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Advances in Doublet Mechanics
II. Free Boundary Reflection of P- and S-Waves in

Granular Media

Migin Zhang', Mauro Ferrari'”

! Department of Materials Science and Mineral Engineering, University of

California, Berkeley. CA 94720, USA

? Department of Civil Engineering, University of California, Berkeley, CA 94720, USA

The free-boundary reflection of plane waves propagating in macroscopically isotropic granular
arrays is studied using the methods of doublet elasticity. The effects of granule size on the
reflection characteristics of P- and S-waves of given wavelength are established. It is shown
that the critical angles of mode conversion, the phase changes, and the amplitude ratios are
scale-related. The classical reflection results of continuum elastodynamics are retrieved in the

non-scale and infinite wavelength limits.



Introduction

Microscopically isotropic, infinite plane regular assemblies of discrete nodes capable of
elastic axial interactions were shown (Granik and Ferrari, 1995) to sustain both longitudinal
and shear vertical plane waves for all values of the dimensionless scaling parameter /=A/m,
where A is the wavelength and 7 is the internodal distance, or granule dimension. Ibidem, it
was also shown that the incorporation of scaling effects permits the modelling of physical
observations that are otherwise intractable in terms of a general theory. Among these are the
phenomena of dispersion and retardation of both P- and S- waves, which are incompatible
with homogeneous continuum linear elasticity, but are successfully predicted employing the

microstructure-accounting methods of multi-scale Doublet Mechanics (DM).

In the first part (Granik and Ferrari, 1995) of this sequence of coordinated papers, the
elastodynamic study was limited to infinite media, and in this memoir we extend their work,
by considering the problem of reflection of plane waves at the free surface of macroscopically
isotropic granular media. While the problem of plane elastodynamics in granular media has
received considerable attention in the literature (see discussion in Granik and Ferrari, 1995),

the issue of wave reflection has, to the best of the authors’ knowledge, never been addressed.

The methods employed in this paper are again those of multi-scale Doublet Mechanics. In
order to make the paper self-contained, the necessary basic equations of Doublet Mechanics

are summarized in the next section. For a detailed presentation of theory, however, the reader



is referred to the first part(Granik and Ferrari, 1995) of this sequence and references therein.

Notation throughout this sequence is also coordinated with (Granik and Ferrari, 1995).

In the first part of this paper, the non-scale version of the problem of plane wave
reflection is considered, with results that are in compliance with those of continuum linear
elastodynamics. However, in later sections it is demonstrated that the simplest scaling variable
of the theory elicits results that are qualitatively different from the classical ones. In
particular, it is found that the critical angles of mode conversion, the phase changes and the
amplitude ratios are dependent on the dimensionless scaling parameter, and thus on granule

size for a fixed wavelength. The dependence is more pronounced at shorter wavelengths.

The analysis in what follows is, for mathematical simplification and physical explicitness,
based on a set of assumptions: (i) no body forces are acting on the granular domain; (i1) the
doublets are capable of axial microstresses only; (iii) the doublet constitutive response is
linear elastic and local, with microstresses in the a-th doublet depending on the a-th
microstrain only; (iv) the granular packing is macroscopically isotropic in the plane of

propagation.

It is noted that (iv) is satisfied by choosing the plane of propagation to be the basal plane
of the cubic-tetrahedral packing, which is elastically isotropic in the nonscale (macroscopic)
limit, but becomes anisotropic once scaling effects are accounted for (Granik and Ferrari,

1995).



In this paper, the first and fundamental scale-accounting version of the Doublet-
Mechanical approach is employed, corresponding to the truncation of the displacement
expansion at M=2 in equation (1). This choice retains the advantage of analytic treatment,
while sufficing to establish the above-mentioned qualitative features of the scalg~accounting
treatment. The presently employed methods of analysis are not confined to the specific

packing here discussed, but are applicable to any other granular array of interest.

