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A Scalable Approach to Large Scale Risk-Averse
Distribution Grid Expansion Planning

Alexandre Moreira, Member, IEEE, Miguel Heleno, Member, IEEE, Alan Valenzuela, Joseph H. Eto, Senior
Member, IEEE, Jaime Ortega, Cristina Botero.

Abstract—Distribution grid reliability and resilience has be-
come a major topic of concern for utilities and their regulators.
In particular, with the increase in severity of extreme events,
utilities are considering major investments in distribution grid
assets to mitigate the damage of highly impactful outages.
Communicating the overall economic and risk-mitigation benefits
of these investments to regulators is an important element of
the approval process. Today, industry reliability and resilience
planning practices are based largely on methods that do not
take explicit account of risk. This paper proposes a practical
method for identifying optimal combinations of investments in
new line segments and storage devices while considering the
balance between the risk associated with high impact and low
probability (HILP) events and the reliability related to routine
failures. We show that this method can be scaled to address large
scale networks and demonstrate its benefits using a Target Feeder
from the Commonwealth Edison Reliability Program.

Index Terms—distribution expansion planning; large-scale dis-
tribution network; risk aversion; reliability.

NOMENCLATURE

The mathematical symbols used throughout this paper are
classified below as follows.

Sets

ΨN Set of indexes of all nodes of the distribution
grid.

ΨSS Set of indexes of nodes that are substations of
the distribution grid.

Ω Set of indexes of failure scenarios.
Ωresilience Set of indexes of failure scenarios associated

with resilience.
Ωroutine Set of indexes of routine failure scenarios.
C Set of indexes of failure states.
D Set of indexes of typical days.
Dj,e,c Set of indexes buses in each “island” e when

investment decision j is taken for contingency
state c.

Ej,c Set of indexes of islands if investment decision
j is taken under contingency state c.

H Set of indexes of all storage devices (including
existing and candidates).

HC Set of indexes of candidate storage devices.
J Set of indexes of all possible investment plans.

A. Moreira, A. Valenzuela, M. Heleno, J. Eto, are with the
Lawrence Berkeley National Laboratory, Berkeley, CA, USA (e-mail:
{AMoreira, AlanValenzuela, MiguelHeleno, JHeto}@lbl.gov). J. Ortega
and C. Botero are with Commonwealth Edison, Chicago, IL, USA
{Jaime.Ortega, Cristina.Botero}@comed.com.

L Set of indexes of all lines (including existing
and candidates).

LC Set of indexes of candidate distribution lines.
LE Set of indexes of existing distribution lines.
Relc Set of indexes of relevant investments under

contingency state c.
RelL,on

j,c Set of indexes of candidate line segments that
are build for the investment plan j that is rele-
vant to failure state c.

RelL,off
j,c Set of indexes of candidate line segments that

are not build for the investment plan j that is
relevant to failure state c.

T Set of indexes of operation periods during each
typical day.

Indexes

c Index of failure state.
d Index of typical days.
e Index of the islands that are formed under a

contingency state c.
h Index of storage devices.
j Index of investment decision.
l Index of lines.
n Index of buses.
s Index of scenarios.
t Index of time periods.
t0 Index of the first time period of a day type d.

Parameters

αCV aR CVaR parameter.
δ Number of hours in a time period t.
η Round trip efficiency of batteries.
λ Risk aversion user-defined parameter (between

0 and 1).
ρ Probability of scenario s.
CImb Cost of imbalance.
CL,fix

l Fixed investment cost of candidate line l.
CSD,fix

h Fixed investment cost of candidate storage de-
vice h.

CSD,var
h Variable investment cost of candidate storage

device h.
Dpeak

i Peak demand of bus i.
Dn,t,d Demand of bus n, at time period t of typical

day d.
f bath,t,d Percentage of state of charge of battery h at time

period t of day type d.
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f loadτ,d Percentage of peak load at time period τ of day
type d.

F l Maximum capacity of line l.
G

Tr

n Limit of injection in substation n.
ks Number of time periods of failure scenario s.
M Sufficiently large number.
P

in

h Maximum charging of storage device h per time
period.

P
out

h Maximum discharging of storage device h per
time period.

pf Power factor.
rlen Length of line l.
S Number of hours to fully charge storage devices.
V Maximum voltage.
V Maximum voltage.
Wd Number of days of type d in one year.
xstatec,s parameter that is equal to 1 if scenario s implies

in failure state c, being equal to 0 otherwise.
Note that each scenario s can only imply in one
contingency state c.

ZL
l Impedance of line l.

Decision Variables

∆+
n,t,d Positive imbalance in bus n at time period t of

day type d.
∆−

n,t,d Negative imbalance in bus n at time period t of
day type d.

ζt,d CVaR auxiliary variable that represents the value
at risk at time period t of day type d.

ψCV aR
t,d,s CVaR auxiliary variable.

fl,t,d Flow in line l at time period t of day type d.
gTr
n,t,d Injection via substation n at time period t of day

type d.
L†
t,d,s Load shedding at time period t of day type d of

scenario s.
Lj,e,c Load shedding in island e for relevant invest-

ment j under failure state c.
pinh,t,d Charging of storage device h at time period t of

day type d.
pouth,t,d Discharging of storage device h at time period

t of day type d.
SOCh,t,d State of charge of storage device h at time period

t of day type d.
SOCaux

h,j,e,c State of charge of storage device h that belongs
to island e for relevant investment j under
contingency state c.

SOCref
h Reference state of charge of storage device h.

vn,t,d Voltage in bus n at time period t of day type d.
xindj,c Binary variable that indicates which relevant

investment option j has been taken under con-
tingency state c.

xL,fix
l Binary investment in line l.
xSD,fix
h Binary investment in storage device h.
xSD,var
h Continuous investment in storage device h.

I. INTRODUCTION

D ISTRIBUTION grid assets represent a significant portion
of the overall power system costs and, in the US, the

highest share of capital investments of investor-owned utilities
[1]. Given this determinant role, utilities are periodically
required to justify to regulators their proposed investments
and the corresponding impact on consumer rates [2]. Typical
reasons for those investments in the grid include expected
load growth, hosting capacity and improvements in reliability
performance.

In practice, grid investments driven by load growth can be
justified using quantitative approaches, based on load flow
simulations or, as done by Pacific Gas and Electric (PG&E)
in California, using more advanced methodologies including
forecasting future feeder demands in different locations com-
bined with consumer behavior under different meteorological
seasons [3]. Similarly, a hosting capacity analysis is often
required to justify the corresponding grid investments, which
can be a highly regulated process in some US jurisdictions,
such as Minnesota, Hawaii, California, and New York [4].

In the reliability investments case, the process is slightly
different. First, utilities are often evaluated by the reliability
performance of their feeders and required to report reliability
standardized metrics [2], such as System Average Interruption
Frequency Index (SAIFI), System Average Interruption Dura-
tion Index (SAIDI), Customer Average Interruption Frequency
Index (CAIFI) and Customer Average Interruption Duration
Index (CAIDI) [5]. Based on this ex-post reliability evalua-
tion, utilities can suggest new investments to improve their
performance. For example, in California, PG&E publishes an
annual report with reliability metrics (such as SAIFI, SAIDI,
and CAIDI) in its service territory, including potential grid
investments to improve them [6]. In Illinois, utilities are
requested to publish annual reliability performance reports
(informing SAIFI, CAIDI, and CAIFI [7]) and present a 3-
year plan for reliability investments [8], very similar to Ohio
[9], where utilities report metrics (SAIFI and CAIDI [10]) of
their worse performing feeders [11]. Commonwealth Edison
(ComEd) has a detailed process to propose grid investments
[12], being “system performance” (reliability) one among
seven capital investment categories presented to the regulator.
“System performance” includes investments that can improve
the reliability of the system based on characteristics such as
historical data of failures as well as material condition and age
of system elements.

