80 0.82

*DG=DeepGL, GS=GraphSAGE, P2P=p2p-Gnutella08, C.-AP/MS=Combined-AP/MS

Figure 5.8: Visual comparison of the 2D embeddings.

5.6.3.2 Qualitative Results

We visually compare the embedding results to review more detailed differences, as

shown in Fig. 5.8. For cVAE, we see the results that have the longest Bhattacharyya
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distance from 10 trials. Because GraphSAGE and cVAE do not provide interpretable

features, for the comparison, the nodes of the target network are colorcoded by the

feature values from the DeepGL results. In specific, the left three columns in Fig. 5.8

are colored based on values of the feature that has the top absolute loadings for cPC1

and the far right column is colored by their class name.

We can see that although the quality of the contrastive representation in Tab. 5.5 is

different, these different designs seem to identify similar unique patterns. For instance,

all the results of P2P and Price 2 showmonotonic increase of the feature value (F4-1—:-

core numbers). Also, for LC-mupltiple and Combined-AP/MS, both DeepGL & cPCA

and DeepGL & cVAE depict clearly separated patterns, as indicated with the green

rectangles while GraphSAGE & cPCA does not show the same pattern. Furthermore,

in each result of the school networks, we can see a distinct group that consists of gray

nodes, as annotated with the red rectangles.

From the above quantitative and qualitative comparisons, we can see that

DeepGL & cPCA (i.e., i-cNRL) generates similar quality results when compared with

the alternatives. However, the other two designs do not provide interpretable results.

5.7 Summary
This chapter introduces contrastive network representation learning (cNRL), which

aims to reveal unique patterns in one network relative to another. Furthermore, I

demonstrate a method of cNRL, i-cNRL, that is more generic and interpretable. With

these contributions, the work in this chapter provides a new approach for network

comparison.
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Chapter 6
Network Data Analysis: A Visual
Analytics Framework for Contrastive
Network Analysis

As discussed in Chapter 5, in practice, comparative analysis of two networks is a vital

task [66, 220], especially for the identification of unique structures of one network

compared to another. In this chapter, I call this task contrastive network analysis.

Despite the demands for network comparison, there is little adequate visual analyt-

ics support. Most of the existing methods (e.g., [10,129,205]) presuppose the existence

of node-correspondence (i.e., pairwise correspondence between nodes in two different

networks) [220]. This is a critical limitation since we usually do not know such informa-

tion in advancewhen the networks are collected fromdifferent resources. One potential

solution is identifying the node-correspondence by using network alignment (or graph

matching) [66, 220]. However, these algorithms notoriously have high computational

costs, and thus are only suitable for treating small networks (e.g., 100 nodes). Also,

there may not exist a clear correspondence between nodes.

Another approach for visual comparison of networks is based on statisticalmeasures

(e.g., network density) [73], centralities (e.g., degree centrality) [254], graphlets [144], or

a combination of these [238]. For example, with graphlets [186] (small, connected, and

non-isomorphic subgraphpatterns in a network), the similarities of twonetworks canbe

measured by comparing the frequency of appearance of each graphlet in each network.

While these approaches can provide a (dis)similarity between different networks, they

compare networks only based on simple measures, which are often insufficient. Also,

they only provide network-level similarities, and thus cannot compare networks atmore
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detailed levels (e.g., a node-level). Without a detailed-level comparison, it is difficult to

find which part of a network relates to its uniqueness.

To address the above problems, this chapter introduces a novel visual analytics

framework, ContraNA, for comparative network analysis, which integrates contrastive

network representation learning (cNRL) described in Chapter 5 into interactive visualiza-

tion. Empowered by cNRL, the framework allows for discovering unique characteristics

of one network by contrasting with another in a comprehensive (i.e., using multiple

advanced measures) and detailed (i.e., analyzing a node or subnetwork level) manner

without node-correspondence information. Specifically, ContraNA employs an inter-

pretable version of cNRL (i-cNRL) to provide human-understandable explanations of

discovered characteristics that are further revealed by novel visual representations. I

enhance i-cNRL by designing an interactive visual interface that allows analysts to in-

tegrate their domain knowledge into the automated analysis. Particularly, I introduce a

method to visually identify the uniqueness in one network based on the i-cNRL result,

a visual summary to intuitively inform network features that highly contribute to the

result, and interactive linkings with the existing network visualizations to explain and

refine the result.

In summary, the work in this chapter provides main contributions below:

• A cNRL-based visual analytics framework, ContraNA, which aims to support a

new network analysis approach, named contrastive network analysis, to effec-

tively reveal unique characteristics in one network relative to another.

• Enhancements of i-cNRL with a visual interface that provides four major

abilities—DIIF: (1) Discovery of uniqueness in networks, (2) Interpretability of

features generated by i-cNRL, (3) Intuitive analysis with common visualizations,

and (4) Flexibility of adjusting i-cNRL based on analysts’ interests.

• A controlled user study with multiple real-world datasets, which assess the effec-

tiveness and usefulness of ContraNA for contrastive network analysis.
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6.1 Related Work
There exist three general approaches in visual comparison: juxtaposition, superpo-

sition, and explicit encoding [89]. Through a comprehensive survey, Gleicher [88]

provided a framework of considerations for visual comparison, such as tasks, chal-

lenges, strategies, and designs. Here we review the relevant works in visual network

comparison.

6.1.1 Static Network Comparison
Comparing two or more static networks has been a classic problem in visualization

research. Alper et al. [10] presented several superposition designs for node-link and

adjacency matrix visualizations to support weighted network comparison. TileMa-

trix [162] uses juxtaposition to place the triangular adjacency matrices of two networks

onto upper and lower areas of a square matrix. On the other hand, John et al. [123]

juxtaposed each pair of weighted links in a matrix cell. MatrixWave further extended

this approach to support the comparison of multi-layer networks [261]

Researchers have focused on developing techniques for comparing brain networks

due to their special characteristics (e.g., very dense) and importance. Shi et al. [205]

opted to visualize links that are significantly different between two brain networks.

Yang et al. [252] used a clustering algorithmwith NodeTrix [111], a hybrid of node-link

and adjacency matrix representations. Fujiwara et al. [74] enabled the comparison of a

larger number of brain networks by providing an overviewwith dimensionality reduc-

tion. Someotherdomains havebeen addressed aswell, such as genome interaction [129]

and egocentric networks [155].

However, all the above methods require the information of exact node-

correspondence, unlike ContraNA. While a few works [13, 137, 160] applied network

alignment [66] to find node-correspondence before visualization, they do not scale well

due to the computation cost.
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6.1.2 Dynamic Network Comparison

Dynamic networks contain nodes and/or links changing over time. A comprehensive

survey is provided by Beck et al. [26]. Here, we focus on the comparison of networks

at different timestamps.

One approach is based on the juxtaposition of networks at different timestamps.

Federico et al. [69] applied a 2D network layout that produces stable node positions

across time and then juxtaposed networks at multiple time points in a 2.5D view.

On the other hand, TimeArcs [56] lays out a network at each time point in 1D, and

uses an arc diagram to display links. A wall-size display was used to juxtapose an

array of networks [149]. Moreover, animated transitions have been employed, which

can be viewed as juxtaposition in the temporal domain, e.g., GraphDiaries [19] and

DiffAni [196].

Moreover, several works summarize a dynamic network based on the similarity

of the network at each timestamp. For example, Small MultiPiles [18] groups similar

weighted adjacency matrices across consecutive time points and then shows a repre-

sentative matrix for each group. EgoLines [260] effectively visualizes a :-hop dynamic

egocentric network with a “subway map” metaphor. van den Elzen et al. [230] uti-

lized dimensionality reduction to overview the similarities of networks across time.