Preliminaries on Doublet Mechanics

In Doublet Mechanics, granular bodies are represented as assemblies of discrete nodes
arranged with translational periodicity. Any pair of such nodes is called a doublet. Let R be
the region occupied by the granular media in the reference configuration. All the vector and
tensor variables and quantities are defined with respect to a rectangular Cartesian frame of
reference x, with i, as its unit vector. Plane granular assemblies are assumed, so the subscnipt
takes on values 1 and 2. The summation convention is enforced in the same range on Latin

subscripts, but not on superscripts. Greek subscripts refer to doublet numbers.

Following the above-mentioned coordinate system configuration, the increment of the
displacement vector u(x), x € K, in the a-th doublet may be expressed in a convergent Taylor

series as (Granik and Ferrari, 1993)
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where v is the Hamilton operator and "-" denotes the dot product; the subscript o denotes the
particular doublet under consideration; 1, are the corresponding doublet length and 1, are
the unit doublet vectors in the reference configurations; and M indicates the degree of
approximation. The theory is multi-scale in nature, since M may be taken to be any positive
integer. For simplicity, in this article, only the cases of M=1(non-scaling, the first degree

approximation) and M=2(scaling, the second degree approximation) are considered.

The kinematic equations that relate the doublet microstrains of elongation g, of the a-th

doublet to the vector fields of the granule translations u are defined as (Granik and Ferrari,

1993)
M -1 ax u
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where 1, are the cartesian components of vectors of 7,. Via assumption (iii) of the
introduction, the constitutive equation that relates the axial microstresses P, with the

microstrains can be defined as (Granik and Ferrari, 1993)

P =Ce 3)
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where C is a constant.

The traction vector T, acting on the boundary S of the granular assembly is given by
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where n,, denotes the outward unit normal to S. By comparison with the Cauchy relationship

T=6,n (5)

: k&

where |, is the stress tensor, it follows that the Macroscopic stress tensor is expressed, in

the M-th order approximation, as

M) _ . d m, )I 1 _1(']3 )

-1 (6)
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This establishes a scale-dependent relationship between the M-th order approximation to
the stress tensor, the microstresses and the microstructural variables. The stress relation (6)
may also be expressed in terms of displacements, by substitution from constitutive equation

(3) and kinematic equation (2).

Model and Formulation of Reflection of Incident waves
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In this study, we consider single-frequency time-harmonic waves only. Figure 1 sketches a
plane P-wave travelling at an incident angle 6, . Upon impact with the free surface x,=0, this

wave gives rise to a reflected P-wave and a reflected S- wave, with reflection angles 8, and

The incident and reflected waves propagating in the half-space x,<0 are defined by the

following equations

aZ™=A @ exp(in®™) (N
where
NP =k (TF™~c 1) (8)

where A, are the amplitudes of the waves and d™ , the unit vectors of particle motion: x is
the position vector and p™, the unit vectors of propagation; k, are the wave numbers and ¢,
are the phase velocities of wave propagation. The index n is assigned the value of O for the

incident P- wave, 1 for reflected P-wave and 2 for reflected S-waves.

From the geometry of Figure 1 we have, for the incident P-wave

5(0)=ﬁ(0), c,=c, 9

7 ©=5in6 i, +c0s8, i, (10
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for an incident S-wave
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for the reflected P-wave
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FW= ull ) A, sinB exp([ik, (x,sin®, -x,cos8, -c;N] | (18)
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and finally for the reflected S- wave

p@=sin6,i, ~cosb,i, (19)

2)

a=ixp?, €,=C; (20)

d®=cos8,i, +sin6, i, 21
2002 u,(2> ) A,cos8,explik,(x,sin6,-x,c0s8,-c,1)] (22)
u® | |A,sinB.explik,(x;sind,-x,cos0,-c,n] |

In the above, c, and c; are the propagation velocities of P- and S- waves respectively.

