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The voltage-dependent ClC-1 chloride channel, whose open probability increases

with membrane potential depolarization, belongs to the superfamily of CLC

channels/transporters. ClC-1 is almost exclusively expressed in skeletal muscles and is

essential for stabilizing the excitability of muscle membranes. Elucidation of the molecular

structures of human ClC-1 and several CLC homologs provides important insight to

the gating and ion permeation mechanisms of this chloride channel. Mutations in the

human CLCN1 gene, which encodes the ClC-1 channel, are associated with a hereditary

skeletal muscle disease, myotonia congenita. Most disease-causing CLCN1 mutations

lead to loss-of-function phenotypes in the ClC-1 channel and thus increase membrane

excitability in skeletal muscles, consequently manifesting as delayed relaxations following

voluntary muscle contractions in myotonic subjects. The inheritance pattern of myotonia

congenita can be autosomal dominant (Thomsen type) or recessive (Becker type). To

date over 200 myotonia-associated ClC-1 mutations have been identified, which are

scattered throughout the entire protein sequence. The dominant inheritance pattern of

some myotonia mutations may be explained by a dominant-negative effect on ClC-1

channel gating. For many other myotonia mutations, however, no clear relationship can

be established between the inheritance pattern and the location of the mutation in the

ClC-1 protein. Emerging evidence indicates that the effects of some mutations may

entail impaired ClC-1 protein homeostasis (proteostasis). Proteostasis of membrane

proteins comprises of biogenesis at the endoplasmic reticulum (ER), trafficking to the

surface membrane, and protein turn-over at the plasma membrane. Maintenance of

proteostasis requires the coordination of a wide variety of different molecular chaperones

and protein quality control factors. A number of regulatory molecules have recently been

shown to contribute to post-translational modifications of ClC-1 and play critical roles

in the ER quality control, membrane trafficking, and peripheral quality control of this
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chloride channel. Further illumination of the mechanisms of ClC-1 proteostasis network

will enhance our understanding of the molecular pathophysiology of myotonia congenita,

and may also bring to light novel therapeutic targets for skeletal muscle dysfunction

caused by myotonia and other pathological conditions.

Keywords: skeletal muscle, genetic disease,mutation, channelopathy, protein quality control, protein degradation,

membrane trafficking, proteostasis network

INTRODUCTION

Myotonia is characterized as delayed muscle relaxation
following voluntary or induced (e.g., electrical or mechanical
stimulations) contraction, indicating hyperexcitability in the
plasma membrane of skeletal muscle fibers. In myotonia
associated with muscle dystrophies (myotonic dystrophy),
trinucleotide and tetranucleotide repeat mutations in the
DMPK and ZNF9/CNBP genes, respectively, lead to progressive
dysfunction in multiple systems including the heart, brain,
eye, and skeletal muscle (1–3). Non-dystrophic myotonias, in
contrast, result from mutations in the genes encoding muscle
ion channels, leading to electrical hyperexcitation and excessive
contraction of skeletal muscles (4–7).

Disease arising from ion channel disorders is commonly
known as channelopathy. One of the channelopathies associated
with non-dystrophicmyotonia concerns a chloride (Cl−) channel
critical for the function of skeletal muscles, the voltage-
dependent ClC-1 Cl− channel. Mutations in the human
CLCN1 gene lead to involuntary muscle contractions caused by
anomalous sarcolemmal action potentials, clinically known as
myotonia congenita (8–11). The worldwide prevalence rate of
myotonia congenita is estimated to be 1:100,000, with a higher
prevalence (about 1:10,000) in northern Scandinavia (12–14). To
date, over 200 distinct mutations in the human ClC-1 protein
have been linked to myotonia congenita (9, 15). This review aims
to provide an up-to-date overview of the mechanisms of disease-
related disruption of ClC-1 channel function. Specifically,
we will address the significance of impaired ClC-1 protein
stability and trafficking in the molecular pathophysiology of
myotonia congenita.

STRUCTURE AND FUNCTION OF THE
CLC-1 CHANNEL

The ClC-1 protein is a member of the CLC channel/transporter
superfamily. The mammalian CLC family consists of nine
members, with four (ClC-1, ClC-2, ClC-Ka, ClC-Kb) Cl−

channels predominantly residing in the plasma membrane, and
the rest (ClC-3, ClC-4, ClC-5, ClC-6, ClC-7) Cl−/H+ antiporters
(counter transporters) mostly located in intracellular organelles
(16–20). The structural detail of the CLC channels/transporters is
made available by latest breakthroughs in obtaining the crystal or
cryogenic electron microscopy (cryo-EM) structures of various
CLC proteins, including bacterial ClC-ec1, thermophilic algal
CmClC, bovine ClC-K, and most recently human ClC-1 (21–26).

Together they provide important insight to the gating and ion
permeation mechanisms of the ClC-1 channel.

The human ClC-1 channel is a transmembrane protein
consisting of 988 amino acids (a.a.; with an apparent molecular
weight of about 120 kDa), generally divided into the amino
(N)-terminal transmembrane portion (up to about 590 a.a.) and
the carboxyl (C)-terminal cytoplasmic portion (Figure 1A). The
transmembrane portion of the humanClC-1 protein is composed
of 18 α-helices (helices A–R), with 17 (helices B–R) membrane-
associated. Most of these helices are not perpendicular to the
plasma membrane, but rather notably tilted. Interestingly, many
of these helices fail to span the entire width of the lipid
membrane. Furthermore, the cytoplasmic C-terminal portion
also contains two tandem helical regions, the cystathionine β-
synthase (CBS) domains (CBS1 and CBS2), which fold into an
ATP-binding site (27).

Both functional and structural analyses support the notion
that, like the other members of the CLC protein family, a
functional ClC-1 channel comprises of a homodimeric structure
[Figure 1B; (21–26, 28–32)]. The H, I, P, and Q helices in each
ClC-1 subunit constitute the subunit interface between the two
protomers (the dimer interface) (Figure 1C). Moreover, within
each subunit of the ClC-1 homodimer, there is a separate ion-
conducting pore (mainly formed by residues located at helices
D, F, N, and R) known as the protopore. In other words, the
ion-conducting pore of ClC-1 is entirely contained within each
subunit of the dimer, and a functional ClC-1 channel thus harbors
two protopores.

