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Abstract 
The phages among us: Revealing the role of bacteriophages in biological 

ecosystems through whole genome sequence analysis 
Doctor of Philosophy 

in 
Quantitative and Systems Biology 

by 
Tyrome Steven Sweet Jr. 

University of California, Merced 
2022 

Chair of the Advisory Committee: Dr. Michael Beman 
 

Bacteriophages (phages) are viruses that target and infect bacteria. The impact of phages 
on a biological ecosystem could result in devastation to the system or augmentation. T/., 
For example, in the bacterium Staphylococcus aureus, phages have important roles in 
virulence, antibiotic resistance, and genome evolution. In agricultural ecosystems, 
bacteria and phages offer the host plant protection from pathogens, and provide resilience 
against stressful environments. Determining the presence of virulence and beneficial 
genes helps us uncover more about  the relationship between the host, bacteria and 
phages. 
Identifying and analyzing phages in bacterial genome sequences through 
experimentation can be costly in both time and resources. Rapid growth in the number of 
sequenced bacterial genomes allows for an investigation of prophage sequences at an 
unprecedented scale. Computational pipelines and systems can be used to explore how 
phages impact the host and ecosystem through techniques such as: (1) alignment-based 
methods that leverage sequence homology and sequence similarity, (2) alignment-free 
methods centered around sequence composition and genomic features, and (3) machine-
learning-based methods. In this dissertation, I leverage the above techniques and others 
to explore the role of phages in biological ecosystems through bacterial genome 
sequences.  
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Chapter 1: Introduction 
 

Biological ecosystems 

A biological ecosystem is a network of both living and nonliving components that co-exist 
[44]. Abiotic components are the non living components in the system which includes 
water, soil, and the atmosphere [44]. Biotic components are the living components of the 
system which are the plants, animals, and microorganisms found in the system. 
Interactions between biotic and abiotic components are complex and determine the 
stability of an ecosystem [38,44]. Bacteriophages are able to affect both abiotic and biotic 
components making them a force of biodiversity in ecosystems [29,41]. For example, In 
agricultural ecosystems plant-microbe interactions help maximize crop yields and 
decrease crop losses due to biotic or abiotic stressors [17]. 

Bacteriophages 

Bacteriophages are viruses that infect and replicate in bacteria. Phages outnumber 
bacteria by 10 to 1 with an estimated global population of 1031 and are believed to be the 
most abundant self-replicating organisms on earth [27,34]. Their genome size averages 
between 24-200 nm in length [5,22]. Bacteriophages currently have one order and 10 
families that they are classified into [1,18,22]. 
Bacteriophages are diverse in shape and genetic information they carry [29]. Their 
structure consists of a capsid (Shell that protects their DNA), a tail, and tail fibers that 
attach to the host’s cell membrane [26,29].  Bacteriophages can be found in natural 
environments such as the human body, marine environments, and soil, as well as artificial 
environments such as wastewater treatment systems, industrial applications, and 
laboratory-based techniques (genetic engineering of phages) [6]. It is hypothesized that 
prophage sequences that confer a selective advantage to their host are more likely to be 
conserved in the bacterial genomes than those that are neutral or deleterious to their 
hosts [19]. The resultant expectation is that prophage sequences will contain an elevated 
quantity of genes conferring adaptive functions to host bacteria [2,6,14]. 
Bacteriophages have adaptive replication cycles, lytic and lysogenic. Lytic phages 
replicate inside the host and cause host lysis in order to enter the external environment, 
thus causing the release of host organic matter and new viral particles [12]. Temperate 
bacteriophages, bacteriophages whose genome is incorporated into the host bacterium, 
can switch from the lysogenic to lytic replication cycle [12,16], the mechanisms of which 
are currently still unknown. 

Bacteriophages drive evolution in biological ecosystems 

Bacteriophages play key roles in bacterial evolution, governing abundance, adaptation, 
and diversity of bacterial communities [29]. The impacts of phages on a biological 
ecosystem could result in devastation to the system or augmentation [6,26,29]. Through 
transduction (infection) they introduce several genes from previous hosts and the 
environment to the current infected host [26,27]. During horizontal gene transfer several 
genetic elements are introduced to the host such as capsid proteins, tail proteins and 
genes that are potentially beneficial [8,23,40]. Phages are able to cause the host to 
express different phenotypes due to the genes introduced during the lysogenic life cycle 
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[16,23]. The more beneficial the gene is to the host, the more likely the host will accept 
that particular phage into their genome [12,19,23].  
Bacteria are capable of evolving to improve survival capabilities in different environments 
[50,51,52]. In  the bacterium staphylococcus aureus, temperate bacteriophages housing 
the mecA gene were able to drive S. aureus into evolving by making it resistant to 
methicillin [45]. Historically it has been believed that  Methicillin-resistant S. aureus 
(MRSA) has a single point of origin [57]. For example, Kreiswirth et al. observed 472 
isolates using chromosomal transposon Tn554 to conclude that the mecA gene 
introduced to S. aureus may have a single origin [57]. In agricultural ecosystems bacteria 
is capable of providing beneficial genes to plants [51]. For example, certain bacteria can 
develop resistance to metals found in the environment which helps it survive in an 
environment that's toxic [53/54]. In this dissertation, I explore several sequences showing 
genes providing beneficial genes, and explore how different identified phages are 
associated. 
Bacteria have been observed to make connections to other organisms and phages but 
currently the relationship between bacteria, viruses and a host organism shares 
[54,55,56]. Bacteria can promote plant growth by providing beneficial genes [56]. Phages 
can transduce mercury resistance genes to bacteria [55]. The effects both instances have 
on each other are currently not fully understood. 

Experimental procedures cost time and money 

Bacteriophage experimental protocols such as isolation, purification, amplification, 
microscopy, DNA extraction, and characterization can take weeks and costs hundreds of 
thousands for equipment and supplies [31,32, 33,37].  
Experimental protocols yield the most accuracy, however they tend to be limited in 
discovering the genetic processes that take place [20]. Experiments require precision in 
order to observe specific biological processes, which limits the possibility of exploratory 
analysis for discovering and identifying bacteriophages [2]. Next-generation sequencing 
aids this process by allowing scientists to capture samples and results from their 
experiments as a digital file [32,33,37]. 
The advancement of sequencing technology and computational methods have advanced 
our ability to observe processes during experiments [15,24,25 ]. For instance, 
computational methods can detect trends in omics data but are limited to the available 
data from experiments to train and validate models [24]. Endy et al. used experimental 
data to simulate Bacteriophage T7 wild-type development and was able to observe and 
compare the simulated results to E. coli BL21 experiments [15]. Experimental procedures 
yield more results when both sequencing and computational methods are leveraged (See 
Figure 1)[15,24,25]. 
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Figure 1: Bacteriophage identification and quantification methods. One approach 
to identifying and characterizing bacteriophages is extremely limiting. Multiple 
approaches through sequencing, experimental procedures and computational methods 
combined offer the most precision on detecting and enumerating bacteriophages [2]. 
Sequencing captures bacteria and phage genomes as digital files, allowing 
computational analysis. Quantitative polymerase chain reaction (Q-PCR) is a method 
by which the amount of the PCR product can be determined, in real-time, which was 
used to quantify bacteriophages M13 and T7 by investigating gene expression [2]. 
Computational methods leverage data science and mathematical methods to detect 
patterns and trends in genomic data. A combination of all 3 methods are leveraged to 
discover and quantify phages. 

Computational methods for sequence analysis 

Next-generation sequencing (NGS) captures genetic information in the sample’s genome 
as a whole genome sequence (WGS)[32]. Viral discovery has been revolutionized by 
metagenomics, which allows computational identification of viral genome sequences 
without experimentation [14,35]. Several online repositories offer whole genome 
sequences that were experimentally annotated. One example is The IMG/M system which 
supports the annotation, analysis and distribution of microbial genome and microbiome 
datasets sequenced at The Department of Energy (DOE) Joint Genome Institute (JGI) 
and from other contributing labs and scientists from around the world [10]. Another 
example is the National Center for BioTechnology Information (NCBI) GenBank is a 
comprehensive database that contains publicly available nucleotide sequences for almost 
260,000 formally described bacterial species that were collected from laboratories and 
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large-scale sequencing projects [7]. Both repositories contained bacterial and viral 
sequences, but there are more viral specific sources. ViruSITE is a database of viral 
genomes and genes. ViruSITE comprises all genomes from viruses, viroids and satellites 
published in NCBI Reference Sequence Database by computationally extracting from 
numerous resources (NCBI RefSeq, UniProtKB, GO, ViralZone, PubMed) and integrating 
under human supervision [39]. ViruSite has a total of 11,620 viral sequences, 14,813 
genome sequences and 597,210 genes detected from the total 26,433 combined viral 
and genome sequences [39]. Overall, repositories offer the foundation for development 
of computational methods. 
Computational focused approaches such as  (1) alignment-based methods that leverage 
sequence homology and sequence similarity, (2) alignment-free methods centered 
around sequence composition and genomic features, and (3) machine-learning-based 
methods [43]. These different approaches are needed because unlike bacteria, viruses 
are not currently considered living organisms and they require different approaches to 
understand the extent of phage global diversity [11]. 
Several applications such as PhiSpy, MUSCLE, VirSorter2 and checkV are constrained 
to analyzing a limited number of WGS which makes bulk analysis of sequences difficult 
[3,13,21,30]. Pipelines offer a variety of genome analysis and can be used to analyze 
multiple sequences [14,28,42].  