In short, the current practices of the industry show that
distribution reliability investments are (1) based on an ex-
post analysis of performance and (2) determined by empirical
knowledge. Unlike other drivers of grid investments, such as
load growth or hosting capacity, no forward-looking optimiza-
tion nor simulation analysis is carried out. A forward-looking
reliability assessment is already an usual practice in bulk
power systems, in which forward-looking reliability indices,
such of loss of load expectation (LOLE) and/or expected
energy not served (EENS), are defined as requirements of the
system [13].

Existing practices are even more limited when it comes to
resilience investments. However, given the projected increase
in frequency, intensity and duration of extreme weather haz-
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ards [14] and their consequences to the power supply and
delivery [15], resilience has become a central topic in the
power systems community over the last few years. According
to [16], for example, in California, PG&E filed for bankruptcy
due to an extreme event. As a consequence, as mentioned in
[6], PG&E has devised a specific program to minimize the risk
of operations under extreme conditions. In Illinois, ComED
reports and discusses in [12] the costs associated with natural
disasters such as severe storms, winter storms, and flooding
and highlights the importance of investment programs as a
measure to increase the resilience of their system. Despite
the broader definition of resilience provided by FERC [17]
- “the ability to withstand and reduce the magnitude and/or
duration of disruptive events, which includes the capability
to anticipate, absorb, adapt to, and/or rapidly recover from
such an event” - resilience-related standards and metrics are
still to be developed [18]. In the absence of a consensus
on resilience metrics, utilities remain relying on traditional
reliability indices, conceived to capture routine failures instead
of high impact and low probability (HILP) events [19] and to
be used in ex-post evaluation. Therefore, the methods currently
used by industry to plan the upgrade of distribution systems
do not consider the risk associated with HILP events, which
are much less predictable and much more impactful compared
to routine events.

Thus, there is a need for analytical methodologies to support
utilities’ investment decisions, under reliability and resilience
programs, that can capture forward-looking risk mitigation
benefits and can demonstrate to regulators the added resilience
value of different investment options. This paper presents
a practical and scalable methodology to fill this gap and
demonstrates it using Target Feeders from Commonwealth
Edison (ComEd) Reliability Program.

A. Literature Review

Different metrics [20] and methods [21] were developed
in the past to perform reliability assessment in power sys-
tems, particularly in stochastic simulation environments, and
later integrated into optimization methodologies addressing,
for example, the expansion planning of distribution networks
[22], [23]. However, recently, due to an increasing number
of occurrences of natural disasters, a great deal of attention
has been devoted to take resilience into consideration while
planning and operating power systems. In this paper, we
propose a methodology to optimize portfolios of investments
for large-scale distribution systems while considering not only
reliability but also resilience in the form of risk-aversion.

In the literature of distribution grid expansion planning, it is
possible to find multiple planning approaches (e.g. centralized
[24], [25] and decentralized [26]), a variety of optimization ap-
proaches, including single-level [23] and multi-level [25] for-
mulations, and a myriad of applications, ranging from planning
under traditional load growth scenarios [27] to considerations
of uncertainty in demand [22], encompassing the presence
of distributed generation [25] and electric vehicles [24]. In
[24], the authors propose a bilevel mixed-integer program
that optimizes the distribution system expansion while taking

into account the presence of Electric Vehicles (EVs). While
the first level determines investments in the grid, the second
level manages the strategies of charging and discharging of
parked EVs so as to maximize the revenue of parking lots that
provide grid services. In [25], line reinforcement, distributed
energy resources (DERs) and dispatchable units are candidate
investments to be selected by the proposed methodology while
facing uncertainty in DERs output and demand and neglecting
reliability and resilience against failures of system elements.
In [28], a game-theoretical approach is presented to tackle the
distribution planning problem. In [26], the distribution system
expansion planning problem is addressed while considering
the private investor (PI) who owns distributed generation,
the distribution company (DISCO), and the demand response
provider (DRP) as different players with different objectives.
While the DISCO performs line reinforcements to improve re-
liability and to decrease costs by minimizing expected energy
not served associated with line failures, DRP and PI aim to
maximize the conditional value at risk (CVaR) of their profits
under uncertainty in the availability of demand response and
in renewable generation. In [29], particle swarm optimization
and tabu search are integrated into an algorithm that plans the
expansion of distribution networks. In [30], the distribution
system planning is addressed by a stochastic optimization
approach that determines investment in substations, feeders,
and batteries while considering battery degradation and facing
uncertainty in electricity prices and demand. In [31], the flex-
ibility to reduce peak demands provided by thermal building
systems is considered while planning the distribution grid
expansion. In [32], the distribution system expansion problem
is addressed via a model that considers EVs and uncertainty
in renewable energy sources.

The introduction of reliability metrics in this class of
problems was first achieved via heuristic approaches [33],
[34] and later through a mixed-integer linear programming
(MILP) model that explicitly accounts for reliability [23] while
selecting the optimal portfolio of grid investments.

More recently, optimal grid expansion planning approaches
have been proposed to address security considerations, in
particular under HILP events, such as storms, floods or
earthquakes. Some of these approaches focus on investments
at the transmission level. In [35], for example, a two-stage
stochastic Mixed-Integer NonLinear Programming (MINLP)
model is formulated to determine the investment plan to in-
crease resilience while considering seismic activity. Moreover,
in [36], an the authors propose a two-level approach that
leverages an optimization via simulation technique to define
the portfolio of investments needed to deal with potential
events of earthquakes. While the first level accounts for
investment decisions, the second level simulates the response
and restoration of the system during/after an extreme events
and evaluates the distribution of energy not supplied (ENS). In
addition, relevant works have also considered resilience while
planning investments at the distribution level. A two-stage
approach is presented in [37], considering circuit hardening,
automatic switches and DER investments to mitigate extreme
weather events. This problem is formulated as a stochastic
mixed-integer program and solved with Progressive Hedging
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(PH). Later, this formulation was extended to improve the
consideration of spatial-temporal uncertainties associated with
weather events and structural strengths [38]. In [39], seismic
hazards are considered in a model that decides sitting and
sizing of storage devices. An extension to mobile storage
investments, using stochastic resilience optimization solved via
PH, is proposed in [40]. In [41], a trilevel model is proposed
to select lines to be hardened to reduce the vulnerability of
the distribution system to intentional or unintentional attacks.
In [42], the authors propose a two-stage robust optimization
model to select investments in line hardening and distributed
generation to increase the resilience of distribution systems
against natural disasters. In [43], the first approach to consider
both reliability and resilience while planing the expansion of
distribution grids is proposed. However, in [43], optimal power
flow (OPF)-related constraints are written for each considered
scenario of failure, which compromises scalability, and the
formulation is based on the assumption that the states of
charge of storage devices are deliberately managed so as to
minimize loss of load due to outages. Finally, [44] proposes an
approach to address the expansion planning (selecting network
upgrades) of large scale distribution systems with a focus on
preparing the grid to withstand extreme events specifically
related to ice and wind storms.