The derivatives of the displacement of the incident P-wave are
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Derivatives for the other waves are similarly defined.

Via (6) the free stress boundary conditions at plane x,=0 may be expressed as

¥ ohn=0,
A

¥ of=0
R’
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where the summation is performed over each wave n, and the superscript M is dropped for

notational conventional convenilence.

In analdgy with continuum elastodynamics(Achenbach, 1973), for a given incident wave,
the amplitudes, the unit propagation vectors, and the wavenumber must be computed from the
boundary conditions. Thus the problem is reduced to solving for the amplitude coefficients
and reflection angles of reflected waves, on the basis of the above stated stress free boundary
conditions. This approach also allows us to develop families of solutions to the reflection of
incident waves for various boundary conditions. Some scaling and non-scaling reflection

problems are studied next.

Case 1. Reflection of an incident P-wave in non-scale analysis(M=1)

with doublet axis 1, parallel to x, axis
According to the coordinate system defined in Figure 1, we can write the direction matrix

of doublets as follows

Ty T2 [-cos® -sind
T, Ty | =|cosd -sind (26)
T, 1T 1 0

where ¢ is 60 ° for the basal plane of the cubic tetrahedral packing. For the non-scaling case

(M=1) this plane is elastically isotropic (Granik and Ferrari, 1995).

11



The stress relation (6) for M=1 is thus reduced to

3
= 27
6,=Y T, TP e (27)

ax]

where, for plane waves, i, j=1,2. From the boundary condition(24), (25), constitutive relation

(3), and kinematic equation(2), we obtain the following relations between the incident and

reflected waves

Ak, sin®0,+3c0s*8,lexp(in ©)+A k,[sin’8, +3c0s%8,Jexp(in‘Y) A k,sin(26,)exp(in @y=0  (28)

A kosin(26 Dexp(in®) -A k,sin(26 ) )exp(inV1)-A k,cos(26,)expin @y =), (29)

Since equations (28)and (29) are valid for all values of x, and t at x,=0, the existence of
solutions of the set of equations requires that the exponential must appear as factors in both
equations(Achenbach, 1973). This will be satisfied only when
n°=n'=n? (30)

We conclude, from inspection of the definition of ® in (8), that

k,sin@ =k sin6 =k sin@,=x 31

12



koc, =k c, =k,c.=w (32)

From (31) and (32), it follows

8,=6,, 8,=arcsin(x'sin@) (33)
ok, 22l | (34)
k, ¢

By employing (33) and (34), the algebraic equations for the amplitude ratios A,/A, and

A,/A, are obtained from (28) and (29):

A A

.;l.(sin290+3005260) ~—_2Ksin260,=—(sin’6,+3c0s’6 ) (35)
0 0

A A

—5in26,+—2xcos28,=sin28,. (36)

AO AO

A typical plot of amplitude ratios A, /A, , A, /A, versus the angle of incidence is shown
in Figure 2 for the standard value of material constant K= 3'"*(Kolsky, 1963). This value of
the material constant x was chosen for ease of comparison with literature results. It is found

that the results obtained using DM theory in the first degree approximation (M=1, non-

13



scaling) corresponds exactly to those of classical continuum elasticity( Kolsky, 1963;

Achenbach, 1973).

It is observed from Figure 2 that: (i) for normal incidence (8,=0), the amplitude of the
reflected S wave is zero, the incident P-wave is reflected as a P-wave only, and the amplitude
of the wave is equal to that of the incident wave with a phase change of m; (i1) for an angle
of incidence about 45°, the amplitude of the reflected S wave reaches the maximum, which is
greater than that of the incident wave; (iii) for the angles of incidence 8,=60° and about 80" .
the incident P-wave is reflected as a S-wave only, which is known as mode conversion
phenomena; (iv) for 8,=90°, the reflected S wave vanishes and the incident P-wave 1s again
reflected as a P-wave; (v) the reflected P-wave have same phase as the incident P-wave

between about 60°-80°, and otherwise it is 180° out of phase to the incident wave.

