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Professor J. Paul Finn, Chair 

 

Magnetic Resonance Imaging (MRI) is a powerful diagnostic imaging modality known to 

provide high soft-tissue contrast and spatial resolution.  Much of the versatility of MRI stems from 

the fact that the signal from different tissue types can be weighted differently through manipulation 

of the sequence in which radiofrequency (RF) and gradient events are played out during the data 

acquisition phase.  However, data acquisition for most MRI measurements is sequential, limiting 

its speed and increasing its susceptibility to motion artifacts.  This is particularly the case for 

cardiovascular applications, where cardiac and respiratory motion complicate all aspects of the 

data acquisition and signal processing pathways.  Moreover, following data acquisition and image 

reconstruction, clinically relevant post-processing may require substantial time and effort, 

increasing the burden on clinical centers and medical staff. Thus, general algorithms should be 

customized to accelerate image acquisition, image reconstruction and image post-processing with 

the goal of expanding the speed, scope and reliability of cardiovascular MRI applications. This 
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dissertation describes several deep learning-based methods applying tailored image reconstruction, 

respiratory motion correction, blood vessel segmentation, and instant T1 mapping calculation.  

The first application is the acceleration of dynamic cardiac MRI.  Modern approaches to 

speeding MR image acquisition involve the use of significantly under-sampled k-space data (with 

a proportional reduction in acquisition time), such that the Nyquist limit of traditional signal 

sampling is violated and the missing k-space data are estimated by other means. The missing data 

are typically recovered either through incorporating independently acquired surface coil spatial 

sensitivity maps (parallel acquisition) or through iterative reconstruction via optimized 

approximations that enforce both sparsity in the sampled domain and consistency with the 

explicitly acquired data (compressed sensing).  Although both parallel imaging and compressed 

sensing (CS) have proved powerful, they manifest hard limits as the degree of undersampling is 

increased.  Moreover, even with fast modern processors and dedicated reconstruction hardware, 

image reconstruction times can become prohibitive. Deep learning methods have the potential to 

address several of the limitations noted for current parallel imaging and CS techniques and to 

expand the scope of clinical applications.   

Our first task was to develop a deep Convolutional Neural Network (CNN) to reconstruct the 

2D dynamic cine images from the highly undersampled k-space data, e.g., 8X-10X. In our platform, 

redundant information in the temporal dimension was used, and the data consistency was imposed 

in the k-space domain. Indeed, we used CNN only to learn the effective Spatio-temporal 

regularizer from the historical data in our platform. Learnable parameters (weights and biases) of 

the neural network were optimized during the off-line training process and tested on the unseen 

data. Testing inference time was ~40ms per frame, while more than 1s is usually required for 

conventional parallel imaging and compressed sensing combined reconstruction.    
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Our next task was to correct respiratory motion artifact that was superimposed on the images 

acquired during the free-breathing 2D cardiac cine scan. Although segmented (multi-shot) cardiac 

cine is the gold standard in cardiac imaging, it requires breath-holding through the data acquisition, 

which may not be feasible in all patients. For this reason, in this dissertation, we sought to find a 

way to study the performance of the deep neural networks in removing the respiratory artifact from 

effected 2D cardiac cine images. To achieve that, we trained an adversarial autoencoder network 

using unpaired training data (healthy volunteers and patients who underwent clinically indicated 

cardiac MRI examinations). We used a U-net structure for the encoder and decoder parts of the 

autoencoder. We considered an adversarial objective to regularize the code space of the 

autoencoder. To ensure that the network reduces the respiratory motion artifact without losing 

accuracy or introducing new spurious features, we first examined its performance on artificially 

corrupted data with simulated rigid motion. Then, we demonstrated the feasibility of the proposed 

approach in vivo by training on actual respiratory motion-corrupted images in an unpaired manner 

and testing on volunteer and patient data. We showed that it is feasible to correct the respiratory 

motion-related image artifacts without accessing the paired free of the motion artifact target. 

Quantitatively in this feasibility study, the mean structural similarity indices (SSIM) for the 

simulated motion-corrupted images and motion-corrected images were 0.76 and 0.93 (out of 1), 

respectively. Concerning the image sharpness, the proposed method improved the Tenengrad focus 

measure of the motion-corrupted images by 12% in the simulation study and 7% in the in-vivo 

study. Subjective image quality assessments showed that the average overall subjective image 

quality for the motion-corrupted images, motion-corrected images, and breath-hold images were 

2.5, 3.5, and 4.1(out of 5.0), respectively. Statistically, there was a significant difference between 

the image quality scores of the motion-corrupted and breath-held images (P<0.05); however, after 
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respiratory motion correction, there was no significant difference between the image quality scores 

of motion-corrected and breath-held images.      

Our next further application is joint compensation of the respiratory motion artifact and 

reconstruction of the high-quality 3D images from the undersampled acquisition in the 3D dynamic 

cardiac cine MRI. Imaging acceleration and respiratory motion compensation remain two 

significant challenges in MRI, particularly for cardiothoracic, abdominal, and pelvic MRI 

applications. This dissertation sought to implement a novel 3D generative adversarial network 

(GAN)-based technique to jointly reconstruct the image and compensate the respiratory motion 

artifact of 4D (time-resolved 3D) cardiac MRI. We trained the 3D GAN based on combinations of 

the pixel-wise content loss, adversarial loss, and a novel data-driven temporal aware loss function. 

Asides from the image reconstruction, the proposed method also compensates for the respiratory 

motion of the free-breathing scans. We adopted a novel progressive growing-based strategy to 

achieve a stable and sample-efficient training process for the proposed 3D GAN. We thoroughly 

evaluated the performance of the proposed method qualitatively and quantitatively based on the 

relatively large patient populations (3D cardiac cine data from 42 patients). Our radiological 

assessments showed that the proposed method achieved significantly better scores in general 

image quality and image artifacts at 10.7X-15.8X acceleration than the self-gated compressed 

sensing wavelet (SG CS-WV) approach at 3.5X-7.9X acceleration (4.53±0.540 vs. 3.13±0.681 for 

general image quality, 4.12±0.429 vs. 2.97±0.434 for image artifacts, p<0.05 for both). 

Radiological evaluations approved that the reconstructed images were free of the spurious 

anatomical structures and concerning the functional analysis was in good agreement with the 

conventional SG CS-WV approach. We showed promising results for high-resolution (1mm3) 
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free-breathing 4D cardiac MR data acquisition with simultaneous respiratory motion 

compensation and fast reconstruction time which might pave the way for future 4D MR researches.     

The fourth application is the fast and accurate calculation of the myocardial T1 and T2 values. 

Modified Look-Locker inversion recovery (MOLLI) pulse sequence is a widely used MR pulse 

sequence that allows the measurements and mapping of the myocardial T1 and T2 values. 

Modeling of the signal evolution of the MOLLI sequence is required to compute the accurate 

relaxometry parameters. Bloch equation simulation with slice profile correction (BLESSPC) 

algorithm could consider the non-rectangle 2D RF excitation slice profile effects, B1+ errors, and 

imperfect inversion and T2 preparation pulses. Nonetheless, BLESSPC is computationally 

expensive, which limits its applicability in practice. We sought to implement a deep neural network 

for fast and accurate computation of myocardial T1/T2 relaxometry values by training the neural 

network on the simulated data computed based on the BLESSPC algorithm. We trained two 

separate neural networks based on simulated radial T1-T2 values. Trained T1-T2 models were 

evaluated concerning the stability of the different noise levels and compared against the BLESSPC 

algorithm. Testing and comparison were performed in different levels, including simulation, 

phantom, and in vivo data acquired by the MOLLI sequence at 1.5 T and radial T1-T2 sequence 

at 3 T. Trained models in the phantom studies achieved similar accuracy and precision to the 

BLESSPC algorithm with respect to T1-T2 estimations for both MOLLI and radial T1-T2 (P > 

0.05). For in vivo, trained models and BLESSPC produced similar myocardial T1/T2 values for 

radial T1-T2 at 3 T (T1: 1366 ± 31 ms for both methods, P > 0.05; T2: 37.4 ms ± 0.9 ms for both 

methods, P > .05), and similar myocardial T1 values for the MOLLI sequence at 1.5 T (1044 ± 20 

ms for both methods, P > .05). As was expected, our proposed method can compute the T1/T2 

map in less than 1 second (CPU-based) with similar accuracy and precision to the BLESSPC as 
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the computationally expensive but comprehensive algorithm. The developed model in this 

dissertation offers a fast and promising approach for accurate computation of myocardium T1/T2 

values, replacing BLESSPC for both MOLLI and radial T1-T2 sequences.    

The fifth application is the automatic peripheral artery, and vein segmentation in the lower 

extremities based on ferumoxytol enhanced magnetic resonance angiography (FE-MRA). The 

post-processing of FE-MRA images mainly includes segmentation of the peripheral vasculature 

and classification of them into arteries and veins, often performed by an experienced radiologist 

via visual inspection and manual delineations. Due to the large size of the high resolution, 

volumetric peripheral MRA, e.g., 560 x 940 x 240, manual annotation is a time-consuming and 

tedious process. Since manual labeling is a subjective process and depends on physician’s 

experience and knowledge, it can potentially introduce high inter-observer variability. To achieve 

an accurate and reproducible segmentation of peripheral arteries and veins, we sought to develop 

an automatic platform in this dissertation. Our proposed platform first segmented the high-quality 

vascular network from FE-MRA volumetric images and then classified them into arteries and veins. 

For the segmentation, we used a local attention-gated 3D U-Net and trained that by using a deep 

supervision mechanism based on a linear combination of the focal Tversky loss and region mutual 

loss. We performed a region-growing algorithm for the classification, starting from the initial 

arterial seeds obtained by time-resolved images to separate the arteries from the veins. 

Quantitatively, our platform achieved a competitive F1 = 0.8087 and Recall = 0.8410 for blood 

vessel segmentation compared with F1 = (0.7604, 0.7573, 0.7651) and Recall = (0.7791, 0.7570, 

0.7774) obtained with Volumetric-Net, DeepVesselNet-FCN, and Uception. The proposed method 

achieved F1 = (0.8274 / 0.7863) in the calf region-the most challenging region in peripheral arteries 

and veins segmentation for the artery and vein classification stage. The platform described in this 
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dissertation is fully automatic without requirements for human interaction and able to extract and 

label the peripheral vessels from FE-MRA volumes in less than 4 minutes. This method improves 

upon manual segmentation by radiologists, which routinely takes several hours – an endeavor that 

is often time- and cost-prohibitive.    
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TAV-GAN. The generator is a 3D U-Net which consists of two paths: (I) the encoder path, which 

contains three downsampling blocks; (II) the decoder path, which includes three up-sampling 

blocks. Each block contains two convolutional layers, with each layer containing learnable 

convolution filters followed by Leaky ReLU (LReLU). Convolutional layers in the first block of 

the network contain 64 convolutional kernels, and the number of kernels doubles in each deeper 

block. Down-sampling and up-sampling blocks in the encoder and decoder paths are connected 

via average polling (strides = 2) and up-sampling (strides = 2). A skip connection is used to pass 
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the data between each pair of same-sized up-sampling and down-sampling blocks. The 

discriminator is a binary classifier that contains three down-sampling operations followed by two 

convolutional layers in which each convolutional layer contains convolutional kernels followed 

by LReLU. The last two layers are the fully connected layer followed by dropout and LReLU, and 

a single decision fully connected layer with a sigmoid activation function. Discriminator takes the 

magnitude of the generated images to decide whether it is “generated” or “clean” images. The 

input and output of the generator for the Volumetric-GAN and temporally aware volumetric GAN 

(TAV-GAN) in the training phase are complexed-valued 3D image patches with size N×N×N×2 

(real and imaginary), and magnitude-valued 3D image patches with size N×N×N×1, respectively. 

The input and output of the generator for the Temporal-GAN in the training phase are magnitude-

valued 3D image patches with size N×N×N×3 (three sequential cardiac phases) and a magnitude-

valued 3D image patch with size N×N×N×1, respectively. Due to the limitation of the GPU 

memory, N=64 is used in this work. ............................................................................................. 68 

Figure 5-3. Progressive training strategy for the TAV-GAN. As training of GAN for low-

resolution images is in general easier than high-resolution images, in our progressive training 

strategy, we initiate the training with the low-resolution layer of the generator and discriminator 

networks that handles N/8×N/8×N/8 image volume size, and gradually expand the network to 

reach the higher-resolution layers. For the sake of clarity, only the first three dimensions (spatial 

dimensions) of the features for the network layers are shown and skip connections in the generator 

network are not shown. The progressive training process consists of a chain of stable and transition 

phases. The first stable phase (Stable 1) is started by training the lowest-resolution layers, and in 

the transition phase, new layers are added and gradually mixed with old layers to reach the second 

stable phase where the resolution of the layers is doubled in each spatial dimension. This process 
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is continued until the main resolution (N=64, 64×64×64) is reached. This training strategy enables 

us to have a stable GAN training process for high dimensional image reconstruction tasks. ...... 73 

Figure 5-4. An example of the stable and transition phases of TAV-GAN training: In stable 

phase 1, the generator and the discriminator are built for the lowest resolution. The input for the 

network is down-sampled three times to match the lower resolution, and subsequently, it is entered 

into a convolution layer to increase its features from 2 to 256. Those features are then entered into 

two sequential convolutional layers that are the main layers of the 3D U-Net for the lowest 

resolution. Afterwards, the output is entered into another convolution to combine the 512 features 

to 1 feature. The role of the first and the last convolutional layers is to create proper number of 

features. The Discriminator also has fewer layers, similar to the generator in the first stable phase. 

Low-resolution image volume is entered into a convolutional layer to increase the number of 

features to match the required input size for the fully connected layers. After an epoch of training 

the first stable phase, the network is grown gradually through a transition phase. As seen in the 

first transition phase, some convolutional layers with doubled-resolution are added to the generator 

from the left and right sides. Besides, some convolutional layers also added to the discriminator 

from its left side.  This addition is a pairwise gradual addition, which is controlled by parameter α, 

which linearly decreases from 1 to 0 through the total number of mini-batch iterations of an epoch. 

The first transition phase is started by α=1 (stable phase 1), and once α reached 0, the second stable 

phase is started. The growth process will continue until reaching the main resolution and building 

the main network structure shown in Figure 5-2. In our work  N=64 was used. .......................... 75 

Figure 5-5. Representative examples for the datasets: columns (a), (b), (c-e) represent 

qualitative examples of the images from the dataset A (training dataset), dataset B1 (mild testing 

dataset), and dataset B2 (severe testing dataset), respectively. The first row shows the magnitude 
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of a slice from the volumetric images, and the second row shows the difference map between two 

sequential cardiac phases. As can be seen in (a), it has the lowest noise and flickering artifacts 

through the cardiac phases among the others. The image in the column (b) has relatively higher 

noise and flickering artifacts through the cardiac phases than the image in column (a). Based on 

the calculation of the noise inside a 15×15×15 cubic region from the background, images in the 

datasets B1 (mean of the standard deviation = 0.076) are 2 times noisier than the images in the 

datasets A (mean of the standard deviation = 0.038). Column (c) presents image that was 

profoundly affected by noise. Approximately, the noise level for noisy images in datasets B2 

(mean of the standard deviation = 0.304) based on the calculation of the noise inside a 15×15×15 

cubic region from the background is, on average, 8 times the images in datasets A. Column (d) 

shows an image from a CHD patient with breathing irregularities scanned under anesthesia. As 

shown in column (d), image quality is degraded due to the respiratory motion artifacts. The image 

in column (e) shows an image from a CHD patient scanned under free-breathing without anesthesia. 

As shown in column (e), the quality of the image is degraded substantially due to the respiratory 

artifact and breathing irregularities. .............................................................................................. 79 

Figure 5-6. Qualitative comparison between different image reconstruction methods for a 

male CHD patient from test dataset B1 (6 y.o. and 18 kg weight) who was scanned under anesthesia. 

Row (a) shows the reconstruction/respiratory motion correction results and rows (b) and (c) show 

the zoomed view of the cardiac and liver region. Row (d) shows the temporal difference between 

5th and 6th cardiac phases. The 2D GAN image has substantial residual artifacts. The 3D U-Net 

image is blurrier than the GAN based methods (TAV-GAN, Temporal-GAN, and Volumetric-

GAN). As shown in (d), reconstruction results from TAV-GAN and Temporal-GAN have the 

lowest incoherency and flickering artifacts, which implies that the proposed TA loss can 
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effectively decrease the temporal incoherency through the cardiac frames. The SG CS-WV was 

reconstructed based on 5.4X fold under-sampled data; the remaining methods shown were 

reconstructed based on 14.2X fold under-sampled data. .............................................................. 82 

Figure 5-7. Qualitative comparison between different methods for a pediatric male patient 

from test dataset B2 (1 month old and 3.18 kg weight) who was scanned under anesthesia. Rows 

(a), (b), and (c) show the image reconstruction using 6 different methods and the zoomed view of 

the cardiac and liver regions. Row (d) shows the temporal difference between  2nd and 3rd cardiac 

phases. The 2D GAN image provides the most inferior image quality. The 3D U-Net image was 

blurrier than the GAN based methods (TAV-GAN, Temporal-GAN, and Volumetric-GAN). The 

Temporal-GAN image is slightly blurrier than the TAV-GAN and Volumetric-GAN. The 

reference SG CS-WV image suffers from the residual noise and its quality is inferior to the TAV-

GAN and the Temporal-GAN. The SG CS-WV was reconstructed based on 5.7X fold under-

sampled data; the remaining methods shown were reconstructed based on 11.4X fold under-

sampled data.................................................................................................................................. 83 

Figure 5-8. Qualitative comparison between different methods for a male CHD patient from 

test dataset B2 (21 y.o. and 77.4 kg weight). Although the CMR scan was performed under 

anesthesia, there was breathing irregularity during scanning. Row (a) shows the reconstructed 

image for a single slice, and rows (b-d) show the zoomed regions. The 2D GAN image not only 

suffers from residual artifacts but also shows the apparent anatomical change in particular in the 

liver. The TAV-GAN image appears sharper than the Temporal-GAN and the 3D U-Net. The 

myocardium border (row b, red arrow), soft tissue (row c, blue arrow), and the blood vessels in 

the liver region (row d, purple arrow) are all recovered better by TAV-GAN compared to other 
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methods. The SG CS-WV was reconstructed based on 6.5X fold under-sampled data; the 

remaining methods shown were reconstructed based on 14.2X fold under-sampled data. .......... 86 

Figure 5-9. Qualitative result for a male patient from test dataset B2 (55 y.o. and 77kg weight), 

who underwent MRI during free-breathing without any anesthesia. The three rows (a-c) show 

some representative slices and cardiac phases that were reconstructed by using different methods. 

The TAV-GAN produced better delineation of various structures (red arrows) compared to all the 

other 5 methods. Compared to TAV-GAN, the 3D U-Net and Temporal-GAN images are blurrier, 

the Volumetric-GAN and SG CS-WV images have substantial artifacts, the 2D GAN image is of 

inferior quality. The SG CS-WV was reconstructed based on 6X fold under-sampled data; the 

remaining methods shown were reconstructed based on 14.2X fold under-sampled data. .......... 88 

Figure 5-10. Functional analysis: Left and right ventricular endocardial borders were 

segmented by an experienced expert to compute stroke volume (SV), end-systolic volume (ESV), 

end-diastolic volume (EDV), and ejection fraction (EF) for 6 test cases. Bland-Altman plots 

confirm that there is agreement with 95% confidential level between functional metrics measured 

from the reconstructed images by self-gating CS-WV images and respiratory motion-corrected and 

reconstructed images by TAV-GAN. ........................................................................................... 90 

Figure 5-11. Training convergence: first row plots the loss components versus the iterations 

for the generator and the discriminator of the temporally aware volumetric GAN (TAV-GAN). 

Only adversarial loss is plotted for the generator, and it means how well the generator can fool the 

discriminator. The discriminator contains two components associated with classification 

performance for both real and fake images. As seen in the first row, all three components converge 

to an equilibrium state (0.7). Besides, this convergence is happening very fast because of the 

practical training strategy introduced in this work. The second row shows the qualitative validation 
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results through the epochs. It seems that after epoch 60 (15000 iterations), image quality is 

improved sufficiently. ................................................................................................................... 93 

Figure 5-12. Hallucination effect: by training the generative adversarial networks on the 

datasets with noisy ground truth, some characteristic artifacts were introduced to the image. As 

pointed with the red arrow, such a network generated spurious artifact has appeared in the left 

myocardium and liver region. For this case, we trained the network on dataset B1 and tested it on 

dataset A. We note that on average, the dataset B1 was two times noisier than the dataset A. This 

result reveals the importance of curating the data and using less noisy target reference images for 

training GANs. Otherwise, spurious features might be introduced to the reconstructed images. 99 

Figure 6-1. The radial T1-T2 sequence image acquisition, where t0, t1, …, t10 indicate the 

image acquisition time points, defined as the time when the 40th k-space line is acquired, and 

dt1,dt2, …, dt10 are the durations between each acquisition time point, which are needed in the 

Bloch equation simulation for T1 and T2 calculation. ............................................................... 104 

Figure 6-2. Illustration of the proposed network for DeepBLESS. The network composed of 

13 layers, including the input layer, one 3x1 convolutional layer followed by 4 ResNet blocks and 

two 3x1 convolution layers. Then, a dense layer was added to predict T1/T2 value. The number of 

filters for each convolutional layer was set to be 32 and the stride was set to be 1 except the last 

two convolutional layers, which use a stride of 2. ...................................................................... 105 

Figure 6-3. The mean percentile absolute T1 (a) and T2 (b) reconstruction error as a function 

of the testing data noise level (SNR = 10 - 100) for radial T1-T2 mapping using the 4 models 

trained based on training data with different added noise (SNR = 11.1, 20, 100 and composite 

SNRs 11.1 - 100), in comparison with conventional BLESSPC. ............................................... 112 
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Figure 6-4. Simulation results for radial T1-T2 mapping: Comparison of the T1/T2 estimation 

results using DeepBLESS (trained with 5% Gaussian noise, SNR = 20) and BLESSPC by plotting 

DeepBLESS against BLESSPC with equation of fit plot (a for T1 and c for T2) and Bland Altman 

analysis (b for T1 and d for T2). ................................................................................................. 113 

Figure 6-5.  Phantom study results for both radial T1-T2 mapping acquired at 3.0T (a-d) and 

MOLLI (e-f) acquired at 1.5 T, comparing DeepBLESS vs. BLESSPC. Each data point 

corresponds to a pixel within the phantom. ................................................................................ 115 

Figure 6-6. Phantom T1 and T2 maps using DeepBLESS (a) and BLESSPC (b) and the 

corresponding difference maps (c) for the radial T1-T2 mapping sequence acquired at simulated 

heart rate of 60 bpm. DeepBLESS and BLESSPC generated T1/T2 maps with similar image 

quality. ........................................................................................................................................ 116 

Figure 6-7. In vivo study results for both radial T1-T2 mapping acquired at 3.0T and MOLLI 

acquired at 1.5T: pixel level comparison of the T1/T2 estimation results in the myocardium using 

DeepBLESS and BLESSPC by plotting DeepBLESS against BLESSPC with equation of fit plot 

(a for radial T1, c for radial T2, and e for MOLLI T1) and Bland Altman analysis (b for radial T1, 

d for radial T2, and f for MOLLI T1). ........................................................................................ 117 

Figure 6-8. In vivo radial T1-T2 mapping acquired at 3.0T: examples of T1 and T2 maps 

generated using DeepBLESS (a) and BLESSPC (b) and the corresponding difference maps (c) in 

two healthy subjects. Subject A had no skipped heartbeat while Subject B had a skipped heartbeat 

after the 6th data acquisition. For both subjects, the maps generated by DeepBLESS and BLESSPC 

were similar in the myocardium. ................................................................................................ 119 

Figure 6-9: In vivo MOLLI T1 mapping acquired at 1.5T: example of T1 maps generated 

using DeepBLESS (a) and BLESSPC (b) and the corresponding difference map (c) in a healthy 
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subject. All the pixels that BLESSPC did not fit well (R2 < 0.98) were set to 0 for all the 

corresponding maps. The maps generated by DeepBLESS and BLESSPC were similar in the heart 

region. In the left ventricular myocardial region, the average T1 difference between DeepBLESS 

and BLESSPC was -0.5 ± 1.7 ms. .............................................................................................. 120 

Figure 7-1. Overview of the proposed peripheral blood vessel segmentation and artery/vein 

separation platform for FE-MRA. Steps in the blue region occur during the blood vessel 

segmentation stage, where our 3D segmentation neural network extracts the blood vessels from 

the high-resolution FE-MRA. Steps in the orange region represent the subsequent artery/vein 

separation stage, where time-resolved imaging volumes are used to initiate the arterial branches 

followed by application of a region growing algorithm to separate the arteries from the veins. 134 

Figure 7-2. Detailed network architecture used in this work. The segmentation network is a 

modified 3D U-Net. It incorporates three main components: 1) pyramid of the input volumes, 2) 

local attention gates (AG), and 3) deep supervision (DS) mechanism. The pyramid of input 

volumes helps the network to minimize the risk of missing thin branches of the blood vessels. 

Attention gates force the network to learn the more relevant features of the blood vessel 

segmentation. Auxiliary outputs in the multiple levels as a variant of the deep supervision approach 

facilitate the network training and the AG’s parameter updating. They also force the network to 

learn the more discriminative features. Ci represents the number of the extracted features, and 

Hi×Wi×Di represents the 3D spatial dimension of the features for network in the level i. ....... 135 

Figure 7-3. For the sake of simplicity, only a cross-section of the volume is visualized. To 

separate the arteries from the veins, the following steps were performed. First, the volumetric blood 

vessel binary mask (b) was extracted from the high-resolution image volume (a) using our blood 

vessel segmentation network. Also, at the same time, time-resolved image volume (c) was 
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automatically registered to the high-resolution image. To obtain the only blood vessels with their 

real intensity (d), the high-resolution image was masked by the binary blood vessel mask, and a 

fast vessel enhancement algorithm42 was applied to enhance the obtained blood vessels. As noted 

in the main manuscript, the blood vessels' intensity values are required for the region growing 

algorithm. To obtain the initial arterial seeds, we first masked the time-resolved image by the blood 

vessel mask, and then adaptive binary thresholding was applied on the masked-region to detect the 

initial arterial seeds. A sample of the arterial seeds was shown in (e). Ultimately, the region 

growing algorithm was applied to the initial seeds to extract the arteries (f). Once the arteries were 

segmented, the remaining blood vessels were considered as the veins. A sample of the arterial and 

venous masks was shown in (g). Final overlaid masks on the high-resolution image were shown 

in (h). ........................................................................................................................................... 141 

Figure 7-4. Learning curve comparison between 3D U-Net as a baseline model and 3D U-Net 

with deep supervision and local attention gates (3D U-Net+DS+AG) as our proposed method. 3D 

U-Net+DS+AG has a higher rate of loss reduction and faster convergence than 3D U-Net. .... 145 

Figure 7-5. Learned kernels, cross correlation matrix between the learned kernels, and 

intermediate feature visualization for the first convolutional layer of the baseline 3D U-Net model 

(A) and the proposed 3D U-Net+DS+AG method (B). Learned kernels, cross correlation matrix 

between the learned kernels, and a slice of the extracted 16 features are shown in the upper-left, 

upper-right and lower panels of each method, respectively. Similar learned kernels and their 

corresponding extracted features are shown inside the dashed-red and dashed-yellow rectangles. 

Samples of the extracted features show that the diversity of the features extracted from 3D U-

Net+DS+AG is higher than 3D U-Net, which is expected to translate to higher discriminatory 

capability. The red and yellow arrowheads (panel A, top right) show high cross correlation 
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coefficients representing similarity in the learned 3D U-Net kernels; whereas 3D U-Net+DS+AG 

did not have these high cross correlation values due to its greater diversity. ............................. 147 

Figure 7-6. A comparison of the 3D U-Net+DS+AG with the 3D U-Net+DS. The training and 

validation loss is plotted for both methods on the left side. Two representative pre-activation 

probability maps are shown on the right side. As pointed by a blue arrow in the pre-activation 

probability maps, using the attention module results in more focused probability maps. .......... 147 

Figure 7-7. Effect of the Region Mutual Information (RMI) loss on the segmentation results. 

This figure shows a representative coronal slice of a patient segmented by the 3D U-Net + DS + 

AG with and without the RMI loss. Zoomed in regions are shown in (a,b,c) on the right. The 

obtained segmentation results with RMI loss and without RMI loss are contoured with blue and 

red color, respectively. The ground truth region is filled with light-green color. Including RMI loss 

in the 3D U-Net + DS + AG training stage leads to better preservation of the blood vessel 

connectivity compared to 3D U-Net + DS + AG without the RMI loss. .................................... 148 

Figure 7-8. Representative segmentation results and qualitative comparisons. (a) Results from 

3D U-Net, (b) 3D U-Net+DS, (c) 3D U-Net+DS+AG are visualized with gray, yellow, and red 

contours, respectively. Ground truth is shown with green filled region. (a-c) show the comparison 

of the networks with ground truth, and (d) shows the comparison of the 3D U-Net (gray contour) 

and 3D U-Net+DS (yellow contour) with 3D U-Net+DS+AG (filled with pale red). (e-h) show 

volume-rendered images for the 3D U-Net, 3D U-Net+DS, 3D U-Net+DS+AG, and ground truth 

(obtained by two expert radiologists) with their respective colors used in (a-d). The proposed 

method captures blood vessels that were not captured by other methods (blue and red arrows in 

(g)). Besides, segmented blood vessels in the left calf using 3D U-Net+DS+AG has a higher 

density than 3D U-Net and 3D U-Net+DS (purple arrow in (g)). An expert radiologist confirmed 
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that these extra-segmented vessel branches (blue, red, and purple arrows in (g)) are blood vessels 

that were initially missed by the radiologists in the manual segmentation................................. 149 

Figure 7-9. Qualitative comparisons of our network (3D U-Net+DS+AG) with state-of-the-

art networks DeepVesselNet-FCN, Volumetric-Net (V-Net), and Uception in blood vessel 

segmentation. (a-d) show the results obtained by DeepVesselNet-FCN (a; gray contour), V-Net (b; 

yellow contour), Uception (c; blue contour), and 3D U-Net+DS+AG (d; red contour). Ground truth 

regions in (a-d) are filled by green color. As pointed out by white arrows in (a-c), DeepVesselNet-

FCN, Uception, and V-Net incorrectly segment the bone as a blood vessel; whereas this mistake 

was avoided by 3D U-Net+DS+AG (d). (e-h) represent the volume rendered images for the 

DeepVesselNet-FCN (e), V-Net (f), 3D Uception (g), and 3D U-Net+DS+AG (h). As pointed out 

by black arrows in (h), our proposed method segmented out a branch of the blood vessel that was 

missed by other segmentation networks. The black arrow in (f) shows a portion of the segmented 

blood vessel with extravascular soft tissue contamination. ........................................................ 151 

Figure 7-10. Arterial tree extraction for a representative case: Arteries in from a coronal view 

(a) of high-resolution FE-MRA and three axial views (b) for the right calf are shown. (c) represents 

the maximum intensity projection (MIP) of the data obtained by the scanner (c; top panel) and the 

extracted-arterial tree based on our method (c; lower panel). (d) represents the volume-rendered 

arterial tree extracted by our proposed algorithm. As shown in (c), the MIP image based on the 

extracted arterial tree from our algorithm is in good agreement with the arterial MIP image 

generated by the scanner. ............................................................................................................ 153 

Figure 7-11. Arterial tree extraction for a case with peripheral arterial disease. Arteries from 

the coronal view (a) of the high-resolution FE-MRA and four axial views (b) for both calves are 

shown. Arteries segmented by our proposed method are represented with the green color, and 
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arteries annotated by an expert radiologist are represented by red color.  (c) shows the volume-

rendered image obtained by an expert radiologist, and (d) shows the extracted arterial tree by our 

algorithm. Visually, the extracted arterial tree using our algorithm is similar to that defined by 

expert annotation. ........................................................................................................................ 154 

Figure A-1. The detailed network structure for 2D GAN. The generator part is a 2D U-Net 

with 4 downsampling blocks and 4 up-sampling blocks. The discriminator part is a 2D binary 

classifier with four downsampling blocks. The number of the convolutional kernels and type of 

the activation functions are reported in the Figure.  Network training was performed on the image 

patches with size 320×192. ......................................................................................................... 168 

Figure A-2. Progressive training strategy for 2D GAN. Intuitively, building the network with 

few layers with low resolution and training them and gradually adding more layers to reach the 

high-resolution images can alleviate the training process of the GANs. The training procedure 

contains five stable phases and four transition phases. As can be seen, in the stable phase 1, only 

layers with the lowest resolution were built. In the transition phase 1, new layers were gradually 

added to the old layers to reach stable phase 2. Parameter α controls the rate of gradual pointwise 

addition. It linearly reduced from 1 to 0 through the iterations of the training in each transition 

phase. Sample of transition and stable phases were explained in Figure A-3. This alternation 

between stable and transition phases was continued until to reach to the last stable phase 5. For the 

last stable phase, training was performed for the number of epochs. The number of the required 

epochs was decided based on the quality of the test results in the training stage, and the equilibrium 

state of the generator loss and the discriminator loss. ................................................................ 170 

Figure A-3. Illustration of the stable and transition phases of the 2D GAN in this work. For 

the sake of simplicity, we only showed the first stable and transition phases. Only layers with the 
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lowest resolution were built for the generator and the discriminator in the first stable phase. The 

input complex image was downsampled four times and fed to the generator. The first convolution 

layer in the generator and the discriminator is increasing the channel dimensions of the input. The 

network was trained for an epoch in the first stable phase. Then, in the first transition phase, layers 

with twice resolutions were added gradually to the pre-trained layers. As can be seen, new layers 

were added to the generator and the discriminator progressively. The parameter α controls the 

addition process. It is linearly decreasing from 1 to 0 through all iterations in the epochs. We 

trained this phase only for an epoch. To make the idea clear, for α=1, we are at the beginning of 

the transition phase. For α=1, the graph for the generator and the discriminator is the same as the 

graph in the stable phase 1. Suppose α=0; it means that the first transition phase is finished, and 

training will enter the second stable phase. By considering α=0, it can be seen that adapting layers 

in the first stable phase were faded, and new layers with higher resolution were added to the graph.
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Figure A-4. Data preparation process: (a) shows the ROtating Cartesian K-space (ROCK) 

sampling strategy used to acquire the data. (b) shows the SG CS-WV reconstruction process to 

create the clean reference volumetric images. (c) shows the zero-filled reconstruction process to 

create the aliased, respiratory motion-corrupted images. As shown in (c), the first half of the 

acquired lines (if NL<100000 lines) or the first 50000 of the acquired lines (if NL>100000) were 

used to create the inputs for training and testing the network. Also, only a self-cardiac gating signal 

is used to sort the data to multiple cardiac phases. No respiratory motion gating was performed 

when generating the input images in (c). .................................................................................... 174 

Figure A-5. Qualitative results obtained by three techniques for two patient cases selected 

from the testing datasets Group B1 and Group B2. It shows the reconstruction and respiratory 
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motion correction results for the Temporal-GAN (a, d), 3D spatiotemporal GAN (b, e), and 2D 

GAN (c, f). The magnified heart region is shown for each image (2nd row of each panel). The 

bottom row of each panel shows the temporal difference maps between two sequential cardiac 

frames. Both Temporal-GAN and 3D spatiotemporal GAN achieved better results regarding 

aliasing and respiratory motion and flickering artifacts reduction than the 2D GAN. ............... 180 

Figure A-6. Qualitative representative results of two unseen cases from Group B1 and Group 

B2. (a-c) show the un-aliased and respiratory artifact-corrected images from a patient with a 

regular respiratory pattern during scanning, obtained by SG CS-WV, TAV-GAN (trained based 

on cardiac-gated zero-filled images as the input), and TAV-GAN (trained based on 

cardiorespiratory gated zero-filled images as the input), respectively. (d-f) show images using the 

same techniques from a patient with irregular respiratory motion. The TAV-GAN trained based 

on the cardiorespiratory gated zero-filled images as the input would reduce the respiratory and 

aliasing artifacts in the case with regular breathing, but it seems in the case with irregular breathing, 

its performance dropped substantially. In each panel, the 2nd rows are amplified images of the 

heart region, and the third rows are temporal difference maps for two sequential cardiac phases.
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Chapter 1 Introduction 

   Outline 

Magnetic Resonance Imaging is a non-invasive imaging tool that can provide the highest soft-

tissue contrast among the existing imaging modalities. Sophisticated manipulation of the intrinsic 

and extrinsic contrast mechanisms could enable us to increase the sensitivity of the MR signal to 

a variety of physiological behavior and achieve various tissue contrasts. Therefore, MRI is a 

versatile choice for clinical use to detect pathologies, quantify biological parameters, and reveal 

functional changes.  

MRI is inherently slow despite its vast potential, so it requires a relatively long scan time and 

could be susceptible to the motion, e.g., bulk motion or cardiorespiratory motion. In addition, 

acquired images cannot be directly used for diagnosis purposes and required post-processing steps 

in some MRI applications. Such post-processing steps, which in some applications are usually 

performed manually by the radiologists- add more burden to the clinical settings- or needed time-

consuming computations by the radiologists add more burden to the clinical settings. For example, 

contrast-enhanced magnetic resonance angiography (CE-MRA) can be acquired from the patients 

in a reasonably short time, but segmenting the blood vessels, e.g., arteries and veins, and assessing 

the amount of their blockage is taking several hours.  Thus, imaging acceleration techniques and 

faster post-processing tools are highly in demand. This dissertation sought to develop tools to 

reduce the scan time and respiratory motion artifact in the 2D/3D cardiac imaging and implement 

post-processing methods for the instant and accurate T1 and T2 computation and for the peripheral 

artery and vein segmentation from CE-MRA. 
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In a broad sense, imaging duration depends on two main factors: spatial/temporal resolution 

and signal-to-noise ratio (SNR). For example, extended Fourier encoding steps are required to 

achieve a higher spatial/temporal resolution image which elongates the scan duration. As another 

example, to achieve a higher SNR image, multiple averaging as a traditional approach is needed, 

which again extends the scan duration. One potential remedy to reduce the scan time is to acquire 

fewer data points instead of filling the whole k-space. However, such an incomplete k-space 

acquisition would lead to the aliasing artifacts. Two general approaches have been introduced to 

recover the high-quality images from the incomplete k-space measurements: Parallel Imaging 

(PI)1-4, which relies on using channel information to turn the underdetermined set of equations into 

an overdetermined problem, or Compressed Sensing (CS)5,6, which takes advantage of the 

incoherent measurements along with appropriate regularizers to solve the underdetermined MR 

reconstruction problem. 

Although CS can achieve a higher acceleration factor, in other words, it can reconstruct the 

significantly more undersampled k-space than PI; it has its limitations. For example, regularizer 

terms in the CS framework have to be decided before reconstruction, or, more importantly, it 

requires iterative computation to recover the high-quality images through solving the optimization 

problem. Recently deep neural networks showed promising results in medical imaging and, in 

particular, in image reconstruction and artifact removal tasks. Deep neural networks consist of 

several layers in which each layer contains learnable weights and non-linear activation functions. 

It requires a training process in which the stochastic gradient descent (SGD) based algorithm was 

usually applied through the chain rules on the objective function to adjust the weights and all 

trainable parameters of the network. Once the training process is completed, it can apply to the 

unseen data and fastly produce the results. The capability of the neural networks to learn the 
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compelling features from the historical data and their fast inference time makes them suitable in 

MRI applications. For example, fixed regularizer terms in the CS reconstruction can be replaced 

with neural networks to learn a better regularizer. As another example, neural networks can be 

trained to approximate the functions, particularly those that require heavy computation. For 

instance, neural networks can be trained to rapidly segment the blood vessels from MRA images 

which is one of the most labor-intensive tasks in the post-processing stage of the MRI.   

This dissertation describes several application-tailored based on the deep neural networks that 

aim to accelerate the 2D/3D cardiac MRI and offers retrospective-based methods for the 

respiratory motion correction. Moreover, this dissertation aims to achieve instant and accurate 

T1/T2 calculations based on the MOLLI sequence and automate the peripheral artery and vein 

segmentation process in FE-MRA in the post-processing stages.  

  Organization of the thesis 

Chapter 2 Background: This chapter first begins with a brief introduction of the concepts 

behind nuclear magnetic resonance and classical signal processing-based approaches for imaging 

acceleration and motion artifact correction. Then, we tried to smoothly move from the classical 

approaches to the deep learning-based approaches. In this chapter, we tried to explain the essential 

deep learning-based concepts, in particular, deep neural networks, in simple words and their 

potential in addressing the interesting MRI problems with a primary focus on the imaging 

acceleration and motion compensation, the post-processing type regression problems, and the 

image segmentation problems. It is not possible to cover all aspects of the deep neural networks in 

this introductory chapter, and our main focus will be on the relevant aspects of them to our 

applications.     
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Chapter 3 Deep learning based Dynamic Cardiac Magnetic Resonance Image Reconstruction 

Pipeline: This chapter describes a deep learning pipeline for fast reconstruction of the highly 

undersampled 2D dynamic cardiac magnetic resonance images. Deep convolutional neural 

networks are used in this work as a modeling tool to learn an effective Spatio-temporal regularizer. 

Also, to keep the data consistency, we used a hard replacement scheme to use the already acquired 

lines to force the data fidelity term in the k-space domain. Quantitative comparisons with the CS-

based reconstruction were performed on the patients' data in a retrospective manner. This version 

of our platform is the extended version of our previously published journal articles7,8. The new 

version described in this chapter has been filed as a patent application.    

