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The "INVERSE PROBLEM" to the Evaluation of Magnetic Fields*. 

S.Caspi, M.Helm and L.J.Laslettt 

Lawrence Berkeley Laboratory, Berkeley, California. 94720 

Abstract-In the design of supcrconducting magnet cle­
ments, such as may be required to guide and focus ions in a par­
ticle accelerator, one frequently premises some particular eUf­

rent distribution and then proceeds to compute the consequent 
magnetic field through use of the laws of Blot and Savart or of 
Ampere. When working in this manner one of course may need 
to revise frequently the postulated current distribution before 
arriving at a resulting magnetic field of acceptable field quality. 
It thcrdoce Is of Interest to consIder an alternative ("Inverse") 
procedure in which one specifies a desired character for the field 
requlred in tbe region lntcrior to the wlnding and undertakes 
then to evaluate the curreot distribution on the specified wind­
Ing surface that would provide tbls desired field. 

By evaluating the specified potential In the region Interior 
to the winding along the interface, we have determined that a 
relaxation solution to the potentlalln the region outside the wlnd~ 
Ing can be converged and used to calculate wIre locaUon. We 
have demonstrated this method by applying a slightly modified 
version of the program POISSON to a periodic alternating si­
nusoidal quadrupole field. 

I. INTRODUCTION 

In a very simple example it was desired to find a dis­
tribution of surface current density, on the surface of a 
circular cy/inder of radius "a", that would provide in the 
interior a periodic alternating purely sinusoidal quadrupole 
field whose scalar magnetic potential would be propor­
tiona� to 12 (¥) cos ('{) sin 2q1 ( cylindrical coordinates ) 
- or ( more generally ) to an expression of the fonn 

[~CmI2«(2m-l)¥)cos«(2m-l)'{.)lsin2q1. In this 

instance, with a circular cylinder seleetJ as the fonn on 
which the current windings are to be placed, it may be ev­
ident that an analytic solution can readily be obtained and 
that indeed if additional azimuthal harmonics characterized 
by factors sin 6q1 or etc. were also present in the desired po­
tential an analytical expression for the required current density 
could still be provided through superposition. We may note 
that in undertaking such an inverse procedure we would wish, 
on practical grounds, to avoid the use of any "double-layer" 
distributions of current on the winding surface but would not 
demand that no fields be generated in the exterior region, so 
that in this respect the goal would differ in detail from that 
discussed in [I). 
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When a more general fonn of interface is considered 
deSirable, p = f( z) but still of circular cross-seetion, the 
coordinate system for a conventional analytic solution for 
the required current distribution may be lacking and we may 
wish to turn to some sort of relaxation process or processes 
in p,z space for computational solutions. We turn now to 
consideration of this option. 

II. ANALYSIS 

With a continuous interface ( p = fez), and of cireular 
cross-seetion, specified ) for the surface on which current 
windings are to be placed the problem may then be specified 
as follows. [We may treat a single azimuthal component at 
a time in the course of the computational work, since the qI 
variation will be a separable variable and several harmonics, 
if present, may have their muJtipole fields superposed when 
required.) 

The interface p = f( z) will separate the p,z space into 
an interior region ( Region I ) and an exterior region ( Re­
gion II ). In each of these regions the magnetic field may 
be described by sealar potential functions nI (p, z) sin nql and 
nIl (p, z) sin nql (where n represents the azimuthal harmonic 
number) [2),[3),[4) that should satisfy the differential equa­
tion 

~~ (/n) + 8
2n _ n2 n = 0 

p 8p 8p 8z2 p2 
(I) 

The function nI may be taken to be a given function that will 
vanish along the axis p = 0, while the function nIl ( that 
remains to be found) should tend to zero at remote distances 
(p -> 00). Each of the functions nI & nIl should fulJill 
suitable boundary conditions [ e.g., Dirichlet or Neumann 
(~~) = 0 ) at the side boundaries of a relaxation mesh. 