A similar approach was used to visualize dynamic brain networks [20] and compare

dominance variation in animal groups [46].

Lately, researchers have started to utilize time-series or topological analysis to sum-

marize or identify important trends in a dynamic network. Examples include using

graph wavelet transform to classify nodes [55] and persistent homology to capture

topological changes [99]. Fujiwara et al. [77] applied change point detection [11] to

segment a dynamic network and generate summaries. Several works extended this

approach in other cases, such as visualizing streaming networks [130,178].

Again, the above methods still require the information of node-correspondence.

To overcome this limitation, ContraNA utilizes NRL to comprehensively capture the

network’s topological and semantic features.
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6.1.3 Comparison without Node-Correspondence

Several systems were developed to support network comparison without the limitation

of knowing node-correspondence. ManyNets [73] uses a tabular interface to list several

basic network statistics (e.g., degree centrality) for each network. von Landesberger

et al. [238] used graphlet frequencies and other network-statistics measures and to

generate a self-organization map for arranging networks on a 2D grid. A similar

approach was used by Harrigan et al. [102] to visualize egocentric networks, and by

Kwon et al. [144] to show similar networks given an input network. In addition to

node-level features, Gove [91] suggested network-level features (e.g., density) that are

easier to interpret and faster to compute. Along this line, Graph Thumbnails [254] uses

the :-core number in a nested circle packing representation of networks.

While the above methods can be used for comparing networks without node-

correspondence, they lack the ability to compare networks from multiple levels. Con-

traNA addresses this by employing the state-of-the-art NRLmethod, allowing for com-

parison at both node and subgraph levels. Further, by leveragingCL, ContraNA focuses

on revealing the uniqueness in one network relative to another, which is different from

the purpose of the above works (i.e., identifying similarities of networks).

In sum, the existing methods have limited flexibility in use due to the require-

ment of node-correspondence or to insufficient analysis ability due to the absence of

multiple-level comparison. ContraNA addresses these issues by utilizing cNRL, which

is described in Chapter 5. Then, with interactive visualizations, ContraNA further

supplements cNRL’s limitations that are identified in Sec. 6.2.

6.2 Design Considerations
i-cNRL described in Chapter 5 can generate a contrastive representation which high-

lights the uniqueness of a target network. However, to thoroughly understand the

uniqueness, I opt to empower the automated analysis with interactive visualization,

which can tightly integrate the knowledge and adaptability of human experts with the

statistical learning of machines [198, 217]. I comprehensively identify a set of limita-
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tions to i-cNRL for contrastive network analysis in depth, which leads to the following

design considerations for the visual analytics framework, ContraNA. In general, I aim

to amplify theDiscovery, Interpretability, Intuitiveness, and Flexibility (DIIF) in visual

contrastive network analysis.

DC1: Support the discovery of whether a target network is unique compared to a back-

ground network, and which part of the network relates to the uniqueness. The uniqueness of

a target dataset relative to the base is embedded in the contrastive representation Y)
generated by CL-based representation learning methods, including cNRL. Many pre-

vious works attempted to display this data to reveal the uniqueness [3,4,62]. However,

because Y) only contains the information of the target network �) , reviewing only Y)
is not sufficient to understand how well the CL method finds uniqueness. Also, it is

difficult to identify which data points (i.e., network nodes in our case) highly relate to

the found uniqueness. The visual analytics framework should support discovering the

uniqueness and the associated nodes by presenting the information in both the target

and background networks.

DC2: Enhance the interpretability of the features learned by NRL and the cPCs gener-

ated by CL. Investigating the relationships among the network features, cPCs, and the

representation Y) is important to interpret the uniqueness of �) . While i-cNRL is de-

signed to provide interpretable network features and cPCs, understanding them from

i-cNRL’s direct outputs is not straightforward. For example, DeepGL could generate a

sophisticated relational function such as (Φ+sum ◦Φmax ◦Φ−mean)(x). Moreover, examin-

ing cPC loadings for each feature would be time-consuming when DeepGL produces

many network features. The framework should provide visualizations to facilitate easy

understanding of the above information.

DC3: Offer intuitiveness in understanding a target network’s uniqueness by relating it

to common network visualizations. The contrastive representation Y) generated could

contain complicated patterns that are difficult to understand. Thus, it is not intuitive

enough to just view thesepatternsdirectly basedon the i-cNRLresults in the embedding

space. To help analyze such patterns, the framework should provide links between the
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Figure 6.1: The analyst is using ContraNA to conduct a contrastive analysis of the Dolphin social
network [165] (the target network) and the Zachary’s karate club network [256] (the background net-
work). (a) A contrastive representation (CR) view shows contrastive representations of target and
background networks. (b) A feature contribution (FC) view visualizes network features generated by
DeepGL and their contributions to each cPC (i.e., scaled cPC loadings). (c) A probability distribution
(PD) view depicts target and background networks’ probability distributions of the selected network
feature in (b). (d)(e) A network layout (NL) view draws laid-out target and background networks, re-
spectively. (f) The analyst can change several settings of the algorithm and visualizations from the
drop-down menu.

results of i-cNRL and commonly used visualizations for network analysis, such as

laid-out networks and probability distributions of network centralities.

DC4: Provide the flexibility to interactively adjust the i-cNRL parameters to generate

results based on the analysts’ interest. The results of i-cNRL heavily depend on the

parameters used for each embedding step. For example, changing a value of the

contrast parameter 
 might reveal different unique characteristics in �) . For analysts

with advanced knowledge of NRL and CL, the framework should provide abilities for

interactively tuning the i-cNRL results based on their needs.

6.3 Framework Overview
Grounded by the DIIF design considerations, ContraNA is developed by augmenting

the back-end i-cNRL algorithmwith interactive visualization (Fig. 6.1) to support visual
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Figure 6.2: Contrastive network analysis workflow with ContraNA.

contrastive network analysis.

Fig. 6.2 shows a workflow of conducting contrastive network analysis with Con-

traNA. The workflow starts from (A) generation of the i-cNRL results that includes

NRL with DeepGL and CL with cPCA (Fig. 5.2). Afterward, the analyst can first (B)

identify whether or not there are any unique characteristics that can be only found in a

target network from the contrastive representations visualized byContraNA (Fig. 6.1-a).

If such characteristics exist, to understand the uniqueness, the analyst can (C) interpret

the network features and cPCs generated by i-cNRL with visualizations in Fig. 6.1-

b. They can also (D) analyze the contrastive representations, network features, and

cPCs by relating them with probability distributions (Fig. 6.1-c) and laid-out networks

(Fig. 6.1-d, e). Based on findings during the exploration, the analyst might want to

adjust the parameters of i-cNRL.

The above procedure is my expected main analysis workflow as indicated by the

thick blue arrows in Fig. 6.2. However, the ContraNA UI provides the flexibility in the

analysis activities, shown by the solid gray arrows in Fig. 6.2. For example, the analyst

might want to start to (D) see laid-out networks in order to grasp the topological

differences between target and background networks at a glance, and then (B) examine

the differences with the contrastive representations. Also, such an interactive analysis

often requires to go back and forth between different views in order to validate findings

obtained in one view.

Due to the high computational cost of NRL with DeepGL (e.g., 20 seconds for a
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network of 6,000 nodes and 20,000 links), the interactive parameter adjustment only for

cPCA is supported. After the analyst updates DeepGL’s parameters and generates the

network features, they can analyze the results with the ContraNA UI.