Case II. Reflection of incident P-wave in non-scaling analysis(M=1)

for doublet axis 7, at an angle of y with respect to x; axis

The geometry of this case is sketched in Figure 3, and the direction matrix of the rotation
may be written as
n | |-cos(¢-y) -sin(¢ -Y)

n| = | cos(d+y) -sin(d+y)
cosy -siny

(37)

T
't‘,j: 121 T
T3l 132
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By (2) and (3), the stress relation (6) may be expressed in terms of the components of

displacement as

a () au {n} au (m) au (n)
(n) 3 2
02,; _Z Z (‘t Tal +talta2( = 8" ) TmTaZ - )
2 o=l X, X, ox,
n) (n) (n) (m)
53 AR N L KR8
A a=] ax ax ax2

(38)

(39)

Substituting (38) and (39) into (24), (25), and following the same procedure as case I, it

is proven that the angle of reflected P-wave is equal to the angle of incident P-wave and the

angle of reflected S wave still satisfies (33). The amplitude ratio expressions can thus be

reduced to

3 1 Tai( Ak sin®0, A, k,sin?0, +A_k,cos8,sind,)
+3 10 10x(Agkysin26 -4 k,sin28, -A k,cos?0, +A k sin?0,)

+Y 0 1T oy (AgkcOs™ +A k cOs%0, —_;.Azkzsin262)=0.

15
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3 12,15, (A k,sin®0, +A k sin?0, +-;_A2kzsin292)
+3 14, Taa(Ak,5in28 ~A k,sin20, -A k,cos™0, +A k,sin’0,) (41)
o

T 1Ak CO58, +A k,cOs6, -%Azkzsin262)=0,

The ratios of the amplitudes of the reflected waves to the amplitude of the incident P-wave
have been plotted for varying angle of 7y and it was found that the reflection coefficients are
independent of the rotation angle of 7y and the dependence of amplitudes of reflected waves

on the incident angles is exactly the same as in case 1.

Case III. Reflection of incident P-wave in scale-accounting analysis

(M=2) with Doublet axis 1 ; parallel to x,

approximation M=2. Referring to the (2) and (6), the stress relations may be reduced to

n, de,,
oﬂ:Czu: T,(T w.ea-__z_t wla = ) (42)

In this case, unlike the case of M=1 in which the stresses are the function of strain only,

16



the stresses are the function of both strains and the derivatives of strains. Foliowing the same
steps as the Case I, by employing the stress-strain relation (42) and the stress free boundary

condition (24) and (25), the following relations are derived

=0y k,=k, (43)
8,=arcsin(x'sin6 ) (44)
where k=k,/k,.

With (43) and (44) and the stress free boundary conditons (24) and (25), the algebraic
equations for amplitude ratios of incident and reflected waves A,/A, and A,/A, can be

expressed as the following,

[%sineocose z[..zt_.smeo \,/_._._sme coszeo]___

+[‘/_ ”/_cosze +1 \/2+c0526 1__._,/2+c0526 cos’0 ].__ (45)
V3 = NER:

3. . . ) )
=2.sinB cosB +i.X__ " sinB +i¥~_ " sinB cos%®
7 T A T B 0
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33 ,..9 =nx Al . 9 . . A
-— =080 j+iry/ 3 —€088 | — +[—/ 6 +3c05%0, 5in6  ~i— —sinB ] =
(g oo 0origs 3 5 ol L6 3c0s By sindy i sindol = (46)
3.3

.9 n
= +-c0s%0 +i—_——y/3 cosB
8 4 T 0

The ratios A, /A, and A, /A, versus incident angles are plotted in Figures 4 and 5 for
different values of scaling factors [ = A/n o, where A is the wave length and 1 , is the
central distance of doublets as shown in Figure 1. For I=eo, the non-scaling results of case I
are retrieved. In the figures throughout the paper, the following nomenclature is employed for
the axis labels: the letter(s) before the dash line indicates the types of incident wave and the
letter(s) after the dash line indicates the types of reflected waves. For instance, a reflected P-

wave due to the incident § wave is identified as 5-P-wave.