Consistent with the functional properties originally inferred
from single-channel recordings of its fish homolog (the Torpedo
ClC-0 channel), the opening of ClC-1 channel entails three
different conductance levels that correspond to the opening of
two independent ion-conducting pores, a phenomenon coined
the “double-barreled” single-channel behavior (16, 28–33). This
notion is further supported by cryo-EM analyses showing the
presence of two protopores in a human ClC-1 homodimer (24,
25). As in all CLC channels, the opening and closing (gating)
of the two protopores in ClC-1 is controlled by two distinct
mechanisms (16, 20): (i) the “fast-gate” that controls the opening
and closing of each protopore independently from the partner
fast-gate, and (ii) the “common-gate” that controls the two
protopores simultaneously. Thus, activation of the ClC-1 ion-
conducting pathway requires the opening of both the common-
gate and the fast-gate.

The opening kinetics of the ClC-1 fast-gate accelerates
significantly in response to membrane depolarization (33–35).
This gating mechanism is fast enough to counteract the
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FIGURE 1 | The cryo-EM structure of the human ClC-1 channel. (A) Membrane topology of the ClC-1 subunit. The α-helices (A–R) are represented as cylinders. The

locations of three pore-lining residues (E232, M485, Y578) and two cystathionine β-synthase (CBS) domains (CBS1, CBS2) are indicated. (B) Lateral view of the ClC-1

dimer (PDB code: 6QVC; presented using Pymol). The α-helices are shown as cylinders. The transmembrane portions of the two subunits in the dimer are colored in

blue and magenta, respectively. Also highlighted are the CBS domains in the cytoplasmic carboxyl-terminal portion of each subunit. (C) The dimer interface of ClC-1.

The interface-forming helices (H, I, P, Q) are drawn as colored ribbons. (Left) The ClC-1 dimer is viewed from the extracellular side. (Right) The ClC-1 subunit is viewed

from the dimer interface of the opposing subunit.

depolarization conferred by voltage-gated sodium (Na+)
channels during an action potential, and is thus important for
regulating skeletal muscle contraction. Besides the control by
membrane potential, the fast-gate is also subject to modulation
by Cl− and H+ (30, 33–36). Similar to voltage-gated cation
channels, the open probability (Po) of ClC-1 fast-gating is higher
at more depolarized membrane potentials. Unlike voltage-gated
cation channels, however, the ClC-1 protein does not seem to
contain any transmembrane segment serving as the “voltage

sensor.” Rather, like ClC-0, the voltage-dependent activation
of the fast-gate of ClC-1 may also arise from the coupling
of Cl− transport with the gating process (34, 37, 38). This
gating-permeation coupling mechanism is supported by two
findings: reducing the extracellular Cl− concentration shifts the
steady-state voltage dependence of Po (Po-V curve) of ClC-1
fast-gating toward a more depolarized membrane potential, and
extracellular Cl− raises the Po by increasing the opening rate of
the ClC-1 fast-gate (33–35). Together, these observations can be
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explained by a Cl−-gating model in which the binding of Cl− to
the protopore opens the ClC-1 fast-gate, and Cl− crossing the
membrane electric field provides the fundamental mechanism
for the observed voltage dependence (16). Importantly, the
glutamate-232 residue (E232), located at the beginning of helix
F of human ClC-1 (Figure 1A), may protrude its negatively-
charged side-chain into the Cl−-permeation pathway, and serve
as the gate that controls each individual protopore (16, 23–
25, 39–41). Other notable pore-lining residues in the human
ClC-1 include methionine 485 (M485; located at helix N) and
tyrosine 578 (Y578; located at helix R) (Figure 1A). The former is
located at the narrowest constriction at the extracellular opening
of the pore and may serve as a hydrophobic barrier, while the
latter constitutes a Cl−-binding site at the intracellular opening
of the pore and forms part of the selectivity filter (24, 25).

The opening rate and Po of the ClC-1 common-gate
(also known as the slow-gate) are voltage-dependent as
well, both becoming higher at more depolarized membrane
potentials (33, 35, 42). Nevertheless, the detailed mechanism
of the common-gating remains obscure (20). Formation of
heterodimeric CLC channels comprising ClC-0 and ClC-1
or ClC-2 concatemers results in the loss of the ClC-0
common-gating, but without detectably affecting single channel
conductance of individual ClC-0, ClC-1, and ClC-2 protopores
(32). Interestingly, dissociation of the common-gating was
observed in heterodimeric ClC-1-ClC-2 concatemers (43).
Moreover, mutations of several residues located at or close
to the dimer interface lead to significant alterations of the
ClC-1 common-gating (42, 44–46). Together these results
suggest that the mechanism of the common-gating entails the
relative motion of the two channel subunits (i.e., inter-subunit
interactions). In ClC-0, the common-gating may additionally
involve the movement of the C-terminal cytoplasmic domain
(47). Consistent with this idea, nucleotides (such as ATP)
binding to the C-terminal cytoplasmic CBS domains seems to
preclude the opening of the ClC-1 common-gate (27, 48–50).
This may involve interactions between the CBS2 domain and
the intracellular loop connecting helices D and E (24). Finally,
the pore-lining E232 and Y578 have also been implicated in the
ClC-1 common-gating (51).