Chapter 4 Retrospective Respiratory Motion Correction in Cardiac Cine MRI Reconstruction: 

This chapter demonstrates a retrospective deep neural network-based method to reduce the 

respiratory motion artifact from the free-breathing 2D segmented cine images. Neural networks in 

the supervised settings were usually required input-target pairs for the training. Since access to the 

paired input-target images in the context of the non-rigid motion artifacts is challenging or almost 

impossible, we considered the deep learning-based approach that can be trainable without needing 

the paired data. We implemented a deep adversarial autoencoder to remove the respiratory motion 

artifact in the image domain. The only requirement that the implemented adversarial autoencoder 

has to meet is the availability of two sets of data: 1) free of the respiratory motion artifact cardiac 

images and 2) respiratory motion artifacted images. We first examined the network on the 

simulated data to ensure that the proposed approach is functioning correctly. Then we thoroughly 

evaluated based on the real data acquired from volunteers and patients. This work has been 

published as a journal article9.         
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Chapter 5 Temporally Aware Volumetric GAN-based 4DMR Image Reconstruction and 

Respiratory Motion Compensation: This chapter introduces a novel neural network-based platform 

for simultaneously image reconstruction and respiratory motion compensation of 4D cardiac MRI. 

Temporally Aware Volumetric GAN technique (TAV-GAN) incorporates a novel temporally 

aware objective function as an extra regularizer in addition to adversarial loss, L1 and SSIM loss 

functions to reduce flickering artifacts through the cardiac phases with no explicit need to use the 

multiple cardiac phases as the inputs for the network. We also described the well-known challenges 

of training GANs for high-dimensional images. We addressed such challenges by adopting an 

effective progressive training strategy based on starting the training from the low-resolution 

volumetric images and gradually increasing the resolution to reach the original volumetric image 

size. The proposed method was thoroughly evaluated qualitatively and quantitatively based on 3D 

cardiac cine data from 42 patients. This work has been published as a journal article10. 

Chapter 6 Fast and accurate quantification of myocardial T1 and T2 values using Deep 

learning Bloch Equation Simulations (DeepBLESS): This chapter demonstrates a deep learning-

based methodology to achieve a fast and accurate computation of the cardiac T1 and T2 

relaxometry parameters. To prepare the data sets, we took a different approach, and instead of 

using the real datasets commonly used to train the network, we used simulated datasets for training 

the neural network. Such a simulated dataset enabled us to produce a large dataset and effectively 

train the network. Also, we considered the advanced T1 and T2 calculation methods to consider 

the different factors that can potentially affect the T1 and T2 values. Comprehensive evaluations 

ranging from the simulations to the in vivo validations were considered to examine the proposed 

approach. The results of this chapter have been published as a journal article11.       
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Chapter 7 Automatic Peripheral Artery and Vein Segmentation: This chapter describes an 

automated platform for segmentation of the peripheral arteries and veins in the lower extremities 

based on Ferumoxytol-enhanced MR Angiography (FE-MRA). We demonstrated a deep learning-

based pipeline to extract peripheral vasculature from high spatial resolution FE-MRA datasets and 

label them as arteries and veins via exploiting the time-resolved high temporal resolution 

volumetric images. For extraction of the blood vessels, an attention-gated 3D U-Net is used and 

trained based on advanced loss functions and a deep supervision mechanism. We tried to study 

and analyze the role of the different components of the neural network and their effect on the 

segmentation results. Also, we quantitatively evaluated the proposed approach thoroughly and 

compared it against the state-of-the-art approaches. This work has been published as a journal 

article12.   

Chapter 8 Conclusion: The deep neural network-based applications presented in this 

dissertation are summarized in this chapter, and potential future directions are briefly explored.   
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Chapter 2 Background 

This chapter introduces background about MRI, T1/T2 mapping, inverse problems in 

magnetic resonance image reconstruction, deep neural networks, and their role in solving the 

inverse problems. In addition, brief background information about and blood vessel segmentation 

are provided. It is important to note that this chapter is not meant to be a comprehensive summary 

of the topics but to briefly familiarize the readers with the discussed materials in the subsequent 

chapters. 

 History of Magnetic Resonance Imaging 

Without a doubt, the development of the MRI is one of the most successful and fantastic 

events in the history of medical imaging. MRI was built based on the principles of the nuclear 

magnetic resonance (NMR) phenomenon, which Felix Bloch13 and Edward M. Purcell14 have 

discovered, and they shared the 1952 Nobel Prize in Physics independently in 1946. Although the 

NMR phenomenon was discovered in 1946, the first imaging experiments were conducted in the 

1970s by Lauterbur15 and Damadian16. Damadian in 1971 showed that NMR could contrast the 

behavior of water in benign and malignant tissues. At the same time, Lauterbur imaged a cross-

sectional part of the two water tubes. The researchers have rapidly realized the importance of the 

mentioned inventions and developed the first human whole-body NMR imaging system in 1977. 

Lauterbur ultimately was awarded the Nobel Prize in physiology and medicine for expanding the 

spatial encoding gradients and Mansfield17-19 for his mathematical description of MR imaging 

physics. As noted above, MRI researches gained several Nobel Prizes, which shows its importance 

and complexities. In this section, we reviewed the critical MR physics concepts from the 
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macroscopic point of view, and we used the system model with Fourier encodings to describe the 

image generation. For more detail, we encourage the reader to refer to these papers20,21.    

 NMR Physics 

Nuclei with an odd mass number, such as the hydrogen atom's nucleus, possess an angular 

momentum, i.e., spin. At the thermal equilibrium state, spins are distributed randomly, which 

results in zero net magnetization. Applying an external magnetic field 𝑩𝟎 polarized the spins and 

forced them to precessed around the specific directions. For example, for a spin-1/2 system, e.g., 

hydrogen (1H) spins would take two directions parallel and anti-parallel to the applied magnetic 

field. Magnetization vector 𝑴 =  (𝑀𝑥, 𝑀𝑦, 𝑀𝑧) is commonly used to describe the behavior of the 

spin system at the macroscopic level. In the absence of the external magnetic field 𝑩𝟎 , 

magnetization vector 𝑴 = 𝟎 . In the presence of 𝑩𝟎 , the magnitude of 𝑴  will be directly 

proportional to the magnitude of 𝑩𝟎 and the total number of spins. Also, in the presence of 𝑩𝟎, the 

precession frequency of the spins, i.e., Larmor frequency 𝜔0, is proportional to 𝑩𝟎: 

𝜔0 =  𝛾𝑩𝟎                                                                                            (2-1) 

Where 𝛾 is the atom-specific constant and called gyromagnetic ratio. For the sake of clarity, we 

should state that in the context of MRI, 𝑩𝟎 represents the strong static magnetic field, e.g., 1.5T. 

MRI machine also has a time-varying RF filed, which is commonly denoted by 𝐵1(𝑡). In contrast 

to strong 𝑩𝟎 , which is always on, 𝐵1(𝑡) can be easily turned on or off, and its magnitude is 

significantly lower than the static magnetic field. Suppose a spin system is exposed to 

both 𝑩𝟎  and 𝐵1(𝑡) since the magnitude of 𝐵1(𝑡) is negligible compared to 𝑩𝟎, so it seems that 

applying an extra 𝐵1(𝑡) has no effect. However, it is not the whole story, and if 𝐵1(𝑡) with a 

Larmor frequency is applied perpendicular to 𝑩𝟎 , it can create a resonance condition in 
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which 𝑴𝟎 can be tipped from the direction of the applied 𝑩𝟎, say 𝒛-direction, to the direction of 

the applied RF field say transversal direction. Once 𝐵1(𝑡) is removed, the spin system will relax 

to its initial state, i.e., alignment with 𝑩𝟎, and throughout the relaxation, it will release a radio-

frequency signal which an RF receiver coil can detect. The Bloch equations explicitly describe the 

time-dependent behavior of the magnetization 𝑴 =  (𝑀𝑥, 𝑀𝑦, 𝑀𝑧) in the presence of the magnetic 

field 𝑩. Equation (2-2) shows the simplified Bloch equation:  

𝑑𝑴

𝑑𝑡
=  𝛾𝑴 × 𝑩 −  

𝑀𝑥𝒊+𝑀𝑦𝒋

𝑇2
−  

(𝑀𝑧−𝑀𝑧
0)𝒌

𝑇1
                                                                              (2-2) 

Where 𝑀𝑧
0 is the initial magnetization in the presence of  𝑩𝟎  only, T1 and T2 are the relaxation 

parameters and controls the recovery time of the longitudinal component of 𝑴 (𝑀𝑧) decaying time 

of the transverse component of 𝑴 ( 𝑀𝑥𝒊 + 𝑀𝑦𝒋). Since the relaxation times are sample-specific 

and related to the tissue characteristics so they can be used to create the contrast between different 

tissues.   

 Spatial Localization 

As illustrated in subsection 2.2, once the applied 𝐵1(𝑡)  is turned off, the bulk magnetization 

will relax to the initial magnetization state, which releases the RF signal, and the RF receiver coils 

can record that signal. This RF signal contains the information from the whole sample, and in order 

to localize such information, we need an extra 3D spatially variant longitudinal magnetic field 

known as the gradient field 𝑮 =  (𝐺x, 𝐺y, 𝐺z). The role of the gradient field is to make the effective 

magnetic field, and therefore the relative precession frequency of the magnetization, a linear 

function of spatial coordinates along the respective axes.  In other words, it encodes the spatial 

information in the received RF signal. The received RF signal or, in a better term, MR signal from 
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a volume of interest 𝑚(𝑥⃗) in the presence of the spatially-dependent field can be described as 

Equation (2-3):                                                                                 

𝑠(𝑡) =  ∫ 𝑚(𝑥⃗) exp(−𝑖𝜔(𝑥⃗, 𝑡)) 𝑑𝑥⃗                                                                                            (2-3)  

Where spatially varying phase 𝜔(𝑥⃗, 𝑡) can be calculated as follows: 

𝜔(𝑥⃗, 𝑡) =  ∫ 𝛾𝐺(𝜏).
𝑡2

𝑡1
𝑥⃗𝑑𝜏 = 2𝜋(𝑘𝑥(𝑡)𝑥 +  𝑘𝑦(𝑡)𝑦 +  𝑘𝑧(𝑡)𝑧)                                                 (2-4) 

Where 𝑘𝑥(𝑡), 𝑘𝑦(𝑡), and 𝑘𝑧(𝑡) are the time integrals of the orthogonal components of the gradient 

waveform and formulated as the following equations: 

𝑘𝑥(𝑡) =  
𝛾

2𝜋
∫ 𝐺𝑥(𝜏)𝑑𝜏

𝑡2

𝑡1
                                                                                                             (2-5) 

𝑘𝑦(𝑡) =  
𝛾

2𝜋
∫ 𝐺𝑦(𝜏)𝑑𝜏

𝑡2

𝑡1
                                                                                                              (2-6) 

𝑘𝑧(𝑡) =  
𝛾

2𝜋
∫ 𝐺𝑧(𝜏)𝑑𝜏

𝑡2

𝑡1
                                                                                                              (2-7) 

Where 𝐺x(𝑡), 𝐺y(𝑡), and 𝐺z(𝑡) are the time-varying gradient field and t1 and t2 represents the start 

and end time points of the applied gradient field. By substituting 𝒌⃗⃗⃗(𝑡) = (𝒌𝑥(𝑡), 𝒌𝑦(𝑡), 𝒌𝑧(𝑡)) in 

Equations (2-3) and (2-4), the acquired signal as a function of time can be formulated as: 

𝑠(𝑡) =  ∫ 𝑚(𝑥⃗) exp(−𝑖2𝜋𝒌⃗⃗⃗(𝑡). 𝒙⃗⃗⃗) 𝑑𝑥⃗                                                                                       (2-8) 

The most crucial fact summarized by Equation (2-8) is that the acquisition signal is the Fourier 

transform of the target volume of interest 𝑚(𝑥⃗). It means that the MR acquisition process can be 

seen as the sampling in the spatial-frequency space with the trajectory controlled 

by 𝒌⃗⃗⃗(𝑡), the time integral ofthe gradient.  The spatial-frequency domain so defined is called k-
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space in the context of MRI. Using Equations (2-5), (2-6), and (2-7), the excited spins can be 

localized to any arbitrary point in 3D space by applying appropriate gradients.       

 Cartesian Sampling and Image Reconstruction 

Cartesian sampling is the most common way to sample the k-space. Figure 2-1 shows the 

Cartesian sampling for 2D and 3D imaging.   

 

Figure 2-1. 2D and 3D Cartesian sampling trajectories 

 

Fast Fourier Transform (FFT) algorithm is the most efficient digital implementation for 

transformation between k-space and image space, which are inverse transforms of each other. For 

Cartesian sampling, k-space lines have to be equally spaced, and samples have to fall onto a 

Cartesian grid. Cartesian sampling is the most robust sampling strategy to deal with the several 

sources of system imperfections, e.g., off-resonance and eddy currents22,23. However, it is sensitive 
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to movement of the target volume of the interest during the acquisition process, which in many 

instances can last for several minutes.  

 Undersampling in Cartesian k-space 

In the context of the Cartesian sampling, Image reconstruction can be expressed as a set of 

linear equations as the following:  

𝑦 = 𝑭𝑥                                                                                                   (2-9) 

𝑭 is the Fourier operation, 𝑥 is the underlying image, and 𝑦 is the measurement lines (k-space 

lines). If we access the fully sampled k-space, the desired 𝑥 can be found by multiplying the 

inverse Fourier operation 𝑭−𝟏 to both sides of Equation (2-9). If the measurement lines are free of 

motion artifact, it will result in a clean and artifact-free image. To accelerate the imaging process, 

one potential approach is acquiring fewer lines and filling the k-space partially. So, in the setting 

of Cartesian undersampling, Equation (2-9) will change to:  

  𝑦 = 𝑈𝑭𝑥                                                                                                                                  (2-10) 

Where 𝑈 is the undersampling binary mask which includes the index of the sampled k-space lines. 

Although an undersampling scheme will decrease the required acquisition time, it may induce 

aliasing artifact in the image. From the signal and system point of view, the image reconstruction 

problem from the fully or undersampled k-space can be viewed as an inverse problem in which 

the input 𝑥  is imported to a system described by the forward operation and the output is the 

measurements 𝑦. The forward operation is  𝑈𝑭 and 𝑭 for the undersampled and fully sampled 

acquisition, respectively, in the image reconstruction. It is important to note that the forward 

operation is wholly known for the pure image reconstruction problem. In the MR reconstruction 
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problem, we are interested in outputting an image y of the object x, in Equation (2-10), free of any 

aliasing artifact. We will review two classical techniques in the broad sense in the next section.   

 Conventional Reconstruction Techniques 

As noted in the previous section, the MR image reconstruction problem can be formulated as 

an inverse problem 𝑦 = 𝑭𝑥, where 𝑥 is the complex-valued image series formatted as an 𝑁 =

 𝑁𝑥  ×  𝑁𝑦  ×  𝑁𝑡  column vector, 𝑭 is the Fourier encoding matrix, and 𝑦 is the measurement k-

space vector. It is worth noting that the measurements in this section, for the sake of generality, 

are assumed as the time series of 2D acquisitions (2D + t). By applying undersampling schemes, 

the inverse problem formulation would change to 𝑦 = 𝐴𝑢𝑥 , where forward operation 𝐴𝑢  is a 

composite operator with size 𝑀 × 𝑁 includes sensitivity maps 𝑆, Fourier encoding matrix 𝑭, and 

binary undersampling mask 𝑈. In MR undersampled inverse problems, usually, the number of 

measurements 𝑀 is significantly less than the number of unknown 𝑁 (𝑀 <<  𝑁); thus the direct 

solution is not possible because of the underdetermined nature of the problem. So, in order to solve 

this problem, two general approaches have been introduced: Parallel Imaging (PI)1-4, which relies 

on using channel information to turn the underdetermined set of equations into an overdetermined 

problem, or Compressed Sensing (CS)5,6, which takes advantage of the compact representation of 

the data in some transform domains to solve the underdetermined MR reconstruction problem. 

 Motion Artifact 

Up to this point, we only considered that motion artifacts did not contaminate our 

measurements. Here is the proper place to discuss the effect of the movement in the imaging target 

of interest on the acquired k-space lines in a simplified setting. As mentioned earlier in this chapter, 

MR scanners excite the spins of an object and encode the received signal to Fourier coefficients 
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along a pre-defined path from the gradient pulse’s shape. We formulated the signal coming from 

a moving object in MRI and its effects on the acquired signal in Cartesian schemes. For simplicity, 

we formulated the rigid body motion in 2D Cartesian acquisition. 

Let us assume 𝑀̂Ɵ,𝑡  represents the object motion in matrix format, which includes the 

translation and rotation. Also, 𝒖 is the unknown sharp object, 𝑭̅ = 𝑨𝑭 is the product of Fourier 

matrix and affected acquired lines, i.e., phase encodes lines, and ℯ is the additive noise. For the 

sake of clarity, affected acquired lines are the lines affected by the motion artifact and contain 

incorrect phase information. Therefore, the acquired signal in the k-space formulation can be 

described as Equation (2-11): 

𝑦 =  ∑ 𝑭̅𝑇
0 𝑀̂Ɵ,𝑡𝑑𝑡𝒖 + ℯ                                                                                                              (2-11) 

𝑀̂Ɵ,𝑡 is the operational matrix in the image domain, representing the rigid motion information as a 

function of time (𝑡) and the object’s rotation (Ɵ). Since translation and rotation of the object in the 

image domain are equal to the phase shift and rotation in the frequency domain, we can translate 

the mentioned matrix to the frequency domain and reach Equation (2-12):  

𝑦 =  ∑ 𝐾̂Ɵ,𝑡
𝑇
0 𝑑𝑡𝑭̅𝒖 + ℯ                                                                                                   (2-12) 

If we compare the motion correction and image reconstruction problems in MRI from the 

general point of view, we can realize that both problems are types of inverse problems. In the 

motion correction inverse problem, the forward operation is unknown, while the forward operation 

is known in the pure MR image reconstruction problem.   
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 Artificial Neural Networks 

In this section, we introduced the main components of neural networks. It is important to note 

that we did not provide a comprehensive review of the neural networks because of the limited 

space. The interested readers are referred to these publications24,25. Neural Networks are the 

flexible and powerful class of nonlinear function approximations. Figure 2-2 shows a simple 

feedforward fully connected neural network with three layers. Circles in each layer represent nodes 

in the network, and each line between nodes represents connections between the nodes. When the 

data is fed to the input layer, it is sent through the connections to the next layer, where some 

computations were performed on the data and sent to the next layer. This process continues until 

the last layer produces the final output. Because of the forward movement of the data through the 

layers, such neural networks are also called feedforward neural networks. In other words, the 

output of the layers in the feedforward neural networks do not influence its input. The feedforward 

pass of the neural networks can be formulated mathematically.  

 

 

Figure 2-2. A three-layer feedforward fully connected neural network 
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Since the feedforward neural network is the sequential chain of the layers, it is sufficient to only 

formulate one arbitrary layer’s output for the sake of the mathematical description. Also, for the 

sake of simplicity, a simple, fully connected neural network is considered. Let us assume that the 

input signal is a column vector with 𝑛 components 𝒔 = [𝑠1, 𝑠2, . . , 𝑠𝑛], 𝑾n×m is the weight matrix, 

and 𝒃 is a row vector with 𝑚 components. 𝑛 is the number of the nodes in the previous layer that 

the connections come from, and 𝑚  represents the number of the nodes in the current layer. 

Also, 𝑏 is the bias term that is added to each node. The output of the nodes in the current layer can 

be presented as a row vector 𝒉 with 𝑚 components: 

𝒉 = 𝑓(𝒔𝑾), 𝑓(𝑥) = {
0, 𝑥 < 0
𝑥, 𝑥 ≥ 0

                                                                        (2-13) 

Where 𝑓(. ) is the non-linear activation function. In Equation (2-13), one of the most influential 

and standard activation functions called rectified linear unit (ReLU)26 is used. It is worth noting 

that there are several other activation functions such as Tanh and sigmoid. Of the sigmoid 

functions, the logistic function is the most widely used in machine learning today. To determine 

the proper weights and bias terms in the neural networks, a training process is required. In the 

training process, the network takes data as the input and target, and in the forward pass, the 

network's output is calculated and compared with the ground truth target data. Differences between 

the output and the target constitute errors.  To calculate the error term, comparisons are usually 

performed based on quantitative metrics such as L1 and L2 norms, Dice, cross-entropy, adversarial 

loss, and others. We should note that selection of the metrics or objective functions is directly 

related to the task. After calculating the error following the first feedforward pass, the process of 

iterative optimization begins.  The first backward pass is started, and the process of stochastic 

gradient descent27 (SGD ) is applied. Gradient descent is the process whereby changes in weights 
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and biases are implemented in the way that decreases the loss term most rapidly.   Gradient descent 

is carried out with respect to the trainable parameters such as bias and weights to update these 

parameters and minimize the loss terms. It is worth noting that the backpropagation algorithm is 

commonly used to calculate the gradient descent efficiently. As the last point in this section, we 

need to clarify that the term "deep," usually seen in current research, means that the network has 

many hidden layers, beyond that which connects to the input layer. In recent years, impressive 

progress in neural networks, such as introducing residual connections28 and batch normalization29, 

facilitates the training of deep neural networks.  

 Convolutional Neural Networks 

The deep convolutional neural network, a subclass of the deep artificial neural networks, has 

been proven successful in many applications, particularly in tasks dealing with multi-dimensional 

data such as images and tensors. Figure 2-3 shows a simple CNN which is designed to perform a 

classification task. As shown in Figure 2-3, similar to the fully connected ANNs, CNN also 

contains several layers and trainable weights, i.e., convolutional kernels and non-linear activation 

functions.    



18 

 

 

Figure 2-3. A simple CNN architecture 

 

The CNN structure in Figure 2-3 contains a sequential chain of convolutional layers + 

subsampling layers, in this case max pooling. Each convolutional layer generates a set of feature 

maps. The number of the produced feature maps depends on the number of the convolutional 

kernels in each layer. For instance, in Figure 2-3, 4 convolutional kernels with size 9 × 9 are 

applied to the input image and generate 4 feature maps as the input to the subsequent layer, i.e. 

hidden layer 1. Each of the mentioned 4 feature maps is specified by 9 × 9 = 81  adjustable 

weights.  Subsampling layers of CNN reduce the spatial resolution of the feature maps. The role 

of the subsampling layers is not only to reduce the dimensionality but also to help the network’s 

responses be spatially invariant. Ultimately, the last layer outputs a vector with 4 components 

which can be used to classify the four categories of the input images.  The task here was one of 

categorization.  Like fully connected neural networks, trainable weights and biases in CNNs are 

optimized by SGD based algorithms through the backpropagation technique.  
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 Function Approximation by Artificial Neural Networks 

According to the universal approximation properties ANNs30, a feedforward neural network 

with a single hidden layer can represent any continuous function on a closed and bounded subset 

of Rn. However, the number of the hidden nodes in the hidden layer may be impracticably large 

and, more importantly, may fail to learn and generalize correctly when exposed to new input data. 

The rationale behind using deep neural networks is that they need fewer nodes in the hidden layers 

and decrease the generalization error.  

Given that the universal approximation theorem is correct, why do we need to use deep ANNs 

in the context of MRI? This section aims to provide reasons and clarify where and how deep ANNs 

can help us increase efficiency in the applications presented in this dissertation. 

Several state-of-the-art classical approaches have been proposed in dynamic cardiac image 

reconstruction31, such as k-t BLAST or k-t Sense, which are all based on the CS and PI concepts. 

So, it seems that in the well-explored reconstruction area, researchers had already developed 

mathematically based optimization methods to solve the inverse MR reconstruction problems. 

Why do we need to use deep ANNs, which are all data-dependent, to learn how to reconstruct the 

images from the undersampled data? One answer to this question is that the deep ANNs-based 

image reconstruction inference time is significantly lower than the classical approaches; in other 

words reconstruction speed is greatly increased. This is particularly important when accessing the 

reconstructed images is crucial to guide the subsequent scans. Another reason is that the deep 

ANNs can learn more effective regularizers and priors than the fixed regularizer used in the 

conventional methods. For instance, since the forward operation is already known, one can only 

use CNN to learn the effective Spatio-temporal regularizer in image reconstruction.  
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Deep ANNs have advantages over the classical methods in respiratory motion correction, 

particularly in free-breathing cardiac cine imaging. Because the nature of the respiratory motion 

in cardiac imaging is non-linear and despite the assumption of rigid motion, there is no well-

defined relationship between the respiratory motion and the k-space measurements. In other words, 

using ANNs can help us learn the non-linear function that can map data corrupted by respiratory 

motion artifact to data free of the respiratory motion artifact. Another advantage is the inference 

time of the ANNs compared to the classical iterative-based algorithms is significantly lower.    

Several algorithms have been proposed to estimate the T1/T2 relaxometry values in cardiac 

imaging. There is a direct relationship between the accuracy of the proposed conventional methods 

and their computational complexity. For example, Bloch-equation-simulation-based parameters 

estimation approaches32 take more detail of the sequence into account, such as considering the 

effect of the non-rectangle 2D RF excitation slice profile, B1+ errors, and the imperfect inversion 

T2 preparation to improve the accuracy, but it is time-consuming. Therefore, in this case, using 

ANNs can substantially decrease the computation time while achieving a similar accuracy of 

Bloch-equation-simulation-based parameters estimation approaches in cardiac T1/T2 calculations. 

The post-processing of CE-MRA images mainly includes segmentation of the peripheral 

vasculature, which an experienced radiologist often performs via visual inspection and manual 

delineations. Due to the large size of the high resolution, volumetric peripheral MRA, e.g., 560 x 

940 x 240, manual annotation is a time-consuming and tedious process. Since manual labeling is 

a subjective process and depends on physician’s experience and knowledge, it can potentially 

introduce high inter-observer variability. ANNs can adaptively find highly representative features 

from historical data through a training process and decrease the required computational time in 
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contrast to the conventional methods, which solely rely on a priori knowledge and hand-crafted 

features and require considerable time to complete the segmentation.    
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Chapter 3 Deep Learning based Dynamic Cardiac Magnetic 

Resonance Image Reconstruction Pipeline  

The purpose of this work was to develop and evaluate a deep learning based dynamic cardiac 

magnetic resonance image reconstruction pipeline for low-latency and high quality accelerated 

MR imaging. A 3D CNN used to learn the spatiotemporal regularizer from the historical data. 

Standard conventional compressed sensing reconstruction k-t FOCUS33 is compared in terms of 

reconstruction quality and speed. Quantitative evaluations confirmed that the proposed network 

was able to images with a lower noise level and reduced aliasing artifacts in comparison with k-t 

FOCUS. Using the proposed method, each frame can be reconstructed in less than 40ms, 

suggesting its clinical compatibility. In conclusion, the proposed deep learning based framework 

is a promising technique that allows low-latency and high quality cardiac MR imaging. A version 

of this chapter has been initialized as the Siemens Patents. Also, this chapter is the improved 

version of our previous studies7,8 which have been published two years ago in the medical physics 

and Quantitative Imaging in Medicine and Surgery: 

1. Zhou, Z., Han, F., Ghodrati, V., Gao, Y., Yin, W., Yang, Y. and Hu, P. (2019), Parallel imaging 

and convolutional neural network combined fast MR image reconstruction: Applications in low-

latency accelerated real-time imaging. Med. Phys., 46: 3399-3413.   

2. Ghodrati V, Shao J, Bydder M, Zhou Z, Yin W, Nguyen KL, Yang Y, Hu P. MR image 

reconstruction using deep learning: evaluation of network structure and loss functions. Quant 

Imaging Med Surg 2019;9(9):1516-1527.  
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  Introduction 

MRI acceleration methods are widely used to shorten image acquisition time by under-

sampling k-space. Parallel imaging methods such as GRAPPA4 and compressed sensing (CS)6 are 

state-of-the-art approaches that are routinely used. GRAPPA uses a fully-sampled k-space center 

region to train convolution kernels which are subsequently used to fill in missing k-space samples. 

However, a potential challenge of parallel imaging is that at high acceleration factors, the g-factor 

could result in significant noise amplification. The CS method takes advantage of the intrinsic 

sparsity of the data in a specific transform domain and random k-space sampling (incoherent point 

spread function) to remove noise-like image artifacts in the image. CS-MRI typically uses 

predefined and fixed sparsifying transforms, e.g., total variation (TV), discrete cosine transforms 

and discrete wavelet transforms5. This can be extended to more flexible sparse representations 

learned directly from data using dictionary learning34. However, CS-MRI is associated with 

challenges in finding appropriate regularizers for specific applications and manually tuning the 

hyperparameters, a time-consuming process that is difficult to standardize. In addition, the 

optimization process involves non-convex terms, so there is no guarantee of achieving a global 

minimum or even converging to a solution. 

Recent advances in deep neural networks open a new possibility to solve the inverse problem 

of MR image reconstruction in an efficient manner. Deep learning-based approaches are well-

developed in computer vision tasks such as image super-resolution35-38, denoising and inpainting39-

42, while their application to medical imaging is still at a relatively early stage. For MR image 

reconstruction, these approaches typically learn the proper transformation between the input (zero-

filled under-sampled k-space) and the target (the fully-sampled k-space) by minimizing a specific 

loss-function through a training process. Recently, a few different networks have been used to 
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automate medical image reconstruction43-51. Jin et al.43 focused on CT reconstruction and proposed 

a Filter Back Projection Convnet (FBPConv) to reconstruct the CT data 1,000 faster than classic 

methods while preserving the image quality. Sandino et al.46 trained a Unet architecture on 3D 

cardiac datasets and compared the results based on pixel-wise loss functions. Hammernik et al.48 

proposed variational network to learn the effective priors to accelerate the knee imaging and 

shorten the acquisition and reconstruction time. Schlemper et al.49 proposed a novel deep cascade 

network for dynamic image reconstruction and showed superior performance of their network to 

CS-MRI. They used the data sharing layer to learn the spatiotemporal correlation of dynamic 

cardiac imaging data, which substantially improved the performance of their network. Hyun et 

al.50 used a simplified Unet and proposed a k-space correction method to improve the performance 

of their network in MR reconstruction. Zhu et al.51 used fully connected layers followed by a 

convolutional autoencoder to directly map the k-space data to the image domain. Deep neural 

networks have also been used to explore much more effective image priors and sparsifying 

transforms from a given datasets and combined with conventional CS methods. As proposed in52, 

the ADMM algorithm is used to solve the inverse problems such as CS-MRI. Another interesting 

technique48 was recently reported using a variational autoencoder for learning the effective priors 

to reconstruct knee datasets. Generative adversarial networks (GANs) have been proposed to 

achieve a higher perceptual quality in inverse problems such as super resolution53-56. Additional 

new techniques have been proposed to increase the sharpness and preserve the texture information 

in MR reconstruction tasks57,58. Transfer learning has also been explored as an effective image 

reconstruction method 59,60. 

In this work, we sought to develop a deep learning based pipeline and apply it to 2D dynamic 

cardiac imaging for low-latency online reconstruction. We used a 3D CNN to learn the effective 

https://qims.amegroups.com/article/view/29735/25733#B16
https://qims.amegroups.com/article/view/29735/25733#B18
https://qims.amegroups.com/article/view/29735/25733#B19
https://qims.amegroups.com/article/view/29735/25733#B20
https://qims.amegroups.com/article/view/29735/25733#B21
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spatio-temporal regularizer and forced the data consistency by hard replacement in the k-space 

domain. We demonstrate the capability of our framework on dynamic cardiac imaging and 

compared its performance quantitatively against the k-t FOCUS33.  

  Methods 

This section briefly described the methods, including the general compressed sensing model, 

network structure, data preparation, and the training process. We highly recommended visiting our 

previous publications in MR dynamic cardiac image accelerations, which focused on the loss 

function and combined PI and CNN7,8. The crucial difference of this improved version with our 

prior works is including the temporal information to achieve higher accelerations (8X-10X) which 

is two times more than our prior PI combined with CNN work.    

3.2.1 General Compressed Sensing Model 

In general, the MR image reconstruction problem can be formulated as an inverse problem Fx 

= y, where x is the complex-valued image series formatted as an N = Nx × Ny × Nt column vector, 

F is the Fourier encoding matrix, and y is the measurement k-space vector. Undersampling 

schemes are applied in practice to accelerate the acquisition process. Because of the applied 

undersampling, the inverse problem formulation would change to Fux = yu, where Fu is a composite 

operator with size M×N includes sensitivity maps S, Fourier encoding matrix F, and binary 

undersampling mask U. In MR undersampled inverse problems, usually, the number of 

measurements M is significantly less than the number of unknown N (M << N), thus the direct 

solution is not possible because of the underdetermined nature of the problem. So, in order to solve 

this problem, two general approaches have been introduced: Parallel Imaging (PI), which relies on 

using channel information to turn the underdetermined set of equations into an overdetermined 



26 

 

problem, or Compressed Sensing (CS), which takes advantage of the compact representation of 

the data in some transform domains to solve the underdetermined MR reconstruction problem. Our 

focus in this work is on the second category, i.e., CS. Conventional CS algorithms estimate the 

reconstructed image x by minimizing the unconstrained optimization problem: 

𝑚𝑖𝑛
𝑥

 { 
𝜇

2
∑ ‖𝑈𝐹𝑆𝑖𝑥 −  𝑦𝑖‖2

2 + 𝑅(𝑥)}𝑛𝑐
𝑐=1                                                                                        (3-1) 

In the data consistency term (first term in Eq. (3-1)), U is the undersampling mask, F is the Fourier 

transform, and Si denotes the sensitivity map of the ith channel. 𝜇 controls the weight of the data 

consistency term, and the number of channels is presented by nc. The regularization term (second 

term in Eq.(3-1)) generally is a sparse regularizer such as total-variation or the first norm of the 

wavelet transform of x. There are two points about Equation 1 which deserved to note: 1) the 

regularizer term is a fixed operation and before optimization has to be decided, 2) solving such 

optimization problem requires an iterative algorithm which could increase the reconstruction time. 

In order to accelerate the reconstruction process and design a more powerful regularizer based on 

the historical data, we propose to use a convolutional neural network. In this work, we translated 

the CS reconstruction problem in Equation (3-1) into a deep neural network to accelerate the 

reconstruction process and learn a more powerful Spatio-temporal regularizer.    

3.2.2 Network Structure 

Figure 3-1 shows the network structure, which consists of 8 sequential stages in which each 

stage contains two parallel paths—weighted outputs with a learnable parameter of both paths 

combined through the training process.  One path (DC) that does not include any learnable weights 

is the data consistency and another path (CNN3D), a learnable part, is a convolutional network, 

and its goal is to learn a proper Spatio-temporal regularizer.  To design the data consistency, we 
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employed a hard replacement scheme. A hard replacement scheme is a simple and efficient way 

to force the data fidelity, and its function is based on filling the phase encoding lines of the k-space 

that have already been acquired by the original measurements. To implement a data-driven-based 

Spatio-temporal regularizer, we used a relatively shallow 3D convolutional network to use spatial 

and temporal redundant information of the dynamic series of images to learn an effective 

regularizer. We used five cascaded convolutional layers in each stage rather than a very deep 

convolutional network to minimize the overfitting issues.  

 

Figure 3-1. Network structure: eight sequential stages were considered in our end-to-end 

reconstruction pipeline. Each stage contains two parallel paths 1) CNN3D and 2) DC. CNN3D is a shallow 

five-layered convolutional neural network that aims to learn a Spatio-temporal regularizer. DC is the data 

consistency term that replaced the reconstructed phase-encoding lines with the real acquired phase-

encoding lines. The output of the data consistency path in the image space is combined by the output of the 

CNN3D in the learnable fashion in each stage.   

3.2.3 Data Preparation and Training  

To train and evaluate the network, we used retrospectively acquired clinical breath-held 2D 

multi-slice, ECG-triggered, GRAPPA 2X, bSSFP cardiac cine MR images in the short-axis, 

horizontal long-axis, and vertical long-axis views from 42 patients. We divided this data into 25 

patients’ data (583 dynamic images) to train the network and 17 patient cases (272 dynamic images) 
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for testing the network. Since the retrospectively acquired data was based on the GRAPPA 2X, a 

proper ICE function was employed to reconstruct the free of the aliasing single-channel complex 

image for the data. Besides, a particular ICE function was used to extract the sensitivity maps for 

each dynamic set of images. The main reason behind using the ICE function to calculate the 

sensitivity maps was training the data on more realistic images, thus improving the performance 

of the network and its compatibility with the Siemens scanner.  

For training, the network, five sets of data including sensitivity maps, multi-channel 

undersampled raw data (k-space), undersampling masks (binary masks), coil combined single-

channel complex zero-filled dynamic images, and coil combined single-channel complex aliasing 

free dynamic images (target) are required. Figure 3-2 graphically summarized the required data 

for training the network. For the sake of clarity, data preparation was shown in Figure 3-2 for a 

single image; for dynamic images, this process has to be iterated through the dynamic frames. As 

illustrated in Figure 3-2, coil combination was achieved by summing up the images in an element-

wise manner in the channel dimension.    

Figure 3-2. Data preparation pipeline for training the network. For training, the network five sets of data 

are required. These sets of data and the process of generation of them were shown inside the five black 

rectangles.  
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For testing the network, only four sets of the data, including sensitivity maps, multi-channel 

undersampled raw data (k-space), undersampling masks (binary masks), and coil combined single-

channel complex zero-filled dynamic images are required. Three points are considered in 

designing the undersampling mask: 

1. Initial sampling lines on (discretized) golden steps were calculated. 

2. The initial calculated lines were repositioned based on a predefined density distribution. 

3. Lines were sorted in a way that they zigzag across time to minimize the gradient jump. 

Figure 3-3 shows an exemplary undersampling mask for 8X and 10X acceleration factors 

through the cardiac phases. For training the network, the Adam optimizer was used with the 

momentum parameter β =0.9, mini-batch size= 1, and an initial learning rate of 0.0001 to minimize 

the L1 norm between the reconstructed dynamic images and the corresponding dynamic targets. 

Weights for the network were initiated with random normal distributions with a variance of σ = 

0.01 and mean µ=0. The network was trained for five epochs, i.e., 5×8750 iterations in an end-to-

end fashion based on the five sequential cardiac frames extracted from the dynamic training data. 

The training was performed with the Pytorch interface on a commercially available graphics 

processing unit (GPU) (NVIDIA Titan XP, 12 GB RAM). Once the network was trained, it was 

tested based on the full-sized dynamic images rather than five sequential dynamic frames.   
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Figure 3-3. Undersampling binary mask for 8X and 10X acceleration factors. White points show the 

position of the phase encoding lines through the cardiac frames.   

  Result 

In the following, qualitative and quantitative results were presented for 8X and 10X 

acceleration factors. Figure 3-4 shows the arbitrarily selected cardiac frame reconstruction results 

for the horizontal long axis (HLA) view of the cardiac image. 

Figure 3-5 shows the exemplary reconstruction results for a short-axis view of the cardiac 

image. As evident in Figures 3-4 and 3-5, the proposed pipeline can recover the inter and 

intracardiac structure without tangible quality loss. In addition, it seems that the cardiac structure 

in the reconstructed image is not deformed and is similar to the ground truth image.     
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Figure 3-4. Qualitative reconstruction results of arbitrarily selected test data for the HLA cardiac view 

for 8X and 10X acceleration factors.  

 

 

Figure 3-5. Qualitative reconstruction results of arbitrarily selected test data for the SAX cardiac view 

for 8X and 10X acceleration factors.  

Table 3-1 shows the quantitative results for different methods and different acceleration 

factors.  
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Table 3-1. Quantitative comparisons: Our proposed pipeline achieved significantly higher SSIM and 

lower MSE than our pipeline without incorporating temporal information and the classic state-of-the-art k-

t FOCUS. 

 Mean SSIM x10-2 Mean MSE x10-3 

8X 10X 8X 10X 

Our pipeline 91* 89* 0.3* 0.4* 

Our pipeline w.o. temporal information 78 74 0.9 1.2 

k-t FOCUS 80 77 0.7 1.1 

* There was a statistically significant difference (P<0.05) between the proposed method and other methods 

concerning the quantitative metrics SSIM and MSE. 

  Discussion 

In this work, we proposed a deep learning-based pipeline to reconstruct the cardiac cine MR 

images from the undersampled measurements. We considered the redundancy in the temporal 

dimension to achieve a higher acceleration factor. Based on Table 3-1, it seems that the pipeline 

which includes the temporal information has significantly better performance than the same 

pipeline without temporal information. Also, compared to the state-of-the-art CS-based method 

(k-t FOCUS), our pipeline achieved statistically better quantitative scores, i.e., MSE and SSIM. 

Using a general-purpose desktop computer (Intel Core i7-8700 CPU, 3.10 GHz), the reconstruction 

time was approximately 30 ms/cardiac phase for the proposed pipeline and 300 ms/cardiac phase 

for k-t FOCUS.   

Two significant concerns exist in the use of deep neural networks in image reconstruction 

tasks in medical imaging. First, whether these networks were able to preserve the pathologies in 

reconstructing the highly undersampled and respiratory motion corrupted images; and Second, 

whether these networks introduced new spurious anatomical features in the images. We included 

the L1 loss to constraint the network’s output in our proposed method in the image domain to 

address the first concern. Besides, data consistency is applied in the k-space domain in a hard 
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replacement scheme; in other words, forward operation in the reconstruction formulation is 

incorporated in our pipeline. To address the second concern, we asked two radiologists to carefully 

examine the reconstructed results of the proposed method to evaluate the images concerning the 

newly spurious anatomical features. Based on the radiological assessments on all reconstructed 

images of the test dataset, there were no new introduced spurious features in the reconstructed 

images.  

For future studies, expanding the pipeline to the multi-task-based platform could potentially 

increase the efficiency of cardiac imaging. For instance, one could add more output nodes to get 

the required post-processed stage of the cardiac imaging, e.g., ejection fraction, etc. in order to 

change the single task platform to a multi-task platform proper loss functions and balancing 

between them are required and will be considered in the future studies.  