Exploring Bacteriophages impacts on ecosystems using computational 
techniques 

Determining the presence of virulence and beneficial genes helps us uncover more about 
the relationship between the host, bacteria and phages. Computational techniques 
through a novel computational pipeline can demonstrate potential novel plant-host 
interactions that an experiment hasn’t been designed for. Furthermore, Identifying and 
analyzing phages in bacterial genome sequences through experimentation can be costly 
in both time and resources. Rapid growth in the number of sequenced bacterial genomes 
allows for an investigation of prophage sequences at an unprecedented scale. 
Computational pipelines and systems can be used to explore how phages impact the host 
and ecosystem through techniques such as: (1) alignment-based methods that leverage 
sequence homology and sequence similarity, (2) alignment-free methods centered 
around sequence composition and genomic features, and (3) machine-learning-based 
methods [3,9,21,30,36,43]. Alignment-based methods that leverage sequence homology 
and sequence similarity such as BLAST [4] and Phirbo [47] give insight on sequence 
similarity, and taxonomy [43]. Alignment-free methods centered around sequence 
composition and genomic features can be used for viral phylogeny [43,46]. Machine-
learning-based methods like virSorter2 and PhiSpy can predict phage regions in bacterial 
sequences that may not have been identified in experiments [3,21,43]. In this dissertation, 
I leverage the above techniques and others to explore the role of phages in biological 
ecosystems through bacterial genome sequences.The primary focus of this dissertation 
is to understand the role bacteriophages play in biological ecosystems, and whether or 
not they promote competition between microorganisms in a host’s system.
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Abstract  

Prophages have important roles in virulence, antibiotic resistance, and genome 
evolution in Staphylococcus aureus. Rapid growth in the number of sequenced S. 
aureus genomes allows for an investigation of prophage sequences at an 
unprecedented scale. We developed a novel computational pipeline for phage discovery 
and annotation. We combined PhiSpy, a phage discovery tool, with VGAS and 
PROKKA, genome annotation tools to detect and analyze prophage sequences in 
nearly 10,011 S. aureus genomes, discovering thousands of putative prophage 
sequences with genes encoding virulence factors and antibiotic resistance. To our 
knowledge, this is the first large-scale application of PhiSpy on a large-scale set of 
genomes (10,011 S. aureus). Determining the presence of virulence and resistance 
encoding genes in prophage has implications for the potential transfer of these 
genes/functions to other bacteria via transduction and thus can provide insight into the 
evolution and spread of these genes/functions between bacterial strains. While the 
phage we have identified may be known, these phages were not necessarily known or 
characterized in S. aureus and the clustering and comparison we did for phage based 
on their gene content is novel. Moreover, the reporting of these genes with the S. 
aureus genomes is novel. 

Impact statement 

Bacteriophages (phage) play key roles in bacterial evolution, governing abundance, 
adaptation, and diversity of bacterial communities. Temperate phage can facilitate 
bacterial adaptation via transduction of novel genes. This study takes advantage of the 
unprecedented quantity of genomic sequencing in public repositories to analyze viral 
genes in 10,011 Staphylococcus aureus genomes. We found 196,727 predicted 
prophage genome sequences, with an estimated total of 129,935 genes. We 
determined the function of these genes, identifying a large quantity of novel genes that 
benefit the host such as beta-lactamase, enterotoxins and cytotoxins. These results will 
inform studies of bacterial evolution and adaptation, by identifying the mechanism of 
horizontal transfer of genes that confer adaptive traits to bacteria, especially in the 
context of antibiotic resistance. 

Introduction 

The ecological importance of viruses is now widely recognized, yet our limited 
knowledge of viral sequence space and virus–host interactions precludes accurate 
prediction of their roles and impacts [65]. Bacteriophages, viruses that infect and 
replicate in bacteria, are the most abundant self-replicating organisms on earth. Phages 
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outnumber bacteria by 10 to 1 with an estimated global population of 1031 [1]. The 
increase in antibiotic resistance has sparked the development of bacteriophage agents 
for several applications in agriculture, biotechnology, and medicine [66]. Before we can 
truly understand how to apply bacteriophage agents, we must first understand the 
relationship between bacteriophages and their hosts, as well as other species that could 
potentially be affected. 
Methicillin Resistant Staphylococcus aureus (MRSA) is one of the major causes of 
antibiotic resistant clinical infections. Between 1999 and 2005, hospitalizations for S. 
aureus increased from 294,570 patients to 477, 927. Moreover, MRSA was responsible 
for 127,036 patients in 1999 increasing to 278,203 by 2005 [6]. 
 
S. aureus has a mesh-like cell wall composed of cross-linked polymer peptidoglycans 
(PG). Penicillin-binding proteins (PBPs), mediate the final stages of PG synthesis [8]. 
Methicillin is a β-lactam antibiotic that inhibits the transpeptidation domain of PBPs, 
which weakens the cell wall [9]. MRSA produces PBP2A due to the mecA gene that 
encodes it. Furthermore, this mecA gene is transducible by prophage [5]. 
 
Through transduction, horizontal gene transfer, bacteriophages could cause 
Staphylococcus aureus to become Methicillin Resistant through the mecA gene. A well-
studied example of an adaptive trait conferred by transduction by lysogenic phage is the 
mecA gene transduced by the phage Staphylococcus sciuri [4]. Transduction of this 
temperate phage into the Staphylococcus aureus genome confers resistance to broad 
spectrum beta-lactam antibiotics [5]. 
Bacteriophages impact host  evolution 
Temperate bacteriophages, bacteriophages whose genome is incorporated into the host 
bacterium, can switch between the lytic and lysogenic life cycle [1]. This can be 
triggered by environmental stressors such as toxic chemicals and low nutrient 
conditions. The lytic cycle destroys the host, but if the phage stays lysogenic it provides 
several benefits. One benefit is protection from secondary phage attacks from another 
prophage.  Temperate phages can lose their switching ability if there are mutations in 
the attachment sites. Changes to the gene that encode the recombinase responsible for 
the excision of phage can result in ‘grounding’ of the phage [7]. Grounded phage offers 
the host benefits, without the risk of entering the lytic cycle. 
 
Lysogenic phage are transduced into the host bacterial genome as prophage 
sequences and can have a range of selectional impacts on the host, spanning the 
breadth of the mutualism-parasitism continuum [2]. It is hypothesized that prophage 
sequences that confer a selective advantage to their host are more likely to be 
conserved in the bacterial genomes than those that are neutral or deleterious to their 
hosts [3]. The resultant expectation is that prophage sequences will contain an elevated 
quantity of genes conferring adaptive functions to host bacteria.   
Computational advances for Whole Genome Sequence (WGS) analysis 
The number of sequenced and annotated phage genomes is relatively small with 
40,981 phage genome sequences, and 266,129 prokaryotic genome sequences [10] on 
August 18th, 2018. Given the exponential increase in the number of genome sequences 
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deposited in public repositories, it is timely to take advantage of these sequences to 
analyze them for novel functions. In this study we analyze 10,011 S. aureus genomes 
downloaded from NCBI in 2018 for prophage sequences and determine their functions. 
The total number of genome sequences for all organisms numbered 528,859 for 1 
online repository [12]. Advances in computational techniques for the analysis of large 
data sets have advanced the omics field by enabling researchers to analyze larger 
datasets at lower costs [13]. 
In this study, we developed a computational pipeline to detect and analyze prophage 
sequences in nearly 10,011 S. aureus genomes. To our knowledge, this is the first 
large-scale application of PhiSpy on a large-scale set of genomes (10,011 S. aureus). 
We discovered thousands of putative prophage sequences with genes encoding 
virulence factors and antibiotic resistance. We found genes encoding mecA, genes 
encoding toxins/antitoxins and clusters of prophage sequences that had genes in 
common. Our results, and methods developed, will facilitate similar studies for other 
bacterial species and promise to be a useful tool in the study of prophage host 
evolution. While most genes we identified were known, the clustering and comparison 
we did for phage based on their gene content is novel. Moreover, the reporting of these 
genes with the S. aureus genomes is novel (Figure 1). 

Chapter 1 Figure 1: Pipeline Identifying and Characterizing Unique Prophage in S. 
aureus sequence data.  
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A visualization of the workflow used to identify unique prophage sequences. 1) 
10,011 S. aureus genome sequences were downloaded from the National Center for 
Biotechnology information (NCBI). 2) The sequences were analyzed by PhiSpy. 3) 
The fasta files for each predicted prophage were compared against each other using 
NCBI Blast nucleotide alignment tool. Prophage sequences that had 90% similarity 
along their full length were counted the same. 4) Phage sequences were annotated 
using two independent methods (VGAS, Prokka). 5) The resulting database of 
annotated, unique phage sequence allows for the identification of gene function 
encoded within prophage in S. aureus. (See materials and methods section for 
more information) 

 