From Figures 4 and 5, it is observed that: (i) the amplitudes of the reflected waves not
only depend on the incident angle and material property x as in the non-scaling case, but also
depend on the scaling factor /, which reflects the size of the doublet; the dependence is
especially strong at the wavelength comparable to the particle size. (i) For incident angle
0,=0, the reflected S-wave vanishes and incident P-wave is reflected as a P-wave; and the
magnitude of amplitude of reflected P-wave decrease sharply with . (iii) At grazing incidence
(8,=90°), no S-wave is reflected, and A, /A, , which is independent of scaling factors at this

angle, again become unity. (iv) Similar to the non-scaling case, mode conversion occurs at

18



two angles, but the values of the angles vary with the scaling factor I (v) the amplitudes of

reflected S-waves increase appreciably with the decrease of [.

The curves for /=2.5 in Figures 4-5 exhibit features that differ qualitatively from the other
curves in the same figures, such as the intersection with curves corresponding to higher
values of the dimensionless scaling parameters /. It is however noted that the plots correspond
to {=2.5, a value outside the valid range of 5</<eo recommended for the second degree
approximation (Granik and Ferrari, 1993), should thus be considered to be poor
approximations. For such scaling ranges, use should be made of scaling approaches involving
M>2, following exactly the method of analysis presented above. Still, it is of interest to retain
the case /=2.5 in our study, in that different quantities are approximated with different degrees

of precision for the same values of / and M. An example of this will be shown later.

The two mode conversion angles for incident P-wave are plotted in Figure 6 against the
dimensionless scaling factor /. In Figure 6 and 11, the value of / is taken within the range
(5<l <oo) that DM theory(M=2) applies. From Figure 6, it is observed that the first critical
angle of mode conversion increases sharply with / when / <30 and changes slowly when

30 </ <100, and approaches the angle 60° of non-scale case when /=100. The second critical
angle of mode conversion decreases moderately with the increase of / and approaches the
angle 77° of non-scale case when /=100. It is shown that the results of non-scaling case are

retrieved at [ = 100.
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The phase changes of the reflected P-wave and S-wave with respect to that of the incident
P-wave are plotted in Figures 7 and 8 against the angle of incidence with / as a parameter.
The phase under consideration is defined as

Im(A JA,)

- 7, (47)
Re(A JA,)

Q=arcig

where Im(A_/A,) indicates the imaginary component and Re(A,/A) the real component of

A JA, with n=1 for the reflected P-wave and n=2 for the reflected S- wave.

The results of Figure 7 and Figure 8 show that: (i) For a given wavelength, the particle
size, as reflected by the scaling factor, has a significant influence on the phase change. (ii)
The phase change for /=100 is very close 1o that of /=ce, which indicates that for the value of
| greater than 100, the results of DM theory are identical with those of classical theory; the
phase changes for the values of [ less than 100, unlike the non-scaling case where the phase
difference is either O or m, change continuously with the incident angle and increase with the
decrease of I. (iii) The reflected P-wave has abrupt phase changes of 7 at about 60° and 80°
corresponding to the phenomenon of mode conversion of the reflected P-wave shown in
Figure 4. (iv) There is no phase difference between the reflected S-wave and the incident P-
wave for the non-scaling case at the whole range of incident angle; but for the scaling case,
there is a phase difference between them, and the difference increases with the decrease of
scaling factors /, indicating the depart from the continuum approximation assumed in classical

theory. It is noted that the results corresponding to the /=2.5 are qualitatively similar to those

20



corresponding to larger values of /, for what pertains to the phase change diagrams.