ContraNA is developed as a web application. For the back-end algorithms, Python

is used to integrate the i-cNRL implementation (Chapter 5). The front-end UI is imple-

mented with a combination of HTML5, JavaScript, D3 [33], and WebGL. D3 is used for

the feature contribution and probability distribution views (Fig. 6.1-b, c). For the other

views (Fig. 6.1-a, d, e), WebGL is utilized to support efficient rendering and interac-

tion as networks often consist of many nodes and links (e.g., several thousand nodes).

WebSocket is used to communicate between the front- and back-end modules.

6.4 ContraNA Visual Interface
As shown in Fig. 6.1, the ContraNAUI consists of four interactively coordinated views,

including a contrastive representation (CR) view, a feature contribution (FC) view, a

probability distribution (PD) view, and a network layout (NL) view, designed with

the considerations in Sec. 6.2. This section describes the views provided by the UI

through comparison of two social networks, the Dolphin social network [165] as �)
and Zachary’s karate club network [256] as ��, which are also analyzed in Sec. 5.2. A

demonstration video of the interface is available at the online site listed in Appendix A.

6.4.1 Visualization of Contrastive Representations

With the results generated by i-cNRL, the first step of the analysis workflow (Fig. 6.2-A),

ContraNA’s CR view (Fig. 6.1-a) visualizes the results to reveal whether or not there is

uniqueness in the target network compared to the background network, serving as the

following step (Fig. 6.2-B, DC1-Discovery).

Visual Identification of Target Network’s Uniqueness. Similar to existing

works [3, 4, 62, 203], a potential solution is comparing the results of ordinary PCA and

cPCA. For example, given the two protein interaction networks, LC-multiple [190, 255]

andCombined-AP/MS [48,255], Fig. 6.3-a1, a2 showcontrastive representationsY) gen-

erated with i-cNRL using the contrastive parameter 
 = 0 (PCA) and 
 = 138 (cPCA),

138



(a) �) : LC-multiple [190,255],

��: Combined-AP/MS [48,255]

(b) �) : Dolphin [165], ��: Karate [256]

Figure 6.3: Two-dimensional projections based on (contrastive) representations obtained with PCA
(when 
 = 0) and cPCA.

respectively. In Fig. 6.3-a2, comparing with Fig. 6.3-a1, we can see the emergence of a

new cluster, as annotated with the red rectangle. It indicates that cPCA successfully

finds directions (i.e., cPCs) where �) has a higher variance than �� (i.e., the unique-

ness). However, in many cases, it is difficult to see clear pattern differences between the

results of PCAand cPCA, as shown in Fig. 6.3-b1, b2with the networks of dolphins [165]

as �) and Karate club members [256] as ��.

The problem is mainly because we do not know how nodes in a background dataset

distribute in the embedding space generated by CL. Thus, I introduce a method that

plots the contrastive representations of target and background datasets, Y) and Y�,

together. As shown in Fig. 6.3-a3, a4, b3, b4, Y) and Y� are visualized as green circles

and brown triangles, respectively.

When a network has high variance in the embedded space, its nodes are widely

distributed along cPCs. Thus, the uniqueness of a target network �) can be identified

by comparing the scatteredness of nodes inY) andY�. As shown inFig. 6.3-a4, b4, cPCA
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(a) Highlighting of �) (b) Highlighting of �� (c) Selection with lasso

Figure 6.4: Node highlighting and selection supported in the CR view.

reveals that Y) has much higher scatteredness than Y�. Moreover, we can easily grasp

which parts of a target network have strong uniqueness. Similar to other representation

learningmethods (e.g., PCAandMDS [222]), a distance in the embedding space of cPCA

represents a dissimilarity between nodes. Thus, when the target network nodes are

highly unique, they are placed far away from the nodes in the background network

(e.g., the nodes in the red rectangles of Fig. 6.3-a4).

Integration into ContraNA. The above visualization is employed as the CR view of

ContraNA (Fig. 6.1-a), where the values of a network feature selected in the FCview (see

Fig. 6.1-b and Sec. 6.4.2) are colorcoded with a purple-yellow scheme [208]. To encode

nodes in target and background networks, I first explored different shapes, including

circles, triangles, and squares; however, circles and squares are hard to distinguish and

triangles require much higher rendering cost with WebGL than circles and squares. I

then used circles with different sizes and borders, with larger and black-border circles

for the target network and smaller and gray-border circles for the background network.

Moreover, the analyst can highlight the target or the background network by hovering

over the corresponding legend as shown in Fig. 6.4-a, b. The CR view also provides

fundamental interactions, such as zooming, panning, and lasso selection (Fig. 6.4-c).

From the different scatteredness of �) and �� nodes in Fig. 6.1-a, we can decide that

there exists uniqueness in the Dolphin network.
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(a) Notations in DeepGL. (b) Visual representations in ContraNA.

(c) Computation of the feature (Φ+sum ◦Φsum ◦Φ−mean)(x), where x is total-degree.

Figure 6.5: Representations of network features in DeepGL and ContraNA. Here, as an example, we
use a complex feature (consisting of three relational feature operators) that DeepGL may produce. (a)
and (b) represent the same feature: the sum of out-neighbors of the sum of all-neighbors of the mean
of in-neighbors of total-degrees. (c) shows an example of the computational flow of this feature. In
(c), the circles and arrows represent nodes and directed links of a network.

6.4.2 Interpretation of Network Features and cPCs
With the above observation from the CR view described above, we move on to inter-

pret the network features and cPCs (Fig. 6.2-C, DC2-Interpretability) with the feature

contribution (FC) view (Fig. 6.1-b).

Visual Representation of Network Features. The left part of the FC view lists all

the network features generated by DeepGL. They usually consist of a few relational

feature operators (RFOs), which are represented with mathematical notations (Fig. 6.5-

a). However, it is difficult for analysts to interpret features with such notations. An

intuitive visual representation of the features (Fig. 6.5-b) is designed.

As described in Sec. 5.4, a network feature learned by DeepGL consists of the base

feature (e.g., total-degree), summary measures (e.g., mean), and neighbor types (e.g.,

in-neighbors). The FC view uses a gray rectangle and an ellipse with text labels to

denote a base feature and a summary measure, respectively. Then, they are connected

with a line and, to indicate the neighbor type, annotate with a text label (in, out, or all).

Additionally, for in- and out-neighbors, an arrowhead is used to indicate the direction.

Lastly, they are ordered from left to right based on the computational flow to obtain
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the feature value. The resultant representation in Fig. 6.5-b visually summarizes the

neighborhood relationships and the computational flow, which is further explained in

Fig. 6.5-c.

Visualization of cPC Loadings. The right part of the FC view visualizes cPC

loadings described in Sec. 5.4.2.1 as a heatmap. Each row and column correspond to

a network feature and cPC, respectively. Scaled cPC loadings (or feature contributions)

between [−1,1] are generated by dividing each cPC’s loadings by their maximum

absolute value. Then, the scaled cPC loadings are encoded with a brown-to-blue-green

diverging colormap [58,103]. The magnitude of the loading represents how strongly a

feature contributes to the corresponding cPC. For example, the feature at the eighth row

in Fig. 6.1-b (F8: the mean of all-neighbors’ eigenvector centralities [179]), has the most

influence on cPC1. Also, the sign of the loading indicates the contributed direction

along the cPC (+: positive; −: negative). For example, in Fig. 6.1-a where each node is

colored by F8, we can see that the feature values of �) generally vary from low to high

along the positive G-direction.

By default, ContraNA automatically selects the feature that most strongly con-

tributes to cPC1 (e.g., F8 in Fig. 6.1-b) and highlights the corresponding row with a

yellow background. The analyst can select a different feature, and all other views are

updated based on the selected feature (e.g., node colors in the CR view).

By using the CR and FC views together, we discover that the uniqueness of the

Dolphin network �) highly relates to F8. From the nodes colored by the feature values

(Fig. 6.1-a), we can see that the nodes around the top-left have low values while the

nodes around the bottom-right tend to have higher values.