Methods 

S. aureus Genomes  
S. aureus genomes were obtained from the National Center for Biotechnology 
Information NCBI’s Genbank repository on August 18, 2018 [10]. All available genome 
sequences (n=10,011 including complete and partial assemblies) were downloaded for 
this study. The sequences were collected from a variety of backgrounds that include: 
hospital environments, lab strains and  animals. (Accession numbers are provided in 
Supplemental Data). 
Viral Detection 
Putative prophage sequences were detected using PhiSpy, Version 3.2 [14]. PhiSpy 
uses a random forest algorithm that has been trained on seven distinct features of 
prophage: protein length, transcription strand directionality, AT and GC skew, the 
abundance of unique phage words (unique sequence of length 12 base pairs), phage 
insertion points and the similarity of phage proteins.  PhiSpy has 49 available training 
sets to increase accuracy for specific genomes. We used the S. aureus training dataset 
(option 24) and identified 196,727 phage regions in our 10,011 S. aureus genomes. 
Prophage Clustering 
Prophage sequences identified by PhiSpy were unique within a genome, but highly 
redundant between genomes. We identified highly similar prophages between genomes 
through a reciprocal [15] search. We increased the max_target_seqs to 12,000 (higher 
than our total number of S. aureus genomes) to ensure we captured all possible 
matches. We also used a custom output format which provided additional information 
on the alignment. 
We then grouped prophages by using an undirected graph approach with nodes of the 
form: Genome i, Prophage j. Edges were added between nodes if they had a blast 
alignment which exceeded 90% similarity and 90% coverage of both source and target 
based on the Blastn reports. We then identified genomes sharing the same prophage by 
determining the connected components, resulting in 191 unique phage clusters.  
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Cluster Validation 
Each of the 191 phage clusters were aligned with Muscle v3.8.1551 [16] and ClustalW 
v2.1 [17] to ensure each phage was similar. A score of 0.0000 indicates that the 
undirected graph script formed accurate phage clusters. 
Genome Annotation 
One representative was selected from each of the 191 phage clusters and analyzed 
with 2 different tools for gene annotation: VGAS [18], and Prokka [19]. VGAS and 
PROKKA identified ORFS in each of the phage genome sequences. VGAS identifies 
ORFs through an enhanced version of the ZCurve algorithm [20] that was customized 
by adding 13 additional identifying variables (45 total) for the classification model, and 
BLASTP [21] searches for gene prediction. The all ORFs were annotated by all both 
tools with default settings. The combination of annotation tools served as a quality 
check. The genes identified by both tools were manually reviewed and the highest 
percentage, and the tool that gave the highest number of matches to known databases 
was selected for the phages annotation. (Annotation reports and accession numbers 
are provided in Supplemental Data). 
Pairwise Sequence analysis 
We identified shared genes between phage through a reciprocal blast search using the 
annotated phage sequences. We constructed a new undirected graph with the nodes 
being the phage genome and the edges representing genes shared between phages. 
The output was a .csv file that listed each of the 191 phage with the genes shared with 
other phages. 
Jaccard Index 
We used the layout_with_mds option for the layout function of the R package Igraph 
[23] to visualize the phages with shared genes using the pairwise count matrix for both 
PROKKA and VGAS. The Jaccard Index  [24] was calculated using a modified version 
of the Jaccard index function in R [25] to compare the Prokka and VGAS networks. 
(See Table 2 in the results section) 
Quality assessment of predicted phage sequences with CheckV 
CheckV is an automated pipeline for identifying closed viral genomes, estimating the 
completeness of genome fragments and removing flanking host regions from integrated 
proviruses [48]. CheckV compares to Virus Orthologous Groups (VOGDB), DOE Joint 
Genome Institute’s IMG/VR, Reference Viral DataBase (RVDB), KEGG Orthology, 
Pfam A, Pfam B and TIGRFAM databases [48]. CheckV also reports on potential viral 
and host genes  and uses hmmsearch v.3.1b2 and CheckM to determine the quality of 
the viral sequences [48]. All 191 unique prophage sequences were analyzed with 
checkV using default settings (see checkv_quality_summary in Supplemental Data). 

Results  

Of the 10,011 genomes initially analyzed, 11 were not annotated completely and did not 
pass the conversion to SEED [26] due to missing locus tags [27]. A further 5 were too 
short for PhiSpy to detect phage regions, resulting in a total of 9,995 genomes which 
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were used for subsequent analysis. Within these, we detected a total of 196,727 
prophage sequences across the 10,011 genomes, with an average of 19.68 (standard 
deviation = 1.78) prophage sequences per genome (Figures 2 and 3).  

Chapter 1 Figure 2: Total amount of phage per single S. aureus genome 
sequence.  

 

This figure shows the distribution of the phage genome sequences detected by 
PhiSpy. A total of 196,727 prophage sequences across the 10,011 S. aureus 
genomes. The x-axis reflects the number of phage sequences per S. aureus genome 
sequence (y-axis). There is an average of 19.68 (standard deviation = 1.78) prophage 
sequences per S. aureus genome.  45 S. aureus genome sequences had 25 phage 
regions present, and 5 S. aureus genome sequences had 0 phage sequences 
detected. (See Analysis Uncovers 191 Unique Prophage Sequences section for 
more information). 
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Chapter 1 Figure 3: Distribution of prophage identified in the 10K S. aureus 
genome sequences. 

 

This figure shows the distribution of 191 unique prophage sequences. PhiSpy 
detected phage genome sequences in nearly every S. aureus genome studied. The 
detected phage genome sequences were grouped  by using an undirected graph 
approach (see Methods). 1 representative phage from each cluster was selected, 
totaling 191 unique prophage sequences. The y-axis reflects the exact totals of each 
of the 191 phage genome sequences that were detected in the S. aureus genome 
sequences (x-axis). (See Analysis Uncovers 191 Unique Prophage Sequences 
section for more information). 

Analysis Uncovers 191 Unique Prophage Sequences 
Reciprocal BLAST analysis coupled with undirected graph analysis (see Methods) 
found that the 196,727 prophage sequences corresponded to 191 unique prophage 
sequences. Each unique prophage sequence appeared in an average of 1024 host 
genomes (standard deviation = 2581.33) (Figure 3). Each prophage contained an 
average of 16.83 putative coding regions, resulting in a total of 3,207 (VGAS) and 3,205 
(Prokka) unique open reading frames (ORFs) (Table 1). One phage appeared in all 
9,995 genome sequences, while 42 of the 191 distinct phages were found in only a 
single genome sequence.  
Analysis Detects Thousands of ORFs with Potential Gene Function 
One representative prophage sequence was selected from each of the 191 phage 
clusters and analyzed with two different tools for gene annotation: VGAS [18], and 
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Prokka [19]. VGAS identified 3,207 genes, and PROKKA detected 3,205 genes (Table 
1). For the PROKKA results, 1,155 ORFs did not have an identified function. 806 
predicted ORFs corresponded to known ORFs with accession numbers matching 
known databases ISfinder [28], NCBI [29], UniProtKB [30]. 2041 genes had a predicted 
gene function. VGAS predicted 2935 ORFs, 361 of which corresponded to known 
accession numbers matching databases Swissprot and refseq [18,20] and 307 other 
predicted ORFs had predicted gene functions.(Table 1). 
 

Chapter 1 Table 1: PROKKA and VGAS predict gene functions in 191 unique phage 
sequences 

Tool Total Detected 
ORFS 

ORFs with 
Gene 

Function 

ORFs with No 
gene function 

ORFs that 
match known 

databases 

PROKKA 3205 2040 45 806 

VGAS 3207 307 2846 361 

PROKKA and VGAS both identified several Open reading frames (ORFs). PROKKA 
determined there were 3205 ORFs for all 191 unique phages, while VGAS determined 
3207. VGAS determined that only 307 of the ORFs had gene function, while PROKKA 
determined 2040 did. PROKKA had roughly 45 ORFS that did not have any gene 
function identified. This excludes hypothetical or predicted function. (see  PROKKA 
and VGAS reports in Supplemental Data) 

 
Analysis Shows Shared ORFs between Unique Prophage Sequences 
In order to understand how similar the prophage were, for each annotation (PROKKA 
and VGAS)  we created a graph representing genes shared between the distinct 
prophage. More specifically,  approach outlined in the “prophage clustering” section 
with nodes of the form: Genome i, identified gene j. Edges were added between nodes 
if they had a matching identified gene. We then Compared the edges produced by both 
tools PROKKA and VGAS with each other. 
 
We found a total of 1,335 shared edges defined by PROKKA and VGAS. The lowest 
number of shared edges between phage sequences was 1, and the highest was 73 
(Table 2). There were 1,306 shared edges between PROKKA and VGAS, and 28 
shared edges unique to PROKKA (Table 2) out of the total 1,335 (Table 2). In the 28 
unique PROKKA the numbers of shared edges between each node ranged from 1 to 
22. VGAS defined a total of 1,334 connected components. The lowest number of genes 
shared between phage sequences was 1, and the highest was 75. There were 27 
shared edges unique to VGAS (Table 2) out of the total 1334 (Table 2). The 27 unique 
VGAS shared edges ranged from 1 to 22 as well. 
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Chapter 1 Table 2: Jaccard index shows connections between PROKKA and VGAS 
Undirected Graphs 
Tool Total 

amount of 
genes 
shared 

Shared 
genes 
between 
both tools 

Unique 
shared 
genes 

Highest # of 
shared 
genes in 
cluster 

Lowest # of 
shared 
genes in 
cluster 

PROKKA 1363 1335 28 73 1 

VGAS 1362 1335 27 75 1 

This table shows the relationship between phage genomes by their gene content. 
Specifically, the nodes represent the 191 phage genome sequences, and the edges 
between nodes indicate the two phages share a gene (as annotated by Prokka and 
VGAS). We determined that there were 1335 connected components between the 
191 unique phage genome sequences. The total number of shared genes between 
the 191 unique phage sequences ranged from 1 shared gene to 73 shared genes for 
PROKKA and 1 shared gene to 75 shared genes for VGAS (2 more edges than the 
total identified by PROKKA). PROKKA had a total of 1363 connections compared to 
VGAS 1362. (See Analysis Shows Shared ORFs between Unique Prophage 
Sequences section for more information and Table 2). 