The relevance of the aforementioned works notwithstanding,
to the best of our knowledge, the current technical literature
does not provide a methodology for distribution grid planning
that: (i) determines the optimal portfolio of new investments to
improve distribution systems while considering reliability and
resilience, (ii) allows the system planner to express their level
of risk aversion, and (iii) can be scaled to address planning
exercises of realistic large-scale distribution networks. We
propose, in this paper, a methodology that comprises these
three aspects. This methodology can contribute not only to
the current technical literature but also to support, in practice,
the dialog between utilities and regulators to determine the in-
vestments that are actually needed to improve real distribution
systems.

B. Contributions

In this paper, we propose a practical methodology to plan
the expansion of large-scale distribution systems while mini-
mizing the convex combination of the expected value and the
CVaR of loss of load costs. With the proposed approach we
consider both reliability and resilience metrics, thus adding
to the existing approaches that either consider reliability [22],
[23] or resilience [35]–[40] in this problem.

More importantly, our work proposes a radically new ap-
proach to address the scalability challenges associated with
planning investments for large-scale distribution grids while
considering both reliability and resilience. Essentially, we
propose a novel efficient form of treating operation during
outages in the planning stage, based on 3 realistic assumptions
aligned with industry practices.

Our results show that objective functions based on tra-
ditional risk-neutral metrics, e.g. the expected energy not
served (EENS), produce expansion plans that neglect the

consequences of HILP events. Consistent risk-aversion strate-
gies can only be achieved through the inclusion of risk-
based objectives. Unlike the previously mentioned works, we
propose a methodology that can simultaneously (i) be general
enough to consider routine (related to reliability) and extreme
events (related to resilience) regardless of the cause while
allowing the planner to place more importance on reliability
or resilience according to their level of risk aversion, (ii)
consider not only traditional investments in line segments but
also in storage devices, and (iii) be scaled to realistic large
scale distribution systems. Finally, we demonstrate our method
using distribution planning information taken from a current
US utility distribution system.

The contributions of this paper can be summarized as:
1) To propose a distribution system expansion planning

model that accounts for reliability and resilience metrics
while allowing the system planner to define their own
level of risk-aversion. In this manner, the trade-off
between focusing on reliability or on resilience can be
evaluated so as to the determine the most appropriate
portfolio of investments in new line segments and stor-
age devices.

2) To formulate the proposed model based on realistic
assumptions in order to improve the scalability of the
proposed methodology. As a result, our proposed model
can be solved for real size large scale systems while
considering several failure scenarios which can be based
on historical data.

The remainder of the paper is organized as follows. Section
II presents a conventional scenario-based approach to formu-
late the problem under consideration in this paper. Section III
describes the steps to alleviate the computational burden of the
model presented in the previous section. Section IV presents
case studies, and finally in Section VI we conclude.

II. CONVENTIONAL SCENARIO-BASED APPROACH

Next, we present a methodology to select the optimal
portfolio of investments to upgrade the distribution system
with the objective of alleviating the impact of routine
failures and the damage associated with HILP events. To
achieve that, we consider not only the minimization of
the expected value of the cost of loss of load, but also
the CVaR of this cost for a range of failure scenarios
(considering failures of line segments of the grid) since the
CVaR can capture the influence of high impact events even
if they have low probabilities. Let Ξ ≜

{
{ζt,d}t∈T,d∈D,

{{∆−
n,t,d,s, ∆+

n,t,d,s}n∈ΨN\ΨSS , ψCV aR
t,d,s , {fl,t,d,s}l∈L,

{gTr
n,t,d,s}n∈ΨSS , {pinh,t,d,s, pouth,t,d,s, SOCh,t,d,s}h∈H ,

{vn,t,d,s}n∈ΨN }t∈T,d∈D,s∈Ω , {xL,fix
l }l∈LC , {xSD,fix

h ,

xSD,var
h }h∈HC

}
be the vector of decision variables. In a

conventional scenario-based approach, this problem can be
formulated as follows.

Minimize
Ξ

∑
l∈LC

CL,fix
l xL,fix

l

+
∑

h∈HC

[
CSD,fix

h xSD,fix
h + CSD,var

h xSD,var
h SP

in

h

]
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+
∑
d∈D

Wd

∑
t∈T

[
pfCImb

∑
n∈ΨN\ΨSS

[
∆−

n,t,d,1 +∆+
n,t,d,1

]]

+ (1− λ)pfCImb
∑
d∈D

Wd

∑
t∈T

∑
s∈Ω\{1}

ρs
∑

n∈ΨN\ΨSS

[
∆−

n,t,d,s

+∆+
n,t,d,s

]
+ λ pf CImb

∑
d∈D

Wd

∑
t∈T

[
ζt,d

+
∑

s∈Ω\{1}

ρs
1− αCV aR

ψCV aR
t,d,s

]
(1)

subject to:

ψCV aR
t,d,s + ζt,d ≥

∑
n∈ΨN\ΨSS

[
∆−

n,t,d,s +∆+
n,t,d,s

]
;

∀d ∈ D, t ∈ T, s ∈ Ω \ {1} (2)

ψCV aR
t,d,s ≥ 0;∀d ∈ D, t ∈ T, s ∈ Ω (3)

xL,fix
l ∈ {0, 1};∀l ∈ LC (4)

xSD,fix
h ∈ {0, 1};∀h ∈ HC (5)

0 ≤ xSD,var
h ≤ xSD,fix

h xSD
h ;∀h ∈ HC (6)

0 ≤ gTr
n,t,d,s ≤ G

Tr

n ;∀n ∈ ΨSS , d ∈ D, t ∈ T, s ∈ Ω (7)

V ≤ vn,t,d,s ≤ V ;∀n ∈ ΨN , d ∈ D, t ∈ T, s ∈ Ω (8)

− yl,t,d,sF l ≤ fl,t,d,s ≤ yl,t,d,sF l;∀l ∈ LE , d ∈ D,
t ∈ T, s ∈ Ω (9)

− yl,t,d,sx
L,fix
l F l ≤ fl,t,d,s ≤ yl,t,d,sx

L,fix
l F l;

∀l ∈ LC , d ∈ D, t ∈ T, s ∈ Ω (10)

−M(1− yl,t,d,s) ≤ ZL
l r

len
l fl,t,d,s −

(
vfr(l),t,d,s

− vto(l),t,d,s
)
≤M(1− yl,t,d,s);∀l ∈ LE , d ∈ D,

t ∈ T, s ∈ Ω (11)

−M(1− yl,t,d,s)−M(1− xL,fix
l ) ≤ ZL

l r
len
l fl,t,d,s

−
(
vfr(l),t,d,s − vto(l),t,d,s

)
≤M(1− yl,t,d,s)

+M(1− xL,fix
l ); ∀l ∈ LC , d ∈ D, t ∈ T, s ∈ Ω (12)∑

l∈L|to(l)=n

fl,t,d,s −
∑

l∈L|fr(l)=n

fl,t,d,s + gTr
n,t,d,s = 0;

∀n ∈ ΨSS , d ∈ D, t ∈ T, s ∈ Ω (13)∑
l∈L|to(l)=n

fl,t,d,s −
∑

l∈L|fr(l)=n

fl,t,d,s =
∑

h∈Hn

pinh,t,d,s

−
∑

h∈Hn

pouth,t,d,s −∆−
n,t,d,s +∆+

n,t,d,s +Dn,t,d;