Despite the presence of low-level expression in some other
tissues, the ClC-1 channel is virtually exclusively expressed in
skeletal muscles (52, 53). While multiple types of Cl− channels
exist in skeletal muscles, the ClC-1 channel is the most abundant
(54–56). In most adult mammalian cells, the extracellular
Cl− concentration is significantly higher than its intracellular
counterpart, leading to a negative Cl− equilibrium potential (57).
The physiological significance of the ClC-1 channel is further
highlighted by the finding that Cl− channel conductance may
contribute up to 80% of the resting membrane conductance of
skeletal muscle (58–60), and that Cl− conductance is essential
for preventing excessive firing of muscle action potentials (61).
In addition to the sarcolemma, a significant Cl− conductance is
also present in the transverse-tubule system of skeletal muscle
(59, 62–64). Although the precise subcellular localization pattern
of ClC-1 in skeletal muscles remains contentious (56, 65–70), it
is likely that ClC-1 is important for maintaining an effective Cl−

homeostasis system in both the sarcolemma and the transverse-
tubule system. Taken together, activation of the ClC-1 channel
is crucial for ensuring electrical stability of skeletal muscles by
resetting membrane excitability after firing an action potential.

Several lines of evidence suggest that regulation of skeletal
muscle fatigue involves alteration of ClC-1 channel activation
(62, 71–74). During exercise, intensive firing of action potentials
associated with active muscle contractions may result in
extracellular accumulation of potassium (K+) ions, which in turn
would depolarizemusclemembrane potential and thereby induce
slow inactivation of voltage-gated Na+ channels. Given that a
sufficient inward Na+ current is required for adequate firing of
action potentials, the reduction of the amount of active voltage-
gated Na+ channels could disrupt the efficiency of excitation-
contraction coupling in skeletal muscles and consequently lead
to muscle fatigue. Furthermore, intensive exercise may cause
muscle acidosis (74–76) as well as elevate intracellular calcium
(Ca2+) concentration that activates protein kinase C (PKC).
Interestingly, both intracellular acidosis and PKC activation are
known to inhibit ClC-1 channel activation (49, 77–79). This
down-regulation of skeletal muscle membrane Cl− conductance,
as well as the ensuing reduction in the membrane input
conductance, effectively counteracts the effect of K+-induced
slow inactivation of Na+ channels, restoring muscle excitability
and preventing muscle fatigue. On the other hand, in fast-twitch
muscle fibers during prolongedmuscle activities, the intracellular
ATP level appears to be notably lowered (74, 80), which in turn
reduces ATP inhibition of ClC-1 common-gating. This enhanced
opening of the ClC-1 channel is expected to decrease muscle
excitability and may serve to safeguard the cellular integrity of
fast-twitch muscle fibers during metabolic stress (73).

MYOTONIA-ASSOCIATED ABERRANT
GATING OF HUMAN CLC-1 CHANNEL

Consistent with its physiological role as the cardinal Cl− channel
in skeletal muscles, hereditary defects in the gene encoding
the ClC-1 channel result in prominently reduced membrane
Cl− conductance, and thus significant muscle hyperexcitability
(i.e., myotonia) in animals such as goats, mice, and dogs (52,
58, 61, 81–86). Over 200 mutations in the human skeletal
muscle ClC-1 gene (CLCN1) on chromosome 7 have been
linked to myotonia congenita, which can be inherited in
an autosomal recessive (Becker type) or autosomal dominant
(Thomsen type) manner (8–11, 15, 87, 88). In general, the
recessive Becker myotonia is clinically more severe than the
dominant Thomsen form. Disease-causing CLCN1 mutations
comprise of missense, non-sense, splice-site, and frameshift
mutations. The majority of CLCN1 mutations are associated
with recessive inheritance, with about 20 or less causing
dominant myotonia congenita. Furthermore, about 10 mutations
seem to display either a recessive or a dominant pattern
(dual inheritance pattern). Myotonia-causing mutations are
scattered over the entire human ClC-1 protein, including the
cytosolic N- and C-terminal regions and the transmembrane
domains. Overall, it is impossible to predict the inheritance
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pattern of CLCN1 mutations based on mutation type or
mutation location.

Myotonia congenita is one of the first proven human
channelopathies. A significant number of disease-causingCLCN1
mutations manifest as loss-of-function phenotypes in the
gating/permeation of the ClC-1 channel, including the absence
of discernible Cl− currents (non-functional), significant shifts in
the Po-V curve of fast- and/or common-gating to depolarized
potentials (positive shift), and an inverted voltage-dependence
in activation (hyperpolarization-activated) (10, 45, 88–93).
Haploinsufficiency imparted by each loss-of-function mutant
allele may therefore explain the recessive inheritance pattern
of myotonia congenita. Nonetheless, since many non-functional
ClC-1 mutants on only one allele fail to induce myotonia in
animal models (81, 82), whether haploinsufficiency contributes
to dominant inheritance remains an open question. Instead it
has been suggested that dominant myotonia may be due to
dominant-negative effects of the mutant subunit on the wild-
type (WT) counterpart in heterozygous patients (38, 94, 95).
In line with this idea, many ClC-1 mutant proteins associated
with recessive myotonia (e.g., truncation mutants) do not seem
to exert significant dominant-negative effects, which may be
attributed to their inability to associate with theWT subunit (10).

A working hypothesis on the mechanism of the dominant-
negative effect of disease-causing CLCN1 mutations is that the
inheritance pattern of a mutation is decided by its functional
effect on ClC-1 channel gating; mutations that impinge on the
common-gating result in dominant myotonia, whereas those
only changing the gating of individual protopores lead to a
recessive inheritance pattern (30, 38, 95). With the exception of
truncation mutations very close to the C-terminus of the human
ClC-1 channel, almost all dominant mutations are missense
mutations, most of which instigate significant positive-shift of the
Po-V curve such that activation of the mutant channels becomes
insufficient to sustain effective membrane repolarization in
skeletal muscles. In other words, in the heterodimeric ClC-1
channel formed by aWT subunit and amutant subunit associated
with dominant myotonia, the common-gate controlling both
protopores may be profoundly influenced by the disease-causing
mutation in the mutant subunit, thereby producing a dominant-
negative effect. Consistent with this notion, many mutations
causing dominant myotonia notably affect the common-gating
of human ClC-1 (10, 24, 42, 44, 45, 87, 88, 96). In contrast,
a recessive myotonia mutation involves a missense mutation
at the pore-lining M485 (M485V) that drastically changes the
voltage-dependent gating and the single-channel conductance of
homodimeric mutant CLC-1 channels; upon co-expression with
the WT subunit, however, the M485V mutant fails to detectably
affect the gating or conductance properties of heterodimeric
ClC-1 channels (94).