Genes Encoding mecA Found in 2 of the 191 Unique Prophage 
There were several traces of antimicrobial resistance found in the 191 phage clusters. 
The mecA ancestral gene specifically was identified in 2 sequences. The first sequence, 
accession number ASM900v1 [10], cluster group has 1023 phage, 10% of the total S. 
aureus genomes. ASM900v1, or RF122 (ET3-1) provides a framework for the 
identification of specific factors associated with host specificity in this major human and 
animal pathogen [32]. RF122 (ET3-1) has several genes involved in host colonization, 
toxin production, iron metabolism, antibiotic resistance, and gene regulation [33].  
ASM323779v1 [34] is the only phage in the cluster, making it individually unique 
compared to the 196,727 total detected. It is a part of 184 S. aureus isolates collected 
from 135 patients over a timespan of 3 years at an Italian pediatric hospital [35]. 
48 Unique Gene Functions appear in several phage genome sequences 
48 unique encoding traces of Antimicrobial Resistance (Shared_genes table in 
supplemental data). 4 genes stuck out the most due to the number of clusters they 
appeared in. GDAEFEPF_00005 Staphylococcal complement inhibitor, a gene found in 
ASM2514v1 appeared in 10 [36]. GHDFECEE_00007 Superantigen-like protein 13 was 
found in ASM17451v1 and appeared in 8 clusters [37]. ASM17451 also contained 
GHDFECEE_00008 Superantigen-like protein 13 which appeared in 7 clusters. 
GAIDFPLK_00004 Superantigen-like protein 13 was found in ASM1150v1 and was 
identified in 7 clusters [38]. 
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4 Genes Showing Traces of Toxin/Antitoxin (TA) System 
Toxin/Antitoxin (TA) systems encode toxin proteins that interfere with vital cellular 
functions and are counteracted by antitoxins. There are 6 different types of TA systems 
[39]. S. aureus has genes identified showing types I, II and III [40]. Type I toxin-antitoxin 
systems have the base-pairing of antitoxin RNA with the toxin mRNA [41] Type III 
systems toxic proteins and an RNA antitoxin have a direct iteration where the toxic 
proteins are neutralized by the RNA gene [42].  
Type II, the most studied TA system, has proteic antitoxin that tightly binds and inhibits 
the activity of a stable toxin [43]. The TA system yoeB-yefM has been detected as 
genes MBJHDCJA_00021 Toxin YoeB and MBJHDCJA_00022 Antitoxin YefM in 
ASM900v1 [32,33]. yoeB inhibits bacterial growth and translation by cleavage of mRNA 
molecules and is repressed by antitoxin yefM [40]. Enterotoxin Type A causes food 
poisoning and was identified in 3 genome sequences [44]. M1022 (NCTC 8325) was 
identified in 2 genome sequences [31]. CAFLMJIC_00063 Enterotoxin type A was 
identified in 1 genome sequence [32,33]. (See Shared_genes, 
Frequent_gene_Functions and Least_Frequent_Gene_Functions tables in 
supplemental data) 
13 Most Shared Genes in the 191 Unique Phage 
4 genes that stand out the most due to the amount of phage they were found in 
(Frequent_gene_Functions table in supplemental data). KHDAMHGJ_00009 
Chorismate synthase, found in M0471 [31], was identified in 17 phage clusters. Its gene 
function is shikimate pathway, which shows signs of AMR in plants [45]. 
EOLKNJBM_00007 Nucleoside diphosphate kinase in 
ASM1150v1_genomic.gbff_pp18.ffn [38] was found in 16 phage clusters. 
MIIMDJNA_00002 Heptaprenyl diphosphate synthase component 2 in ASM24879 [46] 
was identified in 15 clusters. HGDEFLKI_00006 3-dehydroquinate synthase in 
M0877_V1_genomic.gbff_pp18.ffn [31] was identified in 14 phage clusters. 
CheckV identifies 63 phages of quality 
CheckV analysis determined that there 63 phages that were of quality and 128 that 
could not be determined (Figure 4). There were 3277 total genes detected and 310 
were viral genes determined by checkV. The High and medium quality phages all had 
viral genes detected. The low quality phages had a mix of 23 phages with viral genes 
detected and 25 without. (see checkv_quality_summary in Supplemental Data). 
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Chapter 1 Figure 4: CheckV quality assessment of the 191 unique phage. 

 

CheckV determined that 63 phages out of the 191 unique phages were of quality. 48 
phages were of low quality, 7 phages were of medium quality and 8 were high quality. 
The X axis shows the quality of phage determined by checkV. The Y axis shows the 
number of phages. The totals are shown above each bar. (see  CheckV identifies 63 
phages of quality 
in the results section and PhiSpy_checkv_quality_summary in Supplemental 
Data) 

Discussion 

Determining the presence of virulence and resistance encoding genes in prophage has 
implications for the potential horizontal transfer of these genes and the functions encode 
to other bacterial taxa via transduction, and thus can provide insight into the evolution 
and dissemination of virulence and resistance mechanisms of clinical importance. This 
knowledge can be useful when creating disease models and novel therapeutics. 
The scope of this project is purely computational and determining the functionality of the 
genes detected would require experimentation. The genome sequences obtained from 
NCBI may not be representative of the complete diversity of S. aureus in nature. 
Staphylococcus aureus subsp. aureus strain NCTC 8325 is referenced several times 
throughout the dataset. It was used as a propagating strain for bacteriophage 47 of the 
international typing set of bacteriophages and is considered the prototypical strain for 
most genetic research on S. aureus [31]. These limitations need to be considered in the 
interpretation of our results.  
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CheckV analysis identifies 128 potential false positives 
The checkV analysis determined that there 63 phages that were of quality and 128 that 
could not be determined (Figure 5) showing that there may be potential false positives. 
All available S. aureus genome sequences were downloaded from NCBI [10] which 
includes complete genome sequences, and partial sequences or contigs.  PhiSpy uses 
a window size of 40 base pairs and does not rely on known homologues to identify 
phage regions. The identified prophage sequences appeared multiple times in a S. 
aureus sequence. The combination of PhiSpy identifying the same phages throughout 
the S. aureus sequences that were complete and partial are potentially why so many 
phages were identified. This is further shown where the 197,727 identified sequences 
were clustered into 191 unique groups. (checkv_quality_summary in Supplemental 
Data) 
Analyzing 191 unique phages with virSorter 2 
Prophage detection tools have significant problems with false positives and false 
negatives. PhiSpy identified an average of 20 phages per genome sequence which is a 
higher number compared to other studies. Deghorain and Van Melderen identified 
between 1-4 phage per genome [51] and Nepal et al. found an average of 3.6 phages 
per genome [50]. CheckV gave a quality assessment, but further analysis with 
virSorter2 [57] was done to see if phiSpy, virSorter2 and checkV agreed on the high 
and medium quality phage sequences.  
Each of the 191 unique phage sequences were analyzed with virSorter2 [57] following a 
protocol from (Guo et al., 2021) [67]. VirSorter2 determined that 5 of the 191 unique 
identified phages by PhiSpy [14] were indeed phage sequences. The 5 virSorter2 [57] 
identified sequences were analyzed with checkv showing that all 5 phage were of 
quality (Figure 5). The 5 virSorter 2 phages were determined to be quality phage 
sequences by 3 different tools showing that the remaining 186 phage sequences were 
potential false positives identified by PhiSpy [14]. 
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Chapter 1 Figure 5: CheckV quality assessment of the virSorter2 identified phage. 

 

CheckV determined that all 5 virSorter2 identified phage were of quality. 1 
phage was low quality, 2 phages were of medium quality and 2 were high 
quality. The X axis shows the quality of phage determined by checkV. The Y 
axis shows the number of phages. (see Analyzing 191 unique phages with 
virSorter 2 
in the results section and virSorter2_checkv_quality_summary in 
Supplemental Data) 

Databases constrains limit PROKKA and VGAS annotations 
There is a large possibility for novel functions to be conferred to bacterial hosts by 
transduction by lysogenic phage [5]; A significant proportion of the genes encoded by 
both free living and prophage sequences are of unknown function [11]. There were 
several virulence factors and toxins identified in the 191 unique prophage 
representatives, 1% of the total 196,727 phage detected. This is reflected through 
VGAS which predicted 2846 genes with no known function, and PROKKA with 45 
predicted genes with no known function. PROKKA leverages UniProt [30], RefSeq [59], 
Pfam [60], and TIGRFAMs [61] databases. VGAS uses RefSeq and SwissProt [62] 
databases. A third tool MOSGA [69/70] was used to analyze the 191 unique phage 
sequences. MOSGA [69/70] uses EggNog 5 [71], SILVA [72] and SwissProt [62] 
databases. Only 34 genes were identified which was lower than both PROKKA and 
VGAS. PROKKA and VGAS used more databases in combination compared to MOSGA 
which increases the chances of finding a matching gene function. 
Databases that scientists are updating with gene functions from experiments conducted 
serves a better foundation for gene annotation tools. The databases are limited to what 
scientists discover in genomics overall and this puts a major constraint on the 
databases. This could introduce a level of bias in the tools that are using the same 
databases. (see MOSGA_annotation_analysis in Supplemental Data) 
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Conclusion 