∀n ∈ ΨN \ΨSS , d ∈ D, t ∈ T, s ∈ Ω (14)
SOCh,|T |,d,s = SOCh,t0,d,s;∀h ∈ H, d ∈ D, s ∈ Ω (15)

SOCh,t,d,s = SOCh,t0,d,s + ηδpinh,t,d,s − δpouth,t,d,s;

∀h ∈ H, d ∈ D, t = 1, s ∈ Ω (16)

SOCh,t,d,s = SOCh,t−1,d,s + ηδpinh,t,d,s − δpouth,t,d,s;

∀h ∈ H, d ∈ D, t ∈ T |t ≥ 2, s ∈ Ω (17)

0 ≤ SOCh,t,d,s ≤ SP
in

h ;∀h ∈ H \HC , s ∈ Ω (18)

0 ≤ SOCh,t,d,s ≤ SxSD,var
h P

in

h ;∀h ∈ HC , s ∈ Ω (19)

0 ≤ pinh,t,d,s ≤ P
in

h ;∀h ∈ H \HC , d ∈ D, t ∈ T, s ∈ Ω (20)

0 ≤ pouth,t,d,s ≤ P
out

h ;∀h ∈ H \HC , d ∈ D, t ∈ T,

s ∈ Ω (21)

0 ≤ pinh,t,d,s ≤ xSD,var
h P

in

h ;∀h ∈ HC , d ∈ D, t ∈ T,

s ∈ Ω (22)

0 ≤ pouth,t,d,s ≤ xSD,var
h P

out

h ;∀h ∈ HC , d ∈ D, t ∈ T,

s ∈ Ω (23)

The optimization problem (1)–(23) is a two-stage stochastic
program formulated as a mixed-integer linear programming
(MILP) model. The first-stage decision determines investment
in new line segments and storage devices. The second-stage
decision is associated with operation under a failure scenario.

The objective function to be minimized in (1) comprises
investment cost in new line segments and storage devices, cost
of imbalance in the base case (scenario s = 1), and a convex
combination between expected value and CVaR of imbalance
cost associated with a set of failure scenarios. Constraints
(2) and (3) model the behavior of variables ψCV aR

t,d,s and ζt,d
which are related to the CVaR of imbalance cost present in
the objective function. Constraints (4) and (5) express the
binary nature of investment variables xL,fix

l and xSD,fix
h

that correspond to the installation of new line segments and
storage devices, respectively. Constraints (6) limit the contin-
uous variable associated with the capacity of the candidate
storage devices to a upper bound that depends on whether
xSD,fix
h assumes value equal to one. Constraints (7) limit

the amount of power injected from the main transmission
grid to the substations n ∈ ΨSS of the distribution grid.
Constraints (8) impose voltage bounds for each bus of the
distribution grid. In this paper, we model the physics of the
distribution grid in a linear fashion by means of constraints
(9)–(14) as firstly proposed in [45] and widely adopted in
models for distribution expansion planning (see [34], [46],
[22], [23], and [47], for example). As mentioned in [45], this
physics representation uses current injections, magnitude of
voltages, and the absolute value of branch impedances. In
addition, as explained in [23], the formulation presented in
[45] is adaptation of the DC model for transmission network
which is based on three assumptions: (i) nodal voltages are
within a small range that contains the value of the base
voltage, (ii) the same power factor applies for all per-unit
nodal power injections and branch current flows, and (iii) the
per-unit voltage drop through each branch can be calculated
as the difference between per-unit voltage magnitudes of the
sending and receiving ends of the branch. The authors of [23]
further explain that, according to assumption (i), values of per-
unit nodal apparent power injections are equal to the values
nodal current injections. Moreover, assumption (ii) enables
the representation of per-unit branch current flows and nodal
power injections via their magnitudes. Therefore, under these
two assumptions, we can model nodal balance constraints
(Kirchhoff’s current law) as linear equalities that comprise
per-unit magnitudes of branch current flows and nodal power
injections. Furthermore, assumption (iii) paves the way to
representing Kirchhoff’s voltage law as linear constraints
that express the relationship between per-unit magnitudes of
branch current flows, nodal voltages, and branch impedances.
Constraints (9) and (10) enforce capacity limits to existing and

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2023.3273195

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



6

candidate line segments, respectively, whereas constraints (11)
and (12) relate power flows to voltages (also for existing and
candidate lines).Constraints (13) and (14) ensure nodal balance
for substations and other buses, respectively. Constraints (15)–
(17) model state of charge (SOC) variation along different
periods. In this work, we consider round-trip efficiency for
the storage devices. Therefore, we only include a discount
in the charging action in (16) and (17). Constraints (18) and
(19) impose SOC capacities for existing and candidate storage
devices, respectively. Constraints (20) and (21) enforce limits
to the charging and discharging of existing storage devices
while (22) and (23) do the same to candidate storage devices.

III. SCALABILITY-ORIENTED FORMULATION

The scenario-based formulation (1)–(23) can explicitly eval-
uate the cost of pre- and post-failure loss of load under a range
of scenarios as it accounts for optimal power flow (OPF)-
related constraints for both base case and each scenario of
failure. However, for medium-sized systems and a reasonable
number of scenarios, solving (1)–(23) is prohibitive due to
large number of constraints, in particular the time coupling
ones associated with the battery operation during outages.
In this Section, we modify formulation (1)–(23) to address
these scalablility issues by considering three assumptions that
are based on industry practice. To do so, firstly, we describe
three realistic assumptions in Section III-A that can help to
alleviate the computational burden of the problem. Secondly,
in Section III-B, we explain the rationale behind the appli-
cation of these assumptions within our proposed framework.
Thirdly, in Section III-C, we present a conceptual example that
illustrates with a simple case how our proposed scalability
approach, based on the stated assumptions, successfully de-
creases the computational burden associated with the problem
under consideration by significantly decreasing the number of
constraints without compromising the quality of the solution.
Finally, also in Section III-C, we formulate and describe
our proposed optimization model to address distribution grid
planning for large-scale networks while considering reliability
and resilience.

A. Assumptions

Assumption 1: Storage operation during outages. Here we
distinguish routine (Ωroutine) from resilience (Ωresilience)
outage events. The first correspond to spontaneous equipment
failures that cannot be predicted nor anticipated by storage
operation. Thus, we assume that storage is operated with other
objectives (economic) and, when a routine failures occur, the
existing storage SOC can be mobilized to mitigate it. The
second are extreme events (e.g. storms, floods, wildfires) that
can be predicted hours ahead. In this case, when the event
occurs, it is assumed that the operators have preventively
charged the batteries up to the maximum capacity. We recog-
nize, however, that this preventive action might not be possible
for earthquakes and cyberattacks due to their sudden nature.

Assumption 2: Power flow constraints during outages. We
consider that the loss of load associated with a particular
state of failure can actually be modelled without writing the

respective OPF-related constraints. This means that if a pre-
outage state satisfies the steady-state load flow limits, any re-
configuration of the network to mitigate an outage will also
satisfy those limits. The realistic assumption behind it is that
utilities only propose new ties as candidates after evaluating
the peak condition of different topology realizations.

Assumption 3: We assume that the number of candidate
assets are very small in comparison with the number of outages
and the grid size (utilities often evaluate a few investment
options in grids with thousands of nodes).