  Conclusion 

Deep learning-based image reconstruction helped us to achieve the 8X-10X acceleration in 

2D cardiac imaging. Such a high acceleration is achieved by taking advantage of the redundancy 

in the temporal dimension of the data. Also, the designed platform outperformed the state-of-the-

art classic k-t FOCUS in terms of the quantitative MSE and SSIM scores.   
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Chapter 4 Retrospective Respiratory Motion Correction in 

Cardiac Cine MRI Reconstruction  

This work aimed to develop a deep neural network for respiratory motion correction without 

accessing the paired data in free-breathing cine MRI and evaluate its performance. To achieve that, 

we trained an adversarial autoencoder based on the unpaired data from the healthy volunteers and 

patients who underwent clinically indicated cardiac MRI examinations. The autoencoder learns 

the identity map for the free-breathing motion-corrupted images and preserves the structural 

content of the images, while the discriminator, which interacts with the output of the encoder, 

forces the encoder to remove motion artifacts. We used a U-Net structure for the network's encoder 

and decoder parts and regularized the code space by an adversarial objective. We performed two 

separate evaluations. First, we evaluated the network based on the data that were artificially 

corrupted with simulated rigid motion concerning motion correction accuracy and the presence of 

any artificially created structures. Second, we evaluated the network on the real cases, including 

the patient and the volunteers whose images were corrupted by the respiratory motion artifact. A 

version of this chapter has been published9 in the NMR in Biomedicine:  

1. Ghodrati V, Bydder M, Ali F, Gao C, Prosper A, Nguyen KL, Hu P. Retrospective respiratory 

motion correction in cardiac cine MRI reconstruction using adversarial autoencoder and 

unsupervised learning. NMR Biomed. 2021 Feb; 34(2):e4433.doi: 10.1002/nbm.4433.  

 



35 

 

  Introduction 

In current clinical practice of thoracic and abdominal MRI, images are commonly acquired 

during a breath-hold to compensate for respiratory motion. Physiological limitations of breath-

holding constrain the data acquisition window to approximately 15-20 seconds in relatively 

healthy patient populations. In clinical practice, many patients undergoing MRI have impaired 

breath-holding abilities, further limiting the acquisition window. As a result, 3D acquisitions are 

not routinely performed during a single breath-hold, despite previous efforts61-64. Many approaches 

have been proposed to enable free-breathing thoracic and abdominal MRI, including real-time 

single-shot cine imaging65-67 and the use of non-Cartesian sampling (e.g. radial), which tends to be 

less sensitive to respiratory motion68-70. However, the use of these approaches is not without 

compromise. For example, single-shot imaging approaches are generally of inferior image quality, 

signal-to-noise ratio or resolution when compared to their corresponding k-space segmented 

techniques. Non-Cartesian sampling, although relatively immune to motion, is prone to various 

other types of image artifacts, including streaking, off-resonance blurring and issues related to 

gradient delays. Alternative methods for respiratory motion compensation include respiratory 

bellows gating71-73, diaphragm navigators74, and MR self-gating75. These techniques, as a whole, 

result in prolonged scan time and reduced scanning efficiency, as a significant portion of the data 

is discarded. In addition to longer acquisition times, these techniques each suffer from their own 

respective drawbacks. Respiratory bellows rely on air pressure signal, which may not always have 

a well-defined correlation with the respiratory position of various anatomical structures. 

Diaphragmatic navigators and MR self-gating navigators have enabled high quality imaging of the 

coronary arteries76,77; however, their adoption in routine clinical imaging remains limited, in part 

because irregular and abrupt breathing pattern changes often reduce image quality and reliability. 
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Multiple methods have been proposed for motion correction78-80, where motion is corrected in k-

space using well-known relationships between affine motion and the corresponding k-space. 

However, these corrections are often inadequate because of significant non-rigid and deformable 

motion, which does not have well-defined k-space correction methods.  

In this work, we sought to investigate the use of deep neural networks (DNNs) for respiratory 

motion compensation in MRI to alleviate some of the aforementioned problems. DNNs, 

particularly convolutional DNNs, have presented new possibilities for tackling a wide range of 

inverse problems including image inpainting, super resolution35-38, denoising and deblurring39-41, 

81-84 in an efficient manner. The main advantage of DNNs over classical data processing 

approaches is that it learns the effective features and priors in a data-driven fashion. To date, few 

studies have implemented DNNs for motion compensation84-88. Recent studies have shown that 

DNN can correct rigid-motion artifacts in brain imaging85,88. They mainly trained convolutional 

neural networks with pixel-wise objective functions in a supervised manner. Haskell et al. 

combined a deep convolutional network with model-based motion estimation approach in an 

iterative manner to reduce the rigid motion artifacts from the 2D T2-weighted rapid acquisition 

with refocused echoes (RARE) brain images88. Their algorithm is of iterative nature, and in each 

iteration, the output of the convolutional neural network (CNN) was used to estimate the motion 

parameters and to correct the image k-space. They used time series registration information from 

fMRI scans to create the realistic motion trajectories. Then, they modified motion-free raw k-space 

brain data to synthesize realistic rigid-motion-corrupted images, and subsequently they estimated 

the motion parameters and forced the data consistency. 

However, for DNN-based respiratory motion compensation in cardiac and abdominal imaging, 

supervised learning approaches are generally not feasible because the ground truth non-rigid 
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motion data, which is needed for training the network, is either extremely challenging to obtain or 

simply not available. Kustner et al. reported a feasibility study to correct rigid and non-rigid motion 

artifacts by implementing a conditional generative adversarial network (GAN) (MedGAN), in 

which the generative network consists of eight cascaded U-nets84. The network was trained using 

a combination of adversarial, style transferring, and perceptual89 loss functions. Among the loss 

functions used by Kustner et al.84, the perceptual loss function requires paired data, which is 

challenging to obtain, especially for non-rigid motion correction tasks. In addition, there are >108 

trainable parameters in the network architecture used by Küstner et al.84 Armanious et al. used a 

cycle consistency approach to extend the MedGAN in a way that can be trained in unsupervised 

manner90. They incorporated an attention module in their generator network to capture long-range 

dependencies. They mainly focused on reducing rigid simulated artifacts from brain datasets and 

achieved promising results.   

The goal of this study was to develop and validate a DNN-based platform to remove 

respiratory motion artifacts in free-breathing imaging. We chose 2D cardiac cine imaging as an 

exemplary target application to validate our technique. In particular, based on the numerous 

challenges associated with obtaining the ground truth non-rigid motion data, we aimed to develop 

a network that can be trained in an unsupervised manner. In particular, our DNN is based on an 

adversarial autoencoder91-93 network structure to take advantage of its ability to be trained in a self-

supervised manner without access to paired training data or the ground truth motion data. In our 

work, the encoder and decoder part of the adversarial autoencoder are both convolutional U-nets. 

The autoencoder’s code space is regularized with an adversarial loss network. The autoencoder 

preserves anatomical accuracy and consistency during the motion correction process while the 

adversarial network regularizes the encoder and drives the code space to be as close as possible to 
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a motion artifact-free image. By leveraging the intrinsic competition between these two networks 

during the training process, we expect motion-corrected, artifact-free images to preserve their 

fidelity with regard to the overall anatomical structure and consistency.  

  Methods 

4.2.1 Theory 

An autoencoder is a neural network that reconstructs an output that is almost identical to its 

input with the goal of learning useful representations of the input data94. Figure 4-1(a) shows a 

general architecture of an autoencoder. It consists of two parts, the encoder and the decoder. The 

encoder and decoder can be expressed as 𝐸𝑛𝜃(𝑧|𝑥), 𝐷𝑒𝜐(𝑥̂|𝑧): where, 𝑧 represents the code space 

and 𝜃, 𝜐 are the learnable parameters of the encoder and decoder networks, respectively. Equation 

(4-1) formulates the objective function of the autoencoder network as an L1-norm minimization 

problem:  

𝑚𝑖𝑛𝜃,𝜐𝐸𝑥𝜖𝑋(|𝑥 − 𝐷𝑒𝜐(𝐸𝑛𝜃(𝑥))|1) ,                                                                                           (4-1)   

where, 𝑥 is a batch of the data selected from dataset 𝑋. In general, putting constraints on the 

autoencoder, such as limiting the dimension of code space or adding regularization to the code 

space prevents them from learning a trivial identity mapping. In our problem, the code space has 

the same dimension as the input data. Therefore, a proper approach is to add a special regularizer 

to the code space to produce the motion-corrected images. Equation (4-2) describes the objective 

function of the regularized autoencoder:  

𝑚𝑖𝑛𝜃,𝜐𝐸𝑥𝜖𝑋 (|𝑥 − 𝐷𝑒𝜐(𝐸𝑛𝜃(𝑥))|
1

+  𝛽𝑅(𝐸𝑛𝜃(𝑥))) ,                                                               (4-2) 
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where 𝛽 is the tuning parameter for the regularizer 𝑅. Such a regularizer needs to be capable of 

assessing the presence and extent of significant motion artifacts in the image and the regularizer 

needs to be differentiable. 

 

Figure 4-1. Various structures of the autoencoder: a) A simple autoencoder which encodes the high 

dimensional inputs into the code space data, which is usually of substantially reduced dimensions, by 

applying a series of convolutional layers. The decoder recovers the same input data from the code space 

data. b) An adversarial autoencoder (AAE) combines a simple autoencoder with an adversarial regularizer 

called discriminator to the code space. The discriminator is trained with the goal of accurately 

differentiating between data generated for the code space of the autoencoder and the data from the external 

data source Y. The adversarial autoencoder is trained with the goal of generating the code space data that 

resemble the external source data Y. The end result of the AAE network is that the code space data are 

driven to represent the external data source as much as possible during the adversarial (and competing) 

training processes between the encoder part of the autoencoder and the discriminator. In the context of our 

motion correction work using AAE, the encoder and decoder networks are each a convolutional U-net, the 

input x of the autoencoder is a free-breathing motion-corrupted image, the code space data is the 

corresponding motion-corrected image of the same dimensions, and the external data source Y is unpaired 

standard breath-hold motion-free reference images. The code space is driven by the discriminator network 

to be motion-corrected images such that they resemble the motion-free images from the external source Y. 

More details about the structure of our network are included in Figure 4-2.   

Although without access to paired data, an explicit form of the metrics to be used for such 

assessment may not exist, it can be learnt via the neural network. Such a neural network uses an 
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adversarial loss to force the code space to be similar to the motion-free images. Figure 4-1(b) 

shows a graphical view of the proposed platform. As can be seen in the Figure 4-1(b), an 

adversarial objective is added to the conventional autoencoder structure to regularize the output of 

the encoder. The input of the encoder 𝑥𝜖𝑋 is the motion-corrupted image acquired during free 

breathing without any means of motion compensation. The output of the encoder 𝑧  is one of the 

inputs of the discriminator network during network training. In addition, the discriminator has 

access to motion artifact-free images Y that are not necessarily paired with the input X for the 

encoder. Through the training process, the discriminator drives the encoder to correct motion 

artifact in such a way that the discriminator network is not able to distinguish between unpaired 

high-quality images acquired during breath-holds that are free of motion artifacts and the motion-

corrected images generated by the encoder. Equation (4-3) shows the adversarial regularizer of the 

network: 

𝑚𝑖𝑛𝜃𝐸𝑛
𝑚𝑎𝑥𝜗𝐷𝑖

   𝐸𝑦ϵY[𝑙𝑜𝑔𝐷𝑖𝜗(𝑦)] + 𝐸𝑥ϵX[𝑙𝑜𝑔(1 − 𝐷𝑖𝜗(𝐸𝑛𝜃(𝑥))] ,                                       (4-3)                  

where 𝜗  and 𝜃  are the trainable parameters of the discriminator and encoder networks, 

respectively. Equation (4-4) shows the full objective function of the entire proposed network with 

regularizer weight 𝛽 = 1:  

𝑚𝑖𝑛𝜃,𝜐𝐸𝑥𝜖𝑋(|𝑥 − 𝐷𝑒𝜐(𝐸𝑛𝜃(𝑥))|1) +  𝑚𝑖𝑛𝜃𝐸𝑛
𝑚𝑎𝑥𝜗𝐷𝑖

   𝐸𝑦ϵY[𝑙𝑜𝑔𝐷𝑖𝜗(𝑦)] +  𝐸𝑥ϵX[𝑙𝑜𝑔(1 −

𝐷𝑖𝜗(𝐸𝑛𝜃(𝑥))]                                                                                                                              (4-4) 

The first term in the Equation (4-4) represents the reconstruction objective and it preserved the 

overall accuracy of the motion-corrected images with regard to anatomical structure and image 

content. The second term in Equation (4-4) is the regularizer and its role is to force the encoder 

part to produce the images with similar appearance as motion-free images. The detailed network 
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structure, including the layers and number of kernels, are shown in the Figure 4-2.  In our cardiac 

cine imaging validation, the input for the encoder was motion-corrupted free-breathing cardiac 

cine data acquired with a conventional k-space segmented cardiac cine imaging sequence during 

free breathing. The high-quality imaging data were obtained using standard clinical breath-held 

cardiac cine data from patients who underwent clinically indicated cardiac MRI. Because the 

proposed platform does not require paired data for training and can be trained in a self-supervised 

fashion, the high-quality breath-held data could be obtained from a cohort of subjects separate 

from the motion-corrupted data. 

 

Figure 4-2. The autoencoder part consists of two convolutional U-net. A U-net consists of two paths: 

(I) the contracting path, which contains 3 down-sampling stages; (II) the expanding path, which includes 3 

up-sampling stages. In order to preserve high-level features, it consists of dense connections from the early 

stages to the later stages of the network. Each convolution layer used in the U-net consists of trainable 

convolution filters (stride = 1) followed by rectified linear unit (ReLU) as a non-linear activation function 

except for the last layer. If ReLU was used in all layers as the non-linear activation function, then the 

network would only be able to learn to map to positive values. Because the input data sets were normalized 

to the range of [-1,1], it is important for the last layer’s activation function to have the capability to pass 

negative values in the forward propagation process. Therefore, in the last layer, we used the hyperbolic 

tangent (Tanh) function as the activation function for both U-Nets, which makes mapping the input to the 

range of [-1, 1] possible. The discriminator part is a regularizer of the code space and it consists of 4 main 

convolutional layers. Each layer in this network included trainable convolution filters (stride = 2) followed 

by batch normalization and Leaky ReLU. The starting number of channels used in the discriminator was 
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64, which was doubled after each strided-layer. At the end of the network we used a flattened layer which 

vectorized the extracted features from the last convolution layer and passed it to nonlinear sigmoid function 

followed by averaging function. All the convolutional kernels used in either the U-net or the discriminator 

had 3x3 size. In total, each U-net in our platform approximately has 5.2 × 106 trainable parameters and the 

discriminator has 1.7 × 106 trainable parameters.   

4.2.2 Training Procedures 

In the training phase, the autoencoder and the discriminator network were trained with 

Stochastic Gradient Descent (SGD) in two phases – the accuracy phase and the correction phase. 

In the accuracy phase, the autoencoder updates its encoder U-net and the decoder U-net to 

minimize the reconstruction error of the input. In the correction phase, the discriminator and the 

encoder U-net were trained in an adversarial manner, where the discriminator first updates its 

structure to distinguish between the high-quality cardiac cine data and the samples from the output 

of the encoder; subsequently, the encoder U-net was updated to produce images that are as similar 

as possible to the high-quality cardiac cine data. Both networks, autoencoder and the discriminator, 

were trained in an end-to-end fashion and updated in the training phase sequentially mini-batch 

after mini-batch. Our training algorithm is summarized in Table 4-1.  
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Table 4-1. Training algorithm:  De(.), En(.), and Di(.) stands for the Decoder, Encoder, and 

Discriminator, respectively. First two lines belong to the accuracy phase of the training process and the 

remaining lines belong to the correction phase. 

 

 

Relatively large image patch size of 128×128 was used as the input to the autoencoder  network. 

Previous studies show that generation of large size image in an adversarial manner is difficult 

compared to smaller size i.e. 64×64, because larger image patch size generally makes it easier for 

the discriminator to differentiate between the images provided by the generator and the high-

quality data95,96. Most stable adversarial training methods were based on 64×64 patch size97. In 

order to stabilize the adversarial training process, a Markovian-patch-based approach was used to 

train the correction phase network98. During the training process, the output of the encoder for 

Algorithm 1 Minibatch stochastic gradient descent training of adversarial autoencoder network.  

For number of training iterations do:  

• Sample minibatch of m motion corrupted examples {x1, x2… xm} from motion-

corrupted set X. 

• Update the Encoder and the Decoder by ascending its stochastic gradient: 

                       ∇𝜃𝐸𝑛,𝜈𝐷𝑒

1

𝑚
∑ |𝑥𝑖 − 𝐷𝑒(𝐸𝑛(𝑥𝑖))|

1
𝑚
𝑖=1  

• Sample minibatch of m motion corrupted examples {x1, x2… xm} from motion-

corrupted set X.  

• Sample minibatch of m breath-hold examples {y1, y2… ym} from motion-free set Y.  

• Update the discriminator by ascending its stochastic gradient: 

                       ∇𝜗𝐷𝑖

1

𝑚
∑ [𝑙𝑜𝑔𝐷𝑖(𝑦𝑖) + log (1 − 𝐷𝑖 (𝐸𝑛(𝑥𝑖)))]𝑚

𝑖=1  

• Sample minibatch of m motion corrupted examples {x1, x2… xm} from motion-

corrupted set X.  

• Update the Encoder by descending its stochastic gradient:  

                       ∇𝜃𝐸𝑛

1

𝑚
∑ [log (1 − 𝐷𝑖 (𝐸𝑛(𝑥𝑖)))]𝑚

𝑖=1  
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each epoch was divided into 4 patches of size 64×64 and the discriminator either accepts or rejects 

the decision based on the average probability calculated for the 4 patches.   

To update the weights of the correction (encoder + discriminator) and accuracy network 

(autoencoder), the Adam optimizer was used with the momentum parameter β =0.9, mini-batch 

size= 64, and initial learning rate 0.0001 that is halved every 15,000 iterations. All the weights 

were initiated with random normal distributions with a variance of σ = 0.01 and mean µ=0. The 

first iteration was started by updating the accuracy network and for the second iteration, the 

decoder part was kept frozen with no updates while the correction network was updated.  This 

process was continued and, in each epoch, we produced the test results to make decision for 

stopping criteria. The training was performed with the Tensorflow interface on a commercially 

available graphics processing unit (GPU) (NVIDIA Titan XP, 12GB RAM). We allowed 125 

epochs that took approximately 11 hours for training.  

4.2.3 Data Acquisitions  

To evaluate the performance of the proposed neural network and demonstrate its utility, we 

tested our strategy for cardiac cine imaging. Our institutional review board approved the study, 

and each subject provided written informed consent. The datasets used to train and test our network 

consisted of three groups:  

1) Free breathing 2D multi-slice, retrospective ECG-triggered, balanced steady state free 

precession (bSSFP) cardiac cine MR images in the short- and long-axis views from 20 healthy 

volunteers (Avanto Fit, Siemens Healthineers). The sequence parameters included TR (repetition 

time)/TE (echo time)=2.44/1.19 ms, FOV(field of view)=271 x 300 mm2, resolution= 1.74 x 1.92 

mm2, 25 cardiac phases, slice thickness=6 mm, 3-10 slices, acquisition time per slice =8-12s. As 
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the data were acquired using standard clinical cardiac cine imaging sequences but during free 

breathing, they were contaminated by respiratory motion artifacts. For comparison purposes, the 

same sequence was repeated during breath-hold for each healthy volunteer. The free-breathing 

acquisition time was similar to breath-hold. 

2) Standard clinical breath-held 2D multi-slice, retrospective electrocardiogram (ECG)-triggered, 

bSSFP cardiac cine MR images in the short-axis, horizontal long-axis, and vertical long-axis views 

from 162 patients. These images were acquired as part of clinically indicated cardiac MRI scans 

and were collected retrospectively. These images were acquired during breath-holds, had 10-14 

slices (one slice per breath-hold of 8-12s with 5-10s pause time between breath-holds), and were 

used as the high-quality imaging data for the adversarial network.  

3) Standard ECG-triggered, bSSFP breath-held cardiac cine images in the short-axis and horizontal 

long-axis views were acquired from 10 additional patients as part of their clinically indicated 

cardiac MRI examination. In addition, in each of the 10 patients, we performed the same cardiac 

cine imaging sequence during free-breathing.  

Before the network was trained and tested during our in-vivo study, we performed a simulation 

study based on data from Group 2 with simulated rigid motion. The goal of the simulation study 

was to confirm our technique’s motion correction accuracy by commonly used metrics such as 

peak signal to noise ratio (PSNR) and structural similarity index (SSIM), which would not be 

possible for the in vivo study due to lack of ground truth data. More details of the simulation study 

are in the Evaluations section.  

For the in vivo network training and validation, we used 15 out of the 20 volunteers’ data from 

Group 1 and all of the breath-held cardiac cine imaging data from the 162 patients in Group 2. 
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Images in the Cine data were treated as independent samples, i.e., the temporal correlation was not 

considered during the network training and image reconstruction.   

Our network training process was performed in an un-paired fashion.  All the breath-held data 

from Groups 1&2 were shuffled randomly in each training batch before they were used as input 

data for the discriminator network. All the free-breathing data from Group 1 were randomly 

shuffled as well before they were used as input data for the autoencoder network. The anatomical 

orientation (short axis or long axis) was matched between the input data for the autoencoder and 

the input data for the discriminator network for each training batch. Our network testing was based 

on the remaining 5 volunteers’ data in Group 1 and all the data from Group 3.  

To increase the flexibility of the network in correcting the motion artifact for arbitrary image 

sizes, our network was trained and validated based on 128 × 128 patches extracted from the 

datasets. Each data set was reconstructed by applying adaptive coil combination to a single 

complex image and normalized to -1 to 1. Each single complex image was formatted as a real 

tensor with real and imaginary channels. In total, 125000 patches were used to train the network 

and 25300 patches were used to validate the network. Once the network was trained, the network 

testing was performed using full-sized images rather than image patches. As our encoder network 

has 3 down-sampling stages, we simply padded the input images to the next size that is divisible 

by 8 before they were input to the network.     

4.2.4 Evaluations 

Evaluation of the network performance consisted of four main parts:  

a) Motion Correction Accuracy: One major concern is whether the reconstructed image is 

consistent with the breath-held reference. Due to the generative nature of the adversarial 
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autoencoders, it is important to ensure motion accuracy with regard to structural and anatomical 

content. To evaluate the motion correction accuracy and confirm that the proposed platform is 

capable of correcting the motion-corrupted datasets in un-paired training process, a simulation 

study was conducted. 1D translational respiratory motion of the diaphragm with variable 

displacements ranging from 10 to 20 pixels was introduced to corrupt the k-space data from Group 

2 using a well-known relationship between k-space and the image space as shown in Equation (4-

5), where the simulated translation vector is (x0, y0), M1 and M2 are the k-space data before and 

after motion corruption, respectively.  

𝑀2(𝑘𝑥, 𝑘𝑦) =  𝑒−𝑗2𝜋(𝑘𝑥𝑥0+𝑘𝑦𝑦0) × 𝑀1(𝑘𝑥, 𝑘𝑦)                                                                           (4-5)                   

In our simulation, k-space of the Group 2 was divided into 16 segments. To find the diaphragm 

position for each segment, the respiratory signal was divided to 800-ms cardiac cycles and each 

cycle was divided into 20 cardiac segments. Inferior-superior diaphragm position was expressed 

as a function of time99 in Equation (4-6) 

𝑦(𝑡) =  𝑦0 − 𝑏[cos (
𝜋𝑡

𝑇
− 𝜑)]2𝑛,                                                                                                (4-6)         

 where 𝑦0 , 𝑦0 − 𝑏  are the position of diaphragm during end-exhalation and end inhalation,  

𝑇 𝑎𝑛𝑑 𝜑 are the period and initial phase of the respiratory cycle, and n controls the shape of the 

simulated motion curve.  For average diaphragm motion as described in99, 𝜑 = 0 , 𝑛 = 3, and 𝑇 =

4𝑠𝑒𝑐 were selected. Our simulated motion assumed that each pixel had an isotropic size of 1 mm2, 

𝑦0 = 5 and b varied from 10 to 20 pixels.  
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Figure 4-3(a) shows details of simulation process for an image with 256 phase-encoding k-

space lines. The respiratory cycle was divided into 5 cardiac cycles, where each cycle was further 

divided into 20 cardiac phases.  

 

Figure 4-3. Motion simulation process of the Simulation Study. a) respiratory motion pattern and 

corruption process. Each k-space line is intentionally corrupted by adding a signal phase term that 

corresponds to the simulated motion distance for the line. b) (From top to bottom) Sample of the original 

motion-free image, the synthesized respiratory motion-corrupted image, and the error map between them. 

In Figure 4-3(a), only the first cardiac phase in each cardiac cycle is shown as a dashed-

rectangle. To simulate the motion-corrupted image, each data were divided to 16 k-space segments 

and each segment was multiplied by the phase term corresponding to its motion on the simulated 

motion curve shown in Figure 4-3(a) according to Equation (4-5). In our simulation study, all 

clinical breath-held cine data in Group 2 were used to synthesize the motion corrupted datasets. 

Out of the 162 synthesized motion-corrupted data sets, 20 were randomly chosen as testing data 

and were excluded from the training process. The remaining 142 data sets were used to train the 

network in an unpaired manner. Figure 4-3 (b) shows an example of the synthesized images and 
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artifacts. These images with synthesized artifact also enabled us to partially prove that our network 

does not produce extra structures. Assessment of motion correction accuracy was performed by 

calculating Tenengrad focus measure, PSNR and SSIM for the simulated test data on the image 

level.     

b) Quantitative Sharpness: To quantify the sharpness of an image, the Tenengrad focus measure 

was used100,101. To calculate the Tenengrad focus measure, the image is convolved with a Sobel 

operator and the square of all the magnitudes greater than a threshold is reported as a focus measure. 

Equation 4-7 formulates the Tenengrad measure:   

𝐹𝑇𝑒𝑛𝑒𝑛𝑔𝑟𝑎𝑑 =  ∑ [𝐼(𝑖, 𝑗) ∗∗ 𝑆]2
𝑖,𝑗 + [𝐼(𝑖, 𝑗) ∗∗ 𝑆𝑇]2 ,                                                                  (4-7) 

where 𝐼(𝑖, 𝑗)  shows the image and 𝑆  is the Sobel operator: 𝑆 =  [
1 0 −1
2 0 −2
1 0 −2

] . Because of 

difference in the size of the test cases in both simulation and in-vivo studies, the mean of the 

Tenengrad measure without threshold was calculated and normalized based on the breath-hold 

value.     

c) Subjective Image Quality Scoring: The motion-corrupted test data from the 5 testing volunteer 

data sets in Group 1 and the 10 patient testing data sets in Group 3, their corresponding motion-

corrected images after our network, and the corresponding breath-held reference cardiac cine 

images were randomized and presented to an experienced reader with >5 years of experience in 

reading clinical cardiac MRI who was blinded to the acquisition technique or patient information. 

The reader scored each of the images, which were presented as cine movies, with regard to image 

quality with an emphasis on motion artifacts according to the criteria in Table 4-2 102,103.    
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Table 4-2. Subjective Image Quality Scoring Criteria 

Score Criteria 

1 poor image quality; non-diagnostic 

2 
fair image quality; diagnostic image, but very blurry endocardial borders without clear 

definition of fine intra-cardiac structures 

3 
good image quality; diagnostic image, with less blurry endocardial borders and without clear 

definition of fine intra-cardiac structures 

4 
good image quality; diagnostic image, with sharp endocardial borders and without 

clear definition of fine intra-cardiac structures 

5 
excellent image quality; diagnostic image, with well-defined endocardial borders and 

clear definition of fine intra-cardiac structures 

 

d) Cardiac Function Analysis: Motion-corrected images were further evaluated with regard to 

indices of cardiac function measurements, including left ventricular end-diastolic volume (EDV), 

end systolic volume (ESV), stroke volume (SV), and ejection fraction (LVEF). These indices were 

measured from automatic segmentations of epicardial and endocardial left ventricular borders 

using a commercial tool (Arterys Cardio DL, Arterys Inc, San Francisco, CA). The cardiac 

function analysis was based on 5 of the test cases, which had full stack of short-axis-view images 

covering from the apex to the base. The same cardiac function measurements were repeated for 

the clinical standard breath-hold cardiac cine images acquired on the same 5 subjects. 

4.2.5 Statistical Analysis 

Statistical analysis was performed using R (version 3.5.3). Statistical tests were applied on the 

subjective image quality scores to answer two main questions: 1) was there any statistical 

difference between the motion-corrected, breath-held, and motion-corrupted images? 2) If yes, 

among the mentioned groups, which pairs had statistically significant difference? To answer these 
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questions, Friedman’s two-way analysis104 and non-parametric paired comparison tests were 

applied. Significance level for all statistical test was assumed at α = 0.05.      

  Result 

4.3.1 Simulation Study 

Figure 4-4 shows representative examples of artifact-free images, artificially motion-

corrupted images, and motion-corrected images. Based on the absolute error map, the proposed 

network was able to sharpen the edge and remove the ghosting artifact without generating extra 

structures. 

Figure 4-5 shows the frequency plot of SSIM and PSNR scores for the simulated test datasets. 

Mean value (green circles) and 95% confidence interval (black lines) were also added to the top 

of each chart.  Based on the SSIM scores, the proposed network produced images that were 

structurally similar to the ground truth and increase the SSIM 22% in comparison to motion-

corrupted images. Also, the PSNR results show that our motion correction network was able to 

reduce the residual errors and improve PSNR by 25% in comparison to motion-corrupted images. 

The normalized Tenengrad focus measure was 0.82±0.06 for the motion-corrupted images and 

0.92±0.04 for the motion-corrected images, representing a 12% increase using the proposed 

technique.   
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Figure 4-4. Motion accuracy simulation study results. Columns a, b, and c are the ground truth, motion-

corrected, and synthetically motion-corrupted images. Absolute error map between ground truth and the 

motion-corrected/motion-corrupted images are shown in columns d and e, respectively. The first row shows 

an example for the vertical long-axis view, the second row presents a horizontal long-axis view, and the 

third row represents the short-axis view.  

 

Figure 4-5. Quantitative simulation analysis. SSIM and PSNR, common metrics for image evaluation, 

were calculated for the simulated motion-corrupted data sets (bottom row) and motion-corrected images 

(top row). Both scores were reported by frequency plot and 95% of confidence interval. Mean values are 

shown with green circles; 95% of confidence intervals are depicted by black lines.   

 



53 

 

4.3.2 In vivo Study 

After validating the proposed method’s performance in correcting synthesized motion, the 

network was trained and tested based on in vivo motion-corrupted datasets. Throughout the 

training process, intermediate output in each epoch was exported to monitor the training process. 

Figure 4-6 shows improvement in quality of the output image through the training process. After 

5 epochs, the outputs were blurry and had substantial artifacts, which would easily enable the 

discriminator network to classify unequivocally as fake images. However, as the training went on, 

the image quality of the encoder output was progressively improved. After 125 epochs, the quality 

of the images was sufficiently high for the discriminator to label them as real images.  

 

Figure 4-6. Image quality of the encoder output image with respect to the number of training epochs. 

As the training progresses, the image quality increases steadily.   

Figure 4-7 shows representative images from two test volunteers’ data. The motion-corrected 

image (column b) reduced the motion artifact from the motion-corrupted image (column c) and 

provided visually sharper images at the interventricular septum and better visualization of the heart 

and adjacent structures. Residual minor blurring still exists for smaller structures, however.  
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Figure 4-7. Representative images in the short-axis view, and vertical long-axis view from two 

volunteer subjects. Columns a, b, and c show the breath-held cine, motion-corrected free-breathing cine, 

and motion-corrupted free-breathing cine images, respectively. Green arrows highlight structures that were 

recovered completely by the network. Red arrows point to regions of residual blurring.  

Figure 4-8 shows representative examples of breath-held cine (a), motion-corrected free-

breathing cine (b), and motion-corrupted free-breathing (c) images from a patient who underwent 

a clinically indicated cardiac MRI exam. The network was able to eliminate the motion artifact 

seen at the left ventricular myocardium and the right ventricle. The motion-corrected images 

overall resemble the breath-held cine images.  
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Figure 4-8. Representative cardiac cine images from a testing data acquired on a patient. Columns a, 

b, and c show standard clinical breath-held cine, the motion-corrected cine based on free-breathing data, 

and motion-corrupted cine data, respectively. White arrows show that the left ventricle region is 

significantly affected by motion artifacts and these artifacts were removed by the proposed network.  

The normalized Tenengrad focus measure was 0.86±0.13 for the motion-corrupted images 

and 0.92±0.11 for the motion-corrected images, which represent a 7% increase using the proposed 

motion correction network. 

Figure 4-9 shows Bland-Altman plots of the left ventricular SV, ESV, EDV, and LVEF for 

the cardiac functional analysis. The cardiac function parameters calculated based on our motion-

corrected images were in good agreement with standard breath-hold images. 

 

Figure 4-9.  Functional analysis: Left ventricular endocardial borders are automatically segmented to 

compute stroke volume (SV), end-systolic volume (ESV), end-diastolic volume (EDV), and ejection 

fraction (LVEF) for 5 test cases. Bland-Altman plots confirm that there is agreement with 95% confidential 
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level between functional metrics measured from breath-hold free of the motion images and motion-

corrected images. 

Figure 4-10(a) summarizes image quality scores. To identify any statistically significant 

difference in the overall image quality of breath-held cine, motion-corrected, and motion-corrupted 

groups, the null hypothesis assumed that the rank distribution of groups is the same. The null 

hypothesis was rejected significantly (P<0.05) by applying Friedman’s two-way analysis on the 

rank scores of different groups. Figure 4-10(b) reports paired comparisons between the mentioned 

groups. As can be seen, there was no statistically significant difference between the qualitative 

scores of motion-corrected and breath-held groups. Due to the statistically significant difference 

between the scores of motion-corrected and motion corrupted groups as highlighted by yellow 

edge, we conclude that the proposed method, increases the overall image quality of the motion-

corrupted images  

 

Figure 4-10. Blinded overall image quality reading and non-parametric paired comparison. (a) 

Frequency of overall image quality scores for each group. (b) Results from non-parametric paired 

comparisons. Statistically significant differences between pairs are highlighted by yellow lines.     
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   Discussion 

We proposed a deep learning-based method to reduce respiratory motion artifacts and tested 

it for free-breathing cardiac cine imaging. The proposed method was evaluated in terms of SSIM, 

PSNR, image sharpness score and subjective image quality. We showed that our adversarial 

autoencoder technique can effectively reduce or eliminate blurring and ghosting artifacts 

associated with respiratory motion while enabling free-breathing scanning. Using an adversarial 

autoencoder neural network in the proposed scheme has several advantages over the conditional 

generative adversarial networks for motion correction. First, the network does not require paired 

data because network training can be performed in a self-supervised manner. Second, image data 

consistency and anatomical accuracy was enforced implicitly in training process using an 

autoencoder network to ensure the motion-corrected image retains the important anatomical and 

structural content of the image. It is worth noting that the data consistency and anatomical accuracy 

may be enforced explicitly if the process of non-rigid motion-corruption is well-defined 

mathematically or if we had access to strictly paired motion-corrupted/motion-free data. An added 

benefit of our technique is its shorter total scan time than conventional breath-hold cine imaging. 

Conventional breath-hold cine imaging needs pauses between breath-holds, which increases the 

overall acquisition time. In our proposed method, the same cine imaging sequence can be run 

sequentially without any pauses. Therefore, the total cine scan time for our proposed method is 

less than the conventional breath-hold cine imaging. 

In medical imaging applications, acquiring large amounts of paired data for motion correction 

tasks can be highly challenging and time consuming. Other approaches, such as conditional GANs, 

usually use L1 or perceptual loss functions for the generator network, which requires paired data 

to stabilize the training process. In our adversarial autoencoder, the autoencoder path preserves the 
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overall structural content accuracy, which is mandatory for medical imaging applications; while 

the adversarial path forces the encoder network to correct the motion artifacts in the images.  

Typical motion-induced effects in MRI include blurring, ghosting, regional signal loss, and 

appearance of other unphysical signals105. Based on the quantitative sharpness analysis, the 

proposed method was able to increase the sharpness score in the simulation study by 12% and in 

the in-vivo study by 7%. It seems that there is a drop in the improvement of the sharpness score 

from the simulation study to the in-vivo study. It may be explained by considering the difference 

between the simulation and the in-vivo study. Realistically, motion corruption for Cartesian cine 

images under free breathing tends to cause more ghosting effect than blurring. Therefore, baseline 

normalized Tenengrad focus measure is expected to be higher for the real motion affected images 

than the simulated motion affected images, which was predominantly blurred by the simulated 

motion.  

Two important concerns for our type of technique are: 1) whether the pathologies were 

preserved in the proposed motion correction network; 2) whether our adversarial-based network 

introduced new spurious anatomical features in the images. Based on our expert radiologist’s 

evaluation of 3 test set images, we did not find any cases where any of these two scenarios occurred. 

However, we caution that larger scale evaluations in future studies are clearly warranted before a 

definitive conclusion can be made. 

One of the innovations of this work with regard to the network architecture is that we used 

convolutional U-Nets for the Encoder and Decoder. In other commonly used autoencoders, the 

code space is often of smaller dimension/size compared to the input. However, for our application, 

the code space is the motion-corrected image and needs to have exactly the same size as the input 
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images. Therefore, both the encoder and decoder parts of the autoencoder need to be networks that 

produce an output that is of the same size as the input. Convolutional U-Net has this desirable 

property. We note that there are many other potential network structures that also have this 

property (input size = output size), residual networks and dense networks being just two examples. 

However, several nice characteristics of U-Net made it a suitable choice: 1) It covers a large 

receptive field without increasing the depth of the network. 2) It is able to extract the features in 

multi-scale levels of the resolution. 3) The dense connections between the different levels of the 

U-Net make its training process very stable and effective. 

Several further enhancements of the network may help improve its performance. First, we did 

not exploit all available information in MR data. Exploiting the spatio-temporal correlations, 

multi-channel data as well as acquisition parameter details could increase the capability of the 

network to correct respiratory motion artifacts. Several conventional motion correction methods 

identify k-space data that are corrupted by motion, often by leveraging redundant k-space signal 

afforded by multiple receiver coils106,107. The proposed technique operates more in the image space. 

The input data are motion-corrupted images that have already been reconstructed from motion-

corrupted k-space. Therefore, our approach is fundamentally different from the aforementioned 

methods. As is with many other types of deep neural networks, our technique cannot be 

mathematically fully understood in analytical forms. We speculate that our network relies on 

learning and recognizing the underlying patterns of motion artifacts that are typically present in a 

free-breathing scan in order to improve the image quality and remove motion contamination. We 

expect our approach can be fine-tuned to be applied in tandem after conventional motion correction 

methods are finished to remove any residual motion artifacts. Second, we focused on correcting 

motion under normal free breathing condition. The performance of our technique in the presence 
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of deeper than normal breathing remains to be evaluated. Using prior information about the 

characteristics of the motion may constrain the degrees of motion and correct the motion more 

effectively. For example, incorporating the respiratory bellows signal could afford us extra 

information about the motion-corrupted k-space lines. This extra information could enable us to 

incorporate the explicit data consistency term in the network, which could further improve the 

performance of our technique. Third, our platform is a 2D network, which performs correction in-

plane. For through-plane motion, implementing a 3D adversarial autoencoder may be considered. 

Fourth, we did not take into account the differences in image FOV between the training data and 

the testing data when training the network. Therefore, motion correction capability of our network 

for arbitrary FOV should be investigated. Fifth, we did not compare our method with other free-

breathing imaging methods, such as self-gated and real-time imaging. Such a comparison is clearly 

warranted in future studies. 

Our study has limitations. It is possible that our technique might not entirely remove any 

motion-related artifacts in our image. Inspecting the supplementary videos S2-1 (available online 

as a supporting file of our published article9) showed that the endocardium in the end-systolic state 

is not as sharp as the breath-hold acquisition, indicating residual respiratory motion if the 

assumption of consistent cardiac motion between acquisitions held. However, these artifacts are 

minor, and motion artifacts are significantly reduced compared to the motion-corrupted images. 

Radiological assessments also aligned with this observation, where the respiratory-motion 

corrected images by our proposed method got a statistically non-significant lower score than the 

breath-hold cine images. A more extensive study with more clinical validation is needed to 

examine the proposed method on the patient cases' large cohort. For future work, two general 

directions may be considered. First, taking advantage of the redundant information in the channel 
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and temporal dimensions could further improve the current network’s performance. Second, 

focusing on data augmentation may be very beneficial if we could realistically simulate in vivo 

motion patterns and their associated MR signal, which is currently challenging. In the absence of 

this, an alternate approach is to use unpaired high-quality data to train an adversarial autoencoder 

network. 