The functions nI & nIl should not be expected them­
selves to be continuous across the interface but we require 
instead that the rwrmai derivatives should be continuous, e.g. 
at the interface 8~~ I should become equal to the prescribed 
value of 88r;,' at that same point ( with n having the same 
direetion in space on the two sides of the interface). 

It appears that we have a mathematically well posed 
problem in p,z space for the function nIl. We thus may 
anticipate, in particular, that if the function nI in some z 
region increases from zero to (say) some positive value as 
it approaches the interface, there then may be a jump to a 
negative value for nIl on the opposite side of the interface 
at that location and that nIl then will grow ( to less negative 
values ) as p increases further, thus maintaining continuity 



at the interface of the normal derivatives of potential and 
pennitting nll to tend towards zero at large p. 

If the problem thus posed becomes solved. as by a 
relaxation process applied to the function nll. the val­
ues for the surface·current density on the interface then 
can be found. Thus. specifically. the value of the lon­
gitudinal component of current density ( e.g.. the compo­
nent running along the interface in the P.z plane) is given 
by the discontinuity in the q, component of field [e.g by 
the difference between _.1.. an8~' sin nq, and +.1..~ sin nq,. 

1.'0 P '+' 1J0 patp 
or ;, ;(nf - nIl) cosnq, J. while the discontinuity in the 
longitudinal derivative or longitudinal component of field 
similarly gives the q, component of current density as 

~o ( 8~: t - 8!!1 ) sin n4> so as together will describe a cur­
rent with zero surface divergence ( as desired ). 

We might expect that the relaxation solution of the prob­
lem posed for the function nIl might be achieved by a slighUy 
modified version of the program POISSON. We may now first 
mention. however. that the boundary condition nll --< 0 as ' 
(p --< 00) may not be easily realized on a necessarily finite 
mesh. so that one may need to have a recourse to some ap­
proximate treaunent of this matter ( such as imposing a bound­
ary value nf f = 0 at the outer edge of a quite extended mesh. 
or by some more sophisticated special treaunent). A possi­
ble difficulty with regard to employing an available relaxation 
program. to solve the problem posed above for determining 
the function nII(p.z). will arise if the program can accom­
modate a Neumann type of boundary condition only if in such 
cases the value specified for the nonnal derivative is zero ( in 
contrast to the present requirement that the nonnal derivative 
of nIl shell be taken as equal to the known ( prescribed) 
nonnal derivative of nIl. 

In recognition of the possible occurrence of this diffi­
culty. we now suggest a possible means of circumventing 
this difficulty. so that one could proceed by use of an avail­
able relaxation program for solving the relevant differential 
equation [ subject to the provision the program "editor" will 
pennit one to obtain correct values of normal derivatives ( 
right up to any boundary) of solutions nll(p. zj obtained by 
the relaxation processJ. The suggested method may well be 
regarded as inefficient from the point of view of computer 
usage. but none the less its adoption may be regarded as ap­
propriate method and we then may go on to illustrate the 
method by an extremely simple example that may serve to 
lend some confidence to the belief that the overall process 
will be convergent 

lli. IMPLEMENTATION 

The method to be outlined will omit the need to apply 
a Neumann boundary condition at the interface p = !( z) in 
perfonning a relaxation sweep throughout the mesh wherein 
the function n f f is to be evaluated. The method instead will 
employ the assignment of "provisional" values for nll at the 
node points along the interface. thus in eirect introducing a 

Dirichlet type boundary condition at this boundary while re­
laxation processes are underway in Region IT. Subsequent to 
the execution of several relaxation passes through Region IT 
these provisional Dirichlet boundary values will be revised. 
in light of currenUy available provisional estimates of a!,:'. 
in such a way that the desired continuity of ~~ across the 
interface may become more closely attained and the relax­
ation process then will be resumed. Such readjusunents can 
be perfonned repeatedly until a suitable close degree of con­
vergence is attained and the Ihen-available values of nf f and 
its derivative a~: ' employed ( together with the correspond­

ing known values of n f and af?' ) to evaluate Ihe implied 
values of current density on Ihe interface surface. 