B. Scalability Approach

Assumption 1 allows to model storage operation during
failure events exclusively as a function of (i) battery capacity
and (ii) SOC at the time t when the failure occurs. Assumption
2 allows to evaluate the loss of load as a function of those
two elements (battery capacity for resilience-related failures
and instant SOC for routine-related failures) and the duration
k of the outage when there is no possible reconfiguration to
reconnect the portion of the grid that is disconnected by the
failed line. With these two assumptions, an outage scenario s
can be represented as a state of failure of the grid c, starting
at time t with a duration ks.

This separation between scenario and state of failure allows
to reduce the dimensionality of the problem. Considering
Assumption 3, it is possible to say that for each state of failure
c, there is only a small subset of relevant investments (Relc)
that can mitigate the loss of load, regardless of the starting time
t and the duration ks of the outage. For example, investments
in Zone A are irrelevant to mitigate the loss of load in Zone
B when there is a failure in the line between Zones A and B.

C. Model

Following this scalability approach, we considered the set
of all states of failure of the grid C and we relate scenarios
and states of failure using the binary parameter xstatec,s . For
each s ∈ Ω, this parameter is set to 1 just for one index
c within C, so as to indicate the state of failure associated
with each scenario. The parameter ks represents the duration
of the state of failure c in the outage scenario s. Following
Assumption 1, SOC at time t is calculated separately, based
on an economic objective (e.g. price signal), and modeled as a
parameter f bath,t,d both in the base case and failure scenarios. It
is important to note that f bath,t,d is used to determine the storage
investment (which remains a variable). Still in Assumption 1,
the storage is modeled with a maximum SOC in response to
extreme failure scenarios. Following Assumption 2, the loss
of load can be assessed by the energy balance within the
multiple network islands that result from the states of failure.
This assessment is similar to the expansion planning decision
making framework provided in Section II, but defining the set
of indexes of islanded buses Dj,e,c for each possible portfolio
of investments j and state of failure c, where e ∈ Ec and Ec

is the set of indexes of islands created by the state of failure
c. As mentioned in the scalability approach, we define the set
relevant investments Relc which contains the indexes j of the
investment combinations that are relevant to the state of failure
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c. In addition, we also create sets RelL,on
j,c and RelL,off

j,c which
contain the indexes of line segments that are built and not
built, respectively, under the relevant investment combination
j associated with failure state c.

1) Conceptual example: Consider the 9-bus system illus-
trated in Fig. 1, which has 10 line segments, being 8 existing
(solid lines) and 2 candidate (dashed lines). In addition, there
is a candidate storage device that can be connected to bus 6.
Since there are three candidate assets, we have 8 potential
investment portfolios, therefore J = {1, 2, 3, 4, 5, 6, 7, 8}.
Considering LC = {9, 10}, HC = {1}, a binary vec-
tor of investment portfolio solution can then be defined as
x = [xL,fix

9 , xL,fix
10 , xSD,fix

1 ]. The vector x can have any of
the following combination of elements (which are associated
with the indexes in J in the same order): [0, 0, 0], [1, 0, 0],
[0, 1, 0], [0, 0, 1], [1, 1, 0], [1, 0, 1], [0, 1, 1], or [1, 1, 1]. More-
over, consider C = {1, 2, 3, 4, 5, 6, 7} whose each element
is an index of failure state associated with the following 7
potential events in this order: L1 fails, L3 fails, L4 fails, L7
fails, L5 fails, L8 fails, L5 and L7 fail. Furthermore, suppose
Ω = {1, 2, 3, 4, 5, 6, 7, 8, 9}, Ωroutine = {2, 3, 4, 5, 6, 7}, and
Ωresilience = {8, 9}, where the first element is the index of the
base case scenario where there is no failure, the 7 following
elements in Ω are indexes of scenarios associated with the 7
considered failure states whose indexes are in C and the last
element of Ω corresponds to another scenario associated with
failure state with index 7 in C. It is worth mentioning that,
within our proposed framework, the same failure state can be
associated with different scenarios (at the expense of adding
only 4 extra constraints regardless of the size of the system –
see constraints (25), (26), (31)–(33), which will be described
later), allowing for the consideration of different possibilities
of outage duration. Given this setting, focusing on failure
states, for example, c = 1 ∈ C and c = 3 ∈ C, we have Rel1 =
{1, 2, 5, 6, 8} ⊂ J and Rel3 = {1, 3, 4, 5, 6, 7, 8} ⊂ J . For
j = 1 ∈ J and c = 1 ∈ C, we have the set of indices of islands
E1,1 = {1} and so, for e = 1 ∈ E1,1 in this case, we have the
corresponding set of islanded buses D1,1,1 = {2, 3} ⊂ ΨN

and the set of storage devices connected to these islands,
H1,1,1, is empty. On the other hand, for j = 2 ∈ J and
c = 1 ∈ C, the set of islands E2,1 is empty. The storage device
plays a role for the combination j = 4 ∈ J , c = 5 ∈ C, and
e = 1 ∈ E4,5, which corresponds to H4,1,5 = {1} ⊂ H .

It is worth noting that (i) usually the number of candidate
assets is much smaller than the number of existing ones
in large-scale distribution grids (ii), as demonstrated in this
conceptual case, each particular failure state most likely can
only have its impact alleviated by a subset of the potential
investment possibilities, and (iii) a number of combinations
of investments and failure states can lead to empty sets
of islands in the system. The aforementioned observations,
combined with the assumption that storage devices contribute
to alleviate outages with either their current state of charge
during normal operation (for routine failures) or their full
capacity (for resilience failures), allow us to avoid writing OPF
constraints for each scenario of failure (unlike the formulation
described in Section II) and also to further decrease the number
of unnecessary constraints in the model since, in many cases,

Storage 1

Substation

B1

B4

D4

B3

D3

B2

D2

B5

D5

B9
D8

B8

D9

B6

D6

B7

D7

L1

L2

L3

L4

L10

L7

L5

L6

L9

L8

Fig. 1. 9-Bus system.

their corresponding sets are empty (see constraints (36)–(40)
which will be described later). Next, we describe our proposed
mathematical formulation.

2) Formulation: Let Θ ≜
{

{ζt,d, {∆+
n,t,d,

∆−
n,t,d}n∈ΨN\ΨSS , {ψCV aR

t,d,s }s∈Ω, {fl,t,d}l∈L,

{gTr
n,t,d}n∈ΨSS , {L†

t,d,s}s∈Ω, {pinh,t,d, pouth,t,d, SOCh,t,d}h∈H ,
{vn,t,d}n∈ΨN }t∈T,d∈D, {{Lj,e,c, {SOCaux

h,j,e,c}h∈H}e∈Ej,c
,

xindj,c }j∈Relc,c∈C , {SOCref
h }h∈H , {xL,fix

l }l∈LC ,

{xSD,fix
h , xSD,var

h }h∈HC

}
be the vector of decision

variables. Our proposed formulation is written as follows.