It is important to address the fact that many disease-
associated CLCN1 mutations do yield functional Cl− channels
with normal gating function. For example, the biophysical
properties of several recessive ClC-1 mutant channels are either
only slightly different or virtually indistinguishable from those
of WT channels (10, 97, 98). Likewise, some dominant ClC-1
mutants do not seem to show detectable gating defects (99–101),

indicating that the foregoing hypothesis on dominant-negative
mechanism is not applicable to these mutants. The association
of certain CLCN1 mutations with a dual inheritance pattern
further highlights the inadequacy of the gating hypothesis (10,
95, 102, 103). Together these examples clearly demonstrate that
mechanisms beyond aberrant channel gating also contribute to
the molecular pathophysiology of myotonia congenita.

MYOTONIA-ASSOCIATED DISRUPTION OF
HUMAN CLC-1 PROTEOSTASIS

Since the skeletal muscle Cl− conductance is predominantly
determined by the total number of functional membrane
ClC-1 channels, myotonia congenita-associated loss-of-function
mutations might involve anomalous gating/permeation in
individual ClC-1 channels or reduced ClC-1 protein abundance
at the plasma membrane. Direct evidence supporting the
latter hypothesis was first demonstrated for three disease-
causing mutations located at the distal C-terminal region
(A885P, R894X, and P932L): Upon heterologous expression in
Xenopus oocytes, they all manifested significantly decreased
ClC-1 protein expression at the surface membrane (104).
Immunohistochemical examinations of muscle tissues from
human patients carrying the R849X mutation further confirmed
a dramatic loss of human ClC-1 staining in the sarcolemma
(105). Importantly, despite the presence of a notable reduction
in whole-cell Cl− current amplitude, only A885P, but not R894X
and P932L, is associated with a positive shift of the steady-
state voltage-dependent activation property [Table 1; (35, 84,
104)]. Therefore, the myotonia-causing loss of muscle ClC-1
conductance in the patients can be mainly attributed to reduced
surface expression of the mutant channel proteins.

Protein abundance is determined by the cellular maintenance
of protein homeostasis (proteostasis), which controls the
concentration, conformation, interaction, and subcellular
localization of individual proteins (112, 113). The biological
mechanisms governing proteostasis entail translational and
post-translational regulations. For membrane proteins, post-
translational regulation of cell surface protein density comprises
of (i) protein quality control at the endoplasmic reticulum
(ER quality control) (Figure 2A), (ii) trafficking to the surface
membrane (membrane trafficking) (Figure 2B), and (iii) protein
turn-over at the plasma membrane (peripheral quality control)
[Figure 2C; (114, 115)].

Like other membrane proteins, the biogenesis of ion
channels begins at the ER. After the initial translocation
of a newly synthesized polypeptide into the ER membrane,
channel protein folding is assisted co-translationally and
post-translationally by multiple molecular chaperones and
cochaperones through a series of substrate bindings and releases
(116, 117). Membrane protein folding and assembly are closely
monitored by the ER quality control system, composed of
chaperones and associated factors, to ensure that only properly
folded proteins are allowed to exit the ER [Figure 2A; (118,
119)]. Moreover, the ER quality control system recognizes and
targets incorrectly folded or assembled proteins for ER-associated
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TABLE 1 | Gating and proteostasis properties of myotonia-causing mutant ClC-1 channels associated with reduced surface protein expression.

Amino acid change Inheritance Po-V curve Proteostasis defect References

Q43R R Like WT Impaired membrane trafficking (98)

Y137D R Like WT Reduced total protein level, impaired

membrane trafficking

(98)

Q160H R Like WT Reduced total protein level, impaired

membrane trafficking

(98)

Q412P R Like WT n.d. (97)

F413C R Positive shift Impaired membrane trafficking (100, 105, 106)

A493E D/R Non-functional Reduced total protein level (107)

A531V R Like WT Enhanced ERAD, impaired membrane

trafficking, defective stability at the plasma

membrane

(106, 108–111)

A885P D* Positive shift n.d. (84, 104)

R894X D/R Negative shift Reduced total protein level (35, 104–106)

P932L D/R Like WT n.d. (99, 104)

D, dominant; D*, dominant myotonic goat; ERAD, endoplasmic reticulum-associated degradation; n.d., mechanism not determined; Po-V, the steady-state voltage dependence of

channel open probability; R, recessive; WT, wild-type.

degradation (ERAD), which involves retrotranslocation of
ubiquitinated, misfolded membrane proteins into the cytoplasm,
followed with degradation by ubiquitin-proteasome machinery
(120, 121). After exiting the ER, properly folded membrane
proteins are packaged into ER-derived transport vesicles and
then delivered to the Golgi apparatus, wherein proteins are
subject to further maturation and glycosylation. Significantly,
membrane proteins are also subject to a rigorous quality
control at the Golgi (114, 115, 122). In general, during
this membrane trafficking process, transport vesicles are
progressively transferred through the ER-Golgi intermediate
compartment, the cis-Golgi network, the Golgi stack (cis-,
medial-, and trans-Golgi compartments), and finally to the trans-
Golgi network, from which mature proteins are shipped to the
plasma membrane [Figure 2B; (123–126)]. Emerging evidence
further indicates that at the plasma membrane, misfolded
membrane proteins escaped from the ER/Golgi quality control
or generated in post-ER compartments are recognized by the
molecular chaperones/cochaperones of the peripheral quality
control system. (114, 127–129). The peripheral quality control
system then removes the improperly folded proteins by ubiquitin
modification, endocytosis, and subsequent trafficking to the
lysosome for protein degradation (Figure 2C).