We developed a novel computational pipeline for phage discovery and annotation and 
applied this pipeline to approximately 10,000 S. aureus genomes. In doing so, we 
discovered 191 unique clusters of putative prophage sequences with genes encoding 
virulence factors and antibiotic resistance. This computational pipeline consists of first 
identifying phage genome sequences, grouping them into clusters of identical (or nearly 
identical) phage, and then identifying genes within these phages. These results will be 
useful to those interested in bacterial evolution and adaptation, by identifying the 
mechanism of horizontal transfer of genes that confer adaptive traits to bacteria, 
especially in the context of antibiotic resistance like the mecA gene found in 2 of out 191 
unique phage clusters. This database and pipeline can help guide future experiments by 
identifying phages and genes of interest. 
The immediate next step is to expand the computational pipeline to leverage more tools 
for phage identification, gene annotation and to show the relationship between phage 
genome sequences using gene co-occurrence networks [47]. S. aureus genome 
sequences will be collected from the National Center for BioTechnology Information 
genbank [52], JGI IMG/M [53], the DNA Data Bank of Japan [54] and phage 
repositories: ViruSite [55] and inphared [56] to gather more diverse S. aureus and S. 
aureus phage sequences. Ultimately the goal is to identify quality phage sequences 
computationally, and to find and test each identified phage to see if any could potentially 
turn lytic. 
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Abstract 

The complex ecosystem of the plant microbiome includes beneficial microbiota that can 
interact with the plant host to offer protection from pathogens, and provide resilience 
against abiotic stress. Historically, investigations that have been crucial for the elucidation 
of the impact of specific plant-microbe interactions in the rhizosphere have focused mostly 
on the bacterial and fungal components. However, viruses, which are the most abundant 
biological entities on the planet, continue to be grossly understudied in the rhizosphere, 
and their influence largely negated in these systems. We recently discovered a pair of 
resident bacteriophage genes found in the plant growth promoting rhizobacterium 
(PGPR), Pseudomonas simiae wcs417 that are predicted to have functional potential to 
modulate the ability of their bacterial host to colonize Arabidopsis thaliana roots. This 
finding led us to ask what quantity and diversity of phages exist among plant-associated 
bacteria (PAB), and how these compare to their non-plant-associated (NPAB) 
counterparts. Determining host range experimentally is a very efficient approach, but can 
be time consuming and have a great cost burden. Computational techniques help improve 
time and cost efficiency. In this study, I seek to leverage computational techniques 
through a novel computational pipeline demonstrating potential novel plant-microbe 
interactions in the rhizosphere. 

Importance 

Bacteriophages, viruses that infect bacteria, play key biogeochemical roles in agricultural 
ecosystems. Like marine viruses, those found in soil systems are greatly abundant and 
pervasive, but the prevalence of phage-host interactions and the mechanism of 
interaction with plant roots remains greatly understudied. As plants are carbon sinks, it is 
imperative to understand how bacteriophages can influence this nutrient flux, as well as 
manipulate their bacterial hosts as part of this multipartite relationship. This work focuses 
on the impact of phages on novel plant-microbe interactions in the rhizosphere. 
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Introduction 
In agricultural ecosystems, associated microorganisms can be found in or on plants, as 
well as in the soil in general [4,8,57]. Soil microbiota include bacteria, fungi, viruses, 
archaea and protists [23]. Plant associated microbes need to be able to use available 
nutrients, evade host defense systems and outcompete other microbes in the 
environment in order to have favorable fitness [14]. The interactions between plants and 
microbes could be negative or positive in specific contexts, and may modulate ways in 
which microbes can be beneficial [14,57]. Potential advantages of plant-microbe 
interactions include maximization of crop yields and a decrease of crop losses due to 
biotic or abiotic stressors [23]. 
Bacteriophages are viruses that infect and replicate in bacteria. They play key roles in 
bacterial evolution, governing abundance, adaptation, and diversity of bacterial 
communities [46]. Historically, there has been a focus on bacterial and fungal 
components of the rhizosphere microbiome, but much remains unknown about 
bacteriophages in these systems [44]. Current literature has shown that lytic phages can 
impact bacterial abundance and composition during colonization of host plant leaves [44]. 
In this study, field-grown tomato plants were compared to juvenile plants grown under 
sterile conditions. They determined that  the presence of bacteriophages affected overall 
bacterial abundance during colonization of new host plants [44]. Bacteriophages were 
capable of impacting plant leaves, but it is currently unknown whether they also impact 
other parts of the plant. Before we can truly understand the relationship between 
bacteriophages and their hosts, as well as other species that could potentially be affected, 
we must first understand how to identify phage regions inside of the host’s genome 
[12,35,64]. 

Bacteriophages mediate horizontal gene transfer 
The long-term associations between phage-host interactions could lead to mutual 
benefits [5]. For example, research from Zhan et al. demonstrated that in the marine 
ecosystem lytic bacteriophages belonging to the podoviridae and siphoviridae families 
had mutually beneficial relationships with members of the roseobacter clade of marine 
bacteria due to shared genes between them [69]. Bacteriophages have an adaptive 
replication process where they can enter a lytic or lysogenic state in the instance of 
temperate phages, in comparison to their lytic counterparts that can typically only enter a 
lytic cycle [22,28] (See Figure 1). In Basso et al., temperate bacteriophages phi-A and 
phi-D in Sulfitobacter sp. were observed where they found that phi-A and phi-D carry 
proteins that could be involved with the mediation of the lysogenic-lytic phage switch in 
CB2047 [5]. Lytic phages replicate inside the host and cause host lysis in order to enter 
the external environment, thus causing the release of host organic matter and new viral 
particles [18]. Temperate phages are capable of integrating their genetic information with 
that of their infecting host, therefore replicating and persisting along with the host 
[18,22,28]. Temperate bacteriophages are capable of lysogenic to lytic switching [18,22, 
the mechanisms of which are currently still unknown. Both cycles alter the release of 
nutrients into the environment which impacts the micro ecosystem through natural 
selection [5,28,69]. (See Figure 1)  
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During horizontal gene transfer several genetic elements are introduced to the host such 
as capsid proteins, tail proteins and genes that are potentially beneficial [9,28,63]. 
Phages are able to cause the host to express different phenotypes due to the genes 
introduced during the lysogenic life cycle [22,28]. In  the bacterium staphylococcus 
aureus, temperate bacteriophages housing the mecA gene were able to drive S. aureus 
into evolving by making it resistant to methicillin [68]. The more beneficial the gene is to 
the host, the more likely the host will accept that particular phage into their genome 
[18,24,28]. 
Through sequencing technologies, we can identify genes computationally [60]. 
Transposon mutagenesis is a powerful means of producing randomized gene mutations 
in bacterial genomes [6]. Through next generation sequencing and transposon 
mutagenesis, we are able to detect genes present in bacteria and bacteriophages [6,60]. 
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Figure 1: Temperate phages release genes to the host and environment 
Temperate phages have adaptive replication cycles. A) During the lytic cycle, 
bacteriophages attach to the cell membrane and release genetic information into the 
host. The lytic phages then replicate in the host and lyses through releasing several 
lytic phages into the environment. B) During the lysogenic cycle viral DNA is integrated 
into the host genome. As the host reproduces, the lysogenic phage replicates with it. 
This process can cause the host to express different phenotypes. Lysogenic phages 
are also capable of turning into lytic phages [22,24,28]. 

Use of A. thaliana as a model organism  
A. thaliana is widely used in plant research such as: 1) Testing mutation frequency 
where Monroe et al. studied epigenome-associated mutation bias in A. thaliana [43] , 2) 
The role of DOG1 and abscisic acid in A. thaliana seed dormancy [31], 3) Evolutionary 
molecular mechanisms that contribute to A. thaliana flower formation [50]. It is diploid  
and has a small genome (135 Mb; ~ 27,000 genes), which makes it a favorable model 
organism for sequencing and gene mapping, even though it has little direct agricultural 
importance [34,56]. 
A thaliana has been used to understand biological processes in other plants such as the 
tomato [45,48]. In this study, Mysore et al. expressed tomato genes in A. thaliana to 
analyze their potential function. In the past few decades A. thaliana has provided a 
wealth of information for disease resistance and pathogen susceptibility making it a 
great model in understanding fundamental plant-microbe interactions [13,40,48]. For 
example, in  Cole et al. where they were focused on understanding how P. simiae 
impacts A. thaliana root colonization [13]. 
Bacteria comprise one component of the soil microbiota. Interactions between plants 
and bacteria could be negative or positive, though there is evidence for possible positive 
impact between plants and their associated bacterial strains [4,8,25]. Several species of 
bacteria such as, Pseudomonas fluorescens BSP53a, Rhizobia spp, Frankia spp. and 
P. simiae promote plant growth [25,38]. In particular, P. simiae WCS417 is a root-
colonizing bacteria that can offer A. thaliana well-established plant-beneficial effects 
upon colonization [67]. Some researchers sought to better connect gene and gene 
function of P. simiae WCS417 under specific conditions (surface-sterilized, stratified in 
the dark for 2 to 3 days at 4 ̊C and grown upright in aPercival incubator ), an RB-TnSeq 
study was conducted [13]. Here, they illustrated that a set of 115 genes were deemed 
essential for root colonization of A. thaliana by this strain of plant growth promoting 
bacteria (PGPB). These examples show the importance of this plant-microbe interaction 
in agricultural systems.  

Multipartite relationship between P. simiae, A. thaliana roots and phages 
Subsequent research conducted by Cole et al. [13] phage specific analysis demonstrated 
that a gene category labeled “other”  included PS417_10145 (phage related hypothetical 
protein) which was included in the initial 115 genes that were deemed to be essential for 
root colonization. Reanalysis of these data showed that PS417_10145 and PS417_10150 
(phage tail tape measure protein) are both predicted to be essential  (Basso. 
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Unpublished data). These data provided evidence to suggest that phages may be 
modulating their hosts as it relates to root colonization, and hints at a possible multipartite 
relationship between the plant, bacteria and phages [15]. P. simiae WCS417 has several 
genes which have been shown to be transducible by bacteriophages, which include 
Membrane carboxypeptidase (penicillin-binding protein), Flagellar biosynthesis/type III 
secretory pathway protein FliH, and Flagellar biosynthesis/type III secretory pathway 
protein FliH  [67].  
WCS417-colonized roots during the onset of induced systemic resistance (ISR) up-
regulates a substantial set of genes that are also up-regulated in roots when plants are 
grown under conditions of iron deficiency. MYB72 and MYB10 are essential for survival 
of Arabidopsis plants growing in alkaline soils, and are both up-regulated during WCS417 
root colonization [52]. The main focus of this project was to determine whether select 
plant associated (PA) and non plant associated (NPA) bacteria share phage homology 
(Figure 1). 
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Figure 2: Comparing plant associated and non plant associated bacteriophages 
The core of this project can be summarized as the following: 1) Identify phages in select 
plant-associated (PA) and non-plant-associated (NPA) bacterial WGS. 2) Identify 
potential impacts of resident bacteriophages in PA and NPA bacteria. 3) Identifying 
phage homologues. 