Case IV. Reflection of incident S-wave(M=2)

For an incident S-wave, there are also a S- wave and a P- wave reflected at stress free

boundary (Goodier and Bishop,1948). In this case, we assign indices n=0 to incident S wave,

n=1 to the reflected P-wave and n=2 to the reflected S-wave.

By smctly following the analogous procedure of the previous sections, we obtain

kysin6,=k,sind, =k,sin6,

kocr=kic; =kcpn

Similarly, we can conclude from (48) and (49) that

sin, =xsin6,,

21
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Though we will follow the same procedure to discuss the reflection of an incident S-wave,
it is worthwhile to notice at this point that there are significant differences between the
reflection of S- waves and P- waves. Since the velocity of propagation for the reflected P-
wave is greater than that of the incident S-wave, k=c,/c; is always greater than 1; and
therefore according to equation (33), the angle of the reflected S-wave is always less than that
of the incident P-wave. By inspection of (52), however, the angle of the reflected P-wave 1s
found to be always greater than that of the incident S-wave. Consequently, there will be a
critical angle of incidence at which the reflection angle of P-wave equals 1/2 n. For those
incident angles being greater than the critical angle, a reflected surface wave will be
generated and decays exponentially with distance from the free surface. The discussion of
surface waves is beyond the scope of this study. In what follows, the reflection of incident S-

wave is studied, only for waves with the incident angles which do not exceed the critical

angle.
By (50), (51), (52) and the stress free boundary conditions (24) and (25), the stress
relation (42) for x=3'" can be reduced to

[- t~—-—fsm6 +z \/—smeocos 6,

3. 9= 15 7 A
+-Zsm6m/—2+300526 +i-——sin@,- tTgTsmﬁocoszeolzi

16 1 , (53)
3 2 3 S ¢ .5 = 3 2
8,-= 0, -i— —c0s°6,]—
"0 8”161°°S° 1671 Ay
3 .5 =n

'~[z—~fcos36 += cos 26,-= -i-———y/3cos8,]
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ﬁ+z ¢3( 2+3c0s*0,) - J’ Z;

+[- z-——-——\/_s1n6 +§coseosm60]—— (54)

0
. 3 T o~=. . 3.
=l-i"6-'7\/3sm60*'28m80m60‘

From these equations, A,/A, and A,/ A, versus the angle of incidence with scaling factor [

as a parameter are plotted in Figure 9 and Figure 10.

It is found that (i) there is a critical angle at about 35°, which is independent of the scaling
factor / and consistent with that of equation (52); (ii) at 6,=0, the reflected P- wave vanishes,
the incident S- wave is reflected as a S- wave only and the magnitudes of reflected S- waves
are same as that of incident S- wave for all values of /; (iii) mode conversion also occurs at
two angles, as in the case of incident P- waves, at which the S-wave vanishes and incident S-
wave is reflected as P-wave only; (iv) the amplitudes of reflected P-wave increase appreciably
near the critical angle and reaches the maximum at the critical angle(even twice than that of

incident S-wave).

For ease of viewing the dependence of the mode conversion on the microstructural

variables, the two mode conversion angles versus the dimensionless scaling parameter / for an

23



incident S-wave are plotted in Figure 11. It is observed that both two critical angles of mode
conversion increase sharply with / when [ <30, vary slowly when 30</<100, and reach a
maximum value when /=100. The classical case(non-scaling) is again retrieved at / greater

than 100.

By employing equation (47), with A, denoting the amplitude of an incident S-wave in this
case, the phase changes of reflected waves to an incident S-wave for M=2 and x=3'? are

plotted in Figure 12 and Figure 13.

It is observed that (i) phase changes of reflected waves to an incident S-wave are strongly
influenced by scaling factor /. (ii) the reflected P-waves for / 2 100 always have a phase
difference of T with respect to that of the incident S-wave; the phase differences between the
reflected P-wave and the incident S-wave for other values of / increase with the decrease of /
and change continuously with the incident angle.(iii) the reflected S-waves at [ greater than
100 also have a phase difference of m with respect to that of incident S-wave and have an
abrupt phase change of m around 30°~35° at which the mode conversion of reflected S wave

OCCUrs.