Minimize
Θ

∑
l∈LC

[
CL,fix

l xL,fix
l

]
+

∑
h∈HC

[
CSD,fix

h xSD,fix
h + CSD,var

h xSD,var
h SP

in

h

]
+

∑
d∈D

Wd

∑
t∈T

[
pfCImb

∑
n∈ΨN\ΨSS

[
∆−

n,t,d +∆+
n,t,d

]]
+ (1− λ)pfCImb

∑
d∈D

Wd

∑
t∈T

∑
s∈Ω

ρsL
†
t,d,s

+ λ pf CImb
∑
d∈D

Wd

∑
t∈T

[
ζt,d

+
∑
s∈Ω

ρs
1− αCV aR

ψCV aR
t,d,s

]
(24)

subject to:

ψCV aR
t,d,s + ζt,d ≥ L†

t,d,s;∀d ∈ D, t ∈ T, s ∈ Ω (25)

ψCV aR
t,d,s ≥ 0;∀d ∈ D, t ∈ T, s ∈ Ω (26)

xindj,c ∈ {0, 1};∀c ∈ C, j ∈ Relc (27)

xL,fix
l ∈ {0, 1};∀l ∈ LC (28)

xSD,fix
h ∈ {0, 1};∀h ∈ HC (29)

0 ≤ xSD,var
h ≤ xSD,fix

h xSD
h ;∀h ∈ HC (30)

L†
t,d,s ≥

∑
c∈C

xstatec,s

∑
j∈Relc

∑
e∈Ej,c

[[min{t+ks,|T |}∑
τ=t

Lj,e,cf
load
τ,d

]
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−
∑

h∈Hj,e,c

SOCaux
h,j,e,cf

bat
h,t,d

]
;∀t ∈ T, d ∈ D,

s ∈ Ωroutine (31)

L†
t,d,s ≥

∑
c∈C

xstatec,s

∑
j∈Relc

∑
e∈Ej,c

[[min{t+ks,|T |}∑
τ=t

Lj,e,cf
load
τ,d

]
−

∑
h∈Hj,e,c

SOCaux
h,j,e,c

]
;∀t ∈ T, d ∈ D,

s ∈ Ωresilience (32)

L†
t,d,s ≥ 0;∀t ∈ T, d ∈ D, s ∈ Ω|s ≥ 2 (33)

L†
t,d,s = 0;∀t ∈ T, d ∈ D, s = 1 (34)∑

j∈Relc

xindj,c = 1;∀c ∈ C (35)

−M
∑

l∈RelL,on
j,c

(1− xL,fix
l )−M

∑
l∈RelL,off

j,c

xL,fix
l

≤ xindj,c − 1 ≤M
∑

l∈RelL,on
j,c

(1− xL,fix
l )

+M
∑

l∈RelL,off
j,c

xL,fix
l ;∀c ∈ C, j ∈ Relc (36)

−M(1− xindj,c ) ≤ SOCref
h − SOCaux

h,j,e,c

≤M(1− xindj,c );∀c ∈ C, j ∈ Relc, e ∈ Ej,c,

h ∈ Hj,e,c (37)

−Mxindj,c ≤ SOCaux
h,j,e,c ≤Mxindj,c ;∀c ∈ C, j ∈ Relc,

e ∈ Ej,c, h ∈ Hj,e,c (38)

−M(1− xindj,c ) ≤
[ ∑
i∈Dj,e,c

Dpeak
i

]
− Lj,e,c

≤M(1− xindj,c );∀c ∈ C, j ∈ Relc, e ∈ Ej,c (39)

Lj,e,c ≥ 0;∀c ∈ C, j ∈ Relc, e ∈ Ej,c (40)

0 ≤ gTr
n,t,d ≤ G

Tr

n ;∀n ∈ ΨSS , d ∈ D, t ∈ T (41)

V ≤ vn,t,d ≤ V ;∀n ∈ ΨN , d ∈ D, t ∈ T (42)

− yl,t,d,0F l ≤ fl,t,d ≤ yl,t,d,0F l;∀l ∈ LE , d ∈ D,
t ∈ T (43)∑

l∈L|to(l)=n

fl,t,d −
∑

l∈L|fr(l)=n

fl,t,d + gTr
n,t,d = 0;

∀n ∈ ΨSS , d ∈ D, t ∈ T (44)∑
l∈L|to(l)=n

fl,t,d −
∑

l∈L|fr(l)=n

fl,t,d =
∑

h∈Hn

pinh,t,d

−
∑

h∈Hn

pouth,t,d −∆−
n,t,d +∆+

n,t,d +Dn,t,d;

∀n ∈ ΨN \ΨSS , d ∈ D, t ∈ T (45)

−M(1− yl,t,d,0) ≤ ZL
l r

len
l fl,t,d −

(
vfr(l),t,d

− vto(l),t,d
)
≤M(1− yl,t,d,0);∀l ∈ LE , d ∈ D, t ∈ T (46)

SOCh,|T |,d = SOCh,t0,d;∀h ∈ H, d ∈ D (47)

SOCh,t,d = SOCh,t0,d + ηδpinh,t,d − δpouth,t,d;∀h ∈ H,

d ∈ D, t = 1 (48)

SOCh,t,d = SOCh,t−1,d + ηδpinh,t,d − δpouth,t,d;∀h ∈ H,

d ∈ D, t ∈ T |t ≥ 2 (49)

0 ≤ SOCref
h ≤ SP

in

h ;∀h ∈ H \HC (50)

0 ≤ SOCref
h ≤ SxSD,var

h P
in

h ;∀h ∈ HC (51)

SOCh,t,d = SOCref
h f bath,t,d;∀h ∈ H, d ∈ D, t ∈ T (52)

0 ≤ pinh,t,d ≤ P
in

h ;∀h ∈ H \HC , d ∈ D, t ∈ T (53)

0 ≤ pouth,t,d ≤ P
out

h ;∀h ∈ H \HC , d ∈ D, t ∈ T (54)

0 ≤ pinh,t,d ≤ xSD,var
h P

in

h ;∀h ∈ HC , d ∈ D, t ∈ T (55)

0 ≤ pouth,t,d ≤ xSD,var
h P

out

h ;∀h ∈ HC , d ∈ D, t ∈ T (56)

The objective function to be minimized (24) and constraints
(25)–(30) are similar to (1)–(6). One difference is that, in (24),
∆−

n,t,d and ∆+
n,t,d correspond to imbalances only under base

case condition where no failure takes place. Also, the loss
of load for period t of each typical day d that belongs to
each scenario s is represented by L†

t,d,s, which is bounded
for routine failure scenarios in (31) and for resilience failure
scenarios in (32). Moreover, constraints (27) enforce the
binary nature of decision variables xindj,c that indicate which
portfolio of candidate assets will receive investments. For each
scenario s ∈ Ωroutine, the right-hand side of constraint (31)
corresponds to the loss of load under the respective failure
state c, which is assigned to scenario s via the only xstatec,s

equal to 1 among all c ∈ C. This loss of load is the result of
the summation across all investment possibilities and islands
created by line outages of the demand during the failure period
minus the current SOC of batteries connected to the respective
islands. Analogously, the right-hand side of constraints (32)
represent loss of load for resilience scenarios. The salient
feature in (32) is that the whole capacity of the storage devices
can be used under a resilience scenario. This assumption
is realistic as extreme events (such as natural disasters) can
be usually predicted with enough time in advance to charge
batteries to their full potential and provision their capacities
to respond to the adverse conditions. More specifically, in
constraints (31) and (32), variable SOCaux

h,j,e,c represents the
state of charge of storage device h given investment decision
j while considering that this storage device will be attached to
island e under a contingency state c. This variable SOCaux