6.4.3 Relating to Common Network Visualizations

With above results, we further analyze the uniqueness by relating F8 to common net-

work visualizations (Fig. 6.2-D). ContraNAprovides two perspectives for network anal-

ysis (DC3-Intuitiveness): probability distributions and laid-out networks. Probability

distributions are often used to compare the distributions of target and background net-

works’ centralities (e.g., whether the degree distribution follows the power law [25]),
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Figure 6.6: Visualization of intermediate computational results of feature F15.

and laid-out networks are helpful for viewing the topological differences (e.g., whether

multiple communities exist).

Linking with Probability Distributions. The probability distribution (PD) view

(Fig. 6.1-c) shows the distributions of the selected feature values in the FC view (i.e., F8

in Fig. 6.1-b), for target and background networks. Its G- and H-coordinates represent

a (scaled) feature value and its probability (or relative frequency), respectively. Both

logarithmic and linear scales for the H-coordinate are supported. The probability

distribution lines are colorcoded with the same colors used for the node borders in the

CR view (i.e., black: target network, gray: background network).

Linking with Network Layouts. The network layout (NL) view in Fig. 6.1-d, e

visualizes laid-out target and background networks, with the scalable force-directed

placement [115]. Same as the CR view, each node is colored based on the selected

feature in the FC view (e.g., F8 in Fig. 6.1-b) and outlined in black (target network) or

gray (background network). The NL view also supports several basic interactions such

as zooming, panning, and a lasso selection, and is fully linked with other views. For

example, by reviewing Fig. 6.1-a, b, d together, we notice that the two node groups

found previously (i.e., nodes with small and high F8 values, placed around the top-

left and bottom-right in Fig. 6.1-a) seem to correspond to distinct communities at the

bottom-left and top-right in Fig. 6.1-d. This can be confirmed by performing lasso

selection on the nodes in Fig. 6.1-a, as demonstrated in Fig. 6.4-c.
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Understanding ComplicatedNetwork Features. The linkings above can be utilized

to further help understand the network feature that consists of multiple RFOs. As

shown in Fig. 6.6, by hovering over either the base feature or summary measure in the

FC view, the NL view and the CR view show the intermediate computational results

of the feature values. For instance, Fig. 6.6 (from left to right) visualizes PageRank

values of �) ’s nodes, the maximum of all-neighbors of PageRank values, and the mean

of all-neighbors of them. Thus, the analyst can visually understand how the base

feature values spread across the neighbors and how the final network feature values

are derived.

Through the analysis fromFig. 6.2-A toD,we can conclude that theDolphin network

�) has unique characteristics relative to the Karate network ��. The uniqueness highly

relates to F8: eigenvector centralities of each node’s neighbors, and it clearly reveals the

separation of the two communities in �) , which cannot be seen in ��.

6.4.4 Refinement of Contrastive Representations
The cPCA used in i-cNRL automatically selects the contrastive parameter 
 and com-

putes cPCs to generate the optimized contrastive representations, i.e., maximizing the

variation in X) while simultaneously minimizing the variation in X� (Fig. 5.2). How-

ever, the analyst may want to loosen or strengthen the reduction of the variation of X�

in order to elucidate the found patterns or discover different patterns. For example,

around the top-left in Fig. 6.1-a, an orange node, with a high value of F8, is mixed up

with the nodes with lower values (as annotated in the green box in Fig. 6.7-b). Also,

the resultant cPCs might not apt to interpret visually found patterns. For example, in

Fig. 6.1-a, the value of F8 tends to increase along the diagonal line, but not along cPC1

(the G-axis). To handle such cases, ContraNA supports interactive adjustments of 
 and

cPCs (DC4-Flexibility).

Adjustment ofContrastive Parameter. ContraNAallows the analyst to interactively

change the contrastiveparameter 
with a range slider (Fig. 6.1-f), basedon the efficiency

of cPCA(e.g., the completion time is less than3ms for 10,000nodeswith 10 features [76]).

However, the update of 
 in cPCA causes an arbitrary sign flipping for each cPC, similar
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(a) Without sign adjustment.

(b) With sign adjustment.

Figure 6.7: Changes of node projection by updating contrastive parameter 
 (a) without and (b) with
sign adjustment. Corresponding animations are available online (Appendix A).

to PCA [75,226]. Fig. 6.7-a shows an example of the flipping along both horizontal and

vertical directions when 
 is changed, making it difficult to follow.

To address this issue, a similar solution used for PCA [226] is employed. For each of

cPC1 and cPC2, the cosine similarity between the coordinates of all nodes before and

after the update is computed; then if the similarity is negative, the sign generated by

cPCA is flipped. Fig. 6.7-b shows the result with the sign adjustment. As 
 decreases to

38, the orange node annotated with the green rectangle moves toward the right-bottom

and the separation of nodes with low (purple) and higher values (pink, orange, and

yellow) becomes more salient.

Adjustment of Contrastive Principal Components. I introduce an interactive

method for customizing cPCs, which can be used for both PCA and cPCA. First, in the

CR view, a preferable axis direction for cPC1 can be drawn as a straight line (Fig. 6.8-
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Figure 6.8: Adjustment of the cPCs. (a) and (b) show FCs of Features 7–10 and the CR view before
and after the adjustment, respectively.

a). The projection is rotated based on the angle between the drawn line and cPC1

(Fig. 6.8-b). As a result, the cPC loadings shown in Fig. 6.1-b also need to be updated.

Similar to the rotation in ordinary PCA [191], the cPC loadings can be obtained by

simply multiplying a rotation matrix with the above user-defined angle. For example,

Fig. 6.8-a, b show a subset of the cPC loadings corresponding to F7-10 before and after

the rotation. We can see that F8 has a strong contribution to both cPC1 and cPC2 and

F10 has a stronger contribution to cPC1 than before.

Note that we can also use a method developed by Kwon et al. [143] for general

scatterplots, including cPCA projection results. It generates new axes based on the

user-drawn freeform line over the plot and nonlinear transformation. However, the

above linear transformation is used so that we can update cPC loadings, which are

important to interpret the result of cPCA.
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6.5 Controlled User Study
With the visual interface described in Sec. 6.4, we can interactively perform the same

analyses demonstrated in Sec. 5.6.2. Here, as an additional evaluation of the visual

interface, a controlled user study was conducted to assess the usefulness of ContraNA

for contrastive network analysis. The user study aimed to answer these research ques-

tions: (Q1) Can analysts effectively identify unique characteristics in a target network

(compared to a background network), and (Q2) Can analysts properly interpret and

explain the found uniqueness? I expected that Q1 would be primarily addressed by

the contrastive representation view, and that all the other coordinated views would

help answer Q2 I provide the materials used for the study online (Appendix A), in-

cluding the datasets listed in Tab. 6.1, their visualized results with ContraNA, and

questionnaires.

6.5.1 Study Design
As far as I know, ContraNA is the first framework designed for contrastive network

analysis, and thus Iwas not able to find a baseline system to compare against. Therefore,

the following study was designed to evaluate the usability of ContraNA in terms of

discovering a target network’s uniqueness and interpreting it.

Datasets. As shown in Tab. 6.1, I generated random networks (Random 1, 2)

with Gilbert’s random graph [25] and scale-free networks (Price 1, 2) with the Price’s

preferential attachment models [179], as well as used several public datasets. The

analysis tasks were categorized into three by carefully selecting target and background

networks: (a) no uniqueness is in �) (# of RFOs is N/A), (b) the uniqueness in �) can be

identified and interpreted with a network feature containing only the base feature (# of

RFOs = 0), and (c) containing RFOs (# of RFOs ≥ 1). As the number of RFOs increases,

a network feature becomes more complicated and the task becomes harder.