   Conclusion 

In this study, we proposed an approach to reduce the respiratory motion artifact in cardiac 

imaging. Our approach enabled the free-breathing scan for cardiac cine imaging. We also showed 

that the quality of the images from the radiological point of view is acceptable for diagnosis 

purposes.    
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Chapter 5 Temporally Aware Volumetric GAN-based 

4DMR Image Reconstruction and Respiratory Motion 

Compensation 

This work aims to develop a 3D generative adversarial network to simultaneously compensate 

the respiratory motion and reconstruct the highly undersampled 3D dynamic cine images. In 

particular, our goal is to achieve high acceleration factors 10.7X-15.8X and maintaining robust 

and diagnostic image quality superior to state-of-the-art self-gating (SG) compressed sensing 

wavelet (CS-WV) reconstruction at lower acceleration factors 3.5X-7.9X. We trained a 3D GAN 

based on pixel-wise content losses, adversarial loss, and a novel data-driven temporal aware loss 

to preserve the anatomical accuracy and the temporal coherency. We proposed a novel training 

strategy that extends the progressive-growing training technique to make the training possible for 

our proposed GAN structure. We developed the proposed GAN and qualitatively and 

quantitatively evaluated its performance based on 3D cardiac cine data acquired from 42 patients 

with congenital heart disease. A version of this chapter has been published10 in the Magnetic 

Resonance in Medicine:  

1. Ghodrati V, Bydder M, Bedayat A, Prosper A, Yoshida T, Nguyen KL, Finn JP, Hu P. 

Temporally aware volumetric generative adversarial network-based MR image reconstruction 

with simultaneous respiratory motion compensation: Initial feasibility in 3D dynamic cine cardiac 

MRI. Magn Reson Med. 2021 Jul 13. doi: 10.1002/mrm.28912.  
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   Introduction 

Imaging acceleration and respiratory motion compensation remain two major challenges in 

MRI, particularly for cardiothoracic108, abdominal109 and pelvic MRI110 applications. For image 

acceleration, parallel imaging3,4,111 and compressed sensing (CS)5 have enabled routine clinical 

MRI scans112-115 from head to toe with robust acceleration rates of 4-6-fold (4X-6X). For 

respiratory motion compensation, numerous strategies have been extensively studied, including 

diaphragm navigators and various types of MR motion self-gating112,116-120 based on repetitively 

acquired k-space center. However, variations and irregularities in each patient’s breathing pattern 

121 could compromise the accuracy and performance of these motion compensation methods; it 

often remains elusive why the same type of navigator or MR self-gating works on some patients 

but not on some others. In the past few years, motion-regularized methods have been proposed to 

reconstruct images for multiple motion states in a single optimization process112,117,118,122,123. These 

approaches exploited CS to incorporate prior information about the inherently low dimensional 

nature of the moving images using appropriate sparsity regularization in a transform domain such 

as finite difference, and Wavelet (WV). Although these state-of-the-art methods could reconstruct 

motion resolved images from significantly undersampled k-space data, they are computationally 

intensive. Moreover, motion-regularized methods rely on sparsity assumptions, which may not be 

able to pick up dataset-specific inherent latent structures34,57.  

Deep neural networks, particularly convolutional neural networks (CNNs) and generative 

adversarial networks (GANs), have shown promises for MRI image reconstruction7,8,47-

49,51,57,58,60,124-142 and motion correction9,84,88,143,144. 3D CNNs or 2D convolutional recurrent neural 

networks (CRNNs) have been proposed to exploit the spatiotemporal information in 2D dynamic 

MRI49,126,134,136. Qin et al. proposed a novel 2D-CRNN framework to reconstruct high quality 2D 
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cardiac MR images from undersampled k-space data (6X-11X) by exploiting the temporal 

redundancy and unrolling the traditional optimization algorithms136. Hauptmann et al. used a 3D 

convolutional U-Net to suppress the spatiotemporal artifacts in radial 2D dynamic imaging from 

undersampled data (13X)134. These methods effectively address flickering artifacts between 

temporal frames in 2D time-series images and provide improved reconstruction quality over 

conventional CS-based approaches. However, these methods are mainly trained based on pixel-

wise objective functions, which is insensitive to the images' high-spatial-frequency texture 

details8,57,145. As the field moves toward high dimensional imaging, i.e. 4D (3D spatial + time) 

MRI acquisitions, the extension of these methods to 4D imaging is not straightforward146, as it 

require volumetric CRNN or 4D convolutional neural networks, which may present substantial 

challenges in network training strategy and convergence.  

GANs have been used to reconstruct images that provide similar or better visual image quality 

as standard reconstruction methods57,58. Mardani et al. showed impressive results of using 2D GAN 

in image reconstruction from under-sampled MRI datasets (5X-10X)57. In particular, they showed 

the 2D GAN-based reconstruction outperformed the CS-Wavelet (CS-WV) approach in their 

overall image quality evaluation of their volumetric abdominal images. However, 2D GAN cannot 

fully leverage the redundancy within volumetric images; hence, only limited acceleration factors 

can be achieved. Furthermore, 2D slice-by-slice approaches cannot preserve the through-slice 

coherence, such that flickering artifacts might be introduced to 3D images. Although the extension 

of 2D GAN to a 3D volumetric GAN can address the issue mentioned earlier, training a volumetric 

GAN represents a challenge and requires a sophisticated training process.    

We propose a 3D GAN-based deep neural network and apply it to 4D cardiac MR image 

reconstruction and motion compensation. Our goal was to enable a high acceleration factors 
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10.7X-15.8X while maintaining robust and highly diagnostic image quality that is superior to state-

of-the-art CS reconstructions at lower acceleration factors. Furthermore, respiratory motion 

compensation is achieved simultaneously in the image reconstruction pipeline, potentially 

enabling fully free-breathing 4D MR data acquisition and fast automated reconstruction of the data 

within minutes.  To achieve our goals, we incorporated a specialized data-driven objective function 

that we dubbed temporally aware (TA) loss to regularize the output of the generator network in 

the volumetric GAN and to maintain coherence in the temporal dimension. Our network training 

procedure was inspired by the progressive growing strategy proposed by Karras et al.96 to generate 

high-resolution images from noise vectors. We extended their strategy in a way that is applicable 

to the task of network-based image reconstruction from aliased, respiratory motion-corrupted 

images.  

   Theory 

Figure 5-1 shows the overall view of the proposed temporally aware volumetric GAN (TAV-

GAN). The TAV-GAN is a volumetric GAN trained based on the adversarial loss, pixel-wise 

content losses, and a novel TA loss.  The TA loss was obtained from a separately trained ancillary 

temporal GAN. To train the TAV-GAN, we used paired 3D image patches from 3D highly-aliased 

(10.7X-14.2X acceleration) and respiratory motion-corrupted input images and from high-quality 

self-gated CS-WV reference images (2.8X-4.7X acceleration).  
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As shown in Figure 5-1, both the volumetric and temporal GANs, which are two major 

components of the TAV-GAN, are both 3D networks. The difference between them is that the 

volumetric GAN was trained based on paired complex 3D image patches 𝒙̃𝒖
𝒊,𝒕

(input) and 𝒙𝒊,𝒕 (target) 

extracted from the input and reference 3D images, while the temporal GAN was trained using three 

sequential magnitude-based concatenated 3D image patches 𝒙̃𝒖
𝒊,𝒕−𝟏, 𝒙̃𝒖

𝒊,𝒕, 𝒙̃𝒖
𝒊,𝒕+𝟏

 as the input. 

Figure 5-1. Overview of the proposed temporally aware volumetric GAN (TAV-GAN). The main 

component is a volumetric GAN (top). An ancillary temporal GAN (bottom), which is pre-trained, provides 

the temporally aware (TA) loss for the volumetric GAN training. Three objective functions, including 

content losses (SSIM, and L1), adversarial loss, and TA loss, are used to train the volumetric GAN. The 

role of the content loss is to compel the volumetric generator to produce anatomically correct images, and 

the role of the TA loss is to compel the volumetric generator to produce temporally coherent image. The 

TA loss is calculated based on L2 distance between features in two intermediate layers (Block 1 Conv 1 

and Block 2 Conv 1) of the pre-trained temporal discriminator DT when the output of the volumetric 

generator Gv and the ground truth image volumes are separately input to DT. The temporal generator and 

discriminator take as input accelerated, aliased, and respiratory motion-corrupted magnitude 3D image 

patches from three consecutive temporal frames (t-1, t, and t+1), and produce an un-aliased, and respiratory 

motion-corrected 3D image patch for frame t. 
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Therefore, the temporal GAN is a 3D GAN-based network that exploits the spatiotemporal 

information in the dataset. 

5.2.1  Volumetric GAN 

A GAN is comprised of two neural networks, a generator network 𝐺, and a discriminator 

network 𝐷 that are trained jointly in an adversarial manner. In the context of image reconstruction, 

the generator 𝐺 attempts to generate images from a source data distribution and minimize the 

distance between the data distribution of the generated images and a reference data distribution. In 

contrast, the discriminator network 𝐷 aims to estimate as accurately as possible the probability 

that a sample came from the reference data distribution147.  

In our technique, the detailed network architecture for the volumetric generator 𝐺𝑣  and 

volumetric discriminator 𝐷𝑣 is shown in Figure 5-2. Suppose 𝑋̃𝑢  = {𝑥̃𝑢
𝑖,𝑡| 1 ≤ 𝑖 ≤ 𝑃, 1 ≤ 𝑡 ≤ 𝐶}  

is a set of highly-accelerated and respiratory motion-corrupted dynamic 3D image patches, and 

𝑋 = {𝑥𝑖,𝑡| 1 ≤ 𝑖 ≤ 𝑃, 1 ≤ 𝑡 ≤ 𝐶}   is a set of “clean” reference 3D image patches without 

respiratory motion artifacts or aliasing from k-space under-sampling, where 𝑃 and 𝐶 represent the 

number of patients and cardiac frames, respectively. We omitted the location index from the 3D 

image patches for clarity; for the rest of the manuscript, we consider 𝑥𝑖,𝑡 and 𝑥̃𝑢
𝑖,𝑡

 as the paired 3D 

image patches.  
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Figure 5-2.  Detailed network structure for the volumetric generator and discriminator used in TAV-

GAN. The generator is a 3D U-Net which consists of two paths: (I) the encoder path, which contains three 

downsampling blocks; (II) the decoder path, which includes three up-sampling blocks. Each block contains 

two convolutional layers, with each layer containing learnable convolution filters followed by Leaky ReLU 

(LReLU). Convolutional layers in the first block of the network contain 64 convolutional kernels, and the 

number of kernels doubles in each deeper block. Down-sampling and up-sampling blocks in the encoder 

and decoder paths are connected via average polling (strides = 2) and up-sampling (strides = 2). A skip 

connection is used to pass the data between each pair of same-sized up-sampling and down-sampling blocks. 

The discriminator is a binary classifier that contains three down-sampling operations followed by two 

convolutional layers in which each convolutional layer contains convolutional kernels followed by LReLU. 

The last two layers are the fully connected layer followed by dropout and LReLU, and a single decision 

fully connected layer with a sigmoid activation function. Discriminator takes the magnitude of the generated 

images to decide whether it is “generated” or “clean” images. The input and output of the generator for the 

Volumetric-GAN and temporally aware volumetric GAN (TAV-GAN) in the training phase are complexed-

valued 3D image patches with size N×N×N×2 (real and imaginary), and magnitude-valued 3D image 

patches with size N×N×N×1, respectively. The input and output of the generator for the Temporal-GAN in 

the training phase are magnitude-valued 3D image patches with size N×N×N×3 (three sequential cardiac 

phases) and a magnitude-valued 3D image patch with size N×N×N×1, respectively. Due to the limitation 

of the GPU memory, N=64 is used in this work. 
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𝐷𝑣  is trained to distinguish between samples from the clean reference data set 𝑋 and samples 

generated by 𝐺𝑣. The adversarial loss function for training 𝐷𝑣 can be expressed as a sigmoid cross-

entropy between an image 𝑥 drawn from the reference set 𝑋 and the generated image 𝐺𝑣(𝑥̃𝑢) 

where the image 𝑥̃𝑢 is drawn from set 𝑋̃𝑢 :  

 
𝑚𝑖𝑛
𝜃𝑑𝑣

 𝐿𝐷𝑣
𝑎 (𝐷𝑣(𝑥; 𝜃𝑑𝑣), 𝐺𝑣(𝑥̃𝑢; 𝜃𝑔𝑣)) =  𝑚𝑖𝑛

𝜃𝑑𝑣
 [− log 𝐷𝑣(𝑥; 𝜃𝑑𝑣)] +  [− log(1 −

𝐷𝑣 (𝐺𝑣(𝑥̃𝑢; 𝜃𝑔𝑣); 𝜃𝑑𝑣)  ]                                                                                                              (5-1)    

𝜃𝑑𝑣 , 𝜃𝑔𝑣 , and  𝐿𝐷𝑣
𝑎 (. ) indicate the trainable parameters of 𝐷𝑣 ,𝐺𝑣 , and adversarial loss for the 

discriminator, respectively. On the contrary, 𝐺𝑣 is trained to maximize the likelihood of the images 

generated by it being classified as a sample from the reference data set 𝑋. In theory, the negated 

discriminator loss −𝐿𝐷
𝑎  could be a proper loss function for training the generator 𝐺𝑣; however, 

from a practical standpoint, this approach suffers from a diminishing gradient issue. Hence, the 

adversarial loss for the generator network 𝐿𝐺𝑣
𝑎 (. ) is typically expressed as:  

𝑚𝑖𝑛
𝜃𝑔𝑣

 𝐿𝐺𝑣
𝑎 (𝐷𝑣(𝑥; 𝜃𝑑𝑣), 𝐺𝑣(𝑥̃𝑢; 𝜃𝑔𝑣)) =  𝑚𝑖𝑛

𝜃𝑔𝑣
 [− log(𝐷𝑣 (𝐺𝑣(𝑥̃𝑢; 𝜃𝑔𝑣); 𝜃𝑑𝑣)  ]                            (5-2)                                                                

Based on the loss functions described in Equations (5-1) and (5-2), training a GAN does not 

require paired data; the only requirement is the availability of two data sets: a reference data set 𝑋 

and an artifacted data set 𝑋̃𝑢  with large enough cardinality. Under a successful training process, 

the GAN would produce images with data distribution similar to the distribution of the reference 

image data set. However, there is no guarantee that the generated image 𝐺𝑣(𝑥̃𝑢
𝑖,𝑡) will be matched 

anatomically with its corresponding clean reference image from the same patient 𝑥𝑖,𝑡 131.  To 

constrain the generator output, we added extra pixel-wise content loss functions to the objective 

function of 𝐺𝑣 in addition to the adversarial loss specified in Equation (5-2). As shown in Equation 
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(5-3), the content loss is a linear combination of 3D structural similarity (SSIM) and normalized 

L1 norm in order to preserve local structural similarity and promote image spatial sparsity: 

𝑚𝑖𝑛
𝜃𝑔𝑣

 𝜆 [
1

𝑁
‖𝑥𝑖,𝑡 − 𝐺𝑣(𝑥̃𝑢

𝑖,𝑡; 𝜃𝑔𝑣)‖
1

] − 𝜁 [𝑆𝑆𝐼𝑀3𝐷 (𝑥𝑖,𝑡, 𝐺𝑣(𝑥̃𝑢
𝑖,𝑡; 𝜃𝑔𝑣))]                                        (5-3)                                                                                 

𝜆 and 𝜁 are the hyperparameters that control the amount of spatial sparsity and local patch wise 

similarity. 𝑁 is the normalization factor and is equal to the number of the voxels in 𝑥𝑖,𝑡. Detailed 

SSIM equation is provided in Appendix I. Even though the described objective functions in 

Equations (5-1), (5-2), and (5-3) can transform the under-sampled and respiratory motion-

corrupted volumetric image data to clean aliasing-free and respiratory motion-artifact-free images, 

it cannot preserve the coherence in the temporal dimension, which in our experience often resulted 

in flickering artifacts between cardiac frames. Therefore, we propose to add a novel temporally 

aware (TA) loss function to the generator 𝐺𝑣 to further improve performance.         

5.2.2  Temporal GAN and TA loss 

In TAV-GAN, an ancillary temporal GAN network is pre-trained such that its discriminator 

𝐷𝑇 can be used to achieve the TA loss for training the volumetric GAN. As shown in Figure 5-1, 

three sequential magnitude-only volumetric image patches 𝑥̃𝑢
𝑖,𝑡−1

, 𝑥̃𝑢
𝑖,𝑡

, and 𝑥̃𝑢
𝑖,𝑡+1

 are stacked and 

input to the temporal generator 𝐺𝑇 . Upon successful training, 𝐺𝑇  produces an image 

𝐺𝑇([𝑥̃𝑢
𝑖,𝑡−1, 𝑥̃𝑢

𝑖,𝑡, 𝑥̃𝑢
𝑖,𝑡+1]) that can be acceptable to the temporal discriminator 𝐷𝑇 as a clean alias-

free and respiratory motion-free image and has minimal pixel-wise content loss relative to its 

corresponding clean image 𝑥𝑖,𝑡. The detailed network architecture for the temporal generator and 

temporal discriminator is similar to the network architectures shown in Figure 5-2, except the 

temporal generator trained based on the three sequential aliased, respiratory motion-corrupted 3D 

image patches as the input and the corresponding paired un-aliased, respiratory motion-corrected 
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3D image patch for the middle frame as the target. Equations 5-4 and 5-5 summarize the total loss 

function for the temporal generator and discriminator, respectively.  

𝑚𝑖𝑛
𝜃

𝑔𝑇
 𝐿

𝐺𝑇
𝑇𝑜𝑡𝑎𝑙 (𝑥𝑖,𝑡,  𝐺𝑇([𝑥̃𝑢

𝑖,𝑡−1, 𝑥̃𝑢
𝑖,𝑡, 𝑥̃𝑢

𝑖,𝑡+1]; 𝜃𝑔𝑇)) =

 𝑚𝑖𝑛
𝜃

𝑔𝑇
𝛾 [ 𝐿

𝐺𝑇
𝑎 (𝐷𝑇(𝑥𝑖,𝑡; 𝜃𝑑𝑇 ),  𝐺𝑇([𝑥̃𝑢

𝑖,𝑡−1, 𝑥̃𝑢
𝑖,𝑡, 𝑥̃𝑢

𝑖,𝑡+1]; 𝜃𝑔𝑇))] +  𝜆 [
1

𝑁
‖𝑥𝑖,𝑡 −

𝐺𝑇([𝑥̃𝑢
𝑖,𝑡−1, 𝑥̃𝑢

𝑖,𝑡, 𝑥̃𝑢
𝑖,𝑡+1]; 𝜃𝑔𝑇)‖

1
] − 𝜁 [𝑆𝑆𝐼𝑀3𝐷 (𝑥𝑖,𝑡, 𝐺𝑇([𝑥̃𝑢

𝑖,𝑡−1, 𝑥̃𝑢
𝑖,𝑡, 𝑥̃𝑢

𝑖,𝑡+1]; 𝜃𝑔𝑇))]                 (5-4)                                                                                                                                                       

𝑚𝑖𝑛
𝜃

𝑑𝑇
 𝐿

𝐷𝑇
𝑇𝑜𝑡𝑎𝑙 (𝐷𝑇(𝑥; 𝜃𝑑𝑇),  𝐺𝑇([𝑥̃𝑢

𝑖,𝑡−1, 𝑥̃𝑢
𝑖,𝑡, 𝑥̃𝑢

𝑖,𝑡+1]; 𝜃𝑔𝑇)) =

 𝑚𝑖𝑛
𝜃

𝑑𝑇
𝛾 [  𝐿

𝐷𝑇
𝑎 (𝐷𝑇(𝑥; 𝜃𝑑𝑇),  𝐺𝑇([𝑥̃𝑢

𝑖,𝑡−1, 𝑥̃𝑢
𝑖,𝑡, 𝑥̃𝑢

𝑖,𝑡+1]; 𝜃𝑔𝑇))]                                                         (5-5)                                                 

𝛾,  𝜆 and 𝜁 are the weights of the adversarial loss, normalized L1 loss, and SSIM loss, respectively. 

Once the temporal GAN is trained, the temporal discriminator is detached and its intermediate 

feature space is used to calculate the TA loss for training the volumetric GAN as follows:  

𝐿𝐺𝑣
𝑇𝐴 (𝑥𝑖,𝑡,  𝐺𝑣(𝑥̃𝑢

𝑖,𝑡; 𝜃𝑔𝑣)) =
1

𝑁
[𝑓𝑏,𝑐 ‖𝐷𝑏,𝑐

𝑇 (𝑥𝑖,𝑡) − 𝐷𝑏,𝑐
𝑇 ( 𝐺𝑣(𝑥̃𝑢

𝑖,𝑡; 𝜃𝑔𝑣))‖
2

2

]                                    (5-6) 

where 𝐿𝐺
𝑇𝐴(. ) computes the normalized squared of the Euclidian distance in the feature space 

between its two given inputs. 𝐷𝑏,𝑐
𝑇 (𝑥𝑖,𝑡) denotes extracted features from the cth convolution layer 

in the bth block of the temporal discriminator 𝐷𝑇 . bth block includes all the layers in the 

discriminator after (b-1)th pooling operation and before bth pooling operation.  𝑓𝑏,𝑐 weighs the 

squared of the normalized L2 norm of the features extracted from block number b and convolution 

number c. 𝑁 is the normalization factor which is equal to the number of the voxels in the calculated 

volumetric features. Equations (5-7) and (5-8) summarize the total loss for the generator and the 

discriminator networks in the TAV-GAN.       
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𝑚𝑖𝑛
𝜃𝑔𝑣

 𝐿𝐺𝑣
𝑇𝑜𝑡𝑎𝑙 (𝑥𝑖,𝑡,  𝐺𝑣(𝑥̃𝑢

𝑖,𝑡; 𝜃𝑔𝑣)) =  𝑚𝑖𝑛
𝜃𝑔𝑣

 𝛾 [𝐿𝐺𝑣
𝑎 (𝐷𝑣(𝑥𝑖,𝑡; 𝜃𝑑𝑣),  𝐺𝑣(𝑥̃𝑢

𝑖,𝑡; 𝜃𝑔𝑣))] +

 𝜐 [𝐿𝐺𝑣
𝑇𝐴 (𝑥𝑖,𝑡,  𝐺𝑣(𝑥̃𝑢

𝑖,𝑡; 𝜃𝑔𝑣))]  +   𝜆 [
1

𝑁
‖𝑥𝑖,𝑡 − 𝐺𝑣(𝑥̃𝑢

𝑖,𝑡; 𝜃𝑔𝑣)‖
1

]  −

 𝜁 [𝑆𝑆𝐼𝑀3𝐷 (𝑥𝑖,𝑡, 𝐺𝑣(𝑥̃𝑢
𝑖,𝑡; 𝜃𝑔𝑣))]                                                                                                 (5-7)                                         

𝑚𝑖𝑛
𝜃𝑑𝑣

 𝐿𝐷𝑣
𝑇𝑜𝑡𝑎𝑙 (𝐷𝑣(𝑥𝑖,𝑡; 𝜃𝑑𝑣),  𝐺𝑣(𝑥̃𝑢

𝑖,𝑡; 𝜃𝑔𝑣)) = 𝑚𝑖𝑛
𝜃𝑑𝑣

𝛾 [𝐿𝐷𝑣
𝑎 (𝐷𝑣(𝑥𝑖,𝑡; 𝜃𝑑𝑣),  𝐺𝑣(𝑥̃𝑢

𝑖,𝑡; 𝜃𝑔𝑣))]           (5-8)                                                              

𝛾 , 𝜐  ,  𝜆 and 𝜁 are the weights of the adversarial loss, TA loss, normalized L1 loss, and SSIM loss, 

respectively. 

   Methods 

5.3.1  Progressive TAV-GAN Training Strategy  

Training GANs are inherently challenging in particular for high-dimensional images. In the 

absence of substantial overlap between the training data distribution (clean) and the generated data 

distribution (output of the generator), the gradients calculated in the back propagation process can 

point to more or less random directions, which may present substantial challenges in the training 

process95-97. A variety of strategies have been proposed to stabilize the training process of GANs 

for the image-to-image translation tasks, such as the Markovian-patch-based approach98, 

Wasserstein Generative Adversarial Networks (wGANs)148, and least-squares GANs (LS-

GANs)149. LS-GANs and wGANs are popular training approaches and are effective in training 

GANs based on medium sized 2D-images of 128×128 or 64×64. In practice, the extension of them 

to higher dimensions or larger image sizes is not straightforward and requires some ad-hoc 

methods such as initialization of the generator’s trainable weights before the training process. For 

instance, Mardani et al. stabilized the LS-GAN for MR image with size 320×256 by using pure L1 

norm at the beginning of the training and gradually switch to the adversarial loss57. A more recent 
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approach proposed by Karras et al. showed surprising results in generating the high-resolution 

image from noise vectors96. Their training methodology is based on starting the training with 

generating the low-resolution images and progressively increasing the resolutions by adding layers 

to the network. In this work, we adopted such a progressive training method when training the 

TAV-GAN.  

 

Figure 5-3. Progressive training strategy for the TAV-GAN. As training of GAN for low-resolution 

images is in general easier than high-resolution images, in our progressive training strategy, we initiate the 

training with the low-resolution layer of the generator and discriminator networks that handles 

N/8×N/8×N/8 image volume size, and gradually expand the network to reach the higher-resolution layers. 

For the sake of clarity, only the first three dimensions (spatial dimensions) of the features for the network 

layers are shown and skip connections in the generator network are not shown. The progressive training 

process consists of a chain of stable and transition phases. The first stable phase (Stable 1) is started by 

training the lowest-resolution layers, and in the transition phase, new layers are added and gradually mixed 

with old layers to reach the second stable phase where the resolution of the layers is doubled in each spatial 

dimension. This process is continued until the main resolution (N=64, 64×64×64) is reached. This training 

strategy enables us to have a stable GAN training process for high dimensional image reconstruction tasks.       
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Our proposed strategy for training the TAV-GAN is shown in Figure 5-3. The training process 

consisted of four stable phases and three transition phases that were interleaved. The training 

started with the first stable phase in which only layers with the lowest resolution level are built and 

trained for an epoch. Subsequently, in each of the transition phases, the new layers (with weight 

1-α) were added to the existing layers (with weight α) of the generator and discriminator. The 

parameter α was linearly decreased from 1 to 0 through the iterations of an epoch. For instance, 

from the beginning of the transition phase (α=1), the newly added layers had zero weight, and as 

α decreases, the new layers had more weight until the part of the existing layers were faded (α=0). 

Once α reached 0, the transition phase was finished, and the next stable phase was started. These 

stable and transition phases were alternated while more layers were added progressively until the 

stable phase 4 was finished, which concluded the training process. Figure 5-4 shows more details 

of the first stable and transition phases for the TAV-GAN. The number of required training epochs 

was decided based on the quality of the test outputs and equilibrium state of the adversarial loss 

for the generator and the discriminator. The training process for the TAV-GAN in the first three 

stable and transition phases used the loss functions in Equations (5-7) and (5-8) with parameters 

𝛾 = 1, 𝜐 = 0, 𝜆 = 0.5, 𝜁 = 0.3. It means in the first three stable and transition phases, TA loss was 

not considered in the training process. In the last stable phase, TA loss was turned on with 𝜐 = 0.5 

( 𝑓1,1 = 0.7, 𝑓2,1 = 0.3 ).   
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Figure 5-4. An example of the stable and transition phases of TAV-GAN training: In stable phase 1, 

the generator and the discriminator are built for the lowest resolution. The input for the network is down-

sampled three times to match the lower resolution, and subsequently, it is entered into a convolution layer 

to increase its features from 2 to 256. Those features are then entered into two sequential convolutional 

layers that are the main layers of the 3D U-Net for the lowest resolution. Afterwards, the output is entered 

into another convolution to combine the 512 features to 1 feature. The role of the first and the last 

convolutional layers is to create proper number of features. The Discriminator also has fewer layers, similar 

to the generator in the first stable phase. Low-resolution image volume is entered into a convolutional layer 

to increase the number of features to match the required input size for the fully connected layers. After an 

epoch of training the first stable phase, the network is grown gradually through a transition phase. As seen 

in the first transition phase, some convolutional layers with doubled-resolution are added to the generator 

from the left and right sides. Besides, some convolutional layers also added to the discriminator from its 

left side.  This addition is a pairwise gradual addition, which is controlled by parameter α, which linearly 

decreases from 1 to 0 through the total number of mini-batch iterations of an epoch. The first transition 

phase is started by α=1 (stable phase 1), and once α reached 0, the second stable phase is started. The growth 

process will continue until reaching the main resolution and building the main network structure shown in 

Figure 5-2. In our work  N=64 was used. 

5.3.2  Comparison Study 

The proposed TAV-GAN was compared with four other networks, including 2D GAN, 3D U-

Net, Volumetric-GAN only and Temporal-GAN only. For the 2D GAN, we used a 2D U-Net with 

four down-sampling and four up-sampling blocks for the 2D generator and a simple 2D binary 
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classifier with four down-sampling blocks as the discriminator. Appendix II includes further 

details of the network structure for the 2D GAN. The 3D U-Net approach is essentially the 

volumetric generator portion of the TAV-GAN shown in Figure 5-2, which has three down-

sampling and three up-sampling blocks. In addition, to demonstrate the benefits of the TAV-GAN, 

we also compared our TAV-GAN with the Volumetric-GAN alone (Fig. 5-1, top panel without 

TA loss) and the Temporal-GAN alone (Fig. 5-1, bottom panel). The aforementioned progressive 

training strategy for the TAV-GAN was applied to training the Temporal-GAN and the 

Volumetric-GAN as well. A similar training strategy was adjusted for the 2D GAN, detailed in 

Appendix II. 

For both the Volumetric-GAN and the Temporal-GAN approaches, we used a combination of 

two loss functions including the content loss 𝐿𝐺
𝑐  (𝜆 = 0.5, 𝜁 = 0.3), and adversarial loss 𝐿𝐺

𝑎  (𝛾 =

1). For the 3D U-Net, only content loss 𝐿𝐺
𝑐  (𝜆 = 1, 𝜁 = 0.1) was used. The loss function for the 

2D GAN is detailed in Appendix II. Weights of the loss functions were determined empirically 

with a limited number of searches. 

For the TAV-GAN, Temporal-GAN, and Volumetric-GAN, the Adam optimizer was used 

with the momentum parameter β =0.9, mini-batch size= 16, an initial learning rate 0.0001 for the 

generator, and an initial learning rate 0.00001 for the discriminator. For the 3D U-Net, the Adam 

optimizer was used with the momentum parameter β =0.9, mini-batch size= 16, an initial learning 

rate 0.0001. Weights for all networks were initiated with random normal distributions with a 

variance of σ = 0.01 and mean µ=0. Optimizer parameters for the 2D GAN is reported in Appendix 

II.  The training was performed with the Pytorch interface on a commercially available graphics 

processing unit (GPU) (NVIDIA Titan RTX, 24GB RAM). 
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Once the 3D networks were trained, they were tested based on the full-sized 3D image rather 

than 3D image patches. As the 3D U-Net and the generator part of the 3D GANs, including 

Temporal-GAN, Volumetric-GAN, and TAV-GAN, have 3 down-sampling stages, we padded the 

test input volume to the next size divisible by 8 before they were input to the network. For the 2D 

GAN, testing was performed based on the full-sized 2D image. As the generator part of the 2D 

GAN has 4 down-sampling stages, the size of the padded full-sized 2D image was divisible by 16 

before inputting to the network. The testing was performed based on a general-purpose desktop 

computer (Intel Core i7‐8700 CPU, 3.10 GHz). 

5.3.3  Datasets  

We used 3D cine cardiac MR data acquired previously for training, validating and testing the 

TAV-GAN technique, as well as for comparing with the other four networks. These data were 

acquired either as part of a separate research study or as part of the patient’s clinically indicated 

MRI. The data were acquired on a 3T scanner (Magnetom TIM Trio, Siemens Medical Solutions) 

on 42 separate patients (age range 2 days-60 years, 84% were pediatric congenital heart disease 

(CHD) patients) using a previously described ROCK-MUSIC technique116. The images were 

acquired during the steady state intravascular distribution of ferumoxytol, which is used clinically 

at our center as an off-label MRI contrast agent.  Except for two patients, all patients were scanned 

under general anesthesia according to our institutional clinical protocol. All raw imaging data were 

obtained under a research protocol approved by our institutional review board. The ROCK-MUSIC 

technique is a gradient-recalled-echo pulse sequence, which allows variable density data sampling 

and retrospective motion binning116. The ROCK-MUSIC data were acquired with the following 

sequence parameters: TE/TR = 1.2ms/2.9ms, matrix size ≈ 480×330×180, 0.8-1.1 mm3 isotropic 

resolution, total acquisition time = 4.35-9 min, FA=20o. Due to the fast nature of the patients' 
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hemodynamics in this study (heart rate ~ 120-180 beats/min), the acquired data were binned into 

9-12 cardiac phases for the end-expiration state of the respiratory cycle. By including under-

sampling from partial Fourier, the average net k-space under-sampling factor after cardiac phase 

binning and before end-expiration motion self-gating varied from 2.8X to 7.9X. 

NL dynamically acquired k-space lines were sorted retrospectively using self-gating signal 

into multiple cardiac phases for the breathing cycle's expiration state. Then the CS-WV with 

temporal total variation regularizer was used to reconstruct the reference 4D images (X). To 

reconstruct the highly-accelerated and respiratory motion-corrupted 4D images (X̃u), we first 

sorted the first acquired M=min(50000, NL/2)  k-space lines into only multiple cardiac phases, and 

then X̃u obtained by inverse Fourier zero-filled reconstruction.  Details for generating these data 

are provided in Appendix III. These patients are divided into three groups including one training 

dataset (A) and two testing datasets (B1 and B2) based on the quality of the reference data (X) and 

the total number of acquired k-space lines NL, i.e., acceleration factor before self-gating:   

Group A: Training Set. This dataset included 4D images from 12 patients. The total 

acquisition time for each of these data sets was 7.25-9 min (150000<NL<187000 lines). The data 

in Group A was chosen due to their high overall image quality with minimal temporal artifacts 

based on visual assessment.      

Group B1: Mild Test Set. This dataset included 4D images from 10 patients. The total 

acquisition time for each of these data sets was 5.8-7.25 min (120000 lines <NL <150000 lines). 

Images in Group B1 had slightly lower visual image quality and noisier than Group A.     
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Group B2: Severe Test Set. This dataset included 4D images from 20 patients.  The total 

acquisition time for each data was 4.35-5.8 min (90000 lines <NL <120000 lines). This Group had 

lower visual image quality and significant temporal artifacts compared with Group B1. 

Representative image examples for each Group are shown in Figure 5.5.  

 

Figure 5-5. Representative examples for the datasets: columns (a), (b), (c-e) represent qualitative 

examples of the images from the dataset A (training dataset), dataset B1 (mild testing dataset), and dataset 

B2 (severe testing dataset), respectively. The first row shows the magnitude of a slice from the volumetric 

images, and the second row shows the difference map between two sequential cardiac phases. As can be 

seen in (a), it has the lowest noise and flickering artifacts through the cardiac phases among the others. The 

image in the column (b) has relatively higher noise and flickering artifacts through the cardiac phases than 

the image in column (a). Based on the calculation of the noise inside a 15×15×15 cubic region from the 

background, images in the datasets B1 (mean of the standard deviation = 0.076) are 2 times noisier than the 

images in the datasets A (mean of the standard deviation = 0.038). Column (c) presents image that was 

profoundly affected by noise. Approximately, the noise level for noisy images in datasets B2 (mean of the 

standard deviation = 0.304) based on the calculation of the noise inside a 15×15×15 cubic region from the 

background is, on average, 8 times the images in datasets A. Column (d) shows an image from a CHD 

patient with breathing irregularities scanned under anesthesia. As shown in column (d), image quality is 

degraded due to the respiratory motion artifacts. The image in column (e) shows an image from a CHD 

patient scanned under free-breathing without anesthesia. As shown in column (e), the quality of the image 

is degraded substantially due to the respiratory artifact and breathing irregularities. 
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5.3.4  Evaluations  

To demonstrate the performance of the TAV-GAN, we performed the following evaluations: 

a) Qualitative and quantitative analysis. We trained five different networks, including 2D GAN, 

3D U-Net, Volumetric-GAN, Temporal-GAN, and TAV-GAN, using the data from Group A. 

After network training, we compared them qualitatively and quantitatively against SG CS-WV 

reconstructions using data in Groups B1 and B2, which were unseen by the networks. SSIM and 

normalized root mean squared error (nRMSE) were computed based on the cropped cardiac region 

of each cardiac phase, and the average of all phases was reported for each patient. To compare the 

sharpness of the results obtained by different networks, the normalized Tenengrad focus 

measure100,101 was reported. The sharpness analysis was detailed in Appendix IV. It is important 

to emphasize that all quantitative analysis was performed on the data from Group B1 only due to 

its higher reference image quality compared to Group B2.  

b) Subjective image quality assessments. Subjective image quality assessments were performed in 

two stages. In the first stage, movies of 4D images reconstructed with the five different networks 

based on the “highly-accelerated” test data from all cases in Group B2 and Group B1. The 

reference image reconstructed using CS-WV were also included, resulting six reconstructed 4D 

images per patient. The six 4D images were presented in random order to two experienced 

radiologists blinded to patient information or reconstruction technique, and each radiologist was 

asked to choose three top rated 4D images out of the six with regard to general image quality. The 

three top rated techniques were assigned a score of 1 and the remaining scored 0. Based on 

statistical paired comparisons on the mean scores among all test data sets, the top three techniques 

were selected for the second stage, where two radiologists performed more detailed and blinded 

evaluation of randomized 4D images from the three selected techniques with respect to overall 
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image quality and image artifacts, using a 1-5 grading system with 5= excellent quality, and 1= 

poor quality. Mean (±SD) of the general image quality and artifact scores were calculated for each 

technique. Besides, the radiologists evaluated the reconstructed images with regard to presence of 

any spurious feature that may be introduced to the images due to the generative nature and potential 

hallucination effects of the GAN-based networks. An image was labeled “spurious feature present” 

if either of the two radiologists identified any spurious feature in the image.  

c) Cardiac function analysis. We selected six cases from the Group B2 which had the highest 

overall image quality score (≥3.5) for the reference SG CS-WV technique to perform cardiac 

function analysis and comparison.  An expert evaluator in imaging CHD patients contoured the 

studies to determine left/right ventricular end-diastolic volume (EDV), end-systolic volume (ESV), 

stroke volume (SV), and ejection fraction (EF). The cardiac function analysis was performed for 

the best technique, which was determined based on the subjective image quality assessments, and 

were repeated for the reference CS-WV images acquired on the same six patients.  

Paired comparisons were performed using Tukey HSD150 to test for statistically significant 

differences between the two methods. A P-value of 0.05 was considered statistically significant. 

   Result 

Figure 5-6 shows representative image reconstruction and respiratory motion correction 

results using the 6 techniques compared in this study. This unseen mild test case data was from 

Group B1. The four 3D networks (TAV-GAN, Temporal-GAN, Volumetric-GAN, 3D U-Net) had 

better performance in removing aliasing and respiratory motion artifacts than the 2D GAN, which 

had significant residual artifacts. The GAN based networks (TAV-GAN, Temporal-GAN, 

Volumetric-GAN) produce sharper images than the 3D U-Net. The temporal difference map shows 

that the TAV-GAN, Temporal-GAN, and SG CS-WV had the lowest incoherence between the 
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cardiac phases, as evidenced by the smaller signal differences between two successive cardiac 

phases (Fig. 5.6, row d). Video S1(available online as a supporting file of our published article10) 

presents complete 4D images for an additional example from Group B1. 

 

 

Figure 5-6. Qualitative comparison between different image reconstruction methods for a male CHD 

patient from test dataset B1 (6 y.o. and 18 kg weight) who was scanned under anesthesia. Row (a) shows 

the reconstruction/respiratory motion correction results and rows (b) and (c) show the zoomed view of the 

cardiac and liver region. Row (d) shows the temporal difference between 5th and 6th cardiac phases. The 

2D GAN image has substantial residual artifacts. The 3D U-Net image is blurrier than the GAN based 

methods (TAV-GAN, Temporal-GAN, and Volumetric-GAN). As shown in (d), reconstruction results from 

TAV-GAN and Temporal-GAN have the lowest incoherency and flickering artifacts, which implies that 

the proposed TA loss can effectively decrease the temporal incoherency through the cardiac frames. The 

SG CS-WV was reconstructed based on 5.4X fold under-sampled data; the remaining methods shown were 

reconstructed based on 14.2X fold under-sampled data. 

Figure 5-7 shows representative example results for a patient in Group B2, whose data was 

heavily affected by noise. The 3D U-Net image was blurrier than the other methods. The 

Temporal-GAN image was relatively blurrier than TAV-GAN and Volumetric-GAN. Reference 

SG CS-WV suffered from the residual noise and achieved overall image quality score 3 and artifact 

score 3 which is inferior than the TAV-GAN (overall image quality score = 4.5, artifact score = 4) 
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and Temporal-GAN (overall image quality = 4, artifact score = 3.5). The TAV-GAN and the 

Temporal-GAN had the highest coherency between the cardiac frames, as shown in Figure 5-7(d).            

 

 

Figure 5-7. Qualitative comparison between different methods for a pediatric male patient from test 

dataset B2 (1 month old and 3.18 kg weight) who was scanned under anesthesia. Rows (a), (b), and (c) 

show the image reconstruction using 6 different methods and the zoomed view of the cardiac and liver 

regions. Row (d) shows the temporal difference between  2nd and 3rd cardiac phases. The 2D GAN image 

provides the most inferior image quality. The 3D U-Net image was blurrier than the GAN based methods 

(TAV-GAN, Temporal-GAN, and Volumetric-GAN). The Temporal-GAN image is slightly blurrier than 

the TAV-GAN and Volumetric-GAN. The reference SG CS-WV image suffers from the residual noise and 

its quality is inferior to the TAV-GAN and the Temporal-GAN. The SG CS-WV was reconstructed based 

on 5.7X fold under-sampled data; the remaining methods shown were reconstructed based on 11.4X fold 

under-sampled data. 