h,j,e,c

can assume any value up to the maximum state of charge
allowed for existing storage devices and up to the maximum
state of charge according to investment for candidate storage
devices. In the block of constraints (31), we consider the
parameter f bath,t,d, which informs the percentage of the state
of charge that the storage device h will have at time period t
of the typical day d based on energy prices. In the block of
constraints (32), we consider that severe outages are predicted
to happen and therefore the whole energy capacity of each
(existing or newly installed) storage device will be available
to contribute to demand supply. Hence, in the case of (32), we
do not include the percentage parameter f bath,t,d. As mentioned
in the conceptual example, in constraints (31) and (32),
more than one scenario s can be associated with the same
failure state c with a different duration ks. Constraints (33)
ensure the non-negativity of loss of variables L†

t,d,s while
constraints (34) enforce the loss of load to be zero for the
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most likely scenario where no element fails as in the base
case condition. Constraints (35) indicate that just one of the
possible investment combinations in lines will be chosen and
therefore have an impact for failure state c. Constraints (36)
associate the combination of lines that are installed (whose
indexes are in RelL,on

j,c ) and not installed (whose indexes are
in RelL,off

j,c ) with variable xindj,c . Constraints (37) and (38)
indicate which storage devices will be associated with each
island created after an outage according to the investment
decision. Constraints (39) associate the loss of load of each
island (represented by variable Lj,e,c) with the summation
of the peak demand of the islanded buses according to the
investment made. Note the peak demand of each island Lj,e,c

is multiplied by a factor f loadτ,d in (31) and (32) to be adjusted to
the demand of time period τ . Constraints (40) ensure the non-
negativity of variables Lj,e,c. As pointed out in the conceptual
example, constraints (36) are only written to the subset of
investment possibilities that are relevant to each failure state
c, which decreases the size of the problem. In addition, con-
straints (37) and (38) are only written when the corresponding
sets Ej,c and Hj,e,c are not empty, whereas constraints (39)
and (40) are only written when the respective sets Ej,c are
not empty, which, therefore, contributes to the scalability of
the proposed formulation. Constraints (41)–(56) represent the
base case operating condition analogously to (7)–(23). The
salient features in (41)–(56) with respect to (7)–(23) are the
inclusion of the decision variables SOCref

h and constraints
(50) which enforce a predetermined hourly profile for each
storage device that is dictated by parameters f bath,t,d. The values
of f bath,t,d are a priori determined by optimizing storage charging
and discharging while only considering energy price variation
within the different considered typical days. This assumption
on fixed SOC hourly profiles makes sense as batteries are
usually operated to avoid higher costs instead of capacity
provision for potential routine failures. In the case of resilience
failures, as aforementioned, the full capacity of the storage
devices can be used.

IV. CASE STUDIES

The proposed methodology is illustrated in this section
using two case studies. The first one compares the model
presented in Section II to the proposed model described in
Section III in terms of computational efficiency using a 54-
bus system. The second case study highlights the scalability of
the proposed methodology with a large-scale real distribution
network from the ComEd system in Illinois, USA. In addition,
the second case study demonstrates the capability of the
proposed methodology of delivering investment plans with
different levels of risk aversion considering reliability and
resilience and compares the performance of the system under
these different investment plans.

Our methodology was implemented on a Ubuntu-Linux
server with two Intel® Xeon® E5-2680 processors @ 2.40GHz
and 64 GB of RAM, using Python 3.8, Pyomo and solved via
CPLEX 12.9.

A. 54-bus system

In this case study, we consider a 54-bus system (whose data
can be found in the [48]) with 50 load nodes, 4 substations,
50 existing lines, 22 candidate lines and 4 candidate nodes
to receive storage devices. For this system, we have obtained
investment plans with the model presented in Section II and
with the proposed model described in Section III for two cases.
In the first case, we take into account 100 scenarios of failure
and, in the second case, we include 1000 scenarios of failure.
The results of this case study are summarized in Tables I and
II.

TABLE I
54-BUS SYSTEM – SUMMARIZED RESULTS CONSIDERING 100 SCENARIOS

λ 0 0.5 1
Objective

1369.88 6473.74 8802.11Model function($)
Section II Computing

0097.66 0185.18 0245.88time(s)
Objective

1370.68 6474.11 8802.11Model function($)
Section III Computing

0000.25 0000.3 0000.29time(s)

TABLE II
54-BUS SYSTEM – SUMMARIZED RESULTS CONSIDERING 1000

SCENARIOS

λ 0 0.5 1
Objective Out of Out of Out of

Model function($) memory memory memory
Section II Computing Out of Out of Out of

time(s) memory memory memory
Objective

23227.10 93502.10 147635.26Model function($)
Section III Computing

3.21 7.75 7.22time(s)

Candidate Line
Candidate Storage
Existing Lines

Candidate Line

Existing Lines

Fig. 2. Distribution system map.
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Investment for λ=0.5

Candidate Line

Existing Lines
Storage Investment

Investment for λ=0

Candidate Line
Built Line
Existing Lines
Storage Investment

Investment for λ=1

Fig. 3. Investment plans for different levels of risk aversion considering VoLL=$1.50/kWh.

TABLE III
INVESTMENTS ASSOCIATED WITH EACH LEVEL OF RISK AVERSION AND VALUE OF LOSS OF LOAD.

Value of

λ

Annual Annual
Total Total Number Installed Computingexpected value CVaR5%

loss of (loss of load) (loss of load) investments investments of storage times
load costs costs in lines in storage installed capacity

(s)($/kWh) ($k/year) ($k/year) ($k) ($k) lines (MWh)

1.50 0 071.31 11,388,684.38 256.80 0,000.00 06 00.00 0,380.05
1.50 0.5 061.88 00,001,237.58 572.80 1,038.20 11 01.60 1,926.94
1.50 1 057.52 00,001,150.49 572.80 4,609.60 11 07.00 2,727.73

5.00 0 216.05 37,962,281.25 476.50 0,000.00 09 00.00 0,445.73
5.00 0.5 185.76 00,003,715.13 824.20 5,942.40 13 09.00 2,106.29
5.00 1 183.65 00,003,673.09 824.20 7,438.70 13 11.30 2,216.20

As can be seen from the results reported in Table I, it takes
significantly less time to obtain solutions with the proposed
formulation. In addition, Table II highlights that, when a large
number of scenarios of failure is taken into consideration, the
model presented in Section II might not even be loaded into
the machine due its excessive need for RAM. In contrast,
the proposed methodology can still solve the problem within
short periods of time. This issue arises since the model
of Section II explicitly comprises OPF constraints for each
scenario of failure within a single optimization problem while
our proposed formulation efficiently models the scenarios of
failure.

B. 2055-bus system

This ComEd system (depicted in Fig. 2) has 1435 cus-
tomers, a peak load of 3.5MW, a base voltage of 12.5kV
and it is composed of 2055 nodes, 2062 existing lines, and 2
substations. In addition, we consider 13 candidate lines and 9
candidate nodes to receive storage investment. Each candidate
line has an investment cost of $158K per mile and each storage
costs $660/kWh.

To model the load, we considered 4 typical days, rep-
resenting the electricity demand in different meteorological
seasons. We combined the peak demand with the demand
profile reported by the U.S Energy Information Administration
in [49] (considering Illinois in Zone 4 of MISO).