Concluding remarks

In this study, Doublet Mechanics has been used to analyze the elastic wave reflection at

granular material-free space interfaces. The amplitude ratios of reflected waves to incident
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waves and phase shifts of the reflected waves have been obtained analyrically. It was found
that the results of first order approximation, which corresponds to the situation of non-scaling,

isotropic granular media, are consistent with those obtained using classical continuum theory.

Upon accounting for scaling effects, novel results were established, that have no
counterpart in classical elastodynamics. In particular, it was found that the critical angle of
mode conversion, the amplitude ratios, and the phase shifts in reflection phenomena are
dependent on a dimensionless scaling parameter. Such dependence is more pronounced at
shorter dimensionless wavelength, that is for larger granule sizes for a fixed wavelength,
where the continuum assumption of classical elastodynamics is no longer valid. The non-
dimensionality of the scaling parameter renders the present results applicable to materials with
significantly different typical microstructural dimensions, as long as the wavelengths are
proportionately scaled. The classical elastodynamic reflection results were found to hold as an

excellent approximation in the for wavelength-to-granule size ratio of order 100.
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Figure

Figure

Figure

Figure

Figure

Figure

1. Reflection of an incident P-wave at the interface of granular medium and free space
with a sketch of corresponding doublet orientation (1, parallel to x, axis); 6, - the
incident angle of the incident P-wave; 6, - the reflection angle of the reflected P-wave;
8, - the reflection angle of the reflected S-wave; ¢ - the angle between the directions

of two doublets.

2. Amplitude ratios of the reflected waves to the incident wave for an incident P-wave
in the non-scaling case of M=1. A, - the amplitude of the incident P-wave; A, - the

amplitude of the reflected P-wave; A, - the amplitude of the reflected S-wave.

3. Reflection of an incident P-wave at the interface of granular medium and free space
with the sketch of corresponding doublet orientation (1, in an angle of ¥ with respect
to x, axis); O, - the incident angle of the incident P-wave; 6, - the reflection angle of

the reflected P-wave; 6, - the reflection angle of the reflected S-wave.

4. Real components of amplitude ratios of the reflected P-wave to the incident P-wave

in the scaling case of M=2 with /, the dimensionless scaling factor as a parameter.

5. Real components of amplitude ratios of the reflected S-wave to the incident P-wave

in the scaling case of M=2 with [, the dimensionless scaling factor as a parameter.

6. Two mode conversion angles for an incident P-wave versus the dimensionless
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scaling factor [, —— the first mode conversion angle, ——-— the second mode

conversion angle.

Figure 7. Phase changes of the reflected P-wave with respect to the incident P-wave in the

scaling case of M=2 with /, the dimensionless scaling factor as a parameter

Figure 8. Phase changes of the reflected S-wave with respect to the incident P-wave in the

scaling case of M=2 with /, the dimensionless scaling factor as a parameter.

Figure 9. Real components of amplitude ratios of the reflected P-wave to the incident S-wave

in the scaling case of M=2 with [, the dimensionless scaling factor as a parameter.

Figure 10. Real components of amplitude ratios of the reflected S-wave to the incident S-

wave in the scaling case of M=2 with /, the dimensionless scaling factor as a

parameter.

Figure 11. Two mode conversion angles for an incident S-wave versus the dimensionless

scaling factor /; —— the first mode conversion angle, the second mode

conversion angle.
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Figure 12. Phase changes of the reflected P-wave with respect to the incident S-wave in the

scaling case of M=2 with I, the dimensionless scaling factor as a parameter.

Figure 13. Phase changes of the reflected S-wave with respect to the incident S-wave in the

scaling case of M=2 with /, the dimensionless scaling factor as a parameter.
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