Table 5.1 reports the SSIM and nRMSE for the reconstructed results of the different methods 

tested based on the Group B1. SSIM, and nRMSE were reported based on the Group B1 only 

because this patient group had high quality reference images. Although TAV-GAN achieved 

higher SSIM and the lower nRMSE than the other methods, it was only statistically significantly 

better than the zero-filled reconstruction and the 2D GAN approach. Based on the multiple pair 

comparison tests, it can be concluded that 3D based approaches are significantly better in terms of 

quantitative scores, nRMSE and SSIM, than 2D GAN approach. 
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Table 5.1. Quantitative evaluation: SSIM3D and nRMSE are calculated on reconstructed results from 

all patients (N=10) in test dataset B1 and mean and standard deviation (Std. Deviation) of them over the 

patients are reported for different methods. Based on the multiple pair comparisons, there is a statistically 

significant difference (P<0.05) between the SSIM and nRMSE metrics of the 2D-GAN reconstruction 

images and other methods. The proposed method (TAV-GAN) achieved the highest SSIM and the lowest 

nRMSE among the other methods.    

 

 

 

 

 

 

 

 

 

* There was a statistically significant difference (P<0.05) between the ZF method and other methods with 

respect to the quantitative metrics SSIM and nRMSE.  

** There was a statistically significant difference (P<0.05) between the 2D-GAN method and other methods 

with respect to the quantitative metrics SSIM and nRMSE.   

The mean of the normalized Tenengrad focus measure (±SD) was 0.822±0.1015, 

0.828±0.1390, 0.702±0.1408, and 0.286±0.0377, for the reconstructed, respiratory motion-

corrected results obtained by TAV-GAN, Volumetric-GAN, Temporal-GAN, and 3D U-Net, 

respectively. Multiple pair comparison tests shows that the 3D GAN based approaches including 

TAV-GAN, Volumetric-GAN, and Temporal-GAN produced significantly sharper images than 

Methods 

SSIM nRMSE 

Mean Std. Deviation Mean Std. Deviation 

ZF 0.376S1 0.0446 0.094* 0.0194 

2D-GAN 0.481S2 0.0594 0.072** 0.0138 

3D U-Net 0.732 0.0483 0.040 0.0085 

Volumetric-

GAN 

0.752 0.0479 0.038 0.0090 

Temporal-

GAN 

0.746 0.0495 0.036 0.0072 

TAV-GAN 0.785 0.0389 0.030 0.0058 
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the 3D U-Net. In this analysis, 2D GAN is excluded mainly because of the sensitivity of the 

Tenengrad focus measure to the residual artifacts.  

Using a general-purpose desktop computer (Intel Core i7-8700 CPU, 3.10 GHz), the 

reconstruction time was approximately 6 sec/cardiac phase for the TAV-GAN, and 312 sec/cardiac 

phase for SG CS-WV.   

Figure 5-8 shows representative reconstruction example for a patient in Group B2, who had 

irregular breathing and low baseline image quality. The reconstructed image from a 6.5X 

undersampled data (NL=110000) by SG CS-WV had lower image quality than the reconstructed 

image by TAV-GAN from a 14.2X undersampled data. The small branch of the vessels in the liver 

(purple arrow, row d), soft tissue (blue arrow, row c), and the myocardium border (red-arrow, row 

b) were depicted well using TAV-GAN in comparison to the other methods. Subjective image 

quality scores for this case show that the TAV-GAN method with overall image quality score 4.5 

and artifact score 4 has superior image quality than the Temporal-GAN (overall image quality = 

3.5, artifact score = 3.5) and SG CS-WV (overall image quality = 2.5, artifact score = 3). Complete 

4D images for Figure 5-8 is provided in Video S2 (available online as a supporting file of our 

published article10). 
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Figure 5-8. Qualitative comparison between different methods for a male CHD patient from test 

dataset B2 (21 y.o. and 77.4 kg weight). Although the CMR scan was performed under anesthesia, there 

was breathing irregularity during scanning. Row (a) shows the reconstructed image for a single slice, and 

rows (b-d) show the zoomed regions. The 2D GAN image not only suffers from residual artifacts but also 

shows the apparent anatomical change in particular in the liver. The TAV-GAN image appears sharper than 

the Temporal-GAN and the 3D U-Net. The myocardium border (row b, red arrow), soft tissue (row c, blue 

arrow), and the blood vessels in the liver region (row d, purple arrow) are all recovered better by TAV-

GAN compared to other methods. The SG CS-WV was reconstructed based on 6.5X fold under-sampled 

data; the remaining methods shown were reconstructed based on 14.2X fold under-sampled data. 

The reconstructed image from a 6.5X undersampled data (NL=110000) by SG CS-WV had 

lower image quality than the reconstructed image by TAV-GAN from a 14.2X undersampled data. 

The small branch of the vessels in the liver (purple arrow, row d), soft tissue (blue arrow, row c), 

and the myocardium border (red-arrow, row b) were depicted well using TAV-GAN in comparison 

to the other methods. Subjective image quality scores for this case show that the TAV-GAN 

method with overall image quality score 4.5 and artifact score 4 has superior image quality than 
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the Temporal-GAN (overall image quality = 3.5, artifact score = 3.5) and SG CS-WV (overall 

image quality = 2.5, artifact score = 3). Complete 4D images for Figure 5-8 is provided in Video 

S2 (available online as a supporting file of our published article10). 

Figure 5-9 shows representative reconstructions and respiratory motion correction results 

based on unseen data selected from the Group B2 with irregular breathing patterns acquired during 

spontaneous breathing without anesthesia. In this case, the TAV-GAN image quality was 

substantially better than the standard SG CS-WV (see arrowheads), despite the fact that the TAV-

GAN reconstruction was based on 14.2X under-sampled data while the SG CS-WV was based on 

6X (NL=118000)  under-sampled data. Compared with the TAV-GAN reconstruction, Temporal-

GAN, Volumetric-GAN, 3D U-Net, and 2D GAN all suffered from artifacts ranging from 

additional blurring and additional aliasing artifacts. The 2D GAN reconstruction was essentially 

non-diagnostic. TAV-GAN method achieved 4 as the overall image quality score and 4 as the 

artifact score for this case which is superior to the SG CS-WV (overall image quality score = 2.5, 

artifact score = 2.5) and the Temporal-GAN (overall image quality = 3.5, artifact score = 3).  

Complete 4D images for Figure 5-9 is provided in Video S3 (available online as a supporting file 

of our published article10). 

In stage 1 subjective image quality assessments, we identified that the TAV-GAN and the 

Temporal-GAN were better than the other network-based approaches. The multiple paired 

comparison results for stage 1 evaluation are reported in Table 5-2.  
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Figure 5-9. Qualitative result for a male patient from test dataset B2 (55 y.o. and 77kg weight), who 

underwent MRI during free-breathing without any anesthesia. The three rows (a-c) show some 

representative slices and cardiac phases that were reconstructed by using different methods. The TAV-GAN 

produced better delineation of various structures (red arrows) compared to all the other 5 methods. 

Compared to TAV-GAN, the 3D U-Net and Temporal-GAN images are blurrier, the Volumetric-GAN and 

SG CS-WV images have substantial artifacts, the 2D GAN image is of inferior quality. The SG CS-WV 

was reconstructed based on 6X fold under-sampled data; the remaining methods shown were reconstructed 

based on 14.2X fold under-sampled data. 

Table 5.2. Multiple comparisons of subjective image quality rank comparisons were performed in 

Stage 1 subjective image quality evaluation. Among the 6 techniques ranked, only four techniques 

(Volumetric-GAN, Temporal-GAN, 3D U-Net, and self-gated CS-WV) are shown. We excluded TAV-

GAN from this analysis because of its outstanding scores in the rank comparison, and it was consistently 

ranked highest among the 6 techniques. We also excluded the 2D GAN in this analysis because it was 

ranked consistently the worst among the 6 techniques. We excluded 2D GAN to ensure that the assumption 

of the variance's homogeneity is valid for the Tukey HSD test. At the α=0.05 level of significance, images 
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reconstructed by 3D U-Net had lower scores in comparison to the Temporal-GAN. Mean difference values 

indicated that the Temporal-GAN has a higher rank score than other methods, including Volumetric-GAN, 

SG CS-WV, and 3D U-Net, although the difference was not significant. 

Comparison 

Method 

(I) Method (J) Method 

Mean 

Difference 

(I-J) Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Tukey HSD Temporal-GAN Volumetric-GAN 0.250 0.155 -0.06 0.56 

SG CS-WV 0.233 0.204 -0.07 0.54 

3D U-Net 0.417* 0.003 0.11 0.72 

Volumetric-

GAN 

Temporal-GAN -0.250 0.155 -0.56 0.06 

SG CS-WV -0.017 0.999 -0.32 0.29 

3D U-Net 0.167 0.496 -0.14 0.47 

SG CS-WV Temporal-GAN -0.233 0.204 -0.54 0.07 

Volumetric-GAN 0.167 0.999 -0.29 0.32 

3D U-Net 0.183 0.411 -0.12 0.49 

3D U-Net Temporal-GAN -0.417* 0.003 -0.72 -0.11 

Volumetric-GAN -0.167 0.496 -0.47 0.14 

SG CS-WV -0.183 0.411 -0.49 0.12 

*. The mean difference is significant at the 0.05 level. Tukey HSD = Tukey honestly significant difference 

Therefore, in stage 2 assessment, we included TAV-GAN and Temporal-GAN, as well the 

SG CS-WV. In stage 2 subjective evaluations, TAV-GAN, Temporal-GAN, and SG CS-WV 

achieved mean image quality (±SD) 4.53±0.540, 3.82±0.464, and 3.13±0.681, respectively.  In 

terms of image artifact, TAV-GAN achieved a mean score (±SD) of 4.12±0.429, whereas 

Temporal-GAN and SG CS-WV received mean scores 3.47±0.370 and 2.97±0.434, respectively. 

Based on the multiple pair comparison tests, which are reported in Table 5-3, it can be concluded 
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that the images reconstructed by TAV-GAN had statistically significantly higher quality and lower 

artifact levels than the Temporal-GAN and SG CS-WV methods (P<0.05 for both comparisons). 

 

Figure 5-10. Functional analysis: Left and right ventricular endocardial borders were segmented by an 

experienced expert to compute stroke volume (SV), end-systolic volume (ESV), end-diastolic volume 

(EDV), and ejection fraction (EF) for 6 test cases. Bland-Altman plots confirm that there is agreement with 

95% confidential level between functional metrics measured from the reconstructed images by self-gating 

CS-WV images and respiratory motion-corrected and reconstructed images by TAV-GAN. 

 

 

Table 5-3.  Multiple comparisons between the overall image quality score and the artifact score of the 

images which were reconstructed by temporally aware volumetric GAN (TAV-GAN), Temporal-GAN, and 

self-gated CS-WV (SG CS-WV). At the α=0.05 level of significance, the overall image quality and artifact 

score of the images were reconstructed by the TAV-GAN is higher than the images reconstructed by 
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Temporal-GAN or SG CS-WV. Besides, Temporal-GAN reconstructs the images with a statistically 

significant higher image quality and lower artifact than the conventional SG CS-WV.  

Overall Image Quality Score 

Mean Difference (I-J) Sig. 
95% Confidence Interval 

(I) Group1 (J) Group1 Lower Bound Upper Bound 

TAV-GAN Temporal-GAN 0.717* 0.000 0.37 1.07 

SG CS-WV 1.400* 0.000 1.05 1.75 

Temporal-GAN TAV-GAN -0.717* 0.000 -1.07 -0.37 

SG CS-WV 0.683* 0.000 0.33 1.03 

SG CS-WV TAV-GAN -1.400* 0.000 -1.75 -1.05 

Temporal-GAN -0.683* 0.000 -1.03 -0.33 

Image Artifact Score 

Mean Difference (I-J) Sig. 
95% Confidence Interval 

(I) Group1 (J) Group1 Lower Bound Upper Bound 

TAV-GAN Temporal-GAN 0.650* 0.000 0.40 0.90 

SG CS-WV 1.150* 0.000 0.90 1.40 

Temporal-GAN TAV-GAN -0.650* 0.000 -0.90 -0.40 

SG CS-WV 0.500* 0.000 0.25 0.75 

SG CS-WV TAV-GAN -1.150* 0.000 -1.40 -0.90 

Temporal-GAN -0.500* 0.000 -0.75 -0.25 

 *. The mean difference is significant at the 0.05 level. Tukey HSD = Tukey honestly significant difference 
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Figure 5-10 shows Bland-Altman plots of the left/right ventricular SV, ESV, EDV, and EF 

for the cardiac functional analysis. Bland–Altman analysis demonstrates that the cardiac function 

parameters calculated based on reconstructed images by TAV-GAN were in good agreement with 

SG CS-WV images by considering both upper and lower 95% agreement limits.  

  Discussion 

We demonstrated TAV-GAN as a promising technique for reconstructing highly under-

sampled and respiratory motion-corrupted 4D data sets. Several previous deep learning-based 

image reconstruction techniques, in particular, GAN based approach, are focused on under-

sampled data recovery57,58,142,151, or motion compensation9,84,88,90,143,144. To our knowledge, this is 

the first 3D GAN network for simultaneous under-sampled k-space data recovery and respiratory 

motion compensation. Our work includes several innovations with regard to the loss function and 

the training process. In particular, our TAV-GAN technique incorporates a temporally aware 

objective function as an extra regularizer in addition to adversarial loss, L1 and SSIM loss 

functions to reduce flickering artifacts through the cardiac phases with no explicit need to use the 

multiple cardiac phases as the inputs for the network. Besides, we addressed the well-known 

challenges associated with training GANs for high-dimensional images by adopting an effective 

progressive training strategy based on starting the training from the low-resolution volumetric 

images and gradually increasing the resolution to reach to the original volumetric image size. 

Based on the convergence of the adversarial loss components of the generator and the discriminator 
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and qualitative validation results through the epochs (Fig. 5.11), it can be concluded that the 

proposed training strategy was effective and successful.    

Figure 5-11. Training convergence: first row plots the loss components versus the iterations for the 

generator and the discriminator of the temporally aware volumetric GAN (TAV-GAN). Only adversarial 

loss is plotted for the generator, and it means how well the generator can fool the discriminator. The 

discriminator contains two components associated with classification performance for both real and fake 

images. As seen in the first row, all three components converge to an equilibrium state (0.7). Besides, this 

convergence is happening very fast because of the practical training strategy introduced in this work. The 

second row shows the qualitative validation results through the epochs. It seems that after epoch 60 (15000 

iterations), image quality is improved sufficiently.   
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Our data show that 3D networks outperformed 2D networks for all of our test data sets. In our 

test datasets of 30 patients, we found that the TAV-GAN network outperformed all of the other 5 

techniques compared. Interestingly, our 10.7X-15.8X accelerated TAV-GAN images 

outperformed the 3.5X-7.9X accelerated SG CS-WV images. This was because we intentionally 

chose to include images with higher visual image quality in the training dataset. This compelled 

the network to learn the underlying data distribution of a high-quality dataset and enabled it to 

reconstruct higher quality images than SG CS-WV for data with noisier and undesirable residual 

motion as shown in Figures 5-8 and 5-9. Such outperformance of the TAV-GAN over the SG CS-

WV could break if sufficient data lines were acquired for SG CS-WV under the regular and high 

gating-efficiency, which is not guaranteed to exist or if it exists, it can further elongate the scan 

time. For example, Video S1 (available online as a supporting file of our published article10) shows 

a patient case for which the SG CS-WV with overall image quality 5 outperformed the TAV-GAN 

with an overall image quality of 4.5. In this case, respiratory motion was low and periodic, and 

scan time for SG CS-WV (7.2 min, NL≈ 148000 lines) was almost three times the required scan 

time for TAV-GAN (2.4min, 50000 lines).  

The Temporal-GAN has a better performance than the Volumetric-GAN. It was expected 

because the Temporal-GAN uses the spatiotemporal redundant information to reconstruct the 

image from the respiratory motion-corrupted and undersampled zero-filled images. However, the 

mean of the sharpness score (normalized Tenengrad focus measure) was decreased 15% from the 

Volumetric-GAN (0.828) to the Temporal-GAN (0.702). Although not statistically significant, it 

is still visually evident in the qualitative results presented in Figures 5-7, 5-8, and 5-9. It seems 

that the adjacent cardiac frames in the Temporal-GAN contribute to the blurriness of the results. 

The mean sharpness of the results obtained by TAV-GAN (0.822) trended marginally lower than 
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the Volumetric-GAN (0.828), although the comparison was not statistically significant. Since the 

technical difference between the TAV-GAN and the Volumetric-GAN is the TA loss, it may be 

concluded that including the TA loss as an additional constraint on the Volumetric-GAN may 

decrease the residual artifacts and increase the quality of the results as well as preserving the 

sharpness of the results. For instance, as shown in Figure 5-8, it appears the TAV-GAN image is 

as sharp as the Volumetric-GAN image, but with reduced residual artifacts. 

We note that the Temporal-GAN network is a 3.5D spatiotemporal network. It uses the 

redundant information in the three sequential aliased and respiratory motion-corrupted 3D cardiac 

frames t-1, t, and t+1 to reconstruct the cardiac frame t. A 3D spatiotemporal GAN, which can be 

applied to the ROCK MUSIC data after a Fourier Transform in the readout direction, could also 

be considered the potential approach for removing the artifacts from the aliased and respiratory 

motion artifact corrupted images. Based on the results of the comparison study detailed in 

Appendix V, it can be concluded that the performance of the Temporal- GAN is superior to the 

3D spatiotemporal GAN in removing the aliasing and respiratory artifacts from the image. Such 

superior qualitative performance might be explained by considering that the Temporal-GAN 

exploits 3D spatial information while the 3D spatiotemporal GAN is only using 2D spatial 

information. 

The TA loss introduced in this work is a data-driven-based loss that requires a pretrained 

discriminator. It is analogous to the perceptual loss89, in which the well-known pretrained classifier 

VGG-16 network is used to compute the perceptual loss for 2D image space. We used the 

discriminator part of the pretrained Temporal-GAN to compute the TA loss for the 3D images in 

our work. Indeed, the temporal discriminator can be seen as a 3D classifier trained in an adversarial 

setting. Based on the empirical results that were shown in Figures 5-6, 5-7, 5-8, and 5-9, the TA 
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loss had two main advantages. 1) It decreases the flickering artifacts through the cardiac frames 

without explicitly using the cardiac frames as the input. 2) It acts as an extra constraint on the 

generator, which results in improved quality of the generated images. Since the TA loss is a 

squared L2 norm of the two 3D images in the feature space, in which the features were calculated 

based on the output of the convolutional layers of a pretrained temporal discriminator, it can be 

used as an extra loss function to regularize other non-adversarial based 3D networks as well. The 

TA loss's effectiveness could be further increased by considering the joint training scheme for the 

Volumetric-GAN and the Temporal-GAN.  

All data in this study were acquired using the 3D spoiled gradient-echo sequence, i.e., ROCK-

MUSIC technique in the steady-state distribution of the ferumoxytol contrast agent.  In 

Ferumoxytol enhanced acquisitions, the images would be very sparse even in the image domain 

with no transformation, such as wavelet transformation or total variation. Since the proposed 

method structurally includes several compression stages, i.e., downsampling stages, it achieved 

relatively high acceleration factors for the Ferumoxytol enhanced datasets which are inherently 

more compressible than the data acquired without a contrast agent. Therefore, we speculate that 

the proposed method would achieve the lower acceleration factors in images acquired with no 

contrast agent. To generalize our technique to data acquired without ferumoxytol, domain 

adaptation and transfer learning-based technique could enable us to adjust the network to non-

contrast-enhanced 4D CMR images. Evaluation of the network performance on non-contrast-

based 4D CMR images is warranted in future studies.   

We used only cardiac gated zero-filled reconstructed images as the input for training the 

network. An alternative strategy is to train the network based on cardiorespiratory-gated zero-filled 

reconstructed images as the input, in which case the network would only need to learn how to 
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remove under-sampling aliasing artifacts, a task that could be easier than learning to remove both 

respiratory motion artifacts and under-sampling aliasing artifacts simultaneously. Based on the 

supplemental study reported in the Appendix VI, TAV-GAN trained using cardiac-gated zero-

filled images as the input demonstrated better robustness in the testing stage on the data with 

irregular breathing than the TAV-GAN based on cardiorespiratory-gated zero-filled images as the 

input. This is indeed rational because the self-gating signal could not represent the respiratory 

motion well in the presence of irregular breathing, and residual respiratory motion artifact might 

have remained in the input data after respiratory self-gating, which presents a challenge to the 

TAV-GAN that only learned to remove the under-sampling aliasing artifacts.  

 Respiratory motion is still a major bottleneck in cardiothoracic and abdominal imaging. The 

entire breathing cycle is highly non-linear with non-rigid and often somewhat non-periodic 

breathing patterns. In image reconstruction, it is common to model the forward operation of motion 

in the MRI signal or incorporate these forward motion models in neural networks. As the 

respiratory motion has a non-rigid nature and no well-defined relationship between non-rigid 

respiratory motion and k-space, the inverse problems' forward operation is often not fully 

understood mathematically and represents challenges for incorporation into neural networks. In 

our TAV-GAN, the network learns the underlying data distribution for a sharp, respiratory motion-

compensated image by starting from the initially zero-filled and respiratory motion-corrupted 

reconstruction.  Deep neural networks' ability to learn the non-linear motion during MRI signal 

encoding holds great promise for addressing the current challenges in cardiothoracic and 

abdominal imaging. 

Two significant concerns exist in the use of the GANs in image reconstruction and respiratory 

motion compensation tasks in medical imaging. First, can these networks preserve the individual 
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patient’s anatomy and pathology in reconstructing the highly aliased, respiratory motion-corrupted 

images. Second, can these networks introduce new spurious anatomical features in the images. To 

address the first concern, we included content loss and TA loss to constraint the generator’s output 

in TAV-GAN and imposed the consistency in the image domain.  Indeed the data consistency term 

which is usually imposed on the raw k-space data was not employed in this work mainly because 

of the unknown nature of the forward operation for the respiratory corrupted measurements.  To 

address the second concern, we trained the network based on the images with minimal noise by 

carefully curating the training data. As shown in Figure 5-12, by training the network based on the 

images with higher noise, e.g., Group B1, new spurious features were introduced to the 

reconstructed images. In fact, this is expected mainly because of the generative nature of the GANs 

that can enable them to learn how to turn the noise from the input data into spurious features, which 

could potentially lead to misdiagnosis. Our subjective image quality evaluation confirms that there 

were no new generated spurious features in our TAV-GAN images.  
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Figure 5-12. Hallucination effect: by training the generative adversarial networks on the datasets with 

noisy ground truth, some characteristic artifacts were introduced to the image. As pointed with the red 

arrow, such a network generated spurious artifact has appeared in the left myocardium and liver region. For 

this case, we trained the network on dataset B1 and tested it on dataset A. We note that on average, the 

dataset B1 was two times noisier than the dataset A. This result reveals the importance of curating the data 

and using less noisy target reference images for training GANs. Otherwise, spurious features might be 

introduced to the reconstructed images. 

   Conclusion 

This study implemented a novel 3D generative adversarial network (GAN)-based technique 

for simultaneous image reconstruction and respiratory motion compensation. We showed that the 

proposed platform could achieve high acceleration factors while maintaining robust and diagnostic 

image quality superior to state-of-the-art self-gating (SG) compressed sensing wavelet (CS-WV) 

reconstruction at lower acceleration factors 3.5X-7.9X. 
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Chapter 6 Fast and Accurate Calculation of Myocardial T1 

and T2 Values Using Deep Learning Bloch Equation 

Simulations (DeepBLESS)  

This work aims to develop a convolutional neural network for fast and accurate estimation of 

myocardium T1 and T2 relaxation values based on a previously proposed Bloch equation 

simulation with slice profile correction (BLESSPC) method. We proposed the deep learning Bloch 

equations simulations (DeepBLESS) models to calculate the T1 values of the MOLLI T1 mapping 

sequence with bSSFP readouts and T1/T2 values of the radial simultaneous T1 and T2 mapping 

sequence. We evaluated the accuracy of DeepBLESS T1/T2 estimation on the simulated data with 

different noise levels. We also compared the performance of the DeepBLESS models against 

BLESSPC in simulation, phantom, and in vivo studies for the MOLLI sequence at 1.5T and radial 

T1-T2 sequence at 3.0T. The phantom and in vivo studies showed that the trained DeepBLESS 

model and conventional BLESSPC method achieved statistically similar accuracy and precision 

in T1/T2 estimations for both MOLLI and radial T1/T2. A version of this chapter has been 

published11 in the Magnetic Resonance in Medicine:  

1. Shao, J, Ghodrati, V, Nguyen, K-L, Hu, P. Fast and accurate calculation of myocardial T1 and 

T2 values using deep learning Bloch equation simulations (DeepBLESS). Magn Reson 

Med. 2020; 84: 2831– 2845. https://doi.org/10.1002/mrm.28321  

 

https://doi.org/10.1002/mrm.28321
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   Introduction 

Quantitative myocardial tissue relaxometry techniques, e.g. T1 and T2 mapping, are emerging 

and rapidly evolving cardiovascular magnetic resonance techniques for non-invasive, quantitative 

characterization of cardiac tissue152-160. To generate a T1 or T2 map, multiple images with different 

T1 or T2 weighting are acquired, and the tissue T1/T2 parameters are estimated pixel by pixel by 

fitting the acquired signal to a model-predicted signal. A commonly used model for T1 or T2 

calculation is exponential curve fitting155,156,160. The exponential curve fitting model is accurate 

under certain conditions and is computationally efficient. However, this basic model cannot model 

the signal evaluation accurately for some cardiac MRI sequences, such as the widely used the 

Modified Look-Locker inversion recovery (MOLLI) pulse sequence155, resulting in inaccurate 

parameter estimation32. To address the issue, Bloch-equation simulation-based algorithms have 

been proposed to model the signal evolution of a sequence to ensure accurate parameters 

estimation, such as the Bloch equation simulation with slice profile correction (BLESSPC) 

algorithm for the MOLLI32 and simultaneous radial T1-T2 mapping162 sequences and the 

SQAUREMR algorithm for MOLLI163. Bloch equation simulation is also the key for accurate T1 

and T2 map calculation in the cardiac MR fingerprinting (MRF) technique164-166. 

However, Bloch-equation-simulation-based approaches are usually time consuming, 

especially for more comprehensive simulations32,163,165. The computation time of the Bloch 

equation simulation is important to consider in cardiac application because the simulation needs 

to incorporate the scan-specific heart rate variations after each scan. This is different from the 

application that use fixed sequence timing, such as brain MRF167, where the time-consuming 

computations can be performed in advance to create the dictionary and then be used for subsequent 

scans165. Recently, machine learning has been applied in MRF to accelerate Bloch equation-
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simulation-based parameter estimation168,169, including the deep reconstruction network 

(DRONE)168. DRONE uses a 4-layer neural network containing two 300 x 300 hidden layers. The 

network was trained with a dictionary generated using Bloch equation simulations, using the 

simulated signal as input and T1/T2 values as output168. As the timing of the MRF sequence is 

fixed, the DRONE approach does not use the information of signal acquisition time and therefore 

cannot be directly be used for cardiac parameter mapping without being adapted to scan-specific 

heart rate variations. To solve this issue, Hamilton et al.170 demonstrated that deep learning can be 

used to accelerate dictionary generation for cardiac MRF, followed by gridding and pattern 

matching to calculate T1 and T2 values. However, in this work, the effect of B1+ variations was 

not considered and gridding and matching were still needed for T1/T2 calculation, which could 

potentially reduce the T1/T2 estimation accuracy. 

While the cardiac MRF T1/T2 estimation approach is mainly optimized and validated for the 

cardiac MRF sequence164-166, the BLESSPC approach has been shown to generate accurate T1/T2 

maps for both conventional widely-used Cartesian-based sequences32,171,172 and radial sequences162. 

Furthermore, BLESSPC is an optimization-based approach, while cardiac MRF T1/T2 estimation 

needs T1/T2 gridding and the T1/T2 estimation accuracy and precision may be limited by the grid 

size. However, BLESSPC sometimes suffers from relatively long computation time, such as when 

used for the MOLLI sequence32 to improve T1 estimation accuracy and for the radial T1-T2 

mapping sequence when both the inversion pulse and T2 preparation pulses were simulated in 

detail to ensure good accuracy162.  

Therefore, we propose a new approach, DeepBLESS, which applies deep learning to 

BLESSPC to enable rapid myocardial T1/T2 parameters calculation. DeepBLESS can be adaptive 

to heart rate variations, achieving the same accuracy and precision with BLESSPC, while reducing 
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the reconstruction time to be less than one second. Different from the deep learning approach 

proposed for cardiac MRF T1 and T2 estimation, DeepBLESS considers the effect of B1+, and 

predicts T1/T2 values directly without the need of gridding and pattern matching. In this work, we 

demonstrate the benefits of the DeepBLESS using two sequences: the Modified Look-Locker 

inversion recovery (MOLLI) T1 mapping sequence at 1.5T and a recently proposed simultaneous 

radial T1 and T2 mapping sequence162 at 3.0T. 

 

   Methods 

6.2.1  Pulse sequence  

The radial T1-T2 sequence is an ECG-triggered sequence that uses combined inversion 

recovery and T2-prearation with golden angle radial spoiled gradient echo readout, acquiring data 

in a single breath-hold of 11 heartbeats162, as shown in Figure 6-1. Based on the acquired multi-

coil data, 110 images were reconstructed using compressed sensing with spatial and temporal total 

variation (TV) regularization, 10 images for each heartbeat on a sliding temporal window. The 

signal polarity for the measured signal was assigned by a phase-sensitive method173. Subsequently, 

both T1 and T2 maps were reconstructed using the extended BLESSPC algorithm162. In detail, 

BLESSPC for radial T1-T2 mapping simulates the signal evolution of the radial T1-T2 sequence 

using Bloch equation simulations, considering the effect of non rectangular slice profile and non-

perfect adiabatic inversion, and the T2 preparation were simulated in detail at a step size of 5us.  
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Figure 6-1. The radial T1-T2 sequence image acquisition, where t0, t1, …, t10 indicate the image 

acquisition time points, defined as the time when the 40th k-space line is acquired, and dt1,dt2, …, dt10 are 

the durations between each acquisition time point, which are needed in the Bloch equation simulation for 

T1 and T2 calculation. 

In this work, DeepBLESS were compared to BLESSPC for T1 and T2 map reconstruction 

regarding accuracy, precision and calculation speed, based on the 110 reconstructed images 

generated by the radial T1-T2 sequence. To demonstrate that the proposed network (described in 

the next section) can be adaptive to the other cardiac parameters mapping applications, 

DeepBLESS was also applied to the widely used MOLLI 5-(3)-3 sequence (11) for T1 map 

reconstruction, with the same network structure but with separate network training and different 

input layer size. In both phantom and in vivo studies, the flip angle (FA) used was 6° for the radial 

T1-T2 sequence, and FA = 35° for MOLLI. 

6.2.2  Network for DeepBLESS 

In DeepBLESS, a deep convolutional neural network was used, which is composed of a 

cascade of convolutional layers with ResNet blocks28 and a dense layer as the last layer connected 

to the output layer, as shown in Figure 6-2.  
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Figure 6-2. Illustration of the proposed network for DeepBLESS. The network composed of 13 layers, 

including the input layer, one 3x1 convolutional layer followed by 4 ResNet blocks and two 3x1 

convolution layers. Then, a dense layer was added to predict T1/T2 value. The number of filters for each 

convolutional layer was set to be 32 and the stride was set to be 1 except the last two convolutional layers, 

which use a stride of 2. 

The input layer consisted of a 1D time varying signal with several channels varied depending 

on the sequence; the first channel corresponds to the acquisition time stamps at each heartbeat and 

the other channels store the actual signals acquired. In this study, DeepBLESS was applied to the 

simultaneous radial T1 and T2 mapping sequence (referred to as the radial T1-T2 sequence 

hereafter)162 to predict T1/T2 values for each pixel, and the MOLLI 5-(3)-3 sequence32,174 to 

predict T1 value for each pixel. In our implementation, we used eleven convolution layers, 

including four ResNet blocks (Rn = 4). Each convolutional layer had 32 filters with 3 × 1 size and 

a strike of one, except the last two convolutional layers, which used a stride of two. These 

parameters were empirically selected to ensure accurate functional mapping while avoiding the 
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risk of overfitting (see Appendix VII and Table A-1 for more information about the optimization). 

A rectified linear unit (ReLU) activation function26 was used for the hidden layers and for the 

output layer. The total number of trainable parameters of DeepBLESS was ~31,000 for MOLLI 

and ~32,000 for radial T1-T2. The data sizes of different layers of the network from input to the 

output are shown in Table A-3 of Appendix VII. 

6.2.3  DeepBLESS Training 

Before applying the proposed model for T1/T2 calculation, DeepBLESS was trained using 

simulated data for each sequence independently. Bloch equation simulation32,162 was used to 

generate the training sets (1,000,000 samples), validation set (100,000 samples) and testing set 

(100,000 samples) for each sequence. For each simulation, random T1 and heart rate (HR) were 

randomly sampled from the range 200 – 2000 ms and 40 bpm - 100 bpm, respectively. For T2, 90% 

of the simulation data had a randomly selected T2 between 20 ms – 100 ms and 10% of the 

simulation data had a randomly selected T2 between 100 ms – 200 ms. To consider the possible 

B1 variations, the flip angle α was randomly sampled between 3° - 8° for the radial T1-T2 sequence 

and between 20°- 45° for the MOLLI sequence. For each group of randomly sampled T1, T2, α, 

and HR, a HR variation was simulated across the multiple heartbeats of data acquisition according 

to a Gaussian distribution. In detail, for either the radial T1-T2 or the MOLLI sequence, 10 cardiac 

cycle lengths (i.e. t1-t10 in Figure 6-1) were simulated for each simulation data set. For a given 

randomly selected HR, Random HR (bpm), the 10 cardiac cycle lengths were generated using 

Equation (6-1). 

Duration(i) =
60000

RandomHR
× (1 + 0.1 × Randn1𝑖)                                              (6-1) 

where i = 1,2, …, 10 and Randn1i is the ith random value drawn from a Gaussian distribution with 

mean = 0 and standard deviation = 1. All the randomly selected values, such as T1, T2, HR, etc. 
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were random floating point values. To ensure the robustness of our network for missed heartbeats, 

a common occurrence in clinical cardiac scanning, each simulated heartbeat in our training data 

had 1% chance of being skipped. Therefore, approximately 9.5% (based on the simulation results) 

of our training data had at least 1 skipped heartbeat. Skipped heartbeats were also simulated for 

the validation and testing data in a similar fashion. 

There were differences in how the sequence was simulated between the radial T1-T2 sequence 

and the MOLLI sequence. For the radial T1-T2 sequence, both the inversion and the T2 preparation 

pulses were simulated in detail; while for the MOLLI sequence, the inversion was assumed to be 

instantaneous and a fixed inversion factor of 0.96 was assumed, which is the estimated average 

inversion factor on tissues with T1, T2 similar to myocardium for the inversion pulse used 32,175.  

A previous study shows that adding noise to the training data promotes robust learning168. 

Therefore, real-valued Gaussian noise was added to the simulated signal before model training. 

For the MOLLI T1 mapping, the signal-to-noise ratio (SNR) was restively high in each balanced 

steady state free precession (bSSFP) image, and the final model was trained by adding 1% SD 

(standard deviation) Gaussian noise to the training data. For radial T1-T2 mapping, the SNR was 

lower in each reconstructed image, and a wider range of noise levels were simulated. Specifically, 

four DeepBLESS models were trained after adding Gaussian noise to the training data at SD levels 

of 1%, 5%, 9% and a composite range of 1%-10%, respectively. To train the networks, we used 

mean square error (MSE) as the loss function with a batch size of 2000. For the radial T1-T2 

sequence, the input signal was a 1D signal with 11 nodes (representing 11 heartbeats) and 11 

channels (1 channel for recording the acquisition time stamp signal, and the remaining channels 

for the 10 acquired signal in each heartbeat). Essentially, the input signal includes 110 signal 

intensity values on the T1 and T2 relaxation curves for a given pixel, along with the necessary 
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time stamps. The output was the T1/T2 value for the corresponding pixel. For the MOLLI sequence, 

the input signal was a 1D signal with 8 nodes (representing 8 heartbeats with data acquisitions) 

and 2 channels (1 acquisition time stamp signal + 1 acquired signal in each acquisition) for each 

pixel, and the output was the T1 value for the corresponding pixel. 

Assume the input values are X, the function of the network to map from input to output is 

(𝜽𝟏,X) for T1, and 𝒇(𝜽𝟐,𝑿) for T2, where 𝜽𝟏 and 𝜽𝟐 are the trainable parameters. Then the loss 

functions for T1 and T2 are represented as Equations (6-2) and (6-3).  

∑ [𝑓(𝜃1 − 𝑋𝑖) − 𝑇1(𝑖)]2/𝑀𝑀
𝑖=0                                                                             (6-2) 

∑ [𝑓(𝜃2 − 𝑋𝑖) − 𝑇2(𝑖)]2/𝑀𝑀
𝑖=0                                                                                            (6-3) 

Where i indicate the ith sample, M is the batch size. 

The Adam optimizer was set with a learning rate of 0.0005 for 500 epochs. The best model 

parameters were loaded and retrained with a learning rate of 0.0001 for 100 epochs. The model 

training took 1.0 ~ 1.2 hours using a general-purpose computer with a NVIDIA GTX 1080 GPU. 

Model parameters with the best MSE from the validation set were saved and used for simulation, 

phantom and in vivo studies. The learning rate strategy used in this work is a special case of step 

decay learning rate annealing approach. The performance of two other learning rate annealing 

methods was compared in Figure A-7 of the Appendix VII. 

6.2.4  Simulation Study 

After model training, the performance of DeepBLESS was evaluated using testing data sets 

randomly generated using Bloch equation simulations described in the Section 6.2.3. For the radial 

T1-T2 sequence, the 4 trained models were used to predict the T1 and T2 values in the test data. 

Random Gaussian noise with SD from 1% (SNR = 100) to 9% (SNR = 11.1) (1% increments) was 

added to the testing data before the evaluation. The conventional BLESSPC T1 and T2 estimation 



109 

 

algorithm was applied to the testing data to calculate BLESSPC T1 and T2 values for comparison. 

The predicted T1 and T2 values were compared to the corresponding reference values using the 

formula: Error = (Predicted – Reference) and Error% = Error /Reference ×100%. The mean of the 

absolute percent error was calculated. 

6.2.5  MRI 

For both phantom and in vivo studies, the radial T1-T2 sequence was performed on a 3.0T 

MRI scanner (Prisma, Siemens Healthineers, Erlangen, Germany). The MOLLI sequence was 

performed on a 1.5T MRI scanner (Avanto Fit, Siemens Healthineers, Erlangen, Germany). The 

manufacturer’s body phased array and the spine coils were used for both scanners. The radial T1-

T2 sequence was acquired with field-of-view (FOV) = 320 × 320 mm2, TR/TE = 2.5 ms/1.4 ms, 

slice thickness = 8 mm, pixel size = 1.7 × 1.7 mm2, with a reconstructed matrix size of 192 × 192, 

where 80 radial spokes were acquired in each heartbeat. The images with both magnitude and 

phase signal were reconstructed off-line after the data was acquired. The MOLLI 5-(3)-3 sequence 

was acquired with FOV = 340 × 273 mm2, TR/TE = 2.5 ms/1.1 ms, slice thickness = 8mm, 

interpolated pixel size = 1.8 × 1.8 mm2. The magnitude and phase images were reconstructed on-

line with 2X GRAPPA with 24 k-space auto-calibration lines. Based on the acquired magnitude 

and phase images, the real-valued signal for each pixel was calculated based on a phase-sensitive 

method173,176, using the phase image with the longest inversion time as the reference phase. Then 

the real-valued signal was used for T1/T2 estimations using BLESSPC and DeepBLESS. 

6.2.6  Phantom Studies 

 

For the radial T1-T2 sequence, eight 50 ml agar and CuSO4 gel phantoms were used. The 

radial T1-T2 sequence was performed at simulated HR from 40 bpm to 100 bpm (10 bpm 
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increments) and were repeated ten times at simulated HR of 60 bpm to evaluate T1 and T2 

precision. For MOLLI T1 mapping, ten 50‐ml agar and CuSO4 gel phantoms were used. The 

MOLLI sequence were acquired at each simulated HR from 40 to 100 bpm (20 bpm increments) 

and were repeated ten times at simulated HR of 60 bpm to evaluate precision. While the cardiac 

cycle lengths were randomly simulated during our model training, the simulated cardiac cycle 

lengths in the phantom study were different from training data. Reference T1 and T2 values for 

each gel phantom were determined by a standard inversion recovery spin echo technique with 12 

TIs (TI = 50–5000 ms), TR/TE = 10 s/4.6 ms. Reference T2 values were calculated using a standard 

spin‐echo technique with 11 TEs (TE = 5–250 ms), with TR = 10 s. A region of interest (ROI) was 

manually drawn for each tube and the average T1, T2 values were used as reference T1 and T2 

values. The accuracy was evaluated by calculating the difference and percentile difference between 

the estimated T1/T2 values with reference T1/T2 values. The precision was measured using 

coefficient of variation (CoV), CoV = SD / Mean × 100%, where SD is the standard deviation of 

the measured T1 or T2 values over repeated scans for each ROI.  

6.2.7  In Vivo Studies 

The in vivo study was approved by the Institutional Review Board and was compliant with 

the Health Insurance Portability and Accountability Act. All subjects provided written informed 

consent. Standard cardiac shimming was applied to reduce off‐resonance variations in the heart 

region. The radial T1-T2 sequence was performed in ten healthy volunteers (8 males, aged 

35.9±14.0 years, range 24 - 65 years) at 3.0T. The MOLLI 5-(3)-3 sequence was acquired in eight 

healthy volunteers (5 males, aged 28.9±4.3 years) at 1.5T. Images of the mid‐left ventricular (mid‐

LV) short‐axis were acquired at end‐expiration for each scan. After the radial T1-T2 data were 

acquired for each volunteer, the average heart rate and heart rate variations (represented using CoV) 
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were calculated based on the 11 image acquisition time stamps shown Figure 6-1. After the multi-

coil radial data was reconstructed using compressed sensing for radial T1-T2162 or parallel imaging 

for MOLLI to generate magnitude and phase images, each pixel from the generated images was 

independently used as input to the corresponding DeepBLESS network. The conventional 

BLESSPC was also applied to reconstruct T1/T2 maps for comparison. ROIs were drawn in the 

entire left ventricular myocardial region for the radial T1-T2 mapping and in the septal region in 

the MOLLI T1 maps. The mean of the T1/T2 values within ROIs were calculated. 