Routine failures of the network in Fig. 2 were modeled
based on ComEd’s historical outages from February 1998 to
November 2020. Additionally, we model three major events
with a rate of failure of 0.0143 times/year (equivalent to once
every 70 years). The first, involves a simultaneous failure
of two line segments in the north part of the network that
disconnects 46% of consumers during 3 hours. The second,
involves one of the substations and affects 55% of consumers
for 1 hour. The third, mimics a recent extreme event, caused
by storm in Illinois in August 2020 (described in [12]), that,
according to ComEd’s data, simultaneously affected 5 line
segments for 58 hours.

Considering these failures and the investment costs, we
obtained investment plans for three levels of risk aversion:
λ = 0, λ = 0.5, and λ = 1. The first (λ = 0) is a risk neutral
plan, considering only the expected value of loss of load (24).
The second (λ = 0.5), has a medium level of risk aversion as
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Fig. 4. Extreme failure in August 2020 – lines out-of-service and respective
number of customers affected in the system under consideration.

it considers both expected value and CVaR of cost of loss of
load with equal weight in (24), while the third plan (for λ = 1)
has the highest level of risk-aversion, exclusively minimizing
the CVaR of cost of loss of load.

It is important to note that this cost is highly dependent on
the user defined value of loss of load (VoLL), modeled by
the parameter CImb. For routine outages, this economic value
can be obtained by tools such as the Interruption Cost Esti-
mate (ICE) Calculator [50]. For the purpose of demonstrating
our methodology, we obtain plans for VoLL=$1.5/kWh and
VoLL=$5.0/kWh.

Table III presents the investments results associated with
the different levels of risk aversion and values of loss of load
and the respective values of annual expected value and CVaR
of loss of load. In addition, Fig. 3 illutrates the investments
made for all considered values of λ when considering the
VoLL equal to 1.50/kWh. As expected, a larger cost of VoLL
increases the values of expected value and CVaR of cost
of loss of load and motivates investments to avoid a more
expensive load shedding. In addition, higher levels of risk
aversion (λ = 0.5 and λ = 1) substantially decrease the value
of the annual costs associated with CVaR of loss of load.

1) Simulation of system performance under an extreme
failure: For all obtained expansion plans, we have simulated
the system performance under the extreme failure reported
by ComEd in August 2020 and represented in Fig. 4. For
illustrative purposes, we have limited this failure to 12 hours
in a summer day. In Fig. 5, we depict how much of the demand
was served for each plan considering VoLL = 1.50/kWh
and VoLL = 5.00/kWh, respectively. Compared to the plan
obtained for λ = 0, the plan attained for λ = 1 can serve
up to 12% more of the demand during the extreme event
when considering VoLL = 1.50/kWh. This difference increases
to 29% for VoLL = 5.00/kWh. In fact, since the plan for
λ = 0 is risk neutral and therefore can only capture the
effect of expected outages during normal operating conditions,
the performance of this plan under this extreme failure is the
same as not investing in anything. In Fig. 6, we compare the
investment made in storage to the total load not served during

the day simulated with an extreme event. As can be seen,
higher levels of risk aversion and VoLL significantly decrease
the total load not served.

Fig. 5. Hourly served demand under extreme event for investments consid-
ering VoLL=$1.50/kWh on the left and VoLL=$5.00/kWh on the right.

Fig. 6. Total load shedding under extreme event versus investment in storage
capacity.
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Fig. 7. Out-of-sample analysis—CVaR1% of hourly energy not served
for expansion plans obtained under different levels of risk aversion while
considering VoLL=$1.50/kWh.

2) Out-of-sample simulation: We have generated 1000 an-
nual scenarios of operation to evaluate the performance of the
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six obtained expansion plans in an out-of-sample analysis. For
each hour of each scenario, we generated Bernoulli trials for
line states (1 in service; 0 failure) with probabilities according
to their rates of failure and also considering the (low) prob-
ability of extreme failures that would impact multiple lines
simultaneously.The performance of the obtained expansion
plans was then assessed under the realization of the generated
scenarios and compared to a base case without investments.
This assessment involved computing hourly and annual energy
not served as well as SAIFI and SADI for each scenario. In
Tables IV and V, we present the resulting metrics and, in Fig.
7, we present a histogram that shows the distributions of the
CVaR of hourly energy not served for the plans obtained under
different levels of risk aversion and the base case. Average
metrics in Tables IV and V are related to reliability while
CVaR and worst case metrics are associated with resilience. As
can be seen, both reliability and resilience metrics significantly
improve when the level of risk aversion and the VoLL increase.
In addition, in Fig. 7, it is clearly demonstrated that higher
levels of risk aversion when determining new investments
result in less hours with higher levels of CVaR of energy not
served.

TABLE IV
OUT-OF-SAMPLE ANALYSIS – METRICS OF ANNUAL ENERGY NOT SERVED

FOR EXPANSION PLANS OBTAINED UNDER DIFFERENT LEVELS OF RISK
AVERSION AND VALUES OF LOSS OF LOAD.

VoLL
Metric

No
λ = 0 λ = 0.5 λ = 1($/kWh) Inv.

1.50

Average annual
20.95 6.09 3.47 2.61energy not

served (MWh)

CVaR1% of
39.03 17.05 13.20 10.36annual energy

not served (MWh)

Worst case
44.17 23.21 21.57 17.48annual energy

not served (MWh)

5.00

Average annual
20.95 4.18 2.36 2.34energy not

served (MWh)

CVaR1% of
39.03 14.05 8.81 8.54annual energy

not served (MWh)

Worst case
44.17 22.49 16.08 15.36annual energy

not served (MWh)

V. CONCLUSIONS

In this paper, we propose a scalable risk-based method
for reliability and resilience planning of distribution systems.
The computational efficiency of our approach is illustrated
with a case study based on a 54-bus system in which we
vary the number of considered scenarios and obtain solutions
with our proposed approach within computing times that are
dramatically lower than those associated with a conventional
approach, which also leads to the computer running out of
memory for the instances with one thousand scenarios. In
addition, we further demonstrate the scalability of the proposed

TABLE V
OUT-OF-SAMPLE ANALYSIS – METRICS OF SAIFI AND SAIDI FOR
EXPANSION PLANS OBTAINED UNDER DIFFERENT LEVELS OF RISK

AVERSION AND VALUES OF LOSS OF LOAD.

VoLL
Metrics

No
λ = 0 λ = 0.5 λ = 1($/kWh) Inv.

1.50

Average
1.337 0.432 0.305 0.265SAIFI

CVaR5%
1.901 0.720 0.507 0.439SAIFI

Average
0.668 0.360 0.284 0.252SAIDI (h)

CVaR5%
0.827 0.544 0.469 0.406SAIDI (h)

5.00

Average
1.337 0.336 0.257 0.253SAIFI

CVaR5%
1.901 0.573 0.421 0.421SAIFI

Average
0.668 0.302 0.247 0.245SAIDI (h)

CVaR5%
0.827 0.515 0.398 0.393SAIDI (h)

methodology with a case study based on real data from a large-
scale distribution system of the ComEd Reliability Program.
Our results using a ComEd distribution network demonstrate
that the proposed method is able to produce investment plans
(for a real-scale feeder) that have been optimized according
to the degree of risk aversion, considering both investment
costs and outage frequency and severity. The proposed method
is intended to support “cost vs risk” discussions between
utilities and regulators by providing an internally consistent
framework for evaluating trade-offs and synergies between
reliability and resilience investments. Future work will focus
on the inclusion of distributed renewable generation within our
proposed framework.
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