A significant number of different human disorders have been
associated with proteostasis impairment that entails chronic
expression of misfolded, mutant proteins with defective stability
(130–132). For mutant membrane proteins with proteostasis
deficiencies, the underlying molecular pathophysiological
mechanisms may involve enhanced ERAD, impaired membrane
trafficking, and/or defective stability at the plasma membrane
(114, 125, 133, 134). Some of the well characterized proteostasis
deficiencies concern the mutant Cl− channels and K+ channels
causing cystic fibrosis and long-QT syndrome, respectively
(135, 136). In the case of the aforementioned myotonia
congenita-associated human ClC-1 mutants A885P, R894X, and
P932L, their defective surface protein density appears to arise

from reduced total protein levels and/or impaired membrane
trafficking (104). The precise mechanism underlying their
proteostasis impairment, however, remains elusive.

To date, at least 10 myotonia-related ClC-1 mutants have
been shown to display reduced protein expression at the
plasma membrane (Table 1). Most of these mutations belong
to recessive myotonia, with some others involving dominant
or dual inheritance patterns. The locations of the mutations
scatter over cytoplasmic N- and C-terminal regions, as well
as transmembrane domains (Figure 3). Apart from proteostasis
impairment, these ClC-1 mutants also show aberrant channel
gating function (Figure 3 andTable 1). Given that themajority of
previous studies of disease-causingmutations focus on functional
characterizations without thorough biochemical analyses, it is
conceivable that a significant fraction of the other known ClC-
1 mutant channels with loss-of-function phenotypes may also be
associated with defective proteostasis.

As far as proteostasis mechanisms are concerned, the most
comprehensive analyses were performed for the A531V mutant
(located at helix O), a recessively inherited mutation found
prevalently in northern Finland and Scandinavia (12, 13).
Despite an overall Po-V curve indistinguishable from that of
the WT, the A531V mutant is associated with substantially
reduced whole-cell current density (108, 109). Upon over-
expression in both muscles and non-muscle cell lines, the
A531V mutant exhibits significantly reduced protein levels
that can be attributed to enhanced protein degradation (106,
108). Further studies show that the nature of this excessively
reduced protein expression involves both proteasomal and
lysosomal degradation, suggesting that the A531V mutant is
associated with enhanced ERAD, as well as defective protein
stability at the plasma membrane (108, 110, 111). Moreover,
immunofluorescence analyses reveal a notable ER-retention
pattern, indicating that the proteostasis defect of the A531V
mutant also entails impaired membrane trafficking (106, 108).
Together, these observations are consistent with the idea that the
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FIGURE 2 | Proteostasis mechanisms governing the surface expression of membrane proteins. (A) Endoplasmic reticulum (ER) quality control. Protein folding at the

ER is assisted by multiple molecular chaperones and cochaperones. Proteins with native folding conformation may pass the ER quality control system and are allowed

to exit the ER. Chaperones/cochaperones also recognize misfolded proteins, which are subject to covalent linkage with ubiquitin (Ub) via the concerted action of three

types of ubiquitination enzymes (E1–E3). The ER-associated degradation system will further target ubiquitinated proteins for retrotranslocation into the cytoplasm

through the channel-like, ER membrane-localized retrotranslocon, as well as with the facilitation by the ATPase p97/Cdc48 complex. Retrotranslocated proteins are

then destined for degradation by the 26S proteasome. (B) Membrane trafficking. Immature, native membrane proteins from the ER are packaged into transport

vesicles and transferred through the ER-Golgi intermediate compartment (ERGIC) and the Golgi complex, wherein they go through further post-translational

modifications. Mature proteins are eventually ushered to the plasma membrane. Misfolded proteins that escape the ER quality control system and reach the Golgi

complex may still be recognized by the Golgi quality control system, followed by retrograde transport back to the ER, or antegrade transport to the lysosome. (C)

Peripheral quality control. Molecular chaperones/cochaperones at the plasma membrane may recognize membrane proteins with conformational defects and recruit

enzymes (E1–E3) for ubiquitination of the misfolded proteins, which in turn are targeted for endocytosis and lysosomal degradation.
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FIGURE 3 | Structural localization of myotonia congenita-associated ClC-1 mutations with defective proteostasis. (A) Membrane topology of the ClC-1 subunit. (B)

Lateral view of the transmembrane portion of the human ClC-1 cryo-EM structure (PDB code: 6QVC; presented using Pymol). The α-helices are shown as cylinders.

Red labels, mutants with gating properties similar to those of WT; blue labels, mutants with altered gating properties. See Table 1 for more details.

A531V mutant contains a serious folding anomaly that renders
most of the mutant proteins undesirable for the quality control
systems at the ER, Golgi, and plasma membrane, shifting ClC-1
proteostasis toward the degradation pathway.

Nonetheless, it remains unclear why a conservative alanine-
to-valine mutation at residue 531 in the transmembrane helix
O results in such a dramatic impairment in human ClC-1
proteostasis, and how the mutation subtly disrupts the structure
of ClC-1 without notably affecting its biophysical properties.
One possibility is that the misfolded ClC-1 mutant protein is
predominantly misrouted in its proteostasis pathway, reducing
the likelihood of correct folding; for the small fraction of mutant
proteins passing the quality control system, the native protein
conformation may be reasonably safeguarded, sparing the gating
function of the channel. Another plausible idea is that the
mutation may introduce an ER-retention signal or disrupt or

an ER-export signal. Some of the known ER-retention or ER-
export signal sequences in other ion channels and membrane
proteins include RXR, KKXX, and VXXSL (137–140), none of
which is present in residues 511–551 of the ClC-1 WT or the
A531Vmutant. Moreover, all known ER-retention/export signals
are located in the intracellular region, whereas A531 is at the
transmembrane helix O, adjacent to the dimer interface helices
P and Q (Figure 3).