Participants. 12 participants were recruited (4 females and 8 males; aged 18–44) at

a local university, with 10 from computer science and 2 from political science. There

were 1 postdoc-fellow, 10 PhDs, and 1 Master’s. Participants were pre-screened to

ensure that they have fundamental knowledge of network science. Their self-reported
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familiarity with network analysis had the median of 5 ( ), on a scale of 1 (not

familiar) to 7 (use regularly). Out of 7 network centralities/measures used in the study

(i.e., degree, closeness, betweenness, eigenvector, Katz centralities, PageRank, and :-core

number [179]), participants’ knowledge of these had the median of 3 ( ).

Apparatus. The study was conducted on an iMac (4 GHz Intel Core i7, 16GB 1,600

MHz DDR3) with a 27-inch display (5,120× 2,880 pixels), connected with an Apple

Magic Mouse 2. The UI was presented with Google Chrome in full-screen mode.

Because the refinement of contrastive representations (Sec. 6.4.4) was not relevant to

the study tasks, the related functionalities in ContraNA were disabled.

Tasks and Design. Based on Q1 and Q2, given target and background networks,

participantswere asked to perform comparative analysis usingContraNAand complete

two subtasks (ST1) and (ST2): (ST1) identifies whether or not the target network has

any uniqueness compared to the background network, and (ST2) explains the found

uniqueness (if any) or the reason of concluding there is no uniqueness. ST1 required a

selection from options of Yes, No, and I’m not sure; for ST2, participants were asked to

write down their explanation. A within-subjects design was employed for this study.

Each participant completed three comparative network analysis tasks in themain study,

using three different pairs of networks (Tasks A, B, and C in Tab. 6.1). The order of

tasks was counterbalanced across participants.

Procedure. At the beginning, participants provided their demographics and back-

grounds on a survey. A brief tutorial was then presented including explanations of

the definition of the uniqueness, the above 7 network centralities/measures, the usage

of ContraNA, and 3 concrete analysis examples. Afterward, participants completed a

training session, allowing them to get familiar with ContraNA and the task, followed

by the real study consisting of three tasks. The datasets used in the tutorials, training,

and study tasks are shown in Tab. 6.1. Think aloud protocol was used during the

training and task sessions. They were allowed to ask questions about the ContraNAUI

and the network centralities and measures. No time limit was set for the tasks. Lastly,

participants provided their feedback with the NASA TLX [105], a questionnaire about
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Table 6.1: Networks used for the controlled user study and case studies, where = and ; represent the
numbers of nodes and links, respectively.

Target Network �) Background Network �� # of RFOs*
Tutorial 1 Price1 Random1 0

(= = 100, ; = 294) (= = 100, ; = 471)
Tutorial 2 Random1 Random2 N/A

(= = 100 , ; = 471) (= = 100 , ; = 525)
Tutorial 3, LC-multiple [255] Combined-AP/MS [255] 1

(= = 1,536, ; = 2,925) (= = 1,622, ; = 9,070)
Training School-Day2 [210] School-Day1 [210] 2

(= = 238, ; = 5,539) (= = 236, ; = 5,899)
Task A Brain-Low [131] Brain-High [131] N/A

(= = 233 , ; = 2,627) (= = 246 , ; = 3,355)
Task B, p2p-Gnutella08 [153] Price2 0

(= = 6,301, ; = 20,777) (= = 6,301, ; = 18,897)
Task C Dolphin [165] Karate [256] 1

(= = 62 , ; = 159) (= = 34 , ; = 78)
* # of RFOs in a network feature that highly contributes to the uniqueness in �) .

Figure 6.9: Accuracy (left) and completion time (right) for each subtask.

ContraNA’s visual interface, and a semi-structured interview. The whole study lasted

around 1 hour per participant.

6.5.2 Results
This section reports the controlled study results including task accuracy, completion

time, and participants’ subjective feedback.

Accuracy. The accuracy for each subtask is shown in Fig. 6.9-left. Two network

149



science experts independently rated participants’ explanations in ST2 with a scale of

1 (the worst) to 5 (the best) based on correctness and comprehensiveness. Weighted

Cohen’s kappa coefficient indicates high reliability of the ratings (� = 0.83, in the range

of 0.81–1.00: almost perfect agreement) [47].

In general, Task B has the highest mean accuracy for both ST1 (100%) and ST2

(92%), which might be because the uniqueness of the target network can be understood

easily with the base feature. However, for ST1, a Cochran’s Q test [169] does not

show any significant differences across tasks. For ST2, a Friedman test [169] reveals

significant differences ("2 = 7.55, ? < 0.05). A post-hoc analysis usingWilcoxon signed-

rank exact test with Bonferroni correction [28] indicates that Task B has significantly

higher accuracy than Task C (? < 0.05) that has the most difficulty. Additionally,

participants’ scores of ST2 show a weak positive correlation (Pearson’s correlation

coefficient � = 0.31) with the numbers of network centralities/measures they knew,

which generally represent their level of expertise in network science. Thus, higher

expertise seems to help provide better explanations.

Completion Time. Fig. 6.9-right shows the completion time for each task. However,

a Friedman test does not show any significant difference across tasks. There is a weak

negative correlation (� = −0.33) between the completion times and the numbers of

known network centralities/measures (i.e., the expertise helped finish tasks faster).

For Tasks A and B, ST2 (2.7 minutes and 3.5 minutes, respectively) took longer than

ST1 (both 2.5 minutes). But for Task C, it is the opposite (ST1: 3.5 minutes, ST2: 2.7

minutes). From my observation, the reason might be that participants tried to find the

explanation (ST2) before deciding their answer to ST1.

Subjective Feedback. Fig. 6.10 lists participants’ ratingswith theNASATLX.Gener-

ally, ST2 has highermean values than ST1 in each task; however, aWilcoxon signed-rank

exact test does not show any significant difference in each pair of subtasks. Participants

expressed relatively high mental demand and effort for performing the tasks, which

is plausible because the network analysis needs high concentration. Fig. 6.11 shows

the questionnaire results on the impression of ContraNA. Overall, participants felt that
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Figure 6.10: NASA TLX results (the lower the better).

Figure 6.11: Histograms of participants’ ratings on the overall impression and usefulness of each UI
function (the higher the better). Numbers over the bins represent the frequency. Median ratings are
indicated in gray.

ContraNA is easy to learn, easy to use, and useful to perform ST1 and ST2. For the use-

fulness of each UI function, the CR, FC, and NL views receive high ratings, especially

the CR view, whereas the PD view has relatively low scores. Also, a Friedman test

("2 = 18.0, ? < 0.001) and a post-hoc analysis using the Wilcoxon signed-rank exact test

with Bonferroni correction [28] show significant differences of the PD view from the

CR (? < 0.05) and NL (? < 0.05) views on participants’ ratings. One reason I obtained

from the interviews is that the uniqueness can be identified and explained with other

views, while the PD view is not necessary, although it is helpful to confirm uniqueness.

During the interview, the participants’ preference was collected for the feature rep-

resentations inDeepGL (Fig. 6.5-a) andContraNA (Fig. 6.5-b). Ten out of 12 participants

preferred ContraNA’s representation because it is “visually more clear” (p4, 6) and “more
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intuitive to understand” (other 8 participants). The rest of the participants preferred

DeepGL’s notation because using mathematical symbols has less ambiguity. Eleven

participants applauded the usefulness of ContraNA’s visualization of intermediate

computational results (Fig. 6.6), which was used to understand complicated network

features: “Those are particularly useful because you can see the levels of how these [i.e., features]

are getting computed like that” (p3). Two participants with expert knowledge mentioned

that they wanted to use the opposite order from the current representation (i.e., from

left to right, placing RFOs first and then a base feature) because they mentally con-

verted each network feature in this order. However, others stated that they were used

to understand each feature from a base feature.