Specifically we suggestlhat. in following this procedure. 
suitable initial provisional values for n f f at the interface may 
be taken simply as _nI at the interface vertices. Moreover. 

. when subsequenUy revising such provisional values of nll 

at points on the interface. we propose that the values be 
scaled up simply by a provisional factor that is the average 
ratio of the known desired nonnal derivative of n f to the 
nonnal derivative of the provisional present function n ll 

at that same point. ["over-relaxation factors" for these 
relaxation and revision process may well be acceptable. and 
even appropriate. but need not be regarded as necessary.J 

Given an interface Pw = !( z) for 0 :5 z :5 
t (or - t :5 z :5 t) with a local slope angle -y given 
by tan -Yi = 7l = ~ for which 

. 7l 1 
sm "'Ii = JI + Ti2 I COS 'Yi = ';1 + Ti2 

The magnetic scalar potential in the inner region p < Pw 
( region I ) and the outer region p > Pw ( region IT ) is 
respectively of the fonn 

VI = Ln~(p, z)sinnq, , with n~(O,z) = 0 
n 

VII = L n~f (p, z) sin nq, , with n~I (00, z) --< 0 
n 

For each of the functions n~ & n~I we expect them to 
satisfy the differential equation (1) and to satisfy Ihe boundary 
conditions 

The requisite connection between the functions n~ & n~I 
occurs at Pw = !(z) and explicitly is a.r:: = .!':' where n 
denotes distance in the normal direction ( in the same sense 
). or 

on~I . on~I on~. on~ 
COS-Yiap -SlR-Yia;- = COS-Yi op -SIll-Yi oz 

when written in cylindrical coordinates. for each and every 
location Zi along the interface Pw.i = !(Zi). We have used 



the following relations to calculate derivatives of potentials 
nonnal and tangent to the interface: 

on on on . - = -cos, - -SID, on 01' oz 
on on. on - = -SIn,+ -cos, as Or oz 

A. Modifying "POISSON" 

The program POISSON was modified to solve the re­
vised differential equation, and to make the necessary provi­
sional revisions on the interface. With the aide of the mesh 
generalOr program AUTOMESH we generate two regions ( 
I & 11), solve the inner region I first, and obtain the nonnal 
derivatives on each interface point Second we tum . off re­
gion I and tum on region II assuming the initial potentials on 
the interface are the negative of those in region I. Following 
several relaxation cycles ( 10 10 50 ), the potentials on the in­
terface are multiplied by a common Factor (see below) and 
the updated potentials held constant during the next iteration 
cycle. The update Factor is the average ratio of the nonnal 
derivative on both sides of the interface. · 

I N cos 'Y' 8n~ - sin 'Y' an; 
F '" a 8p I 8z 
/ acior = N L..t aol'. aOIl 

i=l COs'Yi~-smfi~ 

N is the total number of points on the interface. Accordingly 
the interface potentials are revised : 

n[,~,w = n[,~'d[l + A(Factor - 1») 

with >. being the relaxation factor. As the process converges 
the value of Factor tends towards 1. and nf ~ew = .o{ ~ld 
. The resulting current density on the interface can now' be 
obtained using the potentials and derivatives on both sides of 
the interface. 

n nf _ nIl 
J8 = n n cosnt/J 

1-'0 Pw 

1 (on~ on~f). J", = -- -- - -- smnq, 
1-'0 as as 

(9) 

( with {!o = 1~ in "Poisson units" of em , amp, ganss ), 
which should prove 10 be such that the surface-divergence of 
this surface-current density vanishes. Lines of current flow ( 
or wire direction) are given by the differential equation 

dq, 1 J 1 (80; _ 80;' ) 
- = _...1.. = ___ 8&[ ~~ tannt/J 
ds Pw J, Pwn On -On 

= g(r. z) tan nq, 
where s is a location distance along the interface curve Pw = 
f( z). The above differential equation can be rewritten as a 
function of z and r ( instead of sand r) 

~~-g(P. z) l+(~:»annq,=o (11) 

POISSON output provides tables of p, z, and g(p, z), which 
are used to calculate wire locations. 