Although the evidence is as of yet not available, it is likely
that some myotonia congenita-related ClC-1 mutations may
result in aberrant membrane targeting/subcellular localization in
skeletal muscles. One major limitation to better understanding
of this critical question is that proteostasis pathways as well
as subcellular localization patterns of ClC-1 channels in situ
remain elusive. As discussed above in the “Structure and
Function” section, it is still controversial whether the ClC-1
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channel is located at the sarcolemma and/or the transverse-
tubule system of skeletal muscles. Although biophysical and
pharmacological studies support the presence of ClC-1-like Cl−

channel conductance in the transverse-tubules of rat skeletal
muscles (62, 63, 72), immunohistochemical characterizations
of muscle cryosections suggest that, in WT mice, the ClC-
1 immunoreactivity is primarily found in the sarcolemmal
membrane but not in the transverse-tubules of skeletal muscles
(66). A similar sarcolemma-restricted immunohistochemical
staining pattern is also observed in skeletal muscles of the
arrested development of righting response (ADR) mouse (65,
141), a commonly used mouse model for recessive myotonia
(82, 142). Nevertheless, the prominent sarcolemmal localization
of ClC-1 in skeletal muscles seems to disappear immediately
after the myofibers are isolated and maintained in cell
culture conditions, suggesting that the subcellular localization
of ClC-1 is tightly regulated by the physiological conditions
within skeletal muscles (65). The mechanism underlying the
foregoing discrepancy between physiological and immunological
localizations of ClC-1 in skeletal muscles remains to be
determined. This discrepancy may reflect the presence of
certain ClC-1 splice variants in the transverse-tubule system
that lack the proper epitopes for the antibodies used in
the immunohistochemical studies (143), or the disruption
of antibody-epitope interaction by endogenous ClC-1-binding
proteins under certain physiological conditions.

PROTEOSTASIS NETWORK OF HUMAN
CLC-1 CHANNEL

As mentioned above, most of the newly synthesized, myotonia-
causing A531V mutant proteins are incapable of passing the
scrutiny of the cellular protein triage system and hence are
subject to excessive proteasomal and lysosomal degradations.
Even though application of the proteasome inhibitor MG132
effectively rescues the total protein level of the mutant ClC-1
channel, most of the MG132-rescued A531V proteins fail to be
delivered to the plasma membrane (108). Accordingly, MG132
treatment does not rescue the reduced functional current of
the mutant channel (108). Similarly, blocking the endosomal-
lysosomal degradation system leads to a notable enhancement of
A531V protein level, but fails to discernibly increase the whole-
cell current density of the mutant channel (108). Together these
results indicate that the defective surface protein density and the
functional expression of the A531V mutant cannot be fixed by
simply suppressing the degradation pathway. Rather, we must
correct the impaired proteostasis of the mutant ClC-1 channel.

At the cellular level, proteostasis is maintained by over
2,000 macromolecules comprising chaperones/cochaperones,
folding enzymes, and degradation and trafficking components,
collectively known as the proteostasis network (130, 144). Until
recently, the proteostasis network of human ClC-1 was virtually
unknown. Nor was it clear how the ER and peripheral quality
control systems recognize and mediate the degradation of
disease-associated mutant ClC-1 proteins such as A531V.

In ERAD, which involves modification of misfolded proteins
by the ubiquitin-proteasome system (Figure 2A), protein

ubiquitination is mediated by a concerted action of multiple
cytosolic and/or ER-resident enzymes, and may take place
while transmembrane proteins are still located at the ER
(128, 129, 145, 146). One of the key enzymes mediating protein
ubiquitination is E3 ubiquitin ligase, which catalyzes the covalent
linkage of ubiquitin to a substrate protein (145, 147). In higher
eukaryotes, there are over 1000 distinct E3 ligases, divided
into two major families: the homologous to E6-AP C-terminus
(HECT) family and the really interesting new gene (RING)
family (129, 148, 149). To date, over 20 HECT proteins and more
than 600 RING proteins are known to express in human cells. We
have demonstrated that polyubiquitination and degradation of
human ClC-1 channel are catalyzed by two subtypes of the cullin
(CUL)-RING E3 ubiquitin ligase complex, CUL4A/B-damage-
specific DNA binding protein 1 (DDB1)-cereblon (CRBN) (110).
CUL4A and 4B serve as scaffold proteins, facilitating the transfer
of ubiquitin from the E2 ubiquitin-conjugating enzyme to a
substrate protein, DDB1 is the adapter protein linking CUL4A/B
and the substrate receptor, and CRBN works as the substrate
receptor protein that directly recruits ClC-1 (150–152). This is
the first direct evidence indicating that the CUL4 E3 ubiquitin
ligase promotes degradation of ion channels. Incidentally, CUL
E3 ligase activity is known to play an essential role in skeletal
muscle homeostasis, myoblast differentiation, and myogenic
differentiation of skeletal muscle stem cells (153, 154).

A cardinal process during protein biogenesis at the ER

is the conformation surveillance of nascent polypeptides by
chaperones and cochaperones that facilitate protein folding
and thus minimize degradation/aggregation of non-native-state
proteins (118, 155, 156). Moreover, for misfolded proteins that
lose their stable conformations, chaperones/cochaperones assist
them to the proteolytic pathway. We have also identified some
of the key macromolecules participating in the protein quality
control of human ClC-1 at the ER, including the interconnected
molecular chaperones heat shock cognate protein 70 (Hsc70)
and heat shock protein 90β (Hsp90β), and the cochaperones
FK506-binding protein 8 (FKBP8 or FKBP38), activator of
Hsp90 ATPase homolog 1 (Aha1), and Hsp70/Hsp90 organizing
protein (HOP) (111). Hsc70 and Hsp90β are the constitutively
active isoforms of Hsp70 and Hsp90, respectively, and both
have been shown to take part in the ER quality control (155).
FKBP8, Aha1, and HOP are well-established cochaperones
for Hsp70 and Hsp90. The ER-resident membrane-anchored
immunophilin FKBP8 may serve as a potential peptidyl-prolyl
cis-trans isomerase, and the cytosolic proteins Aha1 and HOP
regulate the ATPase activity of Hsp90 as well as the interaction of
Hsp70 andHsp90 (155, 157–159). All of the identified chaperones
and cochaperones facilitate ClC-1 protein expression, and FKBP8
displays additional effect on promoting protein stability and
membrane trafficking. Interestingly, we also noticed that Hsp90β
and FKBP8 co-exist in the same protein complex with the E3
ligase scaffold protein CUL4, and appear to contribute to the
regulation of CUL4 protein stability as well.