6.2.8  Data Analysis 

For statistical analysis, two-tailed Student’s t-tests were used for pair-wise comparisons. A p 

value < 0.05 was considered statistically significant. T1/T2 estimations by DeepBLESS and 

BLESSPC were compared using the Pearson's correlation and Bland–Altman analysis for 

simulation, phantom and in vivo studies.  

   Result 

6.3.1 Simulation Study 

For the radial T1-T2 sequence, the mean absolute T1 and T2 percent error using DeepBLESS 

trained at different noise levels (SNR = 11.1, 20, 100 and composite SNRs = 11.1 - 100) compared 

with BLESSPC as a function of the SNR of the testing data set are shown in Figure 6-3. Results 

showed that while the T1 and T2 estimation error was increased when the SNR in the testing set 

was reduced, adding more noise in the training dataset helped reduce the T1 and T2 estimation 

error when the testing SNR was lower. In Figure 6-3, the mean absolute T1 and T2 error curves 

based on the training data with composite SNR were similar to that with SNR = 20, and both curves 

resembled the BLESSPC curve more than the models trained based on data with SNR = 100 and 

SNR = 11.1. The detailed T1/T2 estimation data for Figure 6-3 is shown in Table A-4 of the 
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Appendix VII, which shows that SNR = 20 trained model generated the lowest average T1 and T2 

estimation error compared to the other three models. Therefore, for the radial T1-T2 sequence, we 

chose to use the DeepBLESS model trained with SNR = 20 for phantom and in vivo studies. 

 

Figure 6-3. The mean percentile absolute T1 (a) and T2 (b) reconstruction error as a function of the 

testing data noise level (SNR = 10 - 100) for radial T1-T2 mapping using the 4 models trained based on 

training data with different added noise (SNR = 11.1, 20, 100 and composite SNRs 11.1 - 100), in 

comparison with conventional BLESSPC. 

Figure 6-4 shows a comparison of the T1/T2 estimation results using DeepBLESS (trained 

with 5% Gaussian noise, SNR = 20) and BLESSPC on testing data with SNR = 20. DeepBLESS 

values were in excellent agreement with BLESSPC (T1: bias = 0.5 ms, upper 95% limits of 

agreement = 9.9 ms, lower 95% limits of agreement = -9.0 ms; T2: bias = -0.1 ms, upper 95% 

limits of agreement = 1.9 ms, lower 95% limits of agreement = -2.0 ms). The correlation coefficient 

between DeepBLESS and BLESSPC was 1.0000 for T1 estimations and 0.9996 for T2 estimations. 

For testing data sets (SNR = 20) with at least 1 missed heartbeat, DeepBLESS still agreed well 

with BLESSPC with similar bias and 95% limits of agreement (see Figure A-8 of the Appendix 

VII). Example features of DeepBLESS T1 and T2 models for a sample (BLESSPC T1 = 1361 ms, 
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T2 = 37.7 ms) of the testing set (SNR = 20) simulated based on the radial T1-T2 sequence were 

shown in Figure A-9 of the Appendix VII. 

 

Figure 6-4. Simulation results for radial T1-T2 mapping: Comparison of the T1/T2 estimation results 

using DeepBLESS (trained with 5% Gaussian noise, SNR = 20) and BLESSPC by plotting DeepBLESS 

against BLESSPC with equation of fit plot (a for T1 and c for T2) and Bland Altman analysis (b for T1 and 

d for T2). 

6.3.2 Phantom Study 

For both the radial T1-T2 and MOLLI sequences, DeepBLESS generated consistent T1 and 

T2 estimations for heart rates from 40 bpm – 100 bpm, with a maximum standard deviation of 4.5 

ms for T1 and 0.6 ms for T2. For both T1 and T2 estimations, DeepBLESS achieved similar 

accuracy and precision compared to BLESSPC, as shown in Table 6-1. DeepBLESS and 

BLESSPC both generated accurate T1 and T2 estimations. For radial T1-T2 mapping at 3.0T, the 

average estimation errors over the 8 phantoms using DeepBLESS were 1.2 ± 4.5 ms (percent error: 

-0.1%±1.0%) for T1 and -0.1±1.3 ms (percent error: -0.2%±3.3%) for T2. In comparison, the 
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average estimation errors using BLESSPC were -0.8±4.6 ms (percent error: -0.3%±0.9%) for T1 

and -0.3±1.3 ms (percent error: -0.4%±3.2%) for T2. For MOLLI T1 mapping at 1.5T, 

DeepBLESS and BLESSPC generated T1 estimation errors of -0.2±18.1 ms (percent error: -

0.1%±1.7%) and -1.1±18.4 ms (percent error: -0.1%±1.8%), respectively. Regarding precision, 

both DeepBLESS and BLESSPC had similar CoV (0.8%±0.1% for both radial T1 and MOLLI T1, 

and 1.3%±0.2% for radial T2, all p > 0.05). 

Table 6-1. Phantom Study: Average accuracy and precision of BLESSPC and DeepBLESS for the 

radial T1-T2 and MOLLI sequences using the standard spin-echo sequence as reference. 

Parameter Method           Accuracy  Precision 

Error Percent Error Mean CoV 

Radial T1 BLESSPC -0.8 ± 4.6 ms -0.3%±0.9% -0.8%±0.1% 

DeepBLESS 1.2 ± 4.5 ms -0.1%±1.0% -0.8%±0.1% 

Radial T2 BLESSPC -0.3 ± 1.3 ms -0.4%±3.2% 1.3%±0.2% 

DeepBLESS -0.1 ± 1.3 ms -0.2%±3.3% 1.3%±0.2% 

MOLLI T1 BLESSPC -1.1 ± 18.4 ms -0.1%±1.8% 0.8%±0.1% 

DeepBLESS -0.2 ± 18.1 ms -0.1%±1.7% 0.8%±0.1% 

 

Figure 6-5 shows a pixel level comparison of the DeepBLESS and BLESSPC T1/T2 

estimations for radial T1-T2 and MOLLI T1 mapping at selected ROIs by plotting DeepBLESS 

values against BLESSPC values and using Bland Altman analysis. Similar to our simulation results, 

DeepBLESS values were in excellent agreement with BLESSPC (Radial T1: bias = 0.1 ms, upper 

95% limits of agreement = 3.9 ms, lower 95% limits of agreement = -3.8 ms; radial T2: bias = 0.2 

ms, upper 95% limits of agreement = 1.0 ms, lower 95% limits of agreement = -0.9 ms and MOLLI 

T1: bias = -0.5 ms, upper 95% limits of agreement = 3.7 ms, lower 95% limits of agreement = -

4.8 ms). 
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Figure 6-5.  Phantom study results for both radial T1-T2 mapping acquired at 3.0T (a-d) and MOLLI 

(e-f) acquired at 1.5 T, comparing DeepBLESS vs. BLESSPC. Each data point corresponds to a pixel within 

the phantom. 

 

Figure 6-6 shows an example of radial T1 and T2 maps by DeepBLESS and BLESSPC and 

their corresponding difference maps. DeepBLESS and BLESSPC provided similar T1 and T2 

estimations. 
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Figure 6-6. Phantom T1 and T2 maps using DeepBLESS (a) and BLESSPC (b) and the corresponding 

difference maps (c) for the radial T1-T2 mapping sequence acquired at simulated heart rate of 60 bpm. 

DeepBLESS and BLESSPC generated T1/T2 maps with similar image quality. 

6.3.3 In Vivo Study 

 

For the radial T1-T2 sequence, the average heart rate in all 10 healthy volunteers was 62.6 ± 

7.8 bpm (min HR = 50.1 bpm, max HR = 77.2 bpm). The average heart rate variation (CoV) was 

5.5% ± 8.1% (min CoV = 0.4%, max CoV = 27.9% due to a skipped heartbeat, second max CoV 
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= 7.2%). DeepBLESS and BLESSPC provided similar myocardial T1 and T2 values at 3.0T (T1: 

1366 ± 31 ms for both DeepBLESS and BLESSPC, p > 0.05; T2: 37.4 ms ± 0.9 ms for both 

DeepBLESS and BLESSPC, p > 0.05) in all 10 healthy volunteers studied. The correlation 

coefficients between DeepBLESS and BLESSPC values were 0.9993 and 0.9984 for radial T1 and 

T2 (Figure 6-7(a) and 6-7(c)), respectively.  

 

Figure 6-7. In vivo study results for both radial T1-T2 mapping acquired at 3.0T and MOLLI acquired 

at 1.5T: pixel level comparison of the T1/T2 estimation results in the myocardium using DeepBLESS and 

BLESSPC by plotting DeepBLESS against BLESSPC with equation of fit plot (a for radial T1, c for radial 

T2, and e for MOLLI T1) and Bland Altman analysis (b for radial T1, d for radial T2, and f for MOLLI 

T1). 
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Bland Altman analysis (Figure 6-7(b) and 6-7(d)) demonstrates that DeepBLESS and 

BLESSPC T1 and T2 values were in excellent agreement in vivo (radial T1: bias = 0.3 ms, upper 

95% limits of agreement = 4.5 ms, lower 95% limits of agreement = - 3.9 ms; radial T2: bias = 

0.15 ms, upper 95% limits of agreement = 0.5 ms, lower 95% limits of agreement = -0.2 ms). 

Figure 6-8 shows example T1 and T2 maps generated using DeepBLESS and BLESSPC and their 

difference maps in two healthy subjects, one subject without skipped heartbeat (Subject A) and 

one with a skipped heartbeat (Subject B). For Subject B, there was a missed heartbeat after the 6th 

data acquisition. For both volunteers, the T1/T2 difference between DeepBLESS and BLESSPC 

in the myocardial region was negligible. 

For the MOLLI sequence, DeepBLESS and BLESSPC generated similar myocardial T1 

values at 1.5T (T1 = 1044 ± 20 ms for both DeepBLESS and BLESSPC, p > 0.05) in all 8 

volunteers studied. Correlation coefficient and Bland Altman analysis (Figure 6-7e and 6-7f) 

demonstrate that DeepBLESS and BLESSPC values were in good agreement for in vivo MOLLI 

T1 mapping (correlation coefficient = 0.9973, bias = -0.3 ms, upper 95% limits of agreement = 5.1 

ms, lower 95% limits of agreement = -5.6 ms). Figure 6-9 shows example T1 maps generated using 

DeepBLESS and BLESSPC for the MOLLI sequence in a healthy subject. In this subject, the 

average difference between DeepBLESS and BLESSPC T1 values in the entire LV myocardial 

region was -0.5 ± 1.7 ms. 

 



119 

 

 

Figure 6-8. In vivo radial T1-T2 mapping acquired at 3.0T: examples of T1 and T2 maps generated 

using DeepBLESS (a) and BLESSPC (b) and the corresponding difference maps (c) in two healthy subjects. 

Subject A had no skipped heartbeat while Subject B had a skipped heartbeat after the 6th data acquisition. 

For both subjects, the maps generated by DeepBLESS and BLESSPC were similar in the myocardium. 
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Figure 6-9: In vivo MOLLI T1 mapping acquired at 1.5T: example of T1 maps generated using 

DeepBLESS (a) and BLESSPC (b) and the corresponding difference map (c) in a healthy subject. All the 

pixels that BLESSPC did not fit well (R2 < 0.98) were set to 0 for all the corresponding maps. The maps 

generated by DeepBLESS and BLESSPC were similar in the heart region. In the left ventricular myocardial 

region, the average T1 difference between DeepBLESS and BLESSPC was -0.5 ± 1.7 ms. 

To compare the computation speed, a general-purpose desktop computer (Intel Core i7-8700 

CPU, 3.10 GHz) was used for all the T1 and T2 maps reconstruction (BLESSPC and DeepBLESS), 

and a single thread was used for a fair comparison. For radial T1-T2, after compressed sensing 

image reconstruction, a slice of T1 and T2 maps could be generated in ~3.0 hours using BLESSPC 

[algorithm B in162]. In comparison, DeepBLESS was able to reconstruct a slice of T1 and T2 maps 

in ~0.6 seconds, achieving up to 18,000-fold acceleration. For MOLLI, a slice of T1 map could be 

generated in ~98 seconds using BLESSPC and ~0.2 seconds using DeepBLESS, achieving 490-

fold acceleration by DeepBLESS. 

   Discussion 

In this work, we studied the use of a deep convolutional neural network to learn the Bloch 

equation simulations (DeepBLESS) to replace the previously reported Bloch equations based 

approach (BLESSPC) for rapid myocardial relaxation parameter prediction. Conventional Bloch 

equation simulations based approaches enable accurate myocardial relaxation parameter 
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estimation at the cost of increased reconstruction time32,165. The proposed DeepBLESS approach 

enabled almost instantaneous estimation of myocardial relaxation parameters by offloading the 

time-consuming task of Bloch equation simulations to off-line. Our results show that, for the radial 

T1-T2 sequence, DeepBLESS could achieve 18,000 times acceleration while achieving similar 

accuracy and precision compared to BLESSPC. DeepBLESS was also trained for the standard 

MOLLI 5-(3)-3 sequence for rapid T1 estimation. Our phantom and in vivo results demonstrated 

that the T1 values generated using DeepBLESS agreed well with those generated using BLESSPC. 

We previously reported BLESSPC reconstruction time of 6 seconds when using a spoiled gradient 

echo readout171. However, a full simulation of the bSSFP readout in MOLLI needed 98 seconds to 

generate a slice of T1 map while the sequence scan time was only approximately 10 seconds. The 

relatively long reconstruction time could be a roadblock for widespread clinical utility. 

DeepBLESS reduced the T1 map reconstruction time from 98 seconds to 0.2 seconds. As the 

MOLLI image reconstruction used parallel imaging with reconstruction time<1s, we expect our 

technique to immediately enable fast and online image reconstruction and T1 calculation for 

MOLLI. 

For simultaneous myocardial T1 and T2 mapping, besides the radial T1-T2 mapping sequence, 

several other techniques have been proposed160,164,177–181. The potential benefits of using radial 

T1-T2 mapping over other joint T1 and T2 mapping techniques have been well described in162. 

Specifically, most of the techniques used Cartesian acquisition160,177–180, limiting the number of 

images that can be reconstructed for parameters fitting and therefore can potentially suffer from 

reduced precision. The average myocardial T1 values measured at 3.0T using the multitasking181 

native T1 and T2 mapping sequence (1216 ± 67 ms) was lower than the standard MOLLI (1244 ± 

48ms), which itself has been known to underestimate T1. As for cardiac MRF, improvements have 
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been made to improve its accuracy by also considering the effect of imperfect slice profile, 

inversion and T2 preparation165 and the T1/T2 calculation speed using deep learning170. However, 

all of these improvements still used the relatively long 16-heart beat version cardiac MRF sequence 

with relatively long acquisition window (240 – 280 ms). In comparison, the radial T1-T2 mapping 

technique requires only 11 heartbeats and a shorter window (~200 ms). In182, it has been stated 

that the acquisition window may potentially be reduced to 150ms and the breath-hold time may be 

reduced to 5 heartbeats. However, the T1/T2 measurement accuracy/precision using this shortened 

version of cardiac MRF sequence remains to be evaluated. For shortened cardiac MRF sequences, 

the precision and reproducibility need to be evaluated carefully due to limited data acquired, which 

may potentially reduce the parameter estimation precision. In comparison, we show that the radial 

T1-T2 mapping sequence can achieve similar precision and reproducibility as the widely used 

MOLLI sequence and conventional cardiac T2 mapping sequence162. While there are potential 

benefits of using radial T1-T2 mapping over the other simultaneous myocardial T1-T2 mapping 

techniques, further studies are warranted to compare the radial T1-T2 sequence with the other 

techniques in clinical applications. While DeepBLESS achieved almost instantaneous T1/T2 map 

reconstruction for the radial T1-T2 mapping sequence, the compressed sensing reconstruction took 

approximately 3 min, a limitation for using the radial T1-T2 sequence for simultaneous myocardial 

T1 and T2 mapping. Recent studies have shown that deep learning can be applied to replace 

compressed sensing to reduce reconstruction time7,8,183. These techniques may be combined with 

our proposed T1 calculation technique to further reduce total imaging time and enable online use 

of the radial T1-T2 mapping technique. 

Recently, deep learning models have been applied to MRF for fast quantitative parameters 

prediction, such as the MRF deep reconstruction network (DRONE)168. However, this model only 
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considers the measured signal as the input, and are only applicable to the sequence that has fixed 

acquisition timing. For parameter quantification in cardiac applications, the actual image 

acquisition timing varies due to patient-specific heart rate variations. To be adaptive to heart rate 

variations, DeepBLESS used both the image acquisition time stamps and imaging signal as the 

input for cardiac parameters prediction. To ensure the robustness of DeepBLESS to various heart 

rate variations, we included variable heart rates in our model training data. Our results demonstrate 

that DeepBLESS agrees well with BLESSPC for various heart rates. Regarding the deep learning 

model used in this work, we choose the 3 × 1 size 1-D filter due to the following two reasons: 1) 

The input layer size is relatively small (11 × 1 for each channel); therefore, using 3 × 1 size 1-D 

filters should be sufficient. 2) For the same number of trainable parameters, a smaller filter size 

with deeper network is in general better than a larger filter size with shallower network. Recently, 

deep learning has been applied to automatic segmentation of cardiac T1 images28. These 

techniques could potentially be combined with our proposed technique to further improve 

reliability and efficiency. 

Instead of comparing DeepBLESS to conventional dictionary matching approaches168, 

DeepBLESS was compared with BLESSPC, an optimization approach based on the non-linear 

least squire fitting32,171. The benefit of BLESSPC over the dictionary matching approach is that 

there is no need to generate a large dictionary, which requires more computer memory, and the 

accuracy and precision is not limited by the size of the dictionary. For cardiac applications, both 

BLESSPC and the dictionary matching approach need Bloch equation simulations after the 

sequence was performed so that the image acquisition timing is known for simulation. 

DeepBLESS performs the time consuming task of Bloch equations simulations during the offline 

training stage, which learns the non-linear mapping from acquisition time and signal to relaxation 
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parameters, allowing for fast, accurate and precise relaxation parameter calculation. After the 

model was trained, the speed of DeepBLESS for parameter calculation is not affected by how 

detailed the sequence was simulated using Bloch equation simulations; while the conventional 

approaches such as BLESSPC or dictionary-matching approaches164 are substantially affected. 

Therefore, when more details are considered in Bloch equation simulations, DeepBLESS may 

achieve more acceleration compared to these conventional approaches. For instance, BLESSPC 

simulates more details in radial T1-T2 mapping compared to the MOLLI sequence, including 

simulating the adiabatic inversion pulse and multiple T2-prep pulses. As such, DeepBLESS 

achieved more reconstruction time acceleration over BLESSPC for radial T1-T2 mapping (18,000 

times) than for MOLLI (490 times). DeepBLESS is even more promising for applications that 

require more timing consuming simulations, such as in incorporating the effect of magnetization 

transfer effects in parameter mapping, which was not considered in this study, but has been shown 

to have an effect on myocardial T1 underestimation using inversion recovery based sequences32,184. 

Previous study has shown that the deep learning approach can help to reduce T1 and T2 

estimation errors compared to the conventional approach when the noise is higher for MRF177. 

However, we did not see obvious improvement using DeepBLESS over BLESSPC regarding 

T1/T2 errors for cardiac T1 and T2 mapping, despite our demonstrated advantage compared to the 

DRONE network for cardiac applications (See Table A-1 of the Appendix VII). This may due to 

the following reasons: (1) BLESSPC, due to its comprehensive simulation of essentially every 

aspect of the pulse sequence, without the need for building a dictionary, may already minimize 

T1/T2 errors. It is not subject to dictionary size issues associated with the dictionary matching 

approach that the DRONE network compared to. (2) For cardiac applications, the image 
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acquisition timing need to be considered, which may have been more complex for the deep learning 

network to learn. 

To train the network, different from the conventional approach of using a predetermined series 

of parameters (e.g. T1, T2) with predetermined step sizes to generate the training data set, we 

randomly sampled a set of parameters (e.g. T1, T2, FA, heart rate) in a certain range for each 

simulation. This has two benefits: 1) flexible training, validation, and testing data size setup; and 

2) Compared with the conventional approach, the proposed approach will generate more different 

T1, T2, FA, and heart rate values for training. For instance, if the conventional approach had n1 

different T1 values, n2 different T2 values, n3 different FAs and n4 different heart rates to generate 

a training set with n1×n2×n3×n4 samples, for the same number of training samples, the proposed 

approach will generate n1×n2×n3×n4 different values for each parameter. This may improve the 

training results. Similar to the non-uniform dictionary sampling in DRONE167, we sampled T2 

more densely in the range of 20 - 100 ms because this is the expected range of the myocardial T2. 

Sampling more data in the 20-100ms range gives more weights for T2 errors in this range in the 

training, which may help reduce errors in this T2 range. 

In this work, we added Gaussian noise to the training data due to two reasons: (1) It is a 

common approach used in network training to reduce overfitting; (2) Although the noise-like 

artifacts from under-sampling were certainly not of Gaussian distribution, it was not possible for 

us to fully characterize the noise characteristics from under-sampling. Therefore, assuming a 

Gaussian distribution would be our alternative approach. The results from phantom and in vivo 

experiments confirmed that the DeepBLESS trained with added Gaussian noise agreed well with 

BLESSPC. Similarly, a recent machine learning technique for MR finger printing167 also added 

Gaussian noise to the training data, while the signal from the MR fingerprint sequence was under-



126 

 

sampled. Our results show that using different noise levels will affect the final results. For example, 

Figure 6-3 shows that for noisier testing data sets with SNR range of 10-30, the model trained 

using less noisy data training data sets with SNR=100 was less accurate than the model trained 

using noisier data sets with SNR=20. For less noisy testing data with SNR>60, the model trained 

using less noisy training data had better performance. We could not find a model that is always the 

best for a wide range of SNR from 10 – 100, therefore in this work we chose the model that 

generated the lowest average T1 and T2 estimation error. 

In order to demonstrate the proposed network can be adaptive to different cardiac T1/T2 

mapping sequences, we used the same network (except the input) for both radial T1-T2 and 

MOLLI sequences. Since the MOLLI sequence was simpler than the radial T1-T2 sequence, it is 

possible to use a shallower network with fewer parameters for MOLLI. However, based on the 

results from Table A-2 of the Appendix VII, even for the MOLLI sequence, the proposed network 

with 4 Resnet blocks was still better than the less deep networks using 0 or 2 Resnet blocks, 

indicating that a deeper network can still help to achieve better results for MOLLI. There was no 

obvious overfitting using the same network for MOLLI, potentially due to the large training data 

sets available for MOLLI network training (1 million training data sets for only 31,000 trainable 

parameters). 

The current annealing approach used in this work is a simple version of traditional step decay 

annealing approaches (i.e. only one step decay) with slight modification. We choose to use it 

because with it we can tune the first learning rate and epoch number to obtain the best MSE, load 

the model with best validation MSE, and tune the second learning rate and epoch number to further 

improve the results. In comparison, the conventional step annealing approaches does not load the 

best model when reducing the learning rate and the number of training epochs is fixed for each 
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step. Our results in the Appendix VII show that the proposed annealing approach generated better 

results than the conventional step decay and exponential decay for the hyper-parameters tested. 

However, it does not mean that the proposed annealing approach is the most accurate way. 

We point out that the MOLLI sequence was performed on a 1.5T scanner only and the radial 

T1-T2 sequence was performed on a 3.0T scanner only. The measured average myocardial T1 

values using MOLLI with BLESSPC/DeepBLESS at 1.5T (1044 ± 20) was higher than the 

conventional MOLLI T1 values at 1.5T (950 ± 21)185. The measured average myocardial T1 values 

using radial T1-T2 with BLESSPC/DeepBLESS at 3.0 T (1366 ± 31 ms) was also higher than the 

conventional MOLLI T1 values at 3.0T (1052 ± 23 ms)185. These are expected as conventional 

MOLLI fitting is known to underestimate T1 values. The measured average myocardial T2 values 

using radial T1-T2 with BLESSPC/DeepBLESS at 3.0 T (37.4 ms ± 0.9 ms) was similar to that 

measured by cardiac MRF with slice profile, preparation pulse efficiency, and B1+ corrections 

(37.2 ms ± 1.5 ms) in165. 

In this work, we focused on myocardial T1/T2 measurements. The blood T1/T2 measurements 

based on our technique needs to be further evaluated because blood flow was not simulated when 

building our models. Due to blood flow, the BLESSPC-fitted apparent flip angle in the blood 

region were much lower than that in the myocardial region (usually < 3° for radial T1-T2), while 

in the DeepBLESS training data, we only simulated a reasonable apparent flip angle range (3°-8° 

for radial T1-T2). This could be the main reason why there were larger T1 differences between 

BLESSPC and DeepBLESS in the blood region. It is possible to simulate the blood flow to 

improve blood T1/T2 estimation accuracy, and this could be a potential benefit of DeepBLESS 

over BLESSPC as adding additional simulations should not affect its T1/T2 calculation speed. In 

BLESSPC for MOLLI, a fixed T2 = 45 ms was assumed in the Bloch simulation to avoid the need 
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for fitting T2. In comparison, for DeepBLESS, a wide range of T2 was simulated, which may 

potentially be more accurate. The difference map in Figure 6-9 for MOLLI T1 mapping shows 

larger T1 differences at edges of the heart between BLESSPC and DeepBLESS, which may be 

due to cardiac motion, blood flow and off-resonance, as these effects were not considered in the 

DeepBLESS model. 

Our study has limitations. While DeepBLESS with the proposed network and hyper-

parameters was relatively optimal compared to other network or parameters tested in this work, 

the current network with the proposed hyper-parameters and learning rate strategies may not be 

the most optimized one, as it was not possible to evaluate all possible networks, hyper-parameters 

and training strategies. Nevertheless, we reached the main goal that the proposed DeepBLESS 

approach can achieve similar accuracy and precision compared to BLESSPC while greatly 

reducing the reconstruction time. As DeepBLESS can be trained on data with noisy data, it can 

potentially be better than BLESSPC for low SNR data. Further studies are warranted to further 

optimize the DeepBLESS network and training strategies to achieve better results than BLESSPC. 

DeepBLESS was trained for heart rates between 40 – 100 bpm with 10% variations in cardiac 

cycle lengths. It is conceivable that a model training based on larger variations in cardiac cycle 

lengths could be applied for T1 and T2 mapping for patients with arrhythmias. However, a number 

of other issues need to be addressed, including motion artifacts, cardiac morphology changes due 

to varying pre-load and after-load conditions, which are beyond the scope of the current study. The 

heart rates between 40 – 100 bpm is suitable for most of the cardiac applications, and for 

applications out of the current trained range, we can potentially fine tune DeepBLESS using the 

training data with a larger range of heart rates and beat-to-beat variations. This study was 

performed in a small cohort of healthy volunteers at mid-ventricular slice location only. Further 
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clinical evaluations on larger cohorts are warranted to evaluate the performance of DeepBLESS. 

A limitation of training our DeepBLESS network based on simulated data is that it may not entirely 

reflect the complexity of the in vivo environment. This limitation is not DeepBLESS specific, and 

it is also true with conventional Bloch equations based approaches, such as BLESSPC and MR 

fingerprinting. Based on our in vivo data, we have shown satisfactory T1/T2 accuracy using our 

network. The simulation data essentially enable the network to learn the non-linear Bloch equation, 

which is the foundation for in vivo MRI. Therefore, it would not be surprising that our model 

worked well for our in vivo studies. 

   Conclusion 

In conclusion, DeepBLESS offers an almost instantaneous approach for estimating relaxation 

parameter maps with good accuracy and precision similar to the conventional Bloch equation-

based approach (BLESSPC). The acceleration provided by DeepBLESS is promising for 

multiparametric mapping in cardiac applications. 
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Chapter 7 Automatic Peripheral Arteries and Veins 

Segmentation 

This chapter aims to develop an automated platform for segmentation of the arteries and veins 

in the lower extremities, i.e., thigh and calf, from the Ferumoxytol-enhanced MR angiography 

(FE-MRA) images. To achieve our goal, we implemented a two-staged based platform in which 

in the first stage, by using a deep neural network, we extracted the blood vessels, and in the second 

stage, we used time-resolved images to initially label the arteries, and then we applied a region 

growing algorithm to complete the artery/vein segmentation process. We made comprehensive 

comparisons for both the blood vessel segmentation task and the artery/vein separation task. We 

also performed a quantitative and qualitative evaluation to ensure that the developed platform 

could potentially translate to the clinics. Our proposed platform can perform the segmentation 

process automatically in less than 4 minutes. Also, it could potentially reduce the inter-observer 

variability. A version of this chapter has been published12 in the Magnetic Resonance in Medicine: 

1. Vahid Ghodrati, Yair Rivenson, Ashley Prosper, Kevin de Haan, Fadil Ali, Takegawa Yoshida, 

Arash Bedayat, Kim-Lien Nguyen, J. Paul Finn, Peng Hu. Automatic segmentation of peripheral 

arteries and veins in ferumoxytol-enhanced MR angiography. Magn Reson Med. 2021; 00: 1– 15. 

doi:10.1002/mrm.29026 

   Introduction 

Contrast-enhanced magnetic resonance angiography (CE-MRA) is widely used for the 

diagnosis of peripheral artery disease186-192. One of the first steps involved in CE-MRA post-

processing is blood vessel segmentation. For more recent steady-state CE-MRA applications using 
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intravascular agents such as ferumoxytol193, the post-processing also involves the additional step 

of separating the arteries from veins, as both arteries and veins are enhanced in these steady-state 

acquisitions. The large image data size of high-resolution MRA makes vessel segmentation and 

separation highly labor-intensive. Therefore, automated algorithms are highly desirable; however, 

automating blood vessel segmentation is associated with challenges, including hardware 

imperfections, extreme data imbalance, complex geometry of the blood vessels, and heterogeneous 

tissue near the blood vessels. Several algorithms have been developed to address the 

aforementioned challenges194,195. These algorithms can be categorized into two groups: 1) classical 

techniques that rely on combinations of geometry, appearance, and statistical model-based 

approaches with morphological and handcrafted intensity-based features194,196-201. 2) learning-

based techniques that can adaptively find highly representative features by training on the data195, 

202-220. Lei et al. proposed a semi-automatic fuzzy connectedness algorithm for pelvic vessel 

segmentation194. They used fuzzy-connectedness to extract the entire vascular bed from the 

background, followed by separation of arteries and veins in an iterative process. Shahzad et al. 

proposed an automatic multi-atlas-based approach to extract and label the arterial skeleton from 

whole-body MRA images195. Their algorithm learns the anatomical knowledge from several 

atlases to initialize labels for the arterial skeleton, which are then refined via a rule-based approach.  

 More recently, deep learning-based segmentation has gained attention in medical image 

segmentation. Abraham et al. proposed a novel multi-scaled attention U-Net with the focal Tversky 

loss for breast and skin image segmentations221. They adapted a 2D attention gated U-Net for 

lesion segmentation and showed the effectiveness of the focal Tversky loss in handling data 

imbalance. Automatic vessel segmentation based on 2D-convolutional neural networks (CNNs) 

has also been explored to segment 2D images of the retina204,205, computed tomography of the 
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liver206, and vascular segmentation for time of flight MRA images of the brain207. Even though 

using 2D-CNNs could potentially provide flexibility in designing high-capacity networks, they 

cannot take full advantage of the information encoded across the three spatial axes of the images. 

To extract more powerful volumetric representations, 3D-Fully Convolutional Networks (FCNs) 

and its variants like 3D U-Net and Volumetric-Net (V-Net) have been proposed and achieved state-

of-the-art performance in various medical image analysis challenges210,212,213. However, there are 

still relatively few dedicated deep learning platforms for 3D blood vessel segmentation. These 

include Uception218, vessel segmentation and analysis pipeline (VesSAP)217, and Volume 

Composition Network (VC-Net)219. The Uception technique218 incorporates 3D inception modules 

in the convolutional layers of the 3D U-Net to segment the cerebrovascular network from MRA 

images.  Tetteh et al. showed promising accuracy in segmenting blood vessels from brain time of 

flight (TOF) MRA and synchrotron radiation X-ray tomographic microscopy (µCTA)220.They 

trained the network first on synthesized vessel structures, and then refined that based on real 

annotated datasets via a transfer learning approach. The VC-Net approach incorporates the 

structural information as an extra input in the neural network to effectively segment high-fidelity 

3D sparse microvascular structure219. It enhances the volumetric vessel segmentation qualitatively 

by including the maximum intensity projection (MIP) of the data into the 3D U-Net in a learnable 

fashion.   

 To our knowledge, no study has been performed to adapt and apply deep 3D-CNNs to the 

segmentation of peripheral blood vessels. In this study, we developed a fully automated platform 

of peripheral vessel segmentation for ferumoxytol-enhanced MRA (FE-MRA) images, with a 

particular focus on reducing computational time and automating the segmentation process. The 

proposed platform has two stages: 1) extraction of the peripheral vasculature and 2) classification 
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of the extracted blood vessels as arteries and veins. For the first stage, we developed a 3D deep 

neural network (DNN) with an attention-gated 3D U-Net structure and trained it using deep 

supervision mechanisms. Focal Tversky loss was included to cope with extreme data imbalance, 

and region mutual information loss (RMI)222 was used to increase the structural similarity between 

the ground truth mask and predicted mask. In the second stage, we classified extracted blood 

vessels to arteries and veins by applying a region-growing algorithm based on the initial seeds 

obtained from a time-resolved image. 

   Methods 

7.2.1 FE-MRA Dataset  

All the data in this work was acquired as part of a clinically indicated FE-MRA scan and was 

retrospectively collected for this study under a protocol approved by our institutional review board. 

Our clinical FE-MRA protocol included an initial series of dynamic, spatially low-resolution, time-

resolved volumetric images of the peripheral arteries during the first passage of an initially diluted 

injection representing1/6th of the total ferumoxytol dose.  Subsequently, the remaining dose of 

ferumoxytol was infused, and a high-resolution MRA was acquired during the steady-state 

distribution of ferumoxytol, in which the arteries and veins were equally enhanced. 

 All imaging were performed at 3T (Skyra and Prisma; Siemens Healthcare, Erlangen, 

Germany) with the following parameters: TR/TE= 2.9ms/1.1ms, flip angle=16o, matrix size ≈ 

400 × 1200 × 212 mm3, slice thickness=1mm, and in-plane resolution = 0.7 × 0.7mm2. Among 45 

retrospectively-obtained FE-MRA, seven volumes were selected randomly as the test set, and the 

remaining 38 were used as the training set. An expert radiologist (5+ years of clinical MRI reading) 

manually segmented the peripheral arteries and veins in the test set. Another expert radiologist (8+ 
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years of clinical MRI reading) reviewed and modified the segmentation masks.  An experienced 

researcher annotated peripheral vessels in the training datasets manually. All input volumes were 

normalized by subtracting the mean and dividing by twice the standard deviation of all voxel 

intensity inside each volume. 

7.2.2 Deep Convolutional Neural Network Architecture 

Figure 7-1 shows an overview of the proposed method. In the first stage, the proposed 3D U-

Net + deep supervision (DS) + attention gates (AG) (U-Net+DS+AG) extracts blood vessels from 

high-resolution FE-MRA datasets. In the second stage, a region growing algorithm separates the 

arteries from the veins based on initial seeds obtained from the time-resolved imaging volume.  

 

Figure 7-1. Overview of the proposed peripheral blood vessel segmentation and artery/vein separation 

platform for FE-MRA. Steps in the blue region occur during the blood vessel segmentation stage, where 

our 3D segmentation neural network extracts the blood vessels from the high-resolution FE-MRA. Steps in 

the orange region represent the subsequent artery/vein separation stage, where time-resolved imaging 

volumes are used to initiate the arterial branches followed by application of a region growing algorithm to 

separate the arteries from the veins. 
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Figure 7-2 shows the network structure, which comprises three distinctive modules added to 

a generic 3D U-Net structure: 1) a pyramid of input modules, 2) local AG modules, and 3) a multi-

level auxiliary DS module. 

7.2.3 3D U-Net structure with pyramid of input images 

Vessels in the lower extremities vary in diameter from approximately 20 pixels to 1-2 pixels. 

Therefore, exploiting multi-level information can potentially be effective in vessel extraction. U-

Net’s capability to learn features at multiple scales without increasing the depth of the network 

makes it a well-suited choice for our task. As shown in Figure 7-2, U-Net consists of two paths: 

(I) the encoder path, which contains four downsampling stages, (II) the decoder path, which 

includes four up-sampling stages.  

 

Figure 7-2. Detailed network architecture used in this work. The segmentation network is a modified 

3D U-Net. It incorporates three main components: 1) pyramid of the input volumes, 2) local attention gates 

(AG), and 3) deep supervision (DS) mechanism. The pyramid of input volumes helps the network to 

minimize the risk of missing thin branches of the blood vessels. Attention gates force the network to learn 
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the more relevant features of the blood vessel segmentation. Auxiliary outputs in the multiple levels as a 

variant of the deep supervision approach facilitate the network training and the AG’s parameter updating. 

They also force the network to learn the more discriminative features. Ci represents the number of the 

extracted features, and Hi×Wi×Di represents the 3D spatial dimension of the features for network in the 

level i. 

Each stage contains two convolutional layers, with each layer containing learnable 

convolution filters followed by batch normalization and ReLU. The size of the extracted features 

after each convolutional layer is denoted as Channel × Height × Width × Depth (C × H × W × D), 

in which C represents the number of extracted features, and H × W × D corresponds to the spatial 

dimensions of the features. Due to the limited memory of the GPU, the first stage of the network 

exploits 16 convolutional kernels, and the number of kernels doubles in each deeper stage. Stages 

in the encoder and decoder paths are connected via max-pooling and transpose convolution. The 

pyramid of inputs was concatenated to incoming features from the previous stage to reduce the 

risks of missing features of the thin blood vessels.  

7.2.4 Local Attention Gate  

Attention mechanisms in image segmentation tasks guide the network to highlight salient 

features corresponding to the region of interest. We incorporated soft AGs to weigh the extracted 

features from the encoder path, before propagating them to the decoder path. The structure of the 

AG module used in this work, adapted from Schlemper et al.’s work216, is shown in Figure 7-2. 

Suppose 𝑥𝐿 represents the set of activation maps of a given layer 𝐿. Each component of 𝑥𝐿 is a 𝐹-

vector, where 𝐹 is equal to the number of features. The AG computes a coefficient 𝐹-vector (0 ≤

 𝛼𝑖 ≤  1), to put emphasis only on the most task-relevant features. In our work, coarser activation 

maps, which contain global information, were combined with activation maps from the layer 𝐿 in 

a learnable fashion to calculate the attention coefficient vectors for each voxel:  

𝑞𝑎𝑡𝑡𝑛
𝐿 =  𝛹2

𝑇 (𝑅𝑒𝐿𝑈(𝛹1
𝑇 (𝑥𝐿  + 𝑊𝑔

𝑇  + 𝑏𝑔)  +  𝑏𝛹1
))  +  𝑏𝛹2

                                             (7-1) 
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𝛼 𝐿 =  𝜎2(𝑞𝑎𝑡𝑡𝑛
𝐿 (𝑥𝐿 , 𝑔))                                                                                                        (7-2) 

The linear activation coefficients 𝑞𝑎𝑡𝑡𝑛
𝐿   were computed by combining additive operation and 

trainable parameters 𝑊𝑔
𝑇  , 𝑏𝑔, 𝛹1

𝑇 , 𝛹2
𝑇 . The trainable parameters were the weights and bias terms 

of the convolutional layers in the AGs. As shown in Equation (7-2), a sigmoid function 𝜎2 was 

applied to the linear activation coefficients to restrict the range to [0, 1]. The activation maps from 

layer 𝐿 were pruned through multiplication with attention coefficients 𝛼𝑖 and were subsequently 

concatenated to the corresponding up-sampling stage. 

7.2.5 Deep Supervision 

Previous studies have shown that DS mechanisms can improve discriminativeness and 

robustness of learned features in the first layers and address the “vanishing” gradient issues in the 

training process215,223. Therefore, we included auxiliary outputs in the network architecture to 

supervise the network on multiple levels. Each of the up-sampling stages is supervised via an 

auxiliary output. As shown in Figure 7-2, auxiliary outputs in the multiple levels are considered to 

reinforce the propagation of gradient flow. Besides, this method provides gradient flow to the local 

attention modules and increases their ability to influence the responses to the broad range of image 

foreground content. 

7.2.6 Objective Function  

In our task, less than 1 percent of the voxels within a training patch corresponds to blood 

vessels on average. Various objective functions have been proposed to address the data imbalance 

issue, such as weighted Cross-Entropy (CE), focal loss (FL)221,224, and generalized dice function225. 

FL attempts to down-weigh the contribution of a relatively large size of irrelevant background 

region so CNN can focus more on relevant dense regions of interest. The well-known F1 score 

(Dice), as a loss function, typically performs better than CE in unbalanced medical image 
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segmentation problems. Since the F1 is a harmonic mean of precision and recall, it weighs false 

positive and false negative equally: 

𝐹1 =
2×𝑇𝑃

2×𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
                                                                                                                     (7-3) 

𝑇𝑃, 𝐹𝑁, 𝐹𝑃 stand for the true positive, false negative, and false positive, respectively. Tversky 

index 𝐹𝛽 as a generalization of the F1 has flexibility in trading off between precision and recall226. 