B. An alternating cylindrical quadrupole - EXAMPLE 

To illusiiate the procedure just outlined and possibly to 
give a sense of any issues concerning convergence, we apply 
this method to a simple problem in which a purely sinusoidal 
AG quadrupole field is to be fonned by current windings 
placed on a circular cylinder. It will be recalled that for 
such a simple configuration it was known that for a current 
dislIibution at p=a 

1rZ " 1ra. 1rZ . 2"-
J = cos L cos 2<p ez + 2L sm L Sill 'f'e¢ 

it was detennined by analytical means that the fields were 
derived from scalar potential functions such as for p < a and 
for p > a respectively 

f 21r 1ra' I (1ra) (1rP) (1rZ) . V = -lOLl{, L I, L cos L SID 2¢ 

II 21r 1ra' I (1ra) (1rP) (1rZ). V = -lOLl, L l{, L cos L sm2¢ 

In the program we accordingly employ a mesh with the 
type of boundary condition indicated and from the fonnula 
shown for nf the values of nf are readily specified as fixed 
numerical values along the interface p = a. With this 
potential values, an input file inlO POISSON can be generated. 
The results of the given and converged potential values on 
the interface of regions I and II respectively are shown in 
the botlOm of Fig. 1. AlJ;o shown are nonnal derivatives 
along the interface (~~ = ~~) with identical values for both 
regions I and II (as desired). Flux plots are illustrated in 
Fig. 2. The established potentials and tangential derivatives 
pennit one to calculate the current density as prescribed by 
(2) plot their values in the q, and Z direction as shown in 
Fig. 3, generate the function g(p, z) as shown in Fig. 4 and 
solve the differential equation 3 obtaining the required wire 
distribution as shown in Fig. 5. 

0.0 r;:::====-==:;=:;-~-~~~-:::;;;;;""'l 
-0.2 0--0 dv/dr I 

~ -0.4 
G--El dv Idr II 

'0 
-0.6 

-0.8 
2 

1 

> 0 
08e~a 

-1 ... '---.... --2 ..... -
0 2 4 6 8 10 

Z(cm) 

Fig. 1. Potentials and normal derivatives on the interface. 



Fig. 2. Flux plot in inner region I (left) and outer Region n (right). 
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Fig. 3. Current density in the ¢ and Z directions. 
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Fig. 4. The function g(s). 

Fig. 5. A 3D CAD drawing of the quad wire di stribution. 

APPENDIX 

A. Interpo lation & Differentiation in POISSON 

In lhe reprogramming of POISSON lhe inlerpolation and 
interpolation-differetiation are based on polynomials of lhe 
type shown in References [2],[5]. These functions. are each 
of such a form lhat ( for n>O ) lhey vanish at r=O and so ( as 
intended) appear appropriate for use in an INTERIOR region 
lIlat includes lhe axis of lhe cylindrical coordinate system. In 
application to lhe modified POISSON, such polynomials do 
NOT appear particularly suitable however for fitting values of 
lhe function n in EXTERIOR regions lhat extend essentially 
to 00 where n may be expected to become zero. 

In review of lhe circumstances noted above, lhe evalu­
ation of interpolated n values and derivatives in an EXTER­
NAL region may require a basic replacement of functions so 
as to include expressions for n < 0 lhat should individually 

satisfy ; :p (p ~~ ~ + ~:r; - ~: n = 0 and even with n a 
negative integer should not blow up. Suggested polynomials 
for interpolation and interpolation-differentiation have been 
inco<porated in to lhe program POISSON and are tabulated 
in Reference [6]. 
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