Figure 4 outlines our current model on the proteostasis
network of human ClC-1 channel. Hsc70 and HOPmay facilitate
the early protein biogenesis process of ClC-1, followed by a
concerted action by Aha1, Hsp90β, and FKBP8 (the Hsp90β
cycle) to further promote ClC-1 folding. Hsp90β and FKBP8
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FIGURE 4 | Schematic model of the proteostasis network of the human ClC-1 channel. The endoplasmic reticulum (ER) quality control system of the CLC-1 protein

comprises of the constitutively expressed molecular chaperones Hsc70 and Hsp90β, as well as the cochaperones HOP, Aha1, and FKBP8. Hsc70 and HOP assist

the early stage of ClC-1 folding, whereas Aha1, Hsp90β, and FKBP8 promote the late stage of ClC-1 folding. ER-associated degradation of ClC-1 is mediated by the

CUL4-DDB1-CRBN E3 ubiquitin ligase complex that catalyzes the transfer of ubiquitin (Ub) from the E2 ubiquitin-conjugating enzyme (E2) for covalent linkage to

ClC-1. Ubiquitinated ClC-1 is targeted for eventual degradation by the proteasome. Hsp90β and FKBP8 may additionally regulate ER-associated degradation of ClC-1

by modulating the protein stability of CRBN, the substrate receptor of the CUL4-DDB1-CRBN ligase complex. Proteasomal degradation of ClC-1 can be effectively

attenuated by the cullin E3 ligase blocker MLN4924 and the Hsp90 inhibitor 17-AAG. Moreover, FKBP8 is essential for ER exit and membrane trafficking of ClC-1. At

the plasma membrane, FKBP8 further promotes surface ClC-1 protein stability. Other chaperones/cochaperones may also contribute to the peripheral quality control

system of ClC-1. Misfolded ClC-1 is subject to ubiquitination by the as yet unknown E3 ubiquitin ligase (E3), followed by endocytosis and lysosomal degradation.

may also regulate the degradation of misfolded ClC-1 by the
CUL4-DDB1-CRBN E3 ligase complex. We propose that, in
the ER quality control, Hsp90β may serve as a molecular hub
assisting the interaction of ClC-1 with Aha1, FKBP8, and CUL4,
and therefore dynamically couple the ClC-1 protein folding and

degradation pathways.
Our recent biochemical analyses suggest that, outside the ER,

FKBP8 co-localizes with ClC-1 at both the Golgi complex and
the plasma membrane; moreover, at the cell surface, FKBP8
enhances membrane ClC-1 protein level and promotes surface
ClC-1 stability (160). Therefore, as depicted in Figure 4, we
further propose that FKBP8 contributes to the ER export,
membrane trafficking, and peripheral quality control of the

human ClC-1 channel. It is an open question whether the rest
of the chaperones/cochaperones implicated in ClC-1 ER quality
control also play a role in the proteostasis of this Cl− channel at
the cell surface. In addition, the molecular nature of the E3 ligase
catalyzing cell surface ClC-1 ubiquitination and the ensuing
endosomal-lysosomal degradation mechanism is still unclear.

CLINICAL SIGNIFICANCE

Current treatment for myotonia congenita primarily involves
reduction of muscle tone by suppressing action potential firing
in skeletal muscles. The medications prescribed for treating
non-dystrophic myotonia include the anti-arrhythmic agent
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mexiletine and the anti-epileptic agent lamotrigine (161–163).
Both drugs effectively block voltage-gated Na+ channels and
repetitive action potential firing in a use-dependent manner
(164–167). At present, there is no treatment specifically designed
to correct defective gating or proteostasis of disease-causing
mutant ClC-1 channels.

In direct contrast to the aforementioned lack of effect of
proteasomal/lysosomal inhibitors on enhancing functional
current (108), suppression of CUL4A/B E3 ligase and promotion
of chaperone/cochaperone activities significantly enhance the
surface protein level and whole-cell current density of the
myotonia-causing A531V mutant (110, 111). The results thus
suggest that direct manipulation of the proteostasis network
effectively corrects the impaired biogenesis of misfolded
ClC-1 protein. Importantly, we identified two emerging small-
molecule anti-cancer agents that may ameliorate defective
proteostasis of ClC-1: MLN4924 and 17-allylamino-17-
demethoxygeldanamycin (17-AAG) [Figure 4; (110, 111)].
MLN4924, which inhibits cullin E3 ubiquitin ligase activity by
blocking the conjugation of the ubiquitin-like molecule NEDD8
to the cullin scaffold protein (168, 169), is currently undergoing
clinical trials in cancer patients (170–173). The molecule 17-
AAG, which suppresses the ATPase activity of Hsp90 by blocking
ATP binding to the chaperone (174, 175), is also being tested in
various clinical trials as an anti-cancer agent (174–176).

For human diseases caused by proteostasis impairment, it is
essential to identify or develop novel biological and chemical
therapeutics aiming at optimizing protein conformation and
enhancing proteostasis capacity (130, 177, 178). For example,
the Hsp90 inhibitor 17-AAG may serve as a potential
pharmacological chaperone (pharmacochaperone) for modifying
impaired proteostasis network of neurodegenerative diseases
such as motor neuron degeneration and spinocerebellar ataxia
(131, 179, 180). Therefore, our demonstration that 17-AAG
improves the defective proteostasis of A531V raises a possibility
that 17-AAG and other small-molecule pharmacochaperones
could be clinically applied in the future to correct the protein
folding defect of myotonia-causing ClC-1 mutant proteins.