𝐹𝛽  =
(1 + 𝛽2)×𝑇𝑃

(1 + 𝛽2)×𝑇𝑃 + 𝛽2 ×𝐹𝑁 + 𝐹𝑃
                                                                                                      (7-4) 

Where 𝛽 weighs the 𝐹𝑁 and 𝐹𝑃 and is called the balancing factor between the recall and precision.  

For blood vessel segmentation, deep neural networks trained based on the voxel-wise loss 

functions such as FL, weighted cross-entropy, and generalized dice may struggle in identifying the 

voxel when its visual evidence is weak; therefore, it is important to consider the strong 

interdependencies between the voxels in the image. In this work, we used the region mutual 

information (RMI) loss222 to consider the dependency between the voxels in the vessel 

segmentation. The central voxel of a small cubic patch (inside the training patch) with size d 

(d=R×R×R) and all voxels inside that small patch collectively represent the central voxel in the 

RMI calculation. For instance, by considering small patch size 3×3×3 (d=27), we use a 27-vector 

(one central voxel and 26-neighbors) to represent the patch's central voxel. For a 3D image, we 

have many 27-vectors; thus, the image can be cast into the multivariate distribution of 27-vectors. 

After getting the multivariate of 27-vectors for the ground truth and the predicted map by the 

segmentation network, higher-order consistency between the target and predicted map can be 

achieved by maximizing the mutual information (MI) between their multivariate distributions. 

Zhao et al. derived a lower bound of the MI and tried to maximize it instead of directly maximizing 

the MI which is highly memory consuming222. Equation (7-5) formulates an approximation of a 
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lower bound of the MI between a two multivariate distribution of d-vectors 𝑦 and 𝑝 from ground 

truth (Y) and predicted map (P), respectively.   

𝑀𝐼𝑙(𝑦, 𝑝) ≈  
−1

2𝑑
𝑇𝑟(log(𝑀))                                                                                                       (7-5) 

𝑇𝑟(. ) is the trace operator and 𝑀 is defined as Equation (7-6):  

𝑀 =  Σ𝑦 − 𝑐𝑜𝑣(𝑦, 𝑝)(Σ𝑝
−1)𝑇𝑐𝑜𝑣(𝑦, 𝑝)𝑇                                                                                     (7-6) 

Σ𝑦 is the variance matrix of 𝑦 and 𝑐𝑜𝑣(𝑦, 𝑝) is the covariance matrix of 𝑦 and 𝑝. To calculate the 

RMI loss, the sum of the MI values for all d-vectors was divided by the number of the d-vectors 

inside the training batch.  

In this work, we used a linear combination of the Tversky Index and RMI loss as the loss 

function for the final stage (level i = 0) of the network to achieve higher recall relative to precision 

and achieve a better structural similarity between the ground truth (Y) and predicted map by the 

network (P). Due to the computational bottleneck, we used patch size 3×3×3 to calculate the RMI 

loss. For the intermediate stages (levels i = 1, 2, 3) of the network, focal Tversky loss221 was 

considered. Equation (7-7) describes the total loss function used in the network training:  

 ∑ 𝐿𝑖(𝑃𝑖, 𝑌𝑖) =3
𝑖=0  (1 − α)(−RMI(𝑃0, 𝑌0)) +  α(1 − 𝐹𝛽(𝑃0, 𝑌0)) + ∑ (1 − 𝐹 𝛽

𝑖 (𝑃𝑖, 𝑌𝑖))
1

𝛾3
𝑖=1     (7-7)                                                                                                                                     

Where 𝛾 is a tunable focusing parameter, 𝐿𝑖, 𝑃𝑖 and 𝑌𝑖  are the loss function, predicted map, and 

target on the level 𝑖, respectively. As shown in Figure 7-2, the network has four levels in which 

the level i=0 shows the highest resolution and the level i=3 represents the lowest resolution level. 

The trade-off between precision and recall is presented by 𝛽 and the linear combination between 

the RMI loss and the Tversky loss is controlled by α.  
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7.2.7 Training and Post-Processing   

Non-overlapping-patches of size 128 ×128 ×128 were extracted from the image volumes and 

used to train the network. 3D on-the-fly data augmentation was performed in a controlled manner 

in the training stage using the SimpleITK library. Linear translation, flipping, and permutation 

were performed on both the inputs and corresponding masks. Also, a spatially low variant intensity 

field was multiplied by the inputs to mimic the effects of radiofrequency coil modulation.  In each 

iteration, three real patches and two augmented patches were fed as a batch into the network. Based 

on the learning rate range test, a learning rate of Lr = 0.005 was selected as an initial learning rate. 

Step decay was used to adjust the Adam optimizer's learning rate through the iterations. The 

learning rate started with Lrinit= 0.005 and was halved if, for 5 sequential epochs, the validation 

loss did not improve, or the number of epochs for the current learning rate surpassed 10. Besides, 

early stopping was considered if the validation loss did not improve for 50 sequential epochs. The 

training was performed with the Tensorflow on an NVidia Titan RTX GPU, 24GB RAM, and took 

approximately ~44 hours. Once the network was trained, it was tested based on full-size 3D high-

resolution images, rather than 3D image patches, using a general-purpose desktop computer (Intel 

Core i7‐8700 CPU, 3.10 GHz). As the 3D U-Net+DS+AG has 4 down-sampling stages, we padded 

the test input volume to the next size divisible by 16 before feeding to the network. In the post-

processing stage, small floated shells with less than one percent of the largest volume are removed.  

7.2.8 Separation of the Arteries from Veins  

We focused on artery and vein separation in the calf region, which is more challenging than 

the thigh region due to smaller vessel size and more complex vessel geometry. A fast vessel 

enhancement function227was applied to the masked-volume to enhance the separation between 

closely co-localized vessels. Afterward, sequential series of the time-resolved first pass FE-MRA 
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images, which were spatially registered to the high-resolution FE-MRA, were used to initiate an 

arterial mask region in the high-resolution volume. This process was shown graphically in Figure 

7-3.  

 

Figure 7-3. For the sake of simplicity, only a cross-section of the volume is visualized. To separate the 

arteries from the veins, the following steps were performed. First, the volumetric blood vessel binary mask 

(b) was extracted from the high-resolution image volume (a) using our blood vessel segmentation network. 

Also, at the same time, time-resolved image volume (c) was automatically registered to the high-resolution 

image. To obtain the only blood vessels with their real intensity (d), the high-resolution image was masked 

by the binary blood vessel mask, and a fast vessel enhancement algorithm42 was applied to enhance the 

obtained blood vessels. As noted in the main manuscript, the blood vessels' intensity values are required 

for the region growing algorithm. To obtain the initial arterial seeds, we first masked the time-resolved 

image by the blood vessel mask, and then adaptive binary thresholding was applied on the masked-region 

to detect the initial arterial seeds. A sample of the arterial seeds was shown in (e). Ultimately, the region 

growing algorithm was applied to the initial seeds to extract the arteries (f). Once the arteries were 

segmented, the remaining blood vessels were considered as the veins. A sample of the arterial and venous 

masks was shown in (g). Final overlaid masks on the high-resolution image were shown in (h). 

A region-growing algorithm starting from the initial seeds obtained from the time-resolved 

FE-MRA data was applied to distinguish the arteries from the veins in the high-resolution FE-
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MRA data. Pixel neighbors were added to the region if its intensity difference with the mean of 

the initial seeds was less than one standard deviation of the region’s intensity. Two constraints 

were considered to stop the region-growing algorithm: 1) when the points reached an edge; 2) 

when the points reached to the maximum distance = 3.5 mm from the mass center of the seeds. 

The seed center was updated iteratively.  

7.2.9 Evaluation 

We performed two sequential grid searches to find the semi-optimized value for the balance 

factor (β), focusing factor (γ), and RMI weight (1-α). In the first grid search, α=1 was assumed, 

and the network was trained for the different combinations of β and γ. After finding the proper 

value for β and γ, we performed the second grid search to find a proper value for the RMI weight 

(1-α). We used precision, F1, and recall to quantify the blood vessel segmentation performance. It 

is important to note that we calculated quantitative segmentation scores based on the network's 

volumetric results without post-processing.  

We rationalized the architecture of the segmentation network by evaluating the role of the AG 

and DS mechanisms. We analyzed the learning curves, learned kernels and features from the first 

layer of the network, and pre-activation maps from the last layer of the network as well as 

segmentation results for the proposed network (3D U-Net+DS+AG) and the baseline method (3D 

U-Net). To evaluate the benefits of the AG, we also compared our 3D U-Net+DS+AG with a 3D 

U-net with DS but without AG (3D U-Net+DS), using similar metrics. To show the RMI loss's 

impact, we compared the 3D U-Net+DS+AG with and without the RMI loss qualitatively and 

quantitatively. 

We compared the proposed segmentation network's performance with recent state-of-the-art 

networks, V-Net213, DeepVesselNet-FCN217,220 (with/without cross hair filters), and Uception218. 
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It is important to mention that there are two versions of DeepVesselNet-FCN, one with cross-hair 

shape filters220 and another one with 3D convolutional kernels217. For the remainder of this paper, 

DeepVesselNet-FCN refers to the network with cross-hair shape filters unless explicitly stated 

otherwise. We used the generalized dice loss function for training the V-Net and Uception. To 

train the DeepVesselNet-FCN (with and without cross-hair shape filters), class-balancing cross-

entropy with proper weight was used. Since the initial results of DeepVesselNet-FCN (with and 

without cross-hair shape filters) were not satisfactory for our datasets, we slightly modified their 

structures to dense structures, in which we used concatenated-skip connections between first four 

layers of both networks.   

We performed qualitative and quantitative analysis for the arteries and veins segmentation in 

the calf region. We evaluated qualitatively the volume-rendered images based on anatomical 

knowledge. For quantitative evaluation, we reported the F1 score for the segmented arteries and 

veins from the unseen test dataset.   

For statistical analysis, two-tailed Student t-tests were used for pair-wise comparisons. A P-

value less than 0.05 was considered statistically significant. 

   Result 

7.3.1 Parameter Tuning 

Table 7-1 reports the mean (±SD) of precision, recall, and F1 of the evaluation set for the first 

grid search. As β increased, recall increased, and precision decreased. As shown in Table 7-1, the 

F1 score was slightly higher for β=0.7 and γ=0.75 than other parameters.  
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Table 7-1. In the first grid search, parameter α, which controls the weight of the RMI loss, was 

considered as a fixed number (α=1), and the grid search was performed to find the proper value of β and γ.  

β controls the trade-off between the false negative (FN) and false positive (FP), and γ is the focusing factor 

in the focal loss. The F1 score was slightly higher for β=0.7 and γ=0.75 than other parameters. 

 

 

Table 7-2 reports the mean (±SD)  of precision, recall, and F1 of the evaluation set for different 

α values and fixed γ and β values (β=0.7, γ=0.75) in the second grid search. For α=0.7, the F1 

score is marginally higher than the others. Therefore, for the rest of the manuscript, β=0.7, γ=0.75, 

and α=0.7 were used as the objective function parameters. 

7.3.2 Training Convergence 

Figure 7-4 shows the learning curves for the 3D U-Net+DS+AG and baseline network (3D U-

Net). The loss value on the level i=0 of the 3D U-Net+DS+AG over the epochs was compared 

against the loss value of the 3D U-Net. It is worth noting that for training the 3D U-Net, only level 

i=0 component of the total loss function described in Equation (7-7) was used as the loss function. 

 

 

 Precision F1 (Dice) Recall 

β = 0.50 β = 0.60 β = 0.70 β = 0.50 β = 0.60 β = 0.70 β = 0.50 β = 0.60 β = 0.70 

γ 

=0.25 

0.82±0.05 0.76±0.06 0.70±0.03 0.79±0.04 0.77±0.04 0.76±0.05 0.73±0.06 0.77±0.05 0.82±0.07 

γ 

=0.50 

0.80±0.04 0.77±0.05 0.73±0.04 0.78±0.04 0.77±0.03 0.77±0.04 0.75±0.07 0.75±0.06 0.81±0.05 

γ 

=0.75 

0.82±0.05 0.78±0.07 

 

0.75±0.03 

 

0.78±0.04 0.78±0.03 0.80±0.02* 0.73±0.06 0.78±0.04 0.84±0.04 

γ = 1 0.82±0.03 0.76±0.08 

 

0.71±0.02 

 

0.75±0.02 0.76±0.05 0.75±0.06 0.73±0.06 0.77±0.02 0.80±0.04 
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Table 7-2. Second grid search for the hype-parameter tuning: α controls the weight of the RMI loss. 

The F1 score was slightly higher for α =0.7 than others. It is important to emphasize that reported values 

are based on the fixed β and γ values (β=0.7 and γ=0.75).  
 

 Precision F1 (Dice) Recall 

α = 1  0.7509±0.0311 0.7976±0.0201 0.8448±0.0402 

α = 0.9 0. 7621±0.0308 0.8026±0.0198 0.8402±0.0397 

α = 0.8 0. 7645±0.0307 0.8084±0.0198 0.8405±0.0400 

α = 0.7 0. 7658±0.0296 0.8087±0.0208* 0.8410±0.0407 

α = 0.6 0. 7661±0.0308 0.8041±0.0199 0.8395±0.0398 

α = 0.5 0. 7659±0.0313 0.8015±0.0201 0.8387±0.0405 

α = 0.4 0. 7652±0.0310 0.7984±0.0206 0.8362±0.0410 

α = 0.3 0. 7648±0.0318 0.7920±0.0316 0.8332±0.0414 

α = 0.2 0. 7655±0.0293 0.7894±0.0275 0.8280±0.0374 

α = 0.1 0. 7652±0.0285 0.7856±0.0190 0.8275±0.0423 

α = 0 0. 7645±0.0300 0.7844±0.0226 0.8258±0.0419 

 

The validation loss for 3D U-Net and the 3D U-Net+DS+AG decreased as the training loss 

drops. In the early epochs, i.e., epochs 1-20, 3D U-Net had a slightly faster loss reduction rate. 

However, in the middle stage of learning, i.e., epochs 20-70, the validation loss for 3D U-

Net+DS+AG had a higher reduction rate than 3D U-Net.  

 

Figure 7-4. Learning curve comparison between 3D U-Net as a baseline model and 3D U-Net with 

deep supervision and local attention gates (3D U-Net+DS+AG) as our proposed method. 3D U-

Net+DS+AG has a higher rate of loss reduction and faster convergence than 3D U-Net. 
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Compared with 3D U-Net, 3D U-Net+DS+AG had less oscillation in the learning curves and 

faster convergence. The 3D U-Net+DS+AG ultimately achieved lower training and validation 

losses than the 3D U-Net. 

7.3.3 Learned Kernels and Intermediate Features 

Figure 7-5 shows all learned kernels (upper left panels), cross correlation matrix between the 

learned kernels (upper right panels), and extracted features (lower panels) from a representative 

input volume for the first convolutional layer of the 3D U-Net (A) and 3D U-Net+DS+AG (B). It 

is evident that both kernel maps have organized patterns. However, the diversity of the patterns 

for the 3D U-Net+DS+AG was greater than 3D U-Net. As evident in Figure 7-5, there is more 

redundancy in the learned kernels and extracted features for the 3D U-Net than the 3D U-

Net+DS+AG. The sum of the absolute value of the cross-correlation matrix for the 3D U-Net was 

68.506 (out of 256) and for the 3D U-Net+DS+AG was 42.500(out of 256). This indicates that the 

learned kernels for the 3D U-Net had more similarities than the 3D U-Net+DS+AG.     
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Figure 7-5. Learned kernels, cross correlation matrix between the learned kernels, and intermediate 

feature visualization for the first convolutional layer of the baseline 3D U-Net model (A) and the proposed 

3D U-Net+DS+AG method (B). Learned kernels, cross correlation matrix between the learned kernels, and 

a slice of the extracted 16 features are shown in the upper-left, upper-right and lower panels of each method, 

respectively. Similar learned kernels and their corresponding extracted features are shown inside the 

dashed-red and dashed-yellow rectangles. Samples of the extracted features show that the diversity of the 

features extracted from 3D U-Net+DS+AG is higher than 3D U-Net, which is expected to translate to higher 

discriminatory capability. The red and yellow arrowheads (panel A, top right) show high cross correlation 

coefficients representing similarity in the learned 3D U-Net kernels; whereas 3D U-Net+DS+AG did not 

have these high cross correlation values due to its greater diversity. 

7.3.4 Impacts of Local Attention Module on the Training Process 

Figure 7-6 shows the learning curves and pre-activation probability maps from the last layer of 

the 3D U-Net+DS and 3D U-Net+DS+AG. The 3D U-Net+DS+AG has a faster convergence rate 

than the 3D U-Net+DS. Based on the small gap between the training loss and the validation loss, 

the 3D U-Net+DS and the 3D U-Net+DS+AG were able to generalize from the training data to the 

unseen test data. The final loss values of the 3D U-Net+DS+AG network was lower than the 3D 

U-Net+DS. Moreover, it had a shorter training time in comparison to the 3D U-Net+DS. As 

pointed by a blue arrow, probability map of the 3D U-Net+DS is more diffused than the 3D U-

Net+DS+AG.    

 

Figure 7-6. A comparison of the 3D U-Net+DS+AG with the 3D U-Net+DS. The training and 

validation loss is plotted for both methods on the left side. Two representative pre-activation probability 

maps are shown on the right side. As pointed by a blue arrow in the pre-activation probability maps, using 

the attention module results in more focused probability maps. 
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7.3.5 Impact of RMI loss on the Segmentation Results  

Figure 7-7 shows qualitative blood vessel segmentation results for the proposed network with 

(1-α=0.3) and without (1-α=0) the RMI loss. It is evident that the network with RMI loss preserves 

the blood vessel connectivity better than the network without RMI loss. Quantitative scores 

reported in Table 7-2 show that the proposed network with RMI loss increased the precision score 

of the segmentation results from 0.7509 (without RMI loss) to 0.7658. There was also an 

incremental improvement in the F1 score where the F1 score was increased from 0.7976 to 0.8087.    

 

Figure 7-7. Effect of the Region Mutual Information (RMI) loss on the segmentation results. This 

figure shows a representative coronal slice of a patient segmented by the 3D U-Net + DS + AG with and 

without the RMI loss. Zoomed in regions are shown in (a,b,c) on the right. The obtained segmentation 

results with RMI loss and without RMI loss are contoured with blue and red color, respectively. The ground 

truth region is filled with light-green color. Including RMI loss in the 3D U-Net + DS + AG training stage 

leads to better preservation of the blood vessel connectivity compared to 3D U-Net + DS + AG without the 

RMI loss. 
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7.3.6 Segmentation Results 

Figure 7-8 shows representative segmentation results on a test dataset. We contoured the 

segmentation results for the 3D U-Net (a), 3D U-Net+DS(b), and 3D U-Net+DS+AG(c), with the 

ground truth segmentation shown in light-green. Figure 7-8 (d) shows a comparison between the 

segmentation result obtained from 3D U-Net+DS+AG, shown as the region filled with pale red, 

and the result from 3D U-Net (light-gray contour) and 3D U-Net+DS (yellow contour).  

 

Figure 7-8. Representative segmentation results and qualitative comparisons. (a) Results from 3D U-

Net, (b) 3D U-Net+DS, (c) 3D U-Net+DS+AG are visualized with gray, yellow, and red contours, 

respectively. Ground truth is shown with green filled region. (a-c) show the comparison of the networks 

with ground truth, and (d) shows the comparison of the 3D U-Net (gray contour) and 3D U-Net+DS (yellow 

contour) with 3D U-Net+DS+AG (filled with pale red). (e-h) show volume-rendered images for the 3D U-

Net, 3D U-Net+DS, 3D U-Net+DS+AG, and ground truth (obtained by two expert radiologists) with their 

respective colors used in (a-d). The proposed method captures blood vessels that were not captured by other 

methods (blue and red arrows in (g)). Besides, segmented blood vessels in the left calf using 3D U-

Net+DS+AG has a higher density than 3D U-Net and 3D U-Net+DS (purple arrow in (g)). An expert 

radiologist confirmed that these extra-segmented vessel branches (blue, red, and purple arrows in (g)) are 

blood vessels that were initially missed by the radiologists in the manual segmentation. 
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As highlighted by the blue marker in Figure 7-8 (d), thin blood vessel branches were captured 

by our-proposed method, but missed by both 3D U-Net and 3D U-Net+DS. Figure 7-8 (e-h) 

displays the volume-rendered image for 3D U-Net (e), 3D U-Net+DS(f), 3D U-Net+DS+AG (g), 

and ground truth (h). Areas pointed by the colored arrows in Figure 7-8 (g) are magnified in each 

volume rendered images. As can be seen in blue rectangles Figure 7-8 (e-h), our proposed network 

is captured more blood vessels than the two other methods compared.  The segmented blood 

vessels by our proposed method (Fig. 7.8 (g)) contains more structures than the initial ground truth 

blood vessels (Fig. 7.8 (h)). An expert radiologist subsequently evaluated the blood vessel masks 

and confirmed that the mentioned extra structures segmented were indeed blood vessels. 

Table 7-3. Quantitative comparisons. 3D U-Net+DS+AG achieved higher F1 and recall scores than 

other methods. Also, 3D U-Net+DS+AG achieved a higher precision score than other methods except for 

Volumetric Net and Uception. There was no statistically significant difference (P>0.05) between the 

precision score of our proposed method (3D U-Net+DS+AG) and the precision scores of state-of-the-art 

networks (Volumetric-Net, DeepVesselNet-FCN, and Uception). 3D U-Net+DS+AG achieved a 

statistically significant higher precision than 3D U-Net. For the F1 and Recall scores, our proposed method 

(3D U-Net+DS+AG) achieved a statistically higher score (P<0.05) than other methods.   

 
 Precision F1 Recall 

                                                              3D U-Net25  0.6326±0.0437* 0.6502±0.0428* 0.6878±0.0700* 

                                                      3D U-Net+DS  0.7321±0.0519 0.7603±0.0287* 0.7807±0.0510* 

                                             3D U-Net+DS+AG 0.7658±0.0296 0.8087±0.0208 0.8410±0.0407 

          DeepVesselNet-FCN (with CHS# filters)35 0.7501±0.0665 0.7573±0.0408* 0.7570±0.0876* 

    DeepVesselNet-FCN (without CHS# filters)32 0.7514±0.0480 0.7481±0.0405* 0.7546±0.0703* 

                                                  Volumetric-Net28 0.7678±0.0760 0.7604±0.0402* 0.7791±0.0602* 

                                                             Uception33 0.7690±0.0564 0.7651±0.0381* 0.7774±0.0560* 

 

 
#: CHS stands for the cross hair shape.  

*: statistically significant difference when compared with 3D U-Net+DS+AG. 
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Table 7-3 reports the Precision, F1, and recall scores for the 3D U-Net, 3D U-Net+DS, and 

3D U-Net+DS+AG for the evaluation set. When compared with 3D U-Net, the 3D U-Net+DS and 

3D U-Net+DS+AG had a less dispersed F1 score (lower standard deviation) for the unseen data. 

The 3D U-Net+DS+AG achieved statistically superior quantitative F1 and Recall scores than the 

3D U-Net and 3D U-Net+DS methods (P<0.05).  

7.3.7 Comparison with state-of-the-art Networks  

Figure 7-9(a-d) shows the qualitative results in the axial plane for (a) DeepVesselNet-FCN 

(gray contour), (b) V-net (yellow contour), (c) Uception (blue contour) and (d) 3D U-Net+DS+AG 

(red contour).  

 

Figure 7-9. Qualitative comparisons of our network (3D U-Net+DS+AG) with state-of-the-art 

networks DeepVesselNet-FCN, Volumetric-Net (V-Net), and Uception in blood vessel segmentation. (a-d) 

show the results obtained by DeepVesselNet-FCN (a; gray contour), V-Net (b; yellow contour), Uception 

(c; blue contour), and 3D U-Net+DS+AG (d; red contour). Ground truth regions in (a-d) are filled by green 

color. As pointed out by white arrows in (a-c), DeepVesselNet-FCN, Uception, and V-Net incorrectly 

segment the bone as a blood vessel; whereas this mistake was avoided by 3D U-Net+DS+AG (d). (e-h) 

represent the volume rendered images for the DeepVesselNet-FCN (e), V-Net (f), 3D Uception (g), and 3D 
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U-Net+DS+AG (h). As pointed out by black arrows in (h), our proposed method segmented out a branch 

of the blood vessel that was missed by other segmentation networks. The black arrow in (f) shows a portion 

of the segmented blood vessel with extravascular soft tissue contamination. 

 

Since the DeepVesselNet-FCN (without cross-hair shape filters) had a similar qualitative 

performance to the DeepVesselNet-FCN (with cross-hair shape filters), we only showed the 

qualitative results for the DeepVesselNet-FCN (with cross-hair shape filters). The ground truth 

region is filled with green color in Figure 7-9 (a-d). While part of the bone was incorrectly 

segmented as blood vessels (white arrows) by the DeepVesselNet-FCN, V-net, and Uception, the 

proposed network correctly omitted it. Figure 7-9 (e-h) shows the volume-rendered images in the 

calf region for (e) DeepVesselNet-FCN, (f) V-net, (g) Uception, and (h) 3D U-Net+DS+AG. In 

Figure 7-9 (h), black arrows show regions where our proposed method captured more blood vessels 

than the DeepVesselNet-FCN, V-net, and Uception. The black arrow in Figure 7-9 (f) highlights 

the region segmented by V-net mixed with skin. Based on the quantitative scores reported in Table 

7-3, our method had statistically higher F1 and recall scores when compared with V-Net, Uception, 

and DeepVesselNet-FCN (with/without cross-hair shape filters) (P<0.05). There was no 

statistically significant difference between the precision score of the 3D U-Net+DS+AG, V-Net, 

Uception, and DeepVesselNet-FCN (with/without cross-hair shape filters)  (P>0.05).   

7.3.8 Separation Results 

Figure 7-10(a) shows the segmented artery by the proposed method based on a selected 

coronal image of a high-resolution FE-MRA. The three axial sections of the right calf are shown 

in Figure 7-10(b). The popliteal artery, with two veins in proximity to it, is correctly segmented 

by the proposed method (Fig. 7-10(b)). Figure 7-10(c) shows MIP from the scanner console (top 

view) and the MIP of the extracted artery from the high-resolution image via our pipeline (bottom 

view). Figure 7-10 (d) shows a 3D rendered artery of the same patient’s calves.    
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Figure 7-10. Arterial tree extraction for a representative case: Arteries in from a coronal view (a) of 

high-resolution FE-MRA and three axial views (b) for the right calf are shown. (c) represents the maximum 

intensity projection (MIP) of the data obtained by the scanner (c; top panel) and the extracted-arterial tree 

based on our method (c; lower panel). (d) represents the volume-rendered arterial tree extracted by our 

proposed algorithm. As shown in (c), the MIP image based on the extracted arterial tree from our algorithm 

is in good agreement with the arterial MIP image generated by the scanner. 

 

Figure 7-11(a,b) shows a qualitative comparison of the artery segmentation for a patient using 

the proposed method (green-contour) vs. manual annotation by a radiologist (red-contour and filled 

with pale red). Figures 7-11 (c and d) show the volume-rendered image obtained by radiologists 

and our proposed method, respectively, and they confirm that the segmented artery using our 

method is similar to the ground truth concerning the structure and direction of the branches. Videos 

S-1 and S-2 (available online as a supporting file of our published article12) provide the movie of 

this case with full segmentation of the arteries and veins and comparison between our proposed 

method and radiologist annotation for the artery.   

Quantitatively for the seven test cases, the proposed method achieved higher mean F1(±SD) 

for the artery and vein segmentation than the classic Fuzzy-based approach [9]( 0.8274 ±0.0152 
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vs. 0.7321±0.0921 for the artery segmentation, and 0.7863±0.0643 vs. 0.7405±0.1061 for the vein 

segmentation; see Appendix VIII).Using a general-purpose desktop computer (Intel Core i7-8700 

CPU, 3.10 GHz), the entire peripheral artery/vein segmentation pipeline took less than 4 min (Data 

loading and registration ≈ 41.1 seconds, deep learning-based blood vessel segmentation ≈ 28.4 

seconds, filtering small shells + fast vessel enhancement ≈ 72.2 seconds, and the region growing 

≈ 85.3 seconds) to generate the full set of results for a typical matrix size of 400 × 1200 × 212.    

 

Figure 7-11. Arterial tree extraction for a case with peripheral arterial disease. Arteries from the 

coronal view (a) of the high-resolution FE-MRA and four axial views (b) for both calves are shown. Arteries 

segmented by our proposed method are represented with the green color, and arteries annotated by an expert 

radiologist are represented by red color.  (c) shows the volume-rendered image obtained by an expert 

radiologist, and (d) shows the extracted arterial tree by our algorithm. Visually, the extracted arterial tree 

using our algorithm is similar to that defined by expert annotation.     

 

   Discussion 

In this work, we proposed an automatic pipeline to segment peripheral vasculature from high-

resolution FE-MRA datasets and labeled them as arteries and veins based on region growth 

initialization using time-resolved MRA images. For vessel segmentation, we implemented a 3D 

U-Net structure with a pyramid of inputs that incorporated local AGs and DS mechanism to take 
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advantage of multilevel information, facilitate the segmentation of the vessels in low tissue 

contrast regions, overcome vanishing gradient issues, and expand the discriminative capability of 

the network. While V-Net, DeepVesselNet-FCN, and Uception, gained 0.7604, 0.7573, and 0.7651 

mean dice scores on the evaluation sets, respectively, our method achieved a mean dice score of 

0.8087 (P<0.05). Finally, arteries were successfully labeled in the calf and assessed based on the 

anatomical knowledge and MIP image obtained from the scanner. Quantitatively, the proposed 

platform segmented the arteries and veins in the calf region with a mean dice score of 0.8274 and 

0.7863, respectively.  

We evaluated the effectiveness of the local AGs and the DS mechanism in the blood vessel 

segmentation. Using DS forced the network to learn more discriminative features and facilitated 

updating the learnable parameters in the AGs. Adding a pyramid of inputs in multiple scales helped 

the network to minimize the risk of missing thin blood vessels.  Besides, the designed objective 

function, based on the combination of the focal loss and RMI loss, may help the network cope with 

data imbalance and preserve the structural similarity between the segmented vessels and the 

ground truth. 

  As presented in Figure 7-6, the probability map shows diffused probability in the 3D U-

Net+DS image beyond the boundary of the blood vessels. For this case, the haze in the probability 

map is not sufficiently strong to result in a difference in blood vessel segmentation between the 

3D U-Net+DS vs. 3D U-Net+DS+AG, mainly because there is still strong contrast between the 

blood vessel and surrounding environment. However, the contrast between blood vessels and some 

parts of the tissues, e.g., those that are modulated with coil intensity or close to the fat component 

of the bones, is low, and an attention mechanism could potentially be helpful in extracting the 

vessels from these regions.  
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We demonstrated our network's ability to segment thin vessels in some regions of the lower 

extremities that were not initially identified by human experts. Based on the volume-rendered 

images presented in Figure 7-8(g), the segmented vessels by our proposed method labeled 

additional structures as blood vessels that were not labeled in the initial manual segmentation (Fig. 

7.8(h)). An expert radiologist subsequently evaluated the blood vessel masks and confirmed that 

the aforementioned extra structures were blood vessels. This finding highlights the potential 

advantages of well-validated machine learning-based segmentation methods compared to manual 

segmentation – it offers the possibility to reduce human errors in tedious and labor-intensive tasks 

or in applications where subtle findings may elude the human visual perception.  

Although the inclusion of the RMI loss in the proposed network's training stage increases the 

mean precision score from 0.7509 to 0.7658 (Tab. 7.2) for the evaluation sets, it is still relatively 

lower than the recall score. Two potential reasons may explain the lower precision score compared 

to the recall score in the proposed blood vessel segmentation network. First, we weighed the recall 

more than precision in our proposed network's loss function. Based on Table 7-1, higher β results 

in higher recall scores and lower precision scores. Second, the manual ground truth was not perfect 

and missed some smaller blood vessels.         

We used additional dynamic MRA datasets in the artery/vein separation step of our pipeline 

to initialize arterial seeds for region growth in the high-resolution steady-state images. In contrast 

to the first pass gadolinium-enhanced MRA, there is an appreciable signal intensity difference 

between arteries and veins; there is no observable contrast between arteries and veins in our steady-

state FE-MRA. Therefore, if dynamic MRA datasets were not to be used, several other potential 

approaches could be employed for artery-vein separation for our FE-MRA: 1) Identify structural 

differences between the arterial tree and venous structure and separate them based on the 
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geometrical information. Such an approach could be susceptible to failure due to the wide range 

of geometrical variations across a large patient population. 2) Manipulate the MRI acquisition 

signal in the high-resolution FE-MRA scan and sensitize the signal to inherent characteristics of 

the veins and arteries, such as blood flow direction or oxygen level228-230. It is possible to combine 

these approaches with our segmentation network to achieve artery/vein separation without the need 

for time-resolved images. 

When used clinically, FE-MRA quality could sometimes, although rarely, be degraded by 

motion artifacts. Patients requiring diagnostic FE-MRA might feel pain in their lower extremities 

due to their underlying clinical condition. This could result in the patient's inability to hold still for 

an extended time and, consequently, motion artifacts in the high-resolution images. In this scenario, 

a repeat scan is currently required to obtain motion artifact-free images. We view this challenge as 

a potential opportunity for our segmentation method to extract the vasculature from artifact-

degraded data as a future direction of our work. We aim to add a rigid motion artifact to the training 

input and train the network to extract the vessels from motion-contaminated data in future 

feasibility studies, with eventual testing on real-life motion-contaminated data.   

At our institution, the clinical workflow for these vessel segmentation tasks typically requires 

substantial manual input and hours of time for each case. The proposed platform substantially 

reduced the data processing time from several hours to less than 4 minutes. Due to the subjective 

nature of manual labeling and its dependency on the physician's experience and knowledge, the 

proposed platform also has the potential to reduce inter-observer variability.   

 While the proposed technique used FE-MRA images of peripheral lower extremities, we 

speculate the segmentation and discrimination approach could be applied to any peripheral lower 
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extremity MRA images acquired at steady-state using a similar intravascular (blood pool) contrast 

agent. Readers interested in the off-label diagnostic ferumoxytol use in MRI are referred to several 

excellent published review papers231,232. With 6.5 million Americans over the age of 40 having 

PAD, we expect this work to have high clinical relevance. 

   Conclusion 

In conclusion, by taking advantage of the time-resolved images and 3D convolutional neural 

network, a blood vessel segmentation and artery/vein separation platform was successfully 

implemented and evaluated using clinically obtained FE-MRA images. The proposed method for 

segmentation of peripheral arteries and veins from lower extremity FE-MRA images achieved its 

task in less than 4 minutes, whereas several hours may be needed by an expert radiologist 

accomplishing the same task. 
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Chapter 8 Conclusion 

In this dissertation, we presented several deep neural network-based applications in CMRI. 

More specifically, one method was discussed in Chapter 3 to accelerate the cardiac cine imaging, 

and two methods were discussed in Chapters 4 and 5 to reduce the respiratory motion artifacts in 

2D and 3D cardiac cine imaging. Chapter 6 discussed one method to speed up the T1/T2 

computation in cardiac imaging, and finally, in Chapter 7, we discussed one method to segment 

the peripheral arteries and veins from the MRA images in the lower extremities. Although we 

designed these methods with application specificity and clinical utility in mind, they are applicable 

to many other applications that are similar to ours. We tried to implement these particular 

applications and improve their performance and build ideology for addressing the potential 

limitations that may occur in future applications. This chapter briefly summarizes the technical 

developments of the applications mentioned in this dissertation and then describes the potential 

directions for future works.       

   Summary of Technical Development  

8.1.1 Deep learning based Dynamic Cardiac Magnetic Resonance Image Reconstruction 

Pipeline 

In Chapter 3, we implemented a neural network-based 2D cardiac cine MR reconstruction 

pipeline to speed up the imaging process. The designed neural network used the redundant 

temporal dimension information to learn the more effective Spatio-temporal regularizer. Also, data 

consistency was included in the reconstruction platform via the hard replacement scheme. Instead 

of focusing on specific imaging orientations, short-axis (SA), or horizontal long axis (HLA), we 

included the complete anatomical cardiac exams dataset in the training stage to increase the 
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diversity of the dataset. Moreover, we prepared the data in a way to be consistent with the actual 

scanner’s outputs. We also introduced a sampling strategy that can effectively cover the k-space 

through the cardiac frames and minimize the eddy current-related artifacts. The reconstruction 

platform achieved the higher acceleration factors, e.g., 8X-10X, with minimal loss of the cardiac 

structures. Compared to the previously developed reconstruction pipeline [7], this pipeline 

includes the temporal dimension and faster data consistency module and the efficient 

undersampling strategy, which enables achieving the higher acceleration factors.  

8.1.2 Retrospective Respiratory Motion Correction in Cardiac Cine MRI Reconstruction 

In chapter 4, we implemented a deep neural network-based platform to compensate for the 

respiratory motion in the free-breathing cardiac cine MRI. Conventional deep neural network-

based methods usually require paired data to be trained. However, accessing the paired data in 

cardiac cine MRI, i.e., one without breathing artifact and another with the breathing artifact, is 

almost impossible.  In this work, we used the potential of the autoencoder architecture to 

implement a neural network that does not require paired data for the training stage. We first tested 

the neural network on the simulated dataset, analyzed the motion compensation accuracy, and 

reported the quantitative metrics. After confirming the motion compensation accuracy, we trained 

and tested the neural network on the real datasets. We showed that the proposed approach could 

reduce the respiratory motion artifact and achieve a quality that does not significantly differ from 

the breath-hold acquisition. The proposed approach potentially can remove the breath-hold 

assumption in the clinical cardiac cine MRI, thus increasing patient comfort; besides, since it does 

not require breath-hold, it can also decrease the duration of the clinical exam.    
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8.1.3 Temporally Aware Volumetric GAN-based 4DMR Image Reconstruction and 

Respiratory Motion Compensation 

In chapter 5, we implemented a neural network-based approach to compensate for the 

respiratory motion and reconstruct the highly undersampled dataset in 3D dynamic cine cardiac 

MRI. We incorporated a novel temporally aware objective function as an extra regularizer and 

adversarial loss, L1 and SSIM loss functions to reduce flickering artifacts through the cardiac 

phases with no explicit need to use the multiple cardiac phases as the inputs for the network. 

Besides, we addressed the well-known challenges of training GANs for high-dimensional images 

by adopting an effective progressive training strategy based on starting the training from the low-

resolution volumetric images and gradually increasing the resolution to reach the original 

volumetric image size. We compared the network's performance in the relatively large cohort of 

CHD patients against the existing methods. It is worth mentioning that the designed neural network 

can reconstruct at least 2X more undersampled 3D dynamic cine cardiac data with significantly 

higher image quality and lower artifact compared to the conventional SG WV method. 

8.1.4 Fast and accurate quantification of myocardial T1 and T2 values using Deep learning 

Bloch Equation Simulations (DeepBLESS) 

In this chapter, we implemented a neural network to accelerate the myocardial T1/T2 values 

calculation. Although BLESSPC can generate accurate T1/T2 maps for both conventional widely-

used Cartesian-based sequences and radial sequences, it is slow. We replaced this intensive 

computation with a neural network to speed up the T1/T2 maps generation. We used the simulated 

datasets to train the neural network and validated and tested the performance on the real acquired 

datasets. We showed that, for the radial T1-T2 sequence, the proposed method could achieve 

18,000 times acceleration while achieving similar accuracy and precision compared to BLESSPC.    
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8.1.5 Automatic Peripheral Artery and Vein Segmentation 

In this chapter, we implemented a pipeline to automate the segmentation of the peripheral 

arteries and veins in ferumoxytol-enhanced MR angiography. We first divide the segmentation of 

the arteries and veins into two parts. In the first part, we implemented a convolutional neural 

network to segment the whole vasculature from the lower extremities. In the second part, we 

separate the arteries from the veins using a conventional region growing algorithm and take 

advantage of the extra information, i.e., time-resolved images. In the blood vessel segmentation 

task, we performed relatively extensive evaluations to understand better the different modules' 

roles, such as the attention gates, deep supervision, etc. The proposed method for segmentation of 

peripheral arteries and veins from lower extremity FE-MRA images can complete its task in less 

than 4 minutes, whereas several hours may be needed by an expert radiologist accomplishing the 

same task. 

   Future outlook 

8.2.1 Deep learning based Dynamic Cardiac Magnetic Resonance Image Reconstruction 

Pipeline 

In this work, we implemented and tested the reconstruction pipeline in a retrospective manner. 

In order to use this application in practice, we need to implement it on the scanner, which requires 

changing the undersampling pattern of the dynamic cardiac cine imaging pulse sequence and 

replacing the reconstruction part of the scanner with the trained network. Such translation, 

although it seems trivial from the technical perspective, can pave the way for the radiologists and 

MR technicians to assess the quality of the reconstructed images, and possibly such assessments 

might provide proper feedbacks to us to know more about the performance of the neural network 

in the practical scenarios.    
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8.2.2 Retrospective Respiratory Motion Correction in Cardiac Cine MRI Reconstruction 

In this work, we mainly focused on finding a way to remove the assumption of accessing the 

paired data for respiratory motion correction in cardiac cine MRI. One alternative way that we 

could consider for future studies is to simulate the realistic respiratory motion and its induced 

artifact in cardiac cine MRI. Such an approach will enable us to train the network on a large dataset 

in a supervised manner and test the realistically respiratory motion-contaminated images. Another 

direction that might be relevant to follow is taking advantage of more sources of information such 

as channel and temporal dimensions and the external motion sensor such as a belt or internal 

motion surrogates.    