Whole genome Sequences Reveal Genetic Information 
Viral discovery has been revolutionized by metagenomics, which allows computational 
identification of viral genome sequences without experimentation [20,58]. Next-
generation sequencing (NGS) captures genetic information in the sample’s genome as a 
whole genome sequence [54]. As an example, for both the influenza and ebola viruses, 
scientists were able to track the spread and evolution of these viruses using sequence 
data [55,58]. The computational approaches to predicting putative bacteriophage host 
ranges can be broadly classified into three categories: alignment-based methods based 
on sequence homology and sequence similarity, alignment-free methods based on 
sequence composition and genomic features, and machine-learning-based methods [65]. 
In this study we developed a novel computational pipeline that leverages the above 
techniques for phage discovery, annotation and phylogeny in order to understand ways 
phages affect agricultural ecosystems (Figure 2). 
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Figure 3: Computational pipeline for phage genome sequence identification 
1) Aggregated 20 genome sequences from JGI IMG DB and NCBI 2) Identifying phage 
in whole-genome sequences with VirSorter2, 3) Quality check predicted phage 
sequences with CheckV, 4) Phylogenetic comparison using iTOL, Clustal Omega and 
MUSCLE and 5) Gene annotation with MOSGA (See Materials and Methods section) 

Materials and Methods 

Data acquisition 
10 plant associated (PA) and 10 non plant associated (NPA) bacterial whole genome 
sequences were obtained from the JGI Integrated Microbial Genomes & Microbiomes 
(IMG/M) [11] and The National Center for BioTechnology Information (NCBI) [7] 
databases (See table 1 and WGS_Accession_Numbers in supplemental data). The 
IMG/M system supports the annotation, analysis and distribution of microbial genome and 
microbiome datasets sequenced at The Department of Energy (DOE) Joint Genome 
Institute (JGI) and from other contributing labs and scientists from around the world [11]. 
The National Center for BioTechnology Information (NCBI) GenBank is a comprehensive 
database that contains publicly available nucleotide sequences for almost 260,000 
formally described bacterial species that were collected from laboratories and large-scale 
sequencing projects [7]. 
 

Table 1: PA and NPA bacterial genome sequences obtained from IMG database 
10 plant associated (PA) and 10 non plant associated bacterial genome sequences 
were obtained from the JGI IMG and NCBI databases. The plant associated sequences 
were collected from plant roots, leaves and from the rhizosphere from a diverse set of 
plants such as wheat, rice and soybeans. The non plant associated bacterial sequences 
were collected from water columns, human, animal and wastewater facilities. 
(WGS_Accession_Numbers in supplemental data) 

Plant Associated Non Plant Associated 

Pseudomonas aeruginosa E2 Staphylococcus aureus RF122 

Pseudomonas syringae BRIP39023 Microbacterium luticocti DSM19459 
Acinetobacter sp. UNC436CL71CviS28 Escherichia coli K12 

Pseudomonas fluorescens A506 
Curtobacterium flaccumfaciens UCD-
AKU 

Acinetobacter pittii WP19 Pseudomonas aeruginosa PA01 
Bradyrhizobium huanghuaihaiense CGMCC 
1.10948 Bartonella henselae BM1374163 
Pseudomonas SP Root9 Pseudomonas putida PC9 
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Pseudomonas simiae WCS417 Bacillus cereus G9241 

Pseudomonas umsongensis UNC430CL58Col 
Ornithinimicrobium pekingense 
DSM21552 

Pseudomonas putida KT2440 
Acinetobacter sp. Hugh 2212, NCTC 
10304 

Bioinformatic phage detection using VirSorter2 
Putative prophage sequences were detected in both PA and NPA genome sets using 
VirSorter2 [27]. VirSorter2 identifies phages by using a random forest classifier that was 
trained with a viral hmm database [27]. The database consists of viral protein families 
(VPF) of JGI earth’s virome project [51] and the Xfams database. The Xfams database 
consists of  phylogenetic trees generated from a large collection of viral sequences from 
the Global Ocean Viromes 2.0 (GOV 2.0) [26] and the Stordalen Mire Viromes (SMV) 
[21].  

Quality check of predicted phage sequences with CheckV 
CheckV is an automated pipeline for identifying closed viral genomes, estimating the 
completeness of genome fragments and removing flanking host regions from integrated 
proviruses [47]. CheckV compares to Virus Orthologous Groups (VOGDB), DOE Joint 
Genome Institute’s IMG/VR, Reference Viral DataBase (RVDB), KEGG Orthology, 
Pfam A, Pfam B and TIGRFAM databases [47]. 

ViruSITE 
ViruSITE is a database of viral genomes and genes. ViruSITE comprises all genomes 
from viruses, viroids and satellites published in NCBI Reference Sequence Database by 
computationally extracting from numerous resources (NCBI RefSeq, UniProtKB, GO, 
ViralZone, PubMed) and integrating under human supervision [61]. ViruSite has a total 
of 11,620 viral sequences, 14,813 genome sequences and 597,210 genes detected from 
the total 26,433 combined viral and genome sequences. Each of the virSorter2 predicted 
phage genome sequences were compared to viruSite [61] on 2022-11-01.(See viruSITE 
and viruSITE_sample table in the supplemental data section). 

Phylogenetic comparison using iTOL, Clustal Omega and MUSCLE 
Clustal Omega is a new multiple sequence alignment program that uses seeded guide 
trees and HMM profile-profile techniques to generate alignments between three or more 
sequences [59]. Clustal Omega was used to generate a tree guide that was visualized 
with iTOL. The Interactive Tree Of Life (iTOL) is an online tool for the display, annotation 
and management of phylogenetic and other trees [36]. 

MUSCLE 
MUSCLE is a tool used for sequence alignment at a quicker speed than clustal [19]. 
VirSorter2 predicted phages that were of high or medium quality determined by checkV, 
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and the 4 phages that clustal determined had association were analyzed further using 
MUSCLE [36].  

Gene annotation with MOSGA 
MOSGA is a tool used for sequence annotation [41,42]. MOSGA was used to annotate 
the 79 virSorter2 identified phages. MOSGA uses EggNog 5 [29], SILVA [53] and 
SwissProt [3] databases. 

Results 

VirSorter2 Identified 79 phages in the 10 plant associated and non plant associated 
bacterial sequences (Table 2). All identified phages were deemed dsDNA phages by 
virSorter2. There were 4 whole genome sequences (WGS) that had 0 phages detected. 
Acinetobacter sp. Hugh 2212, NCTC 10304 had a total of 21 phages detected by 
virSorter2 (Table 2). 
 

Table 2: Identified phage regions in PA and NPA bacterial genome sequences 
10 plant associated (PA) and 10 non plant associated bacterial genome sequences were 
analyzed with virSorter2, revealing 79 predicted phages. 4 bacterial sequences did not 
have any phages detected. Acinetobacter sp. Hugh 2212, NCTC 10304 had the most 
phages detected for both plant and non plant associated bacterial sequences at 21 (See 
figure 6). 

Plant Associated # Non Plant Associated # 

Pseudomonas aeruginosa E2 0 Staphylococcus aureus RF122 4 

Pseudomonas syringae BRIP39023 0 Microbacterium luticocti DSM19459 1 

Acinetobacter sp. 
UNC436CL71CviS28 

8 Escherichia coli K12 5 

Pseudomonas fluorescens A506 
3 Curtobacterium flaccumfaciens UCD-

AKU 
2 

Acinetobacter pittii WP19 7 Pseudomonas aeruginosa PA01 1 

Bradyrhizobium huanghuaihaiense 
CGMCC 1.10948 

6 Bartonella henselae BM1374163 5 

Pseudomonas SP Root9 4 Pseudomonas putida PC9 0 

Pseudomonas simiae WCS417 3 Bacillus cereus G9241 1 



51 
 

Pseudomonas umsongensis 
UNC430CL58Col 

3 Ornithinimicrobium pekingense 
DSM21552 

0 

Pseudomonas putida KT2440 
5 Acinetobacter sp. Hugh 2212, NCTC 

10304 
2
1 

VirSorter2 determines confidence levels for predicted phages 

VirSorter2 showed different confidence levels in the identified phage sequences (Figure 
3). Each sequence is scored independently using a set of classifiers customized for 
individual viral groups, and these scores are aggregated into a single prediction as the 
max score [27].  The default score cutoff (0.5) works well known viruses from refSeq [49] 
and was used to analyze all 20 phages. 48 phages had high confidence, meaning the 
max score > 0.9. VirSorter2 is limited to viral identification only, and is not reliable for 
taxonomic classification of predicted phages [27].(See Figure 3) 
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Figure 4: VirSorter2 determines confidence levels for predicted phage 
sequences 
Virsorter2 provided confidence levels for identified phage. The lowest max score is 
0.447 and the highest was 1. This shows a mix of low confidence and high 
confidence in the identified phages. The x axis describes max scores and on the y 
axis are the total amount of phages (See Virsorter2_analysis in supplemental 
materials). 