6.6 Discussion
ContraNA has been validated with a controlled user study. This section provides a

thematic discussion on additional aspects of ContraNA as well as the studies.

Limitations in Visual Scalability. While the studies indicate the usefulness and ef-

fectiveness of ContraNA, it is not without limitations. ContraNA employs scatterplots,

node-link diagrams, and heatmaps in its interface, but these techniques suffer from

scalability issues. We can enhance these techniques with filtering, aggregation, and

focus+context methods to mitigate the issues [51]. A specific scalability issue in Con-

traNA is the visual representation of network features, whereContraNAuses rectangles

in the FC view, ellipses, lines with text labels. This may limit the number of RFOs to

display in a network feature. However, this is not a major issue, because NRL methods

(including DeepGL) that generate features based on relationships of node neighbors

are generally utilized with only a few hops (typically 2 or 3) of neighbors [135, 194].

Another issue could be caused when NRL produces a large number of features (e.g.,

100 features). This issue can be addressed by only displaying features that highly

contribute to cPCs as such features are most important to interpret the cNRL results.

Ambiguity of Uniqueness. In spite of high mental demand and effort, participants

achieved high accuracy in identifying (Q1) and explaining (Q2) unique structures
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of a target network when it actually exists (Task B and C). However, when a target

network did not have clear uniqueness (Task A), the accuracy for ST1 was relatively

low, though there was no significant difference (Sec. 6.5.2). Potential reasons might be

associated with the ambiguity of uniqueness and participants’ expectation, as noted

by p1: “It wasn’t too difficult [to learn and use the CR view] but I had a question of how

much separation is enough to define uniqueness.” While the CR view in Task A showed

the similar scatteredness between target and background networks, participants were

able to find some small regions that seemed to relate to the uniqueness if they had

an expectation for uniqueness. I found that all 5 participants who answered Yes for

Task A-ST1 did not provide a convincing explanation, with mean accuracy for Task

A-ST2 52% (Fig. 6.9). How to better define and inform a threshold of containing the

uniqueness should be addressed in the further work.

Importance of Interpretability and cNRL.One notable result is that participants spent

similar time in completing ST1 andST2. This result differs from the original expectation:

ST1 would be finished much faster because they only needed to review the CR view

and select an answer, while ST2 required the use of multiple views and writing an

explanation. Frommy observation, I noticed that although they quickly recognized the

uniqueness from the CR view, before selecting the answer, they tried to understand the

reasons behind to convince themselves. This points out the importance of providing the

interpretability in algorithms, includingNRLandCLmethods. This fact also influenced

the mean accuracy of Task C-ST1. Three participants chose I’m not sure because they

were not able to completely understand why the target network was unique while the

potential uniqueness was found, which may be due to their lower expertise in network

science.

All the views except for the PD view seemed to be useful according to participants.

From my interviews, several participants mentioned that for easier tasks (e.g., Task

B) it was not necessary to use the PD view; for more difficult tasks (e.g., Task C), the

PD view was not helpful to reveal the uniqueness. This indicates the limitation of

network comparison based on probability distributions, which is a popular analysis
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approach, and the necessity of more advanced embedding based approaches, such

as cNRL. Further, when asked about how to perform similar tasks without ContraNA,

participants provided approaches of either comparing probability distributions of basic

network centralities or comparing laid-out networks. Also, they mentioned that they

might be able to find the uniqueness with their stated approach but it would “be awful”

(p9) and “take longer” (p1), and “I might miss some uniqueness” (p5). In contrast, using

ContraNA is “much easier because it supports a lot of stuff you need to deal with... Comparing

the target and background in CR view is really helpful. If you see spreading patterns [of a target],

it might be unique.” (p11).

UsagewithOther Algorithms. ContraNA employs i-cNRL because of its interpretabil-

ity; however, most of ContraNA functionalities are generic enough to be well adapted

with otherNRL andCLmethods in the architecture. For example, if the interpretability

is not required, DeepGL can be replaced with GraphSAGE [101], where only network

features are changed. Thus, ContraNA is still applicable by updating the visual repre-

sentations of features in the FC view. Similarly, we can switch cPCA with the other CL

methods, such as cVAE [4,203] which can find uniqueness in a target dataset evenwhen

its data points and latent features have nonlinear relationships. As we cannot obtain

the features’ contributions, in this case, we can simply remove the heatmap from the FC

view. Also, once other interpretable CL methods are developed, we do not need any

changes to integrate them into ContraNA. Another potential extension is cooperating

with link feature learning, which is also supported by DeepGL. In this case, we just

need to add visual encodings of links to the views of ContraNA.

Adaption for Application Domains. As presented, the linking with laid-out networks

is important to intuitively understand uniqueness. Networks are often visualized in

a specific manner according to the application domain. For example, when analyz-

ing brain networks, neuroscientists often use adjacency-matrix based visualizations or

2D/3D node-link diagrams [71]. This is because the former is useful to find correlated

brain regionswithmatrix-reordering algorithms [27] and the latter can help relate anal-

ysis results to the actual locations in a brain. By customizing the NL views, ContraNA
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can support such analysis tasks in this specific domain. Also, as shown in Sec. 6.5.2,

the way to understand network features generated by DeepGL is different by the ana-

lyst. Therefore, we should consider adding settings to customize the representation of

network features based on the analyst’s preference.

Future Extension to Dynamic Networks. As discussed in Sec. 6.1.2, dynamic net-

work comparison is another common analysis target in the visualization field. One

case study in the previous chapter (Sec. 5.6.2.3) has demonstrated the comparison of

networks obtained at two different time points. However, when we want to compare

networks at more than two time points (e.g., networks at 100 different time points)

or two independent dynamic networks, the comparison should consider not only the

structural/topological properties but also the temporal properties. Capturing the tem-

poral properties with network representation learning is an emerging research direc-

tion [207]. For example, researchers have started to extendGNNs for dynamic networks

(often called dynamic GNNs) by integrating the concept of recurrent neural networks

(RNNs) [197] and temporal self-attention mechanisms [199]. As with DeepGL for a

static network, once interpretable dynamic GNN models are developed, we can use

such models in the cNRL architecture for dynamic network comparison.

6.7 Summary
This chapter presents ContraNA, a visual analytics framework for network comparison,

which utilizes two machine learning schemes—network representation learning and

contrastive learning—together with an intuitive visual interface. ContraNA provides

the capability for effectively identifying and understanding unique characteristics of

one network relative to another, supporting four key capabilities as outlined by DIIF.

The controlled user study also reflects the usefulness and effectiveness of ContraNA

with carefully-designed analysis tasks.
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Chapter 7
Conclusion

This dissertation introduces several new dimensionality reduction (DR)methods incor-

porating interactive visualizationwith the aim to enhance the interpretability, usability,

and flexibility of DR. Specifically, ccPCA (Chapter 2) and the visual analytics system

using ccPCA support analyzing a DR result by identifying the essential features charac-

terizing clusters appeared in theDR result and highlighting information of the essential

features with scalable visualizations. Notably, ccPCA and the system are designed to

be applicable to any DR method. MulTiDR (Chapter 3) not only produces an effec-

tive visual overview of multivariate time-series data through a two-step DR but also

provides auxiliary information for interpreting the overview by utilizing ccPCA. In-

cremental PCA enhanced for visualizing streaming multidimensional data (Chapter 4)

adds two new capabilities to an existing incremental PCA: preservation of the user’s

mental map and the estimation of principal components of incoming data points that

have an incomplete number of features. These capabilities are further supported with

the automatic tracking of incoming data points and an uncertainty visualization of the

estimated principal components. i-cNRL (Chapter 5) and ContraNA (Chapter 6) pro-

vide a new analysis approach that can identify unique characteristics in one network

with respect to another network by utilizing network representation learning in con-

junction with contrastive learning. i-cNRL and ContraNA are also carefully designed

to provide the interpretability in the analysis results.