8.2.3 Temporally Aware Volumetric GAN-based 4DMR Image Reconstruction and 

Respiratory Motion Compensation 

In this work, we did not include the multi-channel information in our network, mainly because 

of the large dimensionality challenges in training the network. Probably a practical approach for 

including the multi-channel information in the high dimensional network is to divide the problem 

into several subproblems, which can be handled with the available GPUs. Another possibility for 

future studies is to test the proposed method and assess a large cohort of patients under free-

breathing conditions without anesthesia. Although we trained the proposed method on CHD 

patients who underwent cardiac MRI under anesthesia, it showed promises for a patient with 

breathing irregularity and a patient during spontaneous free-breathing without anesthesia. So, 

thorough evaluations are warranted before it can be applied to adult patients during free-breathing. 
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8.2.4 Fast and accurate quantification of myocardial T1 and T2 values using Deep learning 

Bloch Equation Simulations (DeepBLESS) 

In this work, the implemented DeepBLESS method, although it achieved promising results, 

might be susceptible to motion, particularly in patients who could not hold their breath 

appropriately. Because the developed network uses the series of pixel’s values to calculate the 

T1/T2 values, in the presence of the motion, it can result in inaccurate T1/T2 calculations. For 

future studies, working on the registration methods could potentially solve this issue.  

8.2.5 Automatic Peripheral Artery and Vein Segmentation 

In this work, we used an additional dynamic MRA dataset in our pipeline's artery/vein 

separation step to initialize arterial seeds for region growing algorithm in the high-resolution 

steady-state images. To remove the assumption of the availability of the dynamic MRA dataset, 

we proposed several other potential directions for the artery-vein separation stage: 1) Identify 

structural differences between the arterial tree and venous structure and separate them based on 

the geometrical information. 2) Manipulate the MRI acquisition signal in the high-resolution FE-

MRA scan and sensitize the signal to inherent characteristics of the veins and arteries, such as 

blood flow direction or oxygen level. 
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APPENDIX I SSIM 

In general, SSIM quality metrics is comprised of the multiplication of the three terms, 

including the luminance term 𝐿(. ) , contrast term 𝐶(. ) , and structural term 𝑆(. ) . SSIM per 

pixel/voxel between two 2D/3D images A and B can be formulated as Equation (A-1)233.   

𝑆𝑆𝐼𝑀(𝑥, 𝑦)  =  [𝐿(𝑥, 𝑦)]𝛼[𝐶(𝑥, 𝑦)]𝛽[𝑆(𝑥, 𝑦)]𝛾                                                                         (A-1)                           

Where A and B are inputs to all functions, but they are omitted for the sake of clarity .The 𝑥 and 

𝑦 are the pixel/voxel intensity values from the input images.  

Luminance, contrast, and structural terms can be defined as Equations (A-2) to (A-4):  

 𝐿(𝑥, 𝑦) =
2𝜇𝑥𝜇𝑦+𝐶1

𝜇𝑥
2+𝜇𝑦

2+𝐶1
                                                                                                                    (A-2)                       

𝐶(𝑥, 𝑦) =
2𝜎𝑥𝜎𝑦+𝐶2

𝜎𝑥
2+𝜎𝑦

2+𝐶2
                                                                                                                   (A-3)                          

𝑆(𝑥, 𝑦) =
𝜎𝑥𝑦+𝐶3

𝜎𝑥𝜎𝑦+𝐶3
                                                                                                                       (A-4)                               

Where μx, μy, σx, σy, and σxy are the local means, standard deviations, and cross-covariance. By 

considering α = β = γ = 1, and C3 = C2/2, which has been proposed by Wang et al.233, the original 

SSIM quality metric (Eq. A-1) can be simplified to Equation (A-5).       

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =  
2𝜇𝑥𝜇𝑦+𝐶1

𝜇𝑥
2+𝜇𝑦

2+𝐶1
×

2𝜎𝑥𝑦+𝐶2

𝜎𝑥
2+𝜎𝑦

2+𝐶2
                                                                                          (A-5)                            

Where C1 and C2 are two small constants to stabilize the division with a weak denominator, local 

statistics are computed by applying the 2D/3D Gaussian filter with standard deviation σG. 
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Finally, the mean of the calculated SSIM map, a scalar value, can be used as a similarity metric 

between two given 2D/3D images. Equation 6 shows the mean of the SSIM map, which commonly 

used as an image quality assessment metric or loss function in the neural networks: 

𝑀𝑆𝑆𝐼𝑀(𝐴, 𝐵)  =  
1

𝑁
∑ ∑ 𝑆𝑆𝐼𝑀(𝑥, 𝑦)𝑦𝑥                                                                                       (A-6) 

𝑁 is the number of the pixels/voxels inside the input images.  

In our work, we used SSIM as the part of the loss function in the 3D U-Net and the generator 

part of the GANs. To calculate the SSIM for the 2D GAN, C1 =0.0001 and C2 =0.0009, 2D 

Gaussian filter with window size = 11×11, and σG=1.5 were used. To calculate the SSIM for the 

3D networks including TAV-GAN, Temporal-GAN, Volumetric-GAN, and 3D U-Net, C1 

=0.0001 and C2 =0.0009, 3D Gaussian filter with window size = 11×11×11, and σG=1.5 were used.     
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APPENDIX II 2D-GAN 

Network architecture. The detailed network architecture for 2D GAN is shown in Figure A-1. 

The generator is a 2D U-Net which consists of two paths: (I) the encoder path, which includes four 

downsampling blocks; (II) the decoder path, which contains four up-sampling blocks. Each block 

has two convolutional layers, with each layer containing learnable convolution filters followed by 

the non-linear activation function Leaky ReLU (LReLU). Convolutional layers in the first block 

of the network contain 64 convolutional kernels, and the number of kernels doubles in each deeper 

block. Down-sampling and up-sampling blocks in the encoder and decoder paths are connected 

via average pooling (strides = 2) and up-sampling (strides = 2). A skip connection is used to pass 

the data between each pair of same-sized up-sampling and down-sampling blocks. The 

discriminator is a 2D binary classifier which contains four downsampling blocks.  Each block 

contains two convolutional layers in which each convolutional layer contains convolutional 

kernels followed by LReLU. The starting number of channels used in the discriminator was 64, 

which was doubled in each deeper block. The last two layers are the fully connected layer followed 

by dropout and LReLU, and a single decision fully connected layer with a sigmoid activation 

function. Discriminator takes the magnitude of the generated images to decide whether it is 

“generated” or “clean” images. The input and output of the generator for the 2D GAN in the 

training stage is a complexed-valued image patch with size 320×192×2 (real and imaginary), and 

magnitude-valued image patch with size 320×192×1, respectively.     
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Figure A-1. The detailed network structure for 2D GAN. The generator part is a 2D U-Net with 4 

downsampling blocks and 4 up-sampling blocks. The discriminator part is a 2D binary classifier with four 

downsampling blocks. The number of the convolutional kernels and type of the activation functions are 

reported in the Figure.  Network training was performed on the image patches with size 320×192.  

 

Loss function. The total loss function of the generator part of the 2D GAN 𝐿
𝐺2𝐷
𝑇𝑜𝑡𝑎𝑙(. ) is a linear 

combination of the adversarial loss 𝐿
𝐺2𝐷
𝑎 (. ), normalized L1 norm, and SSIM2D. The total loss 

function of the discriminator 𝐿
𝐷2𝐷
𝑇𝑜𝑡𝑎𝑙(. ) is an adversarial loss 𝐿

𝐷2𝐷
𝑎 (. ). Equations (A-7) and (A-8) 

formulated the generator’s objective function and the discriminator’s objective function, 

respectively:  

𝑚𝑖𝑛
𝜃

𝑔2𝐷
 𝐿

𝐺2𝐷
𝑇𝑜𝑡𝑎𝑙 (𝑥𝑖,𝑡,  𝐺2𝐷(𝑥̃𝑢

𝑖,𝑡; 𝜃𝑔2𝐷)) = 𝑚𝑖𝑛
𝜃

𝑔2𝐷
 𝛾 [𝐿

𝐺2𝐷
𝑎 (𝐷2𝐷(𝑥𝑖,𝑡; 𝜃𝑑2𝐷),  𝐺2𝐷(𝑥̃𝑢

𝑖,𝑡; 𝜃𝑔2𝐷))] +

 𝜆 [
1

𝑁
‖𝑥𝑖,𝑡 − 𝐺2𝐷(𝑥̃𝑢

𝑖,𝑡; 𝜃𝑔2𝐷)‖
1

] − 𝜁 [𝑆𝑆𝐼𝑀2𝐷 (𝑥𝑖,𝑡, 𝐺𝑣(𝑥̃𝑢
𝑖,𝑡; 𝜃𝑔2𝐷))]                                       (A-7)                                                                      
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𝑚𝑖𝑛
𝜃

𝑑2𝐷
 𝐿

𝐷2𝐷
𝑇𝑜𝑡𝑎𝑙 (𝐷2𝐷(𝑥𝑖,𝑡; 𝜃𝑑2𝐷 ),  𝐺2𝐷(𝑥̃𝑢

𝑖,𝑡; 𝜃𝑔2𝐷)) =

𝑚𝑖𝑛
𝜃

𝑑2𝐷
𝛾 [𝐿

𝐷2𝐷
𝑎 (𝐷2𝐷(𝑥𝑖,𝑡; 𝜃𝑑2𝐷),  𝐺2𝐷(𝑥̃𝑢

𝑖,𝑡; 𝜃𝑔2𝐷))]                                                                      (A-8) 

Where 𝑥̃𝑢
𝑖,𝑡

 , 𝑥𝑖,𝑡 stands for the aliased and respiratory motion-corrupted, and un-aliased and free 

of the motion 2D image patches for the 𝑡𝑡ℎ cardiac phase of the 𝑖𝑡ℎ patient case. 𝛾,  𝜆, and 𝜁 are 

the hyperparameters that control the contribution of the adversarial loss, spatial sparsity and local 

patch wise similarity. 𝑁 is the normalization factor and is equal to the number of the pixels inside 

𝑥𝑖,𝑡.                                                                                      

Training procedure. The training process for the 2D GAN is similar to the training process of 

the TAV-GAN. As shown in Figure A-2, the training process consists of five stable phases and 

four transition phases. The training started with a first stable phase. Only the layers with the lowest 

resolution are built and trained for an epoch in the first stable phase. Then first transition phase is 

started where new layers are added gradually to the lowest resolution layer to transit to the second 

stable phase. It is important to emphasize that as shown in Figure A-2, after each transition 

resolution of the image is doubled. In the transition phase, new layers were added with weight 1-

α to the existing layers with weight α. The parameter α was linearly decreased from 1 to 0 through 

the iterations of the epoch's number. For instance, from the beginning of the transition phase (α=1), 

the newly added layers were getting zero weight, and as α decreases, the new layers had more 

weight until the part of the existing layers were faded (α=0). Once α reached 0, the transition phase 

was finished, and the next stable phase was started. These stable and transition phases were 

alternated while more layers were added progressively until the stable phase 5 was finished, which 

concluded the training process. Figure A-3 shows the first stable and transition phases for the 2D 

GAN. For the first to fourth stable and transition phases, the network is trained for an epoch. The 
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number of the required epochs for the last stable phase is decided empirically. Two criteria for 

stopping the training process were considered: 1) outputs' quality through the training and 2) 

equilibrium state of the adversarial loss for the generator and the discriminator.  

                                 

 

Figure A-2. Progressive training strategy for 2D GAN. Intuitively, building the network with few 

layers with low resolution and training them and gradually adding more layers to reach the high-resolution 

images can alleviate the training process of the GANs. The training procedure contains five stable phases 

and four transition phases. As can be seen, in the stable phase 1, only layers with the lowest resolution were 

built. In the transition phase 1, new layers were gradually added to the old layers to reach stable phase 2. 

Parameter α controls the rate of gradual pointwise addition. It linearly reduced from 1 to 0 through the 

iterations of the training in each transition phase. Sample of transition and stable phases were explained in 

Figure A-3. This alternation between stable and transition phases was continued until to reach to the last 

stable phase 5. For the last stable phase, training was performed for the number of epochs. The number of 

the required epochs was decided based on the quality of the test results in the training stage, and the 

equilibrium state of the generator loss and the discriminator loss.      
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Figure A-3. Illustration of the stable and transition phases of the 2D GAN in this work. For the sake 

of simplicity, we only showed the first stable and transition phases. Only layers with the lowest resolution 

were built for the generator and the discriminator in the first stable phase. The input complex image was 

downsampled four times and fed to the generator. The first convolution layer in the generator and the 

discriminator is increasing the channel dimensions of the input. The network was trained for an epoch in 

the first stable phase. Then, in the first transition phase, layers with twice resolutions were added gradually 

to the pre-trained layers. As can be seen, new layers were added to the generator and the discriminator 

progressively. The parameter α controls the addition process. It is linearly decreasing from 1 to 0 through 

all iterations in the epochs. We trained this phase only for an epoch. To make the idea clear, for α=1, we 

are at the beginning of the transition phase. For α=1, the graph for the generator and the discriminator is the 

same as the graph in the stable phase 1. Suppose α=0; it means that the first transition phase is finished, and 

training will enter the second stable phase. By considering α=0, it can be seen that adapting layers in the 

first stable phase were faded, and new layers with higher resolution were added to the graph.    

 

Training Parameters. For the 2D GAN, 𝛾 = 1,  𝜆 = 0.6 and 𝜁 = 0.4 are selected based on the 

limited search as the weight of the adversarial loss, normalized L1-loss, and SSIM2D loss. Adam 

optimizer was used with the momentum parameter β =0.9, mini-batch size= 64, an initial learning 

rate of 0.0005 for the generator, and an initial learning rate 0.00005 for the discriminator. Weights 

of the network are initiated with random normal distributions with a variance of σ = 0.01 and mean 
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µ=0. The training was performed with the Pytorch interface on a commercially available graphics 

processing unit (GPU) (NVIDIA Titan RTX, 24GB RAM).  
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APPENDIX III Data-Preparation 

As shown in Figure A-4 (b), each ROCK MUSIC2 scan continuously acquired NL Cartesian 

k-space lines grouped in quasi-spiral interleaves in the Ky-Kz plane that are arranged in a golden-

angle manner, shown in Fig. A-4 (a). For each ROCK MUSIC raw data in Group A, a pair of 

image volumes were reconstructed for network training: the reference image and the highly 

accelerated, aliased and respiratory motion-corrupted image. To reconstruct the reference image, 

data were binned into 9-12 cardiac phases of the end-expiration respiratory state by using the 

cardiac and respiratory self-gating signal derived from the k-space center lines as shown in Figure 

A-4(b) and reconstructed based on Equation (A-9)116,234:  

𝑑̂ = argmin
𝑑

∑ ‖𝐷𝐹𝑆𝑖𝑑 − 𝑚𝑖‖2
2𝑁

𝑖=1 + 𝜆1‖𝑅1𝑑‖1 + 𝜆2‖𝑅2𝑑‖1                                                   (A-9)  

Where F, Si, and D are the Fourier transform, sensitivity maps, and undersampling mask, 

respectively. d is the multiphase images, mi is the acquired undersampled k-space from each of 

the N receiver coil channels. R1 is the spatial wavelets and R2 is the temporal total variation. 

Hyperparameters 𝜆1 and 𝜆2 control the weight of the regularizers R1 and R2, respectively. The k-

space under-sampling factor after cardiac and before respiratory motion SG ranged 2.8X-7.9X.  To 

reconstruct the “highly accelerated” image volume, as shown in Fig. A-4 (c), we extracted the first 

𝑀 =  𝑚𝑖𝑛 (50000, 𝑁𝐿/2) k-space lines out of the data, resulting in a further retrospective under-

sampling of the acquired data by a factor of at least 2. Because the quasi-spiral k-space interleaves 

were arranged in a golden-angle manner, the k-space sample uniformity is maintained even when 

the second half (or more) of acquired data was discarded. The total k-space under-sampling factor 

was 10.7X-15.8X for the “highly accelerated” image volumes.  
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Figure A-4. Data preparation process: (a) shows the ROtating Cartesian K-space (ROCK) sampling 

strategy used to acquire the data. (b) shows the SG CS-WV reconstruction process to create the clean 

reference volumetric images. (c) shows the zero-filled reconstruction process to create the aliased, 

respiratory motion-corrupted images. As shown in (c), the first half of the acquired lines (if NL<100000 

lines) or the first 50000 of the acquired lines (if NL>100000) were used to create the inputs for training and 

testing the network. Also, only a self-cardiac gating signal is used to sort the data to multiple cardiac phases. 

No respiratory motion gating was performed when generating the input images in (c). 

We note that, although the data were retrospectively under-sampled, we expect our data to 

accurately represent a prospectively under-sampled in vivo imaging scenario with the same under-

sampling factor, because the prospective data would have been acquired using the exactly the same 

sequence timing and temporal order for the k-space lines and quasi-spiral interleaves. We 

subsequently binned the resulting highly accelerated k-space data into appropriate cardiac phases 

using the cardiac-gating signal, zero-filled each cardiac phase data, performed an inverse Fourier 

transform, and finally combined the resulting multi-coil images to a single complex coil image 

using fast coil combination algorithm. The highly accelerated images, in the absence of any 

compressed sensing reconstruction and respiratory motion gating, had significant under-sampling 

aliasing artifacts and respiratory motion artifacts. Both the reference images and the highly 

accelerated images were normalized by subtracting the complex mean within the image volume 
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and dividing by the absolute value of twice the standard deviation of the same volume. The highly 

accelerated image volumes were formatted as individual 4D tensors with its complex values 

expressed as real and imaginary channels. The magnitude of the normalized reference images were 

formatted as a 4D tensor as well with a single (magnitude) channel. To minimize the background 

effect, 10 voxels from the edge of the tensors were cropped. To prepare for network training, paired 

patches, of size 64×64×64×2 from the highly accelerated images and of size 64×64×64×1 from 

the reference images, were extracted randomly from the cropped tensors and used as an input and 

target, respectively, in the training phase of the 3D U-Net, the Volumetric-GAN, and the TAV-

GAN. For training the Temporal-GAN, the input was formatted as a real-valued 4D tensor with 

the magnitude of the three sequential cardiac phases t-1, t, t+1 in the channel dimension of the 

tensor, and the training target was the magnitude of the reference image corresponding to cardiac 

phase t. Subsequently, paired patches with sizes 64×64×64×3 for the input, and 64×64×64×1 for 

the target 4D tensor, was extracted randomly and used as an input and target in the training phase 

for the Temporal-GAN. It is worth noting that in the Temporal-GAN, to prepare the data for the 

first and last cardiac frames, cardiac frames were assumed cyclic. For instance, for the last cardiac 

frame t as the target, three aliased and respiratory corrupted cardiac frames t-1, t, 1 were stacked 

in the channel dimension as the Temporal-GAN input. 

For 2D GAN, the reference images and the highly accelerated images were normalized slice-

by-slice by subtracting the complex mean within the image slice, followed by division by the 

absolute value of the standard deviation of the slice. The input and target of the generator for the 

2D GAN in the training stage was cropped from the slice-by-sliced normalized highly accelerated 

images and reference images  and formatted as a complexed-valued tensor with size 320×192×2 

(real and imaginary), and a magnitude-valued tensor with size 320×192×1 , respectively.        
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For the testing data sets in Groups B1 and B2, we reconstructed both the reference image 

volumes and the highly accelerated image volumes as well. Although data in these Groups were 

not used in network training, the reference images were used in the network performance 

evaluations and comparisons.  
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APPENDIX IV Sharpness Analysis 

The normalized Tenengrad focus measure100,101 was used to quantify the sharpness of the 

reconstructed respiratory motion-corrected results with different networks. In general, to compute 

the Tenengrad focus measure, the image is convolved with a Sobel operator, and the square of all 

the magnitudes greater than a threshold is reported as a focus measure. Equation (A-10) formulates 

the Tenengrad measure:  

𝐹𝑇𝑒𝑛𝑒𝑛𝑔𝑟𝑎𝑑 =  ∑ [𝐼(𝑖, 𝑗) ∗∗ 𝑆]2
𝑖,𝑗 + [𝐼(𝑖, 𝑗) ∗∗ 𝑆𝑇]2 ,                                                                (A-10)              

Where 𝐼(𝑖, 𝑗) shows the image and 𝑆 is the Sobel operator: 𝑆 =  [
1 0 −1
2 0 −2
1 0 −2

].  

Because of the difference in the size of the testing cases, the mean of the Tenengrad focus 

measure without threshold was calculated and reported as a sharpness score of an image. To 

calculate the results' sharpness score from different methods, we first cropped the cardiac region, 

and then we computed the mean of the Tenengrad focus measure for each slice of the cropped 

region and normalized them based on the calculated mean of the Tenengrad measure for the 

corresponding slice of the cropped region in the reference SG CS-WV images. Then, the 

normalized values were averaged over the slices inside a cropped cardiac region and cardiac phases 

to represent a single sharpness number for each case. We excluded the 2D GAN in our sharpness 

analysis because of its inferior image quality with more residual artifacts than other methods. 
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APPENDIX V 3D spatiotemporal GAN 

Purpose: The goal of this study is to compare a 3D spatiotemporal GAN against the Temporal-

GAN qualitatively and quantitatively.  

Method: A 3D spatiotemporal GAN was trained based on the ROCK MUSIC data in this work. 

To circumvent limitations in GPU memory, we first performed a Fourier Transform on the ROCK 

MUSIC data in the readout direction, to divide the 4D (3D spatial + cardiac phase) data into a 

contiguous series of 2D dynamic slices in the readout direction, each slice having two spatial 

dimensions and one temporal dimension. We included 9 cardiac phases for each 2D dynamic slice. 

The same Fourier Transform in the readout direction was performed for both the highly-

accelerated motion-corrupted datasets and the SG CS-WV reference datasets. We subsequently 

trained a 3D spatiotemporal GAN that takes these individual 2D dynamic slices as the input such 

that the GPU memory is not saturated. This 3D spatiotemporal GAN  takes advantage of 2D spatial 

information and the temporal information, i.e., redundant information through the sequential 2D 

cardiac frames, to recover the clean images from the aliased and respiratory motion affected 

images. The network structure for the 3D spatiotemporal GAN is similar to the Temporal-GAN, 

except that the last convolutional layer of the network has nine kernels. For the 3D spatiotemporal 

GAN, a combination of two-loss functions including the content loss ( λ = 0.5,  ζ = 0.3), and 

adversarial loss  (γ = 1) were considered. The progressive training strategy as described in the main 

manuscript was used to train the network. The network's trainable weights were initiated with 

random normal distributions with a variance of σ = 0.01 and mean µ=0. For the 3D spatiotemporal 

GAN, the Adam optimizer was used with the momentum parameter β =0.9, mini-batch size= 16, 

an initial learning rate of 0.0001 for the generator, and an initial learning rate of 0.00001 for the 
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discriminator. To evaluate the image quality of the 3D spatiotemporal GAN, we randomly selected 

7 cases from Group B1 and Group B2, and asked two blinded radiologists to rank reconstructed 

dynamic image volumes using either the Temporal-GAN and the new 3D spatiotemporal GAN. 

Results: Figure A-5 shows the qualitative reconstruction and respiratory motion correction 

results for the two patient cases drawn from the datasets Group B1 and Group B2 for the three 

techniques, including the (a)Temporal-GAN, (b) 3D spatiotemporal GAN, and (c)2D GAN. The 

first row of each subpanel in Figure A-5 shows a coronal section of the results, and the second and 

third rows show the zoomed cardiac region and the temporal difference maps between two 

sequential cardiac frames. Based on the temporal difference maps in both patient cases, the 

flickering artifacts were substantially reduced in both Temporal-GAN and the 3D spatiotemporal 

GAN in comparison to the 2D GAN. Both Temporal-GAN and the 3D spatiotemporal GAN had 

better performance in removing the aliasing and respiratory artifacts from the image than the 2D 

GAN. Based on blinded evaluations of 7 cases, both radiologists ranked the Temporal-GAN higher 

than the 3D spatiotemporal GAN in 5 cases, and they were split in the remaining two cases (i.e. 

one ranked Temporal-GAN higher, and one ranked 3D spatiotemporal GAN higher in these two 

cases). SSIM (±SD), nRMSE (±SD)) which were calculated based on the testing dataset Group B1 

for the Temporal-GAN, 3D spatiotemporal GAN, and the 2D GAN was (0.746±0.0495, 

0.036±0.0072), (0.682±0.061, 0.053±0.010), and (0.481±0.0594, 0.072±0.0138), respectively. 

The mean of the normalized Tenengrad focus measure (±SD) for the reconstructed and respiratory 

motion-corrected results obtained by the Temporal-GAN and the 3D spatiotemporal GAN was 

0.702±0.1408 and 0.762±0.146, respectively. 
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Figure A-5. Qualitative results obtained by three techniques for two patient cases selected from the 

testing datasets Group B1 and Group B2. It shows the reconstruction and respiratory motion correction 

results for the Temporal-GAN (a, d), 3D spatiotemporal GAN (b, e), and 2D GAN (c, f). The magnified 

heart region is shown for each image (2nd row of each panel). The bottom row of each panel shows the 

temporal difference maps between two sequential cardiac frames. Both Temporal-GAN and 3D 

spatiotemporal GAN achieved better results regarding aliasing and respiratory motion and flickering 

artifacts reduction than the 2D GAN. 
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APPENDIX VI Cardiorespiratory gated inputs vs. the 

cardiac gated inputs 

Purpose: In this study, we sought to investigate the difference between TAV-GAN trained 

based on 1) cardiac-gated zero-filled images as input and cardiorespiratory-gated CS 

reconstruction as a reference, and the TAV-GAN trained based on 2) cardiorespiratory-gated zero-

filled images as input and cardiorespiratory-gated CS reconstruction as a reference.    

Method: As illustrated in the main manuscript, TAV-GAN was trained based on the cardiac-

gated zero-filled images as input and cardiorespiratory-gated CS reconstruction images as the 

target. Another TAV-GAN with the same training procedure and parameters was trained based on 

the cardiorespiratory-gated zero-filled images as input and cardiorespiratory-gated CS 

reconstruction images as the target. The performance of two TAV-GANs was compared 

qualitatively with regard to regular respiratory motion artifact and irregular respiratory motion 

artifact.   

Results: Figure A-6 shows the qualitative results obtained by SG CS WV (a, d), TAV-GAN 

trained based on the cardiac-gated zero-filled images as input (b, e), and TAV-GAN trained based 

on cardiorespiratory-gated zero-filled images as input (c, f) for two representative cases selected 

from Group B1 and Group B2. For the patient with regular breathing, there was no apparent 

difference between the two TAV-GANs – both of them provided good image qualities. For the 

Group B2 patient, the TAV-GAN trained based on the cardiac-gated zero-filled images as input 

provided better overall image quality.  
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Figure A-6. Qualitative representative results of two unseen cases from Group B1 and Group B2. (a-

c) show the un-aliased and respiratory artifact-corrected images from a patient with a regular respiratory 

pattern during scanning, obtained by SG CS-WV, TAV-GAN (trained based on cardiac-gated zero-filled 

images as the input), and TAV-GAN (trained based on cardiorespiratory gated zero-filled images as the 

input), respectively. (d-f) show images using the same techniques from a patient with irregular respiratory 

motion. The TAV-GAN trained based on the cardiorespiratory gated zero-filled images as the input would 

reduce the respiratory and aliasing artifacts in the case with regular breathing, but it seems in the case with 

irregular breathing, its performance dropped substantially. In each panel, the 2nd rows are amplified images 

of the heart region, and the third rows are temporal difference maps for two sequential cardiac phases.   

Discussion: For the presented test results (See Fig. A-6) from Group B1, which had regular 

breathing and was similar to the data in training datasets (Group A), both TAV-GANs showed 

similar performance. However, the TAV-GAN trained based on the cardiorespiratory gated zero-

filled images, could not provide satisfactory results in the presence of irregular breathing (See Fig. 

A-6; Group B2). The TAV-GAN trained based on the cardiac gated zero-filled images as the input 

shows more robustness in the testing stage on the data with irregular breathing. We speculate that 

when the TAV-GAN is trained on cardiorespiratory-gated zero-filled images as the input, it would 

only learn how to remove under-sampling aliasing artifacts, which is easier than removing the 

aliasing and respiratory artifacts simultaneously. This drawback may compromise the network’s 

ability in removing any residual motion after respiratory self-gating in the testing stage. 
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APPENDIX VII Comparison of different networks, hyper-

parameters and learning rate annealing methods 

Methods: For the proposed model, we evaluated the performance of the model with different 

hyper-parameters. While keeping the other hyper-parameters the same as those described in the 

chapter 6, three groups of comparison experiments were performed, based on the radial T1-T2 

sequence: 1) we compared different numbers of ResNet blocks (Rn = 0, 2, 4, 6 while keeping 

stride=2 for the last two convolutional layers); 2) we compared different stride sizes (stride = 1, 2, 

3 while keeping Rn=4) used in the last two convolutional layers, and 3) we compared two different 

learning rate annealing methods (step decay and exponential decay) during the training. In addition, 

the dense network used in the DRONE network168 was also evaluated against the proposed network.  

For the learning rate annealing method comparison, the performance of two other learning 

rate annealing methods were compared with the proposed methods. The first one was a step decay 

method by reducing the learning rate by half every 100 epochs. The second one was the 

exponential decay method which we set the learning rate (epoch) = initial learning rate × exp ((1- 

epoch ) / 100).  For both methods compared, we used a relatively optimized initial learning rate = 

0.001 and a total of 600 epochs. 

To adapt to the dense network used in DRONE for our comparison, the acquisition time 

stamps and the signal were combined into a vector of 121 (=11×10+11) nodes as the input layer, 

followed by two 300 × 300 hidden layers and the output layer. 

We use the same simulated training set (SNR = 20) and validation set (SNR = 20) as described 

in the chapter 6 to train different networks. An independent testing set (SNR = 20) was used to 

compare results of various networks or hyper-parameters. The mean square errors (MSEs) for T1 
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and T2 from the testing result were used as the evaluation metric. For the radial T1-T2 sequence, 

the proposed network (e.g. Rn = 4, stride = 2) was trained and evaluated 5 times to establish the 

range of MSEs for better comparison. The other networks or hyper-parameters were trained and 

evaluated once. For MOLLI, the models with Rn = 0, 2, 4 and 6 were trained and evaluated once. 

Results: Based on the simulated data of the radial T1-T2 sequence, the testing set MSE and 

the number of trainable parameters for different networks or hyper-parameters were listed in Table 

A-1. In the testing set (SNR = 20), the mean MSE by DeepBLESS trained using the proposed 

network was 489.23 ± 0.23 ms2 (trained 5 times, minimum MSE = 489.02 ms2 and maximum MSE 

= 489.60 ms2) for T1 and was 8.32 ± 0.03 ms2 (trained 5 times, minimum MSE = 8.28 ms2 and 

maximum MSE = 8.36 ms2) for T2. In comparison, the MSE by the network used in DRONE168 

was larger (503.58 ms2 for T1 and 8.49 ms2 for T2). The proposed network with different number 

of ResNet blocks (Rn = 0, 2, 6) generated MSE of 508.78 ms2, 492.36 ms2 and 490.86 ms2 for T1 

and 9.71 ms2, 8.42 ms2, 8.34 ms2 for T2, respectively, all higher than that using Rn = 4 except the 

model with Rn = 6, which generated MSE similar to that using Rn = 4 for T2 but still generated 

higher MSE for T1. For the last two convolutional using different strides, using stride =3 generated 

similar MSE (489.13 ms2 for T1 and 8.32 ms2 for T2) compared to stride = 2 (proposed), and using 

stride = 1 generated greater MSEs for both T1 (490.49 ms2) and T2 (8.37 ms2). For different 

learning rate annealing methods, the proposed approach generated better results compared to the 

step decay (MSE = 489.78 ms2 for T1 and 8.39 ms2 for T2) and exponential decay (MSE = 497.52 

ms2 for T1 and 8.41 ms2 for T2). Examples of the training and validation loss against the number 

of epochs for the three learning rate annealing approaches are shown in Figure A-7. 

Based on the simulated data of the MOLLI sequence (Table A-2), the proposed network with 

Rn = 4 and Rn=6 achieved lower MSE compared to models with fewer layers.  
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In conclusion, for the networks or hyper-parameters compared, the proposed network with the 

proposed hyper-parameters provided the lowest MSE.  

Table A-1:  The mean square error (MSE) in the validation set (SNR = 20) of the radial T1-T2 sequence 

using different networks, hyper-parameters and learning rate annealing methods for DeepBLESS. 

Model Trainable parameters 
Mean square error (MSE) 

T1 (ms2) T2(ms2) 

Proposed 32,225 489.23 ± 0.23 8.32 ± 0.03 

DRONE 127,501 503.58 8.49 

Rn = 0 7,393 508.78 9.71 

Rn = 2 19,809 492.36 8.42 

Rn = 6 44,641 490.86 8.34 

step decay same as proposed 489.78 8.39 

exponential decay same as proposed 497.52 8.41 

stride = 1 32,481 490.49 8.37 

stride = 3 32,193 489.13 8.32 
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Figure A-7: The training and validation loss against the number of epochs using the proposed learning 

rate strategy (a for T1, b for T2), conventional learning rate step decay (c for T1, d for T2) and learning rate 

exponential decay (e for T1, f for T2). The proposed learning rate strategy achieved the best validation loss. 

Table A-2:  The mean square error (MSE) in the testing set (SNR = 20) of the MOLLI sequence using 

0-6 Resnet blocks (Rn =0, 2 ,4 and 6) for  DeepBLESS. 

Model # of Trainable parameters T1 MSE (ms2) 

Proposed (Rn=4) 31,329 117.9 

Rn = 0 6,497 130.6 

Rn = 2 18,913 119.3 

Rn = 6 43,705 117.9 
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Table A-3:  The size of the intermediate features after each of the 11 convolutional layers of 

DeepBLESS network.   

Layers 
Output Shape for different layers 

Radial T1  Radial T2 MOLLI T1 

Input layer (B*, 11, 11) (B, 11, 11) (B, 8,2) 

Convolution layer 1 (B, 11, 32) (B, 11, 32) (B, 11, 32) 

Convolution layer 2 (B, 11, 32) (B, 11, 32) (B, 11, 32) 

Convolution layer 3 (B, 11, 32) (B, 11, 32) (B, 11, 32) 

Convolution layer 4 (B, 11, 32) (B, 11, 32) (B, 11, 32) 

Convolution layer 5 (B, 11, 32) (B, 11, 32) (B, 11, 32) 

Convolution layer 6 (B, 11, 32) (B, 11, 32) (B, 11, 32) 

Convolution layer 7 (B, 11, 32) (B, 11, 32) (B, 11, 32) 

Convolution layer 8 (B, 11, 32) (B, 11, 32) (B, 11, 32) 

Convolution layer 9 (B, 11, 32) (B, 11, 32) (B, 11, 32) 

Convolution layer 10 (B, 6, 32) (B, 6, 32) (B, 6, 32) 

Convolution layer 11 (B, 3, 32) (B, 3, 32) (B, 3, 32) 

Flatten layer (B, 96) (B, 96) (B, 96) 

Output (B, 1) (B, 1) (B, 1) 

* B indicates the batch size in training 
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Table A-4: The mean percentile absolute T1 and T2 reconstruction error at different testing data noise 

level (SNR = 10 - 100) 

Testing data noise 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 
Average 

SNR of testing data 100.0 50.0 33.3 25.0 20.0 16.7 14.3 12.5 11.1 10.0 

Training data SNR Mean T1 percent error (%) 

SNR = 100 0.39 0.76 1.17 1.57 2.01 2.46 2.91 3.38 3.87 4.36 2.29 

SNR =20.0 0.44 0.73 1.04 1.36 1.70 2.03 2.36 2.68 3.05 3.37 1.88 

SNR =11.1 0.67 0.88 1.14 1.43 1.74 2.05 2.38 2.67 3.03 3.35 1.93 

SNR = 10 -100 0.42 0.72 1.05 1.37 1.71 2.04 2.37 2.69 3.05 3.37 1.88 

BLESSPC 0.39 0.68 1.02 1.35 1.69 2.03 2.37 2.69 3.06 3.39 1.87 

Training data SNR Mean T2 percent error (%) 

SNR = 100 0.63 1.18 1.75 2.36 2.99 3.63 4.31 5.05 5.87 6.71 3.45 

SNR =20.0 0.80 1.18 1.63 2.11 2.59 3.08 3.55 4.07 4.59 5.11 2.87 

SNR =11.1 1.62 1.8 2.06 2.39 2.76 3.17 3.59 4.04 4.51 4.96 3.09 

SNR = 10 - 100 0.78 1.19 1.67 2.16 2.65 3.13 3.60 4.10 4.59 5.08 2.90 

BLESSPC 0.52 1.21 1.67 2.16 2.64 3.15 3.64 4.16 4.68 5.19 2.90 

 

Figure A-8: Bland Altman analysis (2000 data points) between DeepBLESS and DeepBLESS for 

testing data with at least 1 missed heartbeat (SNR = 20).  
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Figure A-9: Example features of DeepBLESS T1 and T2 models for a sample (BLESSPC T1 = 1361 

ms, T2 = 37.7 ms) of the testing set (SNR = 20) simulated based on the radial T1-T2 sequence: (a, c) First 
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layer feature map for DeepBLESS T1 and T2, respectively; (b,d )The last layer’s input feature, kernels and 

the final predication results for DeepBLESS T1 and T2, respectively.  
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APPENDIX VIII Comparison Study 

 

Purpose: The aim of this study is comparing our proposed artery and vein segmentation 

approach with the Fuzzy based method which has been proposed by Lei et al194. The comparison 

was performed in the calf region based on the 7 test cases.    

Method: Lei et al. used Fuzzy logic to perform artery and vein segmentation in the thigh region 

for high-resolution Gd-MRA images194. Their proposed approach includes two sequential stages. 

In the first stage, they use absolute fuzzy (scaled-based) connectedness1 to extract the whole 

vasculature from the high-resolution Gd-MRA images in the thigh region. In the second stage, 

they use relative fuzzy connectedness194 to separate the arteries from the veins in the extracted 

vasculature. To separate the arteries from the veins in the second stage, competition is set up via 

the relative fuzzy connectedness for seed voxels specified in the arterial and venous branches to 

grab voxels based on their relative strengths of connectedness with the two sets of seed voxels. 

The two main stages of their algorithm are summarized as the followings: 

Stage 1.  Extraction of the entire vessel structure from the other clutters and background via the 

absolute fuzzy connectedness in a given CE-MRA image:  

a. Seeds specification for the blood vessels. 

b. Blood vessel segmentation using absolute fuzzy connectedness (κFOE)235.   

Stage 2. Separation of the arteries from the veins via the iterative relative fuzzy connectedness in 

the segmented blood vessel structure:  

             a. Seeds specification for both arteries and veins. 

         b. Artery-vein separation by applying the iterative relative fuzzy connectedness 

(κIRFOE)194.  
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All 7 test datasets in our study were first normalized between 0 to 1, and then a manual seeding 

process was performed. For the manual seeding, we put 2 seeds in each branch of the arteries and 

the veins and then used those initial seeds to calculate the absolute fuzzy connectedness values 

(Stage 1). For stage 2, we used the previous seeds and calculated the centerlines for the arterial 

and venous branches, and used the arterial and venous centerlines as the initial seed points to 

calculate the relative fuzzy connectedness values (Stage 2). Figure A-10 (a) shows examples of 

these initial points. Since the Fuzzy-based approach's output is not a binary map, we applied proper 

thresholding for each test case to convert them to the segmentation masks for the sake of 

quantitative and qualitative comparisons.        

Results: Figure A-10(b-d) qualitatively compared the artery-veins segmentation results on the 

three exemplary coronal slices of the fuzzy-based approach (arterial branches: yellow contours; 

venous branches: green contours) against our proposed method (arterial branches: red contours; 

venous branches: blue contours). Figure A-10(e, f) shows the volume-rendered images for the 

segmented artery and veins obtained by the Fuzzy-based approach. Figure A-10(g, h) displays the 

volume-rendered images for the segmented artery and veins obtained by our proposed approach. 

As evident in Figure A-10(e-h), our proposed method captured more arterial and venous branches 

than the Fuzzy-based approach. Quantitatively, for the 7 test datasets, the Fuzzy-based approach 

and our proposed method achieved mean F1 (±SD) 0.7321±0.0921 and 0.8274±0.0152 for the 

segmentation of the arteries and 0.7863±0.0643 and 0.7405±0.1061 for the venous segmentation. 
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Figure A-10. Fuzzy-based approach by Lei et al vs. our proposed method: a) manual seeds for the first 

and second stage of the Fuzzy-based approach. Red spheres are the initial seeds used to perform the first 

stage of the Fuzzy-based segmentation (absolute fuzzy connectedness). Blue and red lines, which present 

the centerline of the arteries and veins, were used to complete the second stage of the Fuzzy-based approach 

(relative fuzzy connectedness). (b-d) shows the arteries and veins segmentation performance of the Fuzzy 

based approach (arterial branches: yellow contours; venous branches: green contours) and the proposed 

method (arterial branches: red contours; venous branches: blue contours) on three coronal views of the calf 

region. (e, f) and (g, h) shows the volume-rendered image of the arteries and veins for the Fuzzy-based 

approach and our proposed method, respectively. Qualitatively, our proposed method has superior 

performance over the fuzzy-based approach with respect to the artery and veins segmentation in the calf 

region.   

Discussion: This mini-study showed that the proposed method achieved better qualitative and 

quantitative artery and vein segmentation in the calf region than the Fuzzy-based approach 

proposed by Lei et al. Accessing the initial seed points are essential for both stages of the Fuzzy-

based approach. For the first stage, such initial seeds can be easily provided by users, but knowing 

the arteries and veins is required for the second stage, which is very challenging in the calf region. 

It worth mentioning that the fuzzy-based approach originally proposed to segment the arteries and 

veins in the thigh region in particular pelvic region where the user can easily recognize the arteries 
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and veins, and initialization of those branches are relatively more straightforward than the calf 

region.    
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