CheckV analysis determines 70 phages are of quality 
CheckV [47] determined that 70 out of the 79 VirSorter2 identified phages were of quality 
(Figure 4). CheckV calculates alignment scores between each contig and each complete 
genome in the reference databases [47]; The genome length (before fragmentation) of 
each contig was then grouped based on alignment score and contig length to find the 
medium relative unassigned error [47]. Three confidence levels: high confidence (0–5% 
median unsigned error), medium confidence (5–10% median unsigned error) and low 
confidence (>10% median unsigned error) [47]. 18 out of 79 predicted phages were 
deemed high quality, meaning it had 0–5% median unsigned error (Figure 4). 
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Figure 5: CheckV quality analysis of virSorter2 predicted phage 
Using checkV, the quality of the identified phage sequences were checked. There were 
4 sequences that did not have any phage detected, and 6 that could not have their 
quality determined by checkV. There were 6 complete and 12 high quality phages. Out 
of the 79 detected phages 9 were of medium quality and 43 were low quality phages 
(See CheckV_analysis in supplemental materials).  

ViruSITEand VirSorter2 predicted phages blast analysis 
A blast database was created using predicted phage sequences from viruSITE [61] and 
Inphared [16]. All predicted phages were compared to ViruSITE and Inphared to see if 
there were any matches. A total of 18 out of the total 79 virSorter2 identified phages 
with identity scores greater than 95 were sampled and analyzed closer. There were a 
total of 2595 matches to viruSITE total (See viruSITE and viruSITE_sample in 
supplemental materials). 

Phylogenetic analysis reveals potential association between sets of phages 
Clustal Omega [59] and iTOL [36] showed association between three sets of phages 
identified in the 20 bacterial sequences. Two phages identified in PA and NPA bacterial 
sequences: A. pittii WP19 (PA) and A. sp. Hugh 2212 NCTC 10304 (NPA), and two plant 
associated phages P. sp Root9 and P. fluorescens A506 (Figure 5). 
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Figure 6: Phylogenetic analysis shows potential association 
The mined phage were combined into a single file and processed with clustal omega. 
A tree guide was produced and uploaded to iTOL illustrating possible similarities 
between three sets of phages identified in the 20 bacterial sequences:two phages 
identified in A. pittii WP19 (PA) and A. sp. Hugh 2212 NCTC 10304 (NPA), and two 
plant associated phages P. sp Root9 and P. fluorescens A506 (see 
Virsorter2_analysis in supplemental materials). Green denotes plant associated 
phages, while red denotes non plant associated phages. 

MOSGA detected 97 total genes in the 79 identified phages 
MOSGA [41,42] detected a total of 1102 genes. There were 975 repeating regions, 97 
protein coding genes, and 30 tRNA genes that make up the total 1102 detected by 
MOSGA (See MOSGA_overall_summary in supplemental materials). 21 unique 
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predicted gene functions detected, such as P03764 (Tail fiber protein) showing the 
presence of a potential phage region in E. coli K12, and Q9I1X7(Multifunctional non-
homologous end joining protein). (See MOSGA_detected_genes in supplemental 
materials). MOSGA detected 2766864bp, with the shortest phage contig being  1105bp 
and the longest at 162996bp.(See MOSGA_overall_summary in supplemental 
materials). 

Discussion 

Determining the presence of prophages and exploring the potential association between 
identified phages in PA and NPA can provide insight into the impacts phages play in 
root colonization by P. simiae and on A. thalia growth and development. In this study, 
10 plant associated (PA) and 10 non plant associated bacterial genome sequences 
were analyzed using virSorter2 which predicted 79 phages (See Figure 6). 
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Figure 7: Total amount of phages detected per bacterial species 
10 plant associated (PA) and 10 non plant associated bacterial genome sequences 
were analyzed with virSorter2, revealing 79 predicted phages. The bacterial species 
is on the x-axis, while the number of phages are along the y-axis. 4 bacterial 
sequences did not have any phages detected. Acinetobacter sp. Hugh 2212, NCTC 
10304 had the most phages detected for both plant and non-plant associated bacterial 
sequences at 21 (See table 2 and phages_total_per_genome in the supplemental 
materials). 

Acinetobacter sp. Hugh 2212, NCTC 10304 has 21 predicted phages 
Acinetobacter sp. Hugh 2212, NCTC 10304 is a rod-shaped, gram negative species 
found in freshwater, host, human skin environments [10]. It has a genome size of 
4157209 bp with 4463 genes [10]. This sequence was sampled from the conjunctiva in 
1962 obtained from UK, German and Belgium culture collections [10]. 
In Davies et al. they observed that  in P. aeruginosa biofilms, populations that evolved 
with phages possessed a higher degree of parallel evolution and faster selective 
sweeps than those without phages present [17]. Bacteriophages potentially offer the 
host beneficial genes that could improve its fitness in biological ecosystems. For 
example Kittinger et al. performed susceptibility tests on several Acinetobacter sp. 
collected from the Danube River (ICPDR), Vienna where they found several samples 
were antibiotic resistant [70]. In S. aureus lysogenic phage are able to transfer the 
mecA gene making it resistant to methicillin based antibiotics [68]. Bacteriophages are 
also able to introduce resistance to Acinetobacter sp. [37] which gives Hugh 2212, 
NCTC 10304 reason to integrate so many phages in its genome. 
Further analysis was done withMUSCLE, MOSGA which showed potential genes in 
Hugh 2212, NCTC 10304 such as:  CNRA_CUPMC (Nickel and cobalt resistance 
protein), ACR3_ALKMQ (Arsenical-resistance protein), MERR_PSEAI (Mercuric 
resistance operon regulatory protein), MERA_STRLI (Mercuric reductase) and 
TIPJ_LAMBD (Tip attachment protein) detected in virSorter2 predicted phage 
sequences (See Hugh_2212_NCTC_10304_MOSGA_genes in supplemental 
materials).  
Muscle [19] was used to further analyze Acinetobacter sp. Hugh 2212, NCTC 10304 
predicted phages (See Figure 8). The average sequence length was 14757bps with the 
smallest length being 2401bp and the largest at 43291 bp. There were 32 genes 
identified in Hugh 2212, NCTC 10304, with 13 present in the 21 virSorter2 identified 
phages (See Hugh_2212_NCTC_10304_MOSGA_genes in supplemental materials).  
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Figure 8: Phylogenetic analysis of predicted phages in NCTC 10304  
Acinetobacter sp. Hugh 2212, NCTC 10304 had the most phages detected for both plant 
and non plant associated bacterial sequences at 21. All 21 phages were analyzed with 
MUSCLE [19] and visualized with iTOL. We found potential associations between a few 
phages AIEE01000128.1 and AIEE01000143.1, AIEE01000019.1 and AIEE01000240.1. 

VirSorter2 phages quality assessment with ViruSITE 
The virSorter2 identified phages were compared to ViruSITE [61] to do further quality 
assessment to reduce false positives. There were 2595 total matches to the viruSITE 
database. A small subset was selected randomly to further analyze (see Figure 8 and 
viruSITE, viruSITE_sample in supplemental materials). There were 4 bacteria 
sequences that were identified to have potential association between phages: A. pittii 
WP19 (PA),A. sp. Hugh 2212 NCTC 10304 (NPA) and P. sp Root9 and P. fluorescens 
A506 
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Figure 9: Subset of virSorter2 identified phages with highest identity match to 
viruSITE 
A blast analysis was used to determine identity scores for virSorter2 identified phages 
that matched viruSITE. The X axis are the identity scores determined by the blast 
analysis. The Y axis are the number of matching phage sequences to viruSITE. There 
were a total of 2595 matches in which 383 had an identity score of 98 or above, while 192 
had an identity score of 79 or lower. (see viruSITE and viruSITE_sample in 
supplemental materials) 

Phylogenetic analysis of predicted phages 

Using 1 method for phylogenetic analysis could cause bias in the association between 
phages. In this study, 2 different methods were used to explore potential association 
between PA and NPA phages and the bacterial genome sequences they were mined 
from. Clustal [59] and MUSCLE [19] are two well-known tools used for sequence 
alignment and association between sequences. Clustal identified 2 sets of potentially 
associated phages (See Figure 6 and Figure 7). The 2 sets of potentially associated 
phages were further analyzed with MUSCLE [19]. 

A. pittii WP19 (PA) and A. sp. Hugh 2212 NCTC 10304 (NPA) shared genes 
The Acinetobacter species can be found in a wide range of environments such as 
water, soil and humans. It is used as a model organism for studying ecology in the 
microbial community due to its ubiquitous presence in nature [10,32]. For example, 
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Indiragandhi et al. found that Acinetobacter sp. PSGB04 promoted canola plant root 
growth through increased root length, seedling vigor, and dry biomass [30]. Although A. 
pittii WP19 and A. sp. Hugh 2212 NCTC 10304 were collected from different 
environments, there is potential for them to share phages since they are from the 
Acinetobacter species [32,37]. 
In A. pittii WP19 (PA) and A. sp. Hugh 2212 NCTC 10304 (NPA) we found that phage 
sequences JQLC01000019.1||0_partial and AIEE01000240.1||full were also determined 
to be associated by  MUSCLE [19](See Figure 11). MOSGA analysis showed that 
phage sequence JQLC01000019.1||0_partial had 4 repeating regions and 1 
hypothetical protein, while AIEE01000240.1||full had 2 repeating regions without any 
genes detected.(see Virsorter2_analysis in supplemental materials) 
 

 

Figure 10: A. pittii WP19 and A. sp. Hugh 2212 NCTC 10304 phylogenetic analysis 
Both phage sequences were analyzed with MUSCLE [19] and visualized with iTOL 
[36]. JQLC01000019.1||0_partial and AIEE01000240.1||full both had a score of 
0.11629 which shows that MUSCLE predicted both phages are associated. 

