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The “INVERSE PROBLEM?” to the Evaluation of Magnetic Fields".

S.Caspi, M.Helm and L.J.Laslett’
Lawrence Berkeley Laboratory, Berkeley, California, 94720

Abstract—In the design of superconducting magnet ele-
ments, such as may be required to guide and focus ions in a par-
ticle accelerator, one frequently premises some particular cur-
rent distribution and then proceeds to compute the consequent
magnetic field through use of the laws of Biot and Savart or of
Ampere. When working in this manner one of course may need
to revise frequently the postulated current distribution before
arriving at a resulting magnetic field of acceptable field quality.
It therefore is of interest to consider an alternative (“inverse”)
procedure in which one specifies a desired character for the field
required in the reglon interior to the winding and undertakes
then to evaluate the current distribution on the specified wind-
ing surface that would provide this desired field.

By evaluating the specified potential in the region interior
to the winding along the interface, we have determined that a
relaxation solution to the potential in the region outside the wind-
ing can be converged and used to calculate wire location. We
have demonstrated this method by applying a slightly modified
version of the program POISSON to a periodic alternating si-
nusoidal quadrupole field.

I. INTRODUCTION

In a very simple example it was desired to find a dis-
tribution of surface current density, on the surface of a
circular cylinder of radius “a”, that would provide in the
interior a periodic alternating purely sinusoidal quadrupole
field whose scalar magnetic potential would be propor-
tional to Ip(%2) cos (%2)sin2¢ ( cylindrical coordinates )
— or ( more generally ) to an expression of the form

[E CmIz((2m — 1)%2) cos ((2m — 1)1—:)‘] sin2¢. In this
ing'tance. with a circular cylinder selected as the form on
which the current windings are to be placed, it may be ev-
ident that an analytic solution can readily be obtained and
that indeed if additional azimuthal harmonics characterized
by factors sin 6¢ or etc. were also present in the desired po-
tential an analytical expression for the required current density
could still be provided through superposition. We may note
that in undertaking such an inverse procedure we would wish,
on practical grounds, to avoid the use of any “double-layer”
distributions of current on the winding surface but would not
demand that no fields be generated in the exterior region, so
that in this respect the goal would differ in detail from that
discussed in [1].
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When a more general form of interface is considered
desirable, p = f(z) but still of circular cross-section, the
coordinate system for a conventional analytic solution for
the required current distribution may be lacking and we may
wish to turn to some sort of relaxation process or processes
in p,z space for computational solutions. We turn now to
consideration of this option.

II. ANALYSIS

With a continuous interface ( p = f(z), and of circular
cross-section, specified ) for the surface on which current
windings are to be placed the problem may then be specified
as follows. [ We may treat a single azimuthal component at
a time in the course of the computational work, since the ¢
variation will be a separable variable and several harmonics,
if present, may have their multipole fields superposed when
required.]

The interface p = f(z) will separate the p,z space into
an interior region ( Region I ) and an exterior region ( Re-
gion II ). In each of these regions the magnetic field may
be described by scalar potential functions (p, z) sin n¢ and
Q1 (p, z) sin ng ( where n represents the azimuthal harmonic
number ) [2],[3],[4] that should satisfy the differential equa-
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The function Q! may be taken to be a given function that will
vanish along the axis p = 0, while the function Q! ( that
remains to be found ) should tend to zero at remote distances
(p — o). Each of the functions Qf & QI should fulfill
suitable boundary conditions [ e.g., Dirichlet or Neumann
(%{‘-‘) = ( ] at the side boundaries of a relaxation mesh.

The functions Qf & QI should not be expected them-
selves to be continuous across the interface but we require
instead that the normal derivatives should be continuous, e.g.
at the interface "g‘” should become equal to the prescribed

n
I . . .
value of &L at that same point ( with n having the same

direction in space on the two sides of the interface).

It appears that we have a mathematically well posed
problem in p,z space for the function 7/, We thus may
anticipate, in particular, that if the function Q in some z
region increases from zero to (say) some positive value as
it approaches the interface, there then may be a jump to a
negative value for Q! on the opposite side of the interface
at that location and that /7 then will grow ( to less negative
values ) as p increases further, thus maintaining continuity
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at the interface of the normal derivatives of potential and
permitting Q77 to tend towards zero at large p.