As the complexity of datasets increases in terms of the number of data points or the

number of features, DR becomes an essential approach to visual analytics, providing an

effective overview of the data and a guidance for further analysis. This dissertation has

identified key challenges of DRwhen applied to visual analytics and has demonstrated
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solutions for several tangible topics. The new DR methods and the associated visu-

alizations can be utilized to provide better functionalities in various visual analytics

systems using DR hereafter. This dissertation motivates and paves the way for future

research towards designing practical DR methods for visual analytics.
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Appendix A
Online Supplementary Materials

The links below include the demonstration videos of visualizations, systems, datasets,

and implementations used for each corresponding chapter.

• Chapter 2: https://takanori-fujiwara.github.io/s/dr-cl/

• Chapter 3: https://takanori-fujiwara.github.io/s/multidr/

• Chapter 4: https://takanori-fujiwara.github.io/s/inc-dr/

• Chapter 5: https://takanori-fujiwara.github.io/s/cnrl/

• Chapter 6: https://takanori-fujiwara.github.io/s/contrana/
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Appendix B
Appendix for Chapter 5

B.1 Datasets
For the evaluation, we use the datasets in various data repositories including SNAP,

CCSB Interactome Database, and SocioPatterns as well as the synthetic datasets. To

allow the reproducibility of this work, I provide links to the original network datasets,

processed datasets, and featurematrices learned byDeepGL andGraphSAGE in https:

//takanori-fujiwara.github.io/s/cnrl/.

B.2 Implementation Details
The cNRL architecture is implemented with Python 3. The implemented cNRL ar-

chitecture allows the user to apply any NRL and CL methods that provide “fit” and

“transform” methods (as similar to machine learning methods supported in scikit-

learn1). For the implementation of i-cNRL, DeepGL and cPCA are integrated into

the cNRL architecture. Because there is no implementation of DeepGL available from

Python2, DeepGL is implemented with graph-tool3. For cPCA, the implementation

available online4 is modified to add the automatic contrastive automatic selection de-

scribed in Sec. 5.4.2.3.

B.3 Experiment Details
The source code for generating the experimental results is available in https:

//takanori-fujiwara.github.io/s/cnrl/.

1scikit-learn, https://scikit-learn.org/, accessed 2020-2-10.
2Implementation using Java with Neo4j database is available from https://github.com/

neo4j-graph-analytics/ml-models, accessed 2020-2-10.
3graph-tool, https://graph-tool.skewed.de/, accessed 2020-2-10.
4ccPCA, https://github.com/takanori-fujiwara/ccpca, accessed 2020-2-10.
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B.3.1 Learning Parameters of i-cNRL
B.3.1.1 DeepGL Settings

BecauseDeepGL is introduced as a comprehensive inductiveNRL framework, there are

multiple settingswe canadjust. The terminologiesusedhere are the sameas [194]. Refer

to [194] for thosenot explained in this dissertation (indicatedwith italic fonts below). For

all the cNRL performed in the studies, DeepGL is used with ℎ = 3 and the logarithmic

binning to transform feature values with 0.5 as the transformation parameter, but without

the feature diffusion. For the other settings, generally, asmany different relational feature

operators and base features are used as possible for each network dataset. As for the

relational feature operators, for directed networks, all the combinations of {Φ−
(
,Φ+

(
,Φ

(
}

are usedwith ( = {mean, sum,max,L2norm} (i.e., 12 operators in total). For undirected

networks,Φ
(
where ( = {mean, sum,max,L2norm} is used. As for the base feature x, all

centralities and measures available in graph-tool are used. However, for each network,

some of these features have produced ‘NaN’ values (e.g., closeness). In that case, such

features are excluded from the base features. Tab. B.1 shows the base features used for

each analysis. Additionally, for scoring and pruning of the learned ℱ8 , the same method

used in [194] is applied with the tolerance/feature similarity threshold, �. As � becomes

larger, the number of features learned by NRL (i.e., 3) increases. A different � value

is set for each analysis, as listed in Tab. B.1. In general, for the undirected networks,

relatively higher values (� = 0.7) are used because the number of base features used is

smaller when compared with the directed networks.

B.3.1.2 cPCA Settings

For all results, cPCA is used with the automatic contrastive parameter selection and

default settings. That is, the standardization is applied to each of X) and X� for both

learning andprojection and the automatic contrastive parameter selectionwith & = 10−3.

B.3.2 Full Sets of cPC Loadings

The full sets of cPC loadings obtained with i-cNRL for each analysis in Sec. 5.6.1 and

Sec. 5.6.2 are listed in Tab. B.2-B.5.
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Table B.1: The detailed DeepGL settings for each analysis.

�) �� x �

Dolphin Karate {total-degree, betweenness, closeness, eigenvector,

PageRank, Katz}

0.7

Price Random {in-degree, out-degree, total-degree, PageRank, be-

tweenness, Katz, :-core}

0.3

Random Price {in-degree, out-degree, total-degree, PageRank, be-

tweenness, Katz, :-core}

0.3

p2p-

Gnutella08

Price 2 {in-degree, out-degree, total-degree, PageRank, be-

tweenness, Katz, :-core}

0.5

p2p-

Gnutella08

Enhanced

Price

{in-degree, out-degree, total-degree, PageRank, be-

tweenness, Katz, :-core}

0.5

LC-multiple Combined-

AP/MS

{total-degree, betweenness, eigenvector, PageRank,

Katz}

0.7

School-Day2 School-Day1 {gender, total-degree, closeness, betweenness, eigen-

vector, PageRank, Katz}

0.7

B.3.3 Network Generation Models and Parameters
The Gilbert’s and Price’s network models are used to generate Random (N3), Price (N4),

and Price 2 (N6) in Tab. 5.1. Also, in Sec. 5.6.2.1, I have introduced the enhanced Price’s

network model as the solution to generate a network of which nodes have different

:-core numbers—Enhanced Price (N7) in Tab. 5.1. The following description explains

the details of the parameters used for the network generation and the enhanced Price’s

model.

B.3.3.1 Parameters for the Gilbert’s and Price’s Models

The Gilbert’s model generating a random network requires the fixed probability of a

connection of each pair of nodes. The probability is set to 0.05 for generating Random

(ID 4). The Price’s model requires the fixed number of out-degree of newly added

nodes as its parameter. This parameter is set to 3 for both Price (N4) and Price 2(N6).

B.3.3.2 Enhanced Price’s Model

For the enhanced Price’s model, I modify the Price’s model to be able to generate nodes

with various :-core numbers. To achieve this, the enhanced Price’s model allows the
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Table B.2: All cPC loadings for Sec. 5.6.1.

relational function 5 base feature x cPC 1 cPC 2

�) : Price, ��: Random
(x) in-degree -0.19 -0.06
(x) out-degree -0.40 -0.00
(x) total-degree 0.55 0.00
(x) PageRank 0.00 -0.00
(x) betweenness -0.00 0.00
(x) Katz -0.19 0.06
(x) :-core -0.00 -0.00
(Φ−mean)(x) in-degree 0.01 -0.00
(Φ−mean ◦Φ−mean)(x) in-degree 0.00 0.00
�) : Random, ��: Price
(x) in-degree -0.10 -0.25
(x) out-degree 0.01 -0.02
(x) total-degree 0.18 0.47
(x) PageRank 0.02 0.01
(x) betweenness -0.01 -0.00
(x) Katz -0.09 -0.24
(x) :-core 1.00 -0.13
(Φ−mean)(x) in-degree 0.00 0.00
(Φ−mean ◦Φ−mean)(x) in-degree -0.00 0.00

user to setmultiple positive integer numbers of out-degree of newly added nodes. Here

we denote this input as � = {�1, · · · ,�D}where D is the length of the input. To select one

number from � when a new node is added, we need to set the probability of selecting

each number. We denote the probabilities as ? = {?1, · · · , ?D} where
∑
? = 1.