Plant associated phages P. sp Root9 and P. fluorescens A506 
CheckV [47], clustal omega [59], MUSCLE [19] and iTOL [36] were used to explore the 
phages associated with P. sp Root9 [2] and P. fluorescens A506 [39,62]. Phage 
sequences LMIY01000033.1 || 0 partial and CP003041.1||2_partial were also analyzed 
with MUSCLE [19] to see if the results were similar to clustal omega analysis [59]. Both 
phages received an identical score of 0.06299 (See Figure 10). Genes SYM_PSEFS 
(Methionine--tRNA ligase) and LOGL8_ORYSJ (Probable cytokinin riboside 5'-
monophosphate phosphoribohydrolase) were identified in LMIY01000033.1 || 0 partial, 
where it was determined to have a total of 4 genes detected while 
CP003041.1||2_partial had 4 genes detected as well which included MUTS_ALKEH 
(DNA mismatch repair protein) and Q47319 (TAPT_ECOLI tRNA-uridine amino 
carboxypropyl transferase). (see Virsorter2_analysis in supplemental materials) 
 

 

Figure 11: P. sp Root9 and P. fluorescens A506 Phylogenetic analysis 
P. sp Root9 and P. fluorescens A506 phage sequences were analyzed with MUSCLE 
[19] and visualized with iTOL [36].Similar to Figure 10, MUSCLE predicted that 
phages LMIY01000033.1 || 0 partial and CP003041.1||2_partial are associated as well. 
They both share a score of 0.06299. 

Conclusion 
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We developed a novel computational pipeline for phage discovery and analysis and 
applied this pipeline to compare 10 PA and 10 NPA bacterial genome sequences. In 
this study, we identified potential association between 2 plant associated phages along 
with 1 plant associated and 1 non plant associated phages. The next steps are to 
validate the association between these phages through experimentation. The core goal 
is to understand if any of the identified genes that are associated with root colonization 
(or other plant related process) are transducible and if there is really a multipartite 
relationship between A. thaliana, bacteria and bacteriophages in the rhizosphere. 

Limitations to computational pipelines 
Computational methods offer valuable insight to biological processes but are limited to 
being predictions. Computational methods were never meant to replace experimental 
procedures. To fully understand the relationships between phage,bacteria and host we 
must leverage the insight and guidance from computational methods while performing 
the experiment. 
Computational methods heavily rely on experimental progress. Databases such as 
NCBI’s Genbank [7], JGI IMG DB [11], ViruSite [61] are created from the results and 
data scientists share from their experiments. This study serves as a pilot for leveraging 
computational pipelines to understand more about the relationship between phages, 
bacteria and hosts in biological ecosystems. To further leverage computational 
techniques, a lot more data is collected from samples that have validated annotations 
through experiments. 20 genome sequences were analyzed closely, which can show 
potential associations, but to definitively make connections, more sequences need to be 
analyzed.  

 Future work 
The next steps are a combination of improved computational methods and experimental 
validation. In regard to computational methods, I plan to : 1) Analyze thousands of 
bacterial sequences that are known to be associated with plant growth and 
development such as P. simiae; 2) Compare predicted phages to phages identified 
bacterial species that are able to impact multiple organisms such as Pseudomonas 
aeruginosa, which can impact plants and humans [66]; 3) Optimize the pipeline with 
additional databases, annotation tools and multiple viral detection methods to increase 
the amount and quality of predicted phages. Having a system that can analyze large 
volumes of data would assist in leveraging the amount of new sequence data being 
generated. 
In addition to improved computational methods, experimental validation is essential to 
truly understanding the potential multipartite relationship. The phages that are identified 
would need to go through experimental methods such as: plaque assays and 
quantitative PCR (qPCR)s [5], of both bacterial species to see if the phage can infect 
the host and if the shared genes could be transduced [1]. 
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Chapter 4: Conclusion 
Bacteriophages are able to affect both abiotic and biotic components making them a force 
of biodiversity in ecosystems [29,41]. In this dissertation, I was able to leverage novel 
computational pipelines to identify bacteriophages in WGS, determine the genes present 
in the identified phages, and performed phylogenetic analysis to see if the phages had 
any potential association. 
In host ecosystems bacteriophages impact the host through the genes that they could 
potentially introduce. I’ve identified 191 unique predicted PhiSpy in 10,011 S. aureus 
genome sequences, with 3205 genes detected. Bacterial hosts have been observed to 
accept phages into their genome when there are genes that benefit the host [6,19]. In my 
database there were 2 phages that had signs of resistance for S. aureus. In agricultural 
ecosystems, there were phages that had genes that offered host resistance to toxic 
metals in the environment. Bacteria can gain several beneficial genes from 
bacteriophages in the ecosystem. The genes introduced by phages in the environment 
can offer several evolutionary traits needed to improve fitness [50,51,52]. 
Genes can be beneficial to both bacterial hosts, and other host organisms such as plants 
by helping them improve their fitness in their environment [50,51]. These genes have the 
potential to be spread by the bacteria, phages and plants found in the environment. In 
this dissertation we’ve identified 16 phages that were of association in agricultural 
ecosystems. Several phages that were associated were identified in bacteria that were 
from the same species. The identified phages found in the Acinetobacter species were 
both plant associated and non plant associated. This shows that a species that is 
commonly found in several different ecosystems can potentially be spreading phages 
carrying genes from various backgrounds [51]. Genes that are beneficial to biotic 
components have the ability to be shared by similarly associated phages. In agricultural 
ecosystems, plant associated bacterial species had several identified phages associated 
with each other. The bacterial species could potentially be selecting for phages that offer 
genes that are beneficial to both it and the plant to increase fitness in the ecosystem. In 
different ecosystems, E. coli and S. aureus are two different bacterial species that have 
been shown to share phages [52]. The combination of my pipeline and database can be 
leveraged with experimental analysis to uncover more of these potential associations and 
track how genes are being passed in different ecosystems. 
The database produced by my pipeline allows exploration of the origin for identified 
phages, potential susceptibility of bacterial species being analyzed and prevalence of 
genes commonly shared between the host and phages in an ecosystem. Alignment tools 
such as MUSCLE and Clustal Omega give insight on how similar sequences are to each 
other [13,36]. This information, along with annotated genes identified in the phage 
sequences can be used to explore the ancestry of the different identified phages. Chapter 
3 introduces this method when exploring the possibility of phages sharing genes in an 
ecosystem. The genes most commonly found for bacterial species and phages in different 
ecosystems uncovers the role of the identified phages that could be modulating bacterial 
fitness [50]. One example in agricultural ecosystems, are the toxic metals that can be 
found in the rhizosphere. The Acinetobacter phages identified in my database had genes 
associated with mercury and arsenic resistance showing that the samples collected from 
a pear tree, and the rhizosphere could have been sampled from an environment suffering 
from metal toxicity. The computational pipeline and database produced can be leveraged 
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to explore the above areas computationally without having to perform experiments initially 
to make the potential connections and associations. 

Limitations to computational pipelines 
A significant proportion of the genes encoded by both free living and prophage sequences 
are of unknown function [48]. Databases that scientists are updating with gene functions 
from experiments conducted serves a better foundation for gene annotation tools. The 
databases are limited to what scientists discover in genomics overall and this puts a major 
constraint on the databases. This could introduce a level of bias in the tools that are using 
the same databases. To create tools that are able to identify more phages and genes, we 
will need to continue increasing the amount of experimentally validated sequences. 
Computational methods offer valuable insight to biological processes but are limited to 
being predictions. To fully understand the relationships between phage,bacteria and host 
we must leverage the insight and guidance from computational methods while performing 
the experiment. This dissertation serves as a pilot for leveraging computational pipelines 
to understand more about the relationship between phages, bacteria and hosts in 
biological ecosystems. To further leverage computational techniques, a lot more data is 
collected from samples that have validated annotations through experiments. I’ve 
analyzed 10,011 sequences for S. aureus and 20 for plant associated and non plant 
associated genome sequences, which showed potential associations, but to definitively 
make connections, more sequences need to be analyzed. 
Computational methods will not be able to replace experimental procedures. They help 
uncover insight experiments may have overlooked. Relying on one method is limiting, 
while multiple methods combined reduces the chance of bias (See Chapter 1: Figure 1). 
Experimental procedures yield more results when both sequencing and computational 
methods are leveraged (See Figure 1)[15,2425]. 

Future work 
Future work includes a combination of improved computational methods and 
experimental validation. In regard to computational methods: 1) Expand the 
computational pipeline to leverage more tools for phage identification, gene annotation 
and phylogenetic analysis; 2) Optimize the pipeline with additional databases similar to 
viruSITE [39] and INPHRED [49]. Having a system that can analyze large volumes of 
data would assist in leveraging the amount of new sequence data being generated. 
In addition to improved computational methods, experimental validation is essential to 
truly understanding the potential multipartite relationship. The phages that are identified 
would need to go through experimental methods such as: plaque assays and quantitative 
PCR (qPCR)s [50], of both bacterial species to see if the phage can infect the host and if 
the shared genes could be transduced [2]. Exploring the impacts of bacteriophages in 
different ecosystems will require the strengths of sequencing and computational methods 
to assist in observing more processes during experiments.  
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