If the problem thus posed becomes solved, as by a
relaxation process applied to the function Qf/, the val-
ues for the surface-current density on the interface then
can be found. Thus, specifically, the value of the lon-
gitudinal component of current density ( e.g., the compo-
nent running along the interface in the p,z plane ) is given
by the discontinuity in the qﬁ component of field [e.g by
the difference between _ETqbsm n¢ and +-L- % sin ng,
or L1(Qf —QIT) cosng 1, while the dlsconununty in the
longuudmal derivative or longitudinal component of field
similarly gives the ¢ component of current density as

I I
L (20— _ 2L ) sinng so as together will describe a cur-

rent with zero surface divergence ( as desired ).

We might expect that the relaxation solution of the prob-
lem posed for the function /7 might be achieved by a slightly
modified version of the program POISSON. We may now first

mention, however, that the boundary condition Q7 — 0 as-

(p — oo0) may not be easily realized on a necessarily finite
mesh, so that one may need to have a recourse to some ap-
proximate treatment of this matter ( such as imposing a bound-
ary value Q/ = ( at the outer edge of a quite extended mesh,
or by some more sophisticated special treatment). A possi-
ble difficulty with regard to employing an available relaxation
program, to solve the problem posed above for determining
the function Q7/(p, z), will arise if the program can accom-
modate a Neumann type of boundary condition only if in such
cases the value specified for the normal derivative is zero ( in
contrast to the present requirement that the normal derivative
of Q7 shell be taken as equal to the known ( prescribed)
normal derivative of Q7).

In recognition of the possible occurrence of this diffi-
culty, we now suggest a possible means of circumventing
this difficulty, so that one could proceed by use of an avail-
able relaxation program for solving the relevant differential
equation [ subject to the provision the program “editor” will
permit one to obtain correct values of normal derivatives (
right up to any boundary) of solutions Q!/(p, z) obtained by
the relaxation process]. The suggested method may well be
regarded as inefficient from the point of view of computer
usage, but none the less its adoption may be regarded as ap-
propriate method and we then may go on to illustrate the
method by an extremely simple example that may serve to
lend some confidence to the belief that the overall process
will be convergent.

III. IMPLEMENTATION

The method to be outlined will omit the need to apply
a Neumann boundary condition at the interface p = f(z) in
performing a relaxation sweep throughout the mesh wherein
the function Q7 is to be evaluated. The method instead will
employ the assignment of “provisional” values for Q1 at the
node points along the interface, thus in effect introducing a

Dirichlet type boundary condition at this boundary while re-
laxation processes are underway in Region II. Subsequent to
the execution of several relaxation passes through Region II
these provisional Dirichlet boundary values will be revised,

in light of currently available provisional esumates of £ "“”

in such a way that the desired continuity of 22 across lhe
interface may become more closely attained and the relax-
ation process then will be resumed. Such readjustments can
be performed repeatedly until a suitable close degree of con-
vergence is attaincd and the then-available values of Q7 and
its derivative 22— employed ( logelher with the correspond-

ing known values of @ and M: ) to evaluate the implied
values of current density on the interface surface.
Specifically we suggest that, in following this procedure,
suitable initial provisional values for Q' at the interface may
be taken simply as —! at the interface vertices. Moreover,
when subsequently revising such provisional values of Q7
at points on the interface, we propose that the values be
scaled up simply by a provisional factor that is the average
ratio of the known desired normal derivative of Q! to the
normal derivative of the provisional present function Q/
at that same point. [ “over-relaxation factors” for these
relaxation and revision process may well be acceptable, and

even appropriate, but need not be regarded as necessary.]

Given an mterface o = f(z) for 0 < 2 <
L (or —L<z< %) with a local slope angle y given
by tany; = T. = —l’:zﬂ- for which

T; 1
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The magnetic scalar potential in the inner region p < p,
( region I ) and the outer region p > p,, ( region II ) is
respectively of the form

EQ (p,z)sinng , with QL(0,2) =

siny; =

vi = Eﬂif(p, z)sinng , with QM (co0,z) =0

n

For each of the functions Q! & QL we expect them to
satisfy the differential equation (1) and to satisfy the boundary

conditions
672‘|2=0 =0 or Qﬂl::—‘.f- =0
Q“ z={= =0 Qﬂlz:{‘ =0

The requisite connection between the functions Q & QZf
- . '

occurs at p, = f(z) and explicitly is 22 = 287 where n

denotes distance in the normal direction ( in the same sense

), or

QU QI o0l
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when written in cylindrical coordinates, for each and every
location z; along the interface py, ¢ = f(z;). We have used