To generate Enhanced Price (ID 8), these parameters are set to � ={1, 2, 3, 4, 5, 6, 7,

8, 9, 10} and ? ={0.3, 0.25, 0.15, 0.1, 0.075, 0.05, 0.025, 0.025, 0.0125, 0.0125}.

B.3.4 Settings of GraphSAGE and cVAE
Here describes the detailed settings and parameters of GraphSAGE and cVAE used in

Sec. 5.6.3. The source code provided by the authors of GraphSAGE5 and cVAE6 is used.

For GraphSAGE, the unsupervised model graphsage_maxpool is used with 24 as the

number of features learned (i.e., dim_1=12 and dim_2=12) while following the default

5GraphSAGE: https://github.com/williamleif/GraphSAGE, accessed 2020-2-10.
6Contrastive VAE: https://github.com/abidlabs/contrastive_vae, accessed 2020-2-10.

162

https://github.com/williamleif/GraphSAGE
https://github.com/abidlabs/contrastive_vae


Table B.3: All cPC loadings for Sec. 5.6.2.1.

relational function 5 base feature x cPC 1 cPC 2

�) : p2p-Gnutella08 , ��: Price 2
(x) in-degree -0.12 -0.17
(x) out-degree 0.04 -0.00
(x) total-degree 0.22 0.30
(x) PageRank 0.04 0.00
(x) betweenness -0.00 -0.00
(x) Katz -0.11 -0.13
(x) :-core 1.01 -0.10
(Φ−mean)(x) in-degree -0.00 0.00
(Φ−mean)(x) out-degree 0.00 0.00
(Φ−mean)(x) betweenness 0.00 -0.00
(Φmean)(x) out-degree -0.00 -0.00
(Φ−mean ◦Φ−mean)(x) in-degree -0.00 -0.00
(Φ−mean ◦Φ−mean)(x) out-degree 0.00 -0.00
(Φmean ◦Φ−mean)(x) out-degree 0.00 0.00
�) : p2p-Gnutella08 , ��: Enhanced Price
(x) in-degree 0.12 0.05
(x) out-degree 0.05 -0.00
(x) total-degree -0.23 0.00
(x) PageRank -0.00 0.00
(x) betweenness 0.00 -0.00
(x) Katz 0.10 -0.05
(x) :-core 0.00 -0.00
(Φ−mean)(x) in-degree -0.00 0.00
(Φ−mean)(x) out-degree 0.00 -0.00
(Φ−mean)(x) betweenness -0.00 0.00
(Φmean)(x) out-degree 0.00 0.00
(Φ−mean ◦Φ−mean)(x) in-degree -0.00 -0.00
(Φ−mean ◦Φ−mean)(x) out-degree 0.00 -0.00
(Φmean ◦Φ−mean)(x) out-degree 0.00 0.00

values for other parameters (e.g., learning_rate=0.00001 and model_size=‘small’).

cVAE is used with the default parameters (i.e., intermediate_dim = 12, latent_dim =

2, batch_size = 64, and epochs = 500).

B.3.5 Automatic Contrastive Parameter Selection
Fig. B.1 shows transitions of 
 value during the automatic selection in i-cNRL. For all

the experiments, we can see that 
 reaches the convergence before 10 iterations.
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Table B.4: All cPC loadings for Sec. 5.6.2.2.

relational function 5 base feature x cPC 1 cPC 2

(x) total-degree -0.02 0.13
(x) betweenness -0.00 -0.00
(x) eigenvector 0.01 0.12
(x) PageRank 0.01 0.00
(x) Katz -0.00 -0.24
(Φmean)(x) total-degree -0.14 0.02
(Φmean)(x) betweenness 0.00 0.00
(Φmean)(x) eigenvector -0.19 -0.01
(Φmean)(x) PageRank -0.00 -0.00
(Φmean)(x) Katz 0.36 0.00
(Φmax)(x) betweenness 0.00 0.00
(Φmax)(x) PageRank -0.01 0.00
(Φmean ◦Φmean)(x) total-degree -0.03 -0.01
(Φmean ◦Φmean)(x) betweenness 0.00 -0.00
(Φmean ◦Φmean)(x) PageRank -0.01 -0.01
(Φmean ◦Φmax)(x) betweenness 0.00 0.00
(Φmean ◦Φmax)(x) PageRank 0.01 0.01
(Φmax ◦Φmax)(x) betweenness -0.00 -0.00
(Φmax ◦Φmax)(x) PageRank 0.00 -0.00

Figure B.1: Transitions of 
 with the automatic selection: (a) �) : Dolphin, ��: Karate, (b) �) : Price,
��: Random, (c) �) : Random, ��: Price, (d) �) : p2p-Gnutella08, ��: Price 2, (e) �) : p2p-
Gnutella08, ��: Enhanced Price, (f) �) : LC-multiple, ��: Combined-AP/MS, and (g) �) : School-
Day2, ��: School-Day2.
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Table B.5: All cPC loadings for Sec. 5.6.2.3.

relational function 5 base feature x cPC 1 cPC 2

(x) total-degree 0.05 0.03
(x) closeness -0.01 0.00
(x) betweenness -0.01 0.00
(x) eigenvector -0.06 0.02
(x) PageRank 0.00 -0.04
(x) Katz 0.02 -0.02
(x) gender -0.01 -0.00
(Φmean)(x) total-degree 0.07 0.01
(Φmean)(x) betweenness -0.02 -0.01
(Φmean)(x) gender -0.01 -0.00
(Φsum)(x) gender 0.01 0.00
(Φmax)(x) total-degree -0.01 0.03
(Φmax)(x) closeness 0.03 -0.00
(Φmax)(x) betweenness -0.02 -0.00
(Φmax)(x) eigenvector -0.03 0.01
(Φmax)(x) PageRank 0.03 -0.01
(Φmax)(x) Katz -0.01 -0.02
(Φmax)(x) gender -0.00 0.00
(ΦL2norm)(x) gender 0.01 0.00
(Φmean ◦Φmean)(x) total-degree -0.06 -0.01
(Φmean ◦Φmean)(x) betweenness 0.04 0.00
(Φmean ◦Φmean)(x) gender 0.02 0.01
(Φmean ◦Φmax)(x) total-degree -0.05 0.04
(Φmean ◦Φmax)(x) closeness 0.11 -0.04
(Φmean ◦Φmax)(x) betweenness -0.09 -0.01
(Φmean ◦Φmax)(x) eigenvector -0.08 0.03
(Φmean ◦Φmax)(x) PageRank 0.15 0.02
(Φmean ◦Φmax)(x) Katz -0.06 -0.05
(Φmean ◦Φmax)(x) gender 0.00 -0.00
(Φmax ◦Φmean)(x) betweenness -0.00 0.00
(Φmax ◦Φmean)(x) gender 0.00 0.00
(Φmax ◦Φsum)(x) gender 0.00 0.00
(Φmax ◦ΦL2norm)(x) gender 0.00 0.00
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