The clinical implication of correcting defective ClC-
1 proteostasis with pharmacological proteostasis network
modifiers is actually beyond the scope of myotonia congenita,
as ClC-1 dysfunction has been identified in other pathological
conditions associated with anomalous skeletal muscle function.
In myotonic dystrophy type 1 and 2 (DM1 and DM2), for
example, mutations in the DMPK and ZNF9/CNBP genes,
respectively, disrupt the alternative splicing of the CLCN1
gene, creating a secondary reduction in sarcolemmal ClC-1
protein expression and current density (181–184). Correction
of ClC-1 splicing with an antisense-induced exon skipping
technique appears to eliminate the myotonia phenotype in a
mouse model of DM1 (185). Interestingly, several studies further
indicate the presence of significant co-segregation of DM2 with
myotonia congenita-causing ClC-1 mutations such as F413C
and R894X, both associated with defective ClC-1 proteostasis
[Figure 3 and Table 1; (186, 187)]. Similar to the pathological
mechanism of myotonic dystrophy, emerging evidence suggests
that Huntington disease also involves aberrant mRNA splicing

of the CLCN1 gene, thereby manifesting as hyperexcitability of
skeletal muscles (188, 189). Moreover, statins, among the most
effective agents in treating dyslipidemia, are associated with a
significant incidence of myotoxicity (manifesting as symptoms
such as muscle weakness, muscle pain, muscle stiffness, and
muscle cramps), and may instigate considerably reduced ClC-1
protein expression and Cl− conductance in skeletal muscles
(190–193). Significantly, despite the possibility that statins may
cause notable Ca2+ release from mitochondria and sarcoplasmic
reticulum, statin-induced down-regulation of ClC-1 expression
in skeletal muscles cannot be explained by reduced CLCN1
transcription or enhanced PKC-mediated inhibition of ClC-1
channel activation (191, 192), suggesting the potential presence
of a statin-induced disruption of ClC-1 proteostasis. Therefore,
future development of specific and effective ClC-1 proteostasis
modifiers may shed light on new therapeutic strategies for
ameliorating the foregoing debilitating muscle symptoms.

Another issue of clinical relevancy concerns CRBN, the ClC-
1-binding substrate receptor protein of the CUL4 E3 ligase
complex. CRBN is known to be the binding target of thalidomide
and lenalidomide (194–196), both immunomodulatory drugs
used for the treatment of multiple myeloma (197, 198). Common
side effects of thalidomide and lenalidomide treatments include
muscle weakness and muscle cramps (197, 199), suggesting the
presence of drug-induced hyperexcitability in skeletal muscles.
Importantly, both thalidomide and lenalidomide suppress CUL4-
DDB1-mediated ubiquitination and degradation of CRBN,
thereby effectively promoting the degradation of some substrate
proteins for the CUL4-DDB1-CRBN E3 ubiquitin ligase complex
(200, 201). Given our previous demonstration that CUL4-
DDB1-CRBN mediates ERAD of human ClC-1 channel and
that over-expression of CRBN significantly suppresses ClC-1
protein level (110), it is possible that thalidomide/lenalidomide-
induced muscle cramps observed in myeloma patients is in
part attributable to enhanced degradation of human ClC-1
channel in skeletal muscles. In light of our proof-of-concept
evidence that the small-molecule CUL4 inhibitor MLN4924 can
effectively promote surface expression and current density of
ClC-1 (110), relief from thalidomide/lenalidomide-induced side
effects in skeletal muscles may be achievable in the future by
developing muscle-specific, MLN4924-like CUL4-DDB1-CRBN
E3 ligase modulators.

As elaborated in the “Structure and Function” section,
depending on muscle fiber types, regulation of skeletal muscle
fatigue may involve reduced and enhanced activation of ClC-
1 channel through PKC activation and ATP diminishment,
respectively. A recent study on the effect of exercise training on
skeletal muscles in human subjects further suggests that ClC-
1 protein abundance is higher in the fast-twitch than in the
slow-twitch muscle fibers, and that, compared to recreationally
active individuals, trained cyclists are associated with lower
ClC-1 protein abundance (202). These observations imply
that low ClC-1 abundance enhances muscle excitability and
contractility and is beneficial for exercise performance. Although
the role of transcriptional regulation of ClC-1 expression in
skeletal muscles is well documented (20), it remains an open
question whether cellular maintenance of proteostasis may also
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contribute to developmental and physiological controls of ClC-
1 protein abundance. Most importantly, the foregoing results
appear to suggest an intriguing ClC-1 proteostasis adaptation
mechanism that accommodates the differential physiological
roles of fast- and slow-twitch fibers, and improves muscle
contraction efficiency in response to exercise training. It is
therefore imperative to understand the detailed proteostasis
network of ClC-1 for elucidating the physiology of muscle
training and the pathophysiology of muscle disorders.

CONCLUSION

Myotonia congenita is a ClC-1 channelopathy that involves
skeletal muscle hyperexcitability due to a significant loss of
muscle Cl− conductance. Comprehensive genetic analyses have
identified over 200 mutations in the human CLCN1 gene
associated with this hereditary disease. Biophysical investigations
in the last three decades have revealed the mechanistic roles of
aberrant gating and permeation properties in various myotonia-
causing ClC-1 mutants. Determination of the cryo-EM structure
of human ClC-1 provides further insight to the structural-
functional mechanisms underlying dominant and recessive
forms of myotonia congenita. Overwhelming evidence, however,
indicates that aberrant channel gating and permeation per
se are insufficient to explain the molecular pathophysiology
of myotonia congenita, which can also result from abnormal

biochemical and cell biological properties of ClC-1. Therefore,
the field is in need of advanced understanding of theses
aspects such as in vivo subcellular localization patterns and
post-translational regulations. Another crucial task concerns
the illumination of specific proteostasis mechanisms governing
the biogenesis, trafficking, and quality control of WT and
misfolded mutant ClC-1 proteins. Detailed elucidation of
the ClC-1 proteostasis network may hold great promise for
identifying ClC-1-specific abnormalities that may serve as
targets for novel pharmacological interventions of myotonia
congenita, as well as other pathological conditions causing
skeletal muscle dysfunctions.
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