QL
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the following relations to calculate derivatives of potentials
normal and tangent to the interface :

o _oa 0%,
Bn 8 1T gy o7
a_Q—a_ﬂsin +a_Q

B Or T gy o7

A. Modifying “POISSON"

The program POISSON was modified to solve the re-
vised differential equation, and to make the necessary provi-
sional revisions on the interface. With the aide of the mesh
generator program AUTOMESH we generate two regions (
I & II), solve the inner region I first, and obtain the normal
derivatives on each interface point. Second we turn off re-
gion I and turn on region II assuming the initial potentials on
the interface are the negative of those in region 1. Following
several relaxation cycles ( 10 to 50 ), the potentials on the in-
terface are multiplied by a common Factor ( see below ) and
the updated potentials held constant during the next iteration
cycle. The update Factor is the average ratio of the normal
derivative on both sides of the interface.-

nf aal
cos 7, —siny; 52
Factor = E = n’ -
N & cos, 2a" a — siny; -

N is the total number of points on the interface. Accordingly
the interface potentials are revised :

Qe = QL 1a[1 + A(Factor — 1)]

t,new

with X being the relaxation factor. As the process converges
the value of Factor tends towards 1. and L, = QT
. The resulting current density on the interface can now be
obtained using the potentials and derivatives on both sides of
the interface.

I _ ol
#ian_Qn cosng

0 w (9)
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( with o = ‘{—g in “Poisson units” of cm , amp, gauss ),
which should prove to be such that the surface-divergence of
this surface-current density vanishes. Lines of current flow (

or wire direction ) are given by the differential equation

o0y _ aayf
@:Lﬁz— . s s tan ng
ds  pu Js pun \ QL —QII
= g(r, z) tan ng

where s is a location distance along the interface curve p,, =
f(2). The above differential equation can be rewritten as a
function of z and r ( instead of s and r)

d¢ dp\® 3
T —g(p,2) 1+(E) tanng =0 (11)

w

POISSON output provides tables of p, z, and g(p, z), which
are used to calculate wire locations.

B. An alternating cylindrical quadrupole — EXAMPLE

To illustrate the procedure just outlined and possibly to
give a sense of any issues concerning convergence, we apply
this method to a simple problem in which a purely sinusoidal
AG quadrupole field is to be formed by current windings
placed on a circular cylinder. It will be recalled that for
such a simple configuration it was known that for a current
distribution at p=a

Tz & ma . wZ 5
J = cos I ¢os 2¢é; + 5, S0 sin 29éy
it was determined by analytical means that the fields were
derived from scalar potential functions such as for p < a and
for p > a respectively

V= 217(;111 Kz(L)IZ( ) cos (T)sm%i
i B 10 ) o (22 i

In the program we accordingly employ a mesh with the
type of boundary condition indicated and from the formula
shown for Qf the values of Q! are readily specified as fixed
numerical values along the interface p = a. With this
potential values, an input file into POISSON can be generated.
The results of the given and converged potential values on
the interface of regions I and II respectively are shown in
the bottom of Fig. 1. Also shown are normal derivatives
along the interface (42 = 42) with identical values for both
regions I and II (as desired). Flux plots are illustrated in
Fig. 2. The established potentials and tangential derivatives
permit one to calculate the current density as prescribed by
(2) plot their values in the ¢ and Z direction as shown in
Fig. 3, generate the function g(p, z) as shown in Fig. 4 and
solve the differential equation 3 obtaining the required wire
distribution as shown in Fig. 5.
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Fig. 1. Potentials and normal derivatives on the interface.



|

Fig. 2. Flux plot in inner region I (left) and outer Region II (right).
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Fig. 3. Current density in the ¢ and Z directions.
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Fig. 5. A 3D CAD drawing of the quad wire distribution.

APPENDIX

A. Interpolation & Differentiation in POISSON

In the reprogramming of POISSON the interpolation and
interpolation-differetiation are based on polynomials of the
type shown in References [2],[5]. These functions are each
of such a form that ( for n>0 ) they vanish at r=0 and so ( as
intended ) appear appropriate for use in an INTERIOR region
that includes the axis of the cylindrical coordinate system. In
application to the modified POISSON, such polynomials do
NOT appear particularly suitable however for fitting values of
the function 2 in EXTERIOR regions that extend essentially
to co where 2 may be expected to become zero.

In review of the circumstances noted above, the evalu-
ation of interpolated 2 values and derivatives in an EXTER-
NAL region may require a basic replacement of functions so
as to include expressions for n < 0 that should individually
satisfy %a%(p%%z +292 ’;—:Q = 0 and even with n a
negative integer should not blow up. Suggested polynomials
for interpolation and interpolation-differentiation have been
incorporated in to the program POISSON and are tabulated
in Reference [6].
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