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SUMMARY

Memory enables access to past experiences to guide future behavior. Humans can determine which 

memories to trust (high confidence) and which to doubt (low confidence). How memory retrieval, 

memory confidence, and memory-guided decisions are related, however, is not understood. In 

particular, how confidence in memories is used in decision making is unknown. We developed a 

spatial memory task in which rats were incentivized to gamble their time: betting more following 

a correct choice yielded greater reward. Rat behavior reflected memory confidence, with higher 

temporal bets following correct choices. We applied machine learning to identify a memory 

decision variable and built a generative model of memories evolving over time that accurately 

predicted both choices and confidence reports. Our results reveal in rats an ability thought to exist 

exclusively in primates and introduce a unified model of memory dynamics, retrieval, choice, and 

confidence.

In brief

Joo et al. demonstrate rats use confidence in memories to guide behavior. A novel memory task 

and a quantitative confidence-reporting method allowed animals to express memory confidence 

on each trial, and a simple generative model of memories evolving over time accurately predicted 

both choices and confidence reports.

Graphical Abstract
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INTRODUCTION

Animals rely on two sources of information to guide behavior: current sensory information 

from the external world and memories of the past from internal storage. Because sensory 

perception and memory are both imperfect, metacognitive monitoring of their possible errors 

can valuably inform future action, for instance, by motivating information seeking prior to 

decisions or decreased resource investment afterward.1–6

Studies of this metacognitive monitoring have focused primarily on confidence in 

information perceived externally (e.g., motion detection and odor discrimination), reporting 

confidence-related behaviors across multiple species, including dolphins,7 non-human 

primates,8–12 honeybees,13 and rats.14,15 A statistical framework that formally defines 

confidence and its signatures14,16,17 has helped establish a correspondence between 

statistical confidence in perceptions and the subjective sense of human confidence18 and 

enabled the identification of behavioral and neural confidence markers in species including 

macaques,10,19 pre-verbal infants,20 and rats.21,22

By comparison, understanding of confidence in information retrieved from memory is 

limited.23,24 Human and primate studies have focused exclusively on confidence in visual 

recognition memories,25–30 and whether these findings generalize to other forms of memory 

is unclear. Progress at a neural circuit level has also been hindered by the lack of a rodent 

model. Rodents can access various forms of memory,31,32 but whether rodents can use 

memory confidence as primates do, to weigh evidence from a series of past experiences, 

remains unclear.33 Specifically, one set of previous studies yielded equivocal results,34,35 

while another provided evidence for metacognition, broadly defined, with a binary decision 

related to an odor memory.36 Moreover, we lack a quantitative account of how memories 

evolve over time, and we do not understand how this evolution could lead to behavioral 

expressions of confidence.

Here, we developed a behavioral task in rats that enabled quantitative assessment of memory 

accuracy and confidence for personally experienced events in their temporal and spatial 

contexts. On each trial, rats first made a choice based on information retrieved from memory 

and were incentivized to then place a bet on whether the choice was correct by waiting for 

a period of self-determined length. Temporal betting provided a graded confidence report 

on every trial, improving on task designs that assess only a binary confidence,14,27,36 do 

not allow confidence and choice to be collected in the same trials,8,10,25 or can only assess 

confidence on a subset of trials.6,21,22 Our task design also enabled collection of thousands 

of trials from each rat, comprising spatial memory decisions spanning a range of difficulties, 

each associated with a behavioral confidence report. We found that rats consistently bet 

more time on correct trials, suggestive of a memory confidence computation. To evaluate 

this possibility, we constructed a computational model that intuitively unifies memory 

retrieval, choice, and confidence and found that it accurately predicts choices and temporal 

bets.
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RESULTS

Memory choice and confidence task

We designed a memory decision task augmented with a post-decision wager to assess 

confidence. Toward the eventual aim of understanding the behavior and neural computation 

of confidence together, the task was designed to be performed even by rats implanted 

with neural recording hardware and wired to a recording rig. Rats included here (n = 4) 

were selected from an original large cohort (n = 30; STAR Methods) based on linear-track 

pre-screening, pre-trained over a 2- to 3-month period on the basic task logic, and implanted 

with neural recording hardware prior to the collection of behavioral data (Figures S1A and 

S1B–S1E). Each animal performed thousands of trials (see below), and we analyzed each 

animal separately to provide independent replicates of the effects.

Each trial requires a binary, memory-guided choice, followed by a confidence report 

(Figures 1A, 1B, and S1F). A randomly selected two of six spatially remote choice ports are 

cued by a light at the (physically distant) port, and a valid choice is made by entering one 

of the lit choice ports. The correct choice, or target, is the more temporally remote in the 

ongoing sequence of visits in the epoch, while the other, more recently visited port is the 

distractor. Next, rats have an option to bet on their choice by remaining at the choice port for 

a self-determined duration, with the total time spent serving as a bet (Figure 1B). For correct 

choices only, longer bets will yield more reward. Importantly, the task takes place in fixed, 

approximately hour-long epochs, with self-paced trials. Longer temporal bets thus have a 

higher possible reward payout in the case of a correct choice but also a higher penalty in the 

case of an incorrect choice, in the form of the opportunity cost of not initiating a next trial. 

If rats compute confidence in their memories, they should bet more time on choices based on 

memories they are more confident in, as this will maximize reward over the epoch.

The reward payoff function was designed to incentivize rats to meaningfully gamble 

time by countering the possible effects of temporal discounting. Like humans, rats show 

hyperbolic discounting, preferring smaller rewards sooner to larger rewards later,37,38 which 

could counteract the incentive to bet high. Therefore, we chose a convex reward payoff 

function, producing super-linearly increasing reward returns for bets up to 2.2 s (R(t) = 

0:27e0.34(t+0.8); Figure 1B). To discourage excessively long gambled times, we chose a 

concave payoff function beyond 2.2 s, producing sub-linearly increasing reward returns 

R(t)= 2.6×log(0.44 ×(t + 0.8)) that delivered 300 μL of reward for the longest typically 

observed gambled time of 10 s. The briefest gamble delivers an approximately 60-μL drop 

(one minim) of reward, ensuring that rats received an appreciable reward for all correct 

choices.

The task takes place on a large, branched track to test memory for experiences occurring at 

distinct times and distinct locations (Figures 1C and S1K). To restrict the number of spatial 

trial types, target and distractor are always adjacent, resulting in six possible spatial pairs 

(Figure 1D). To probe a range of memory difficulties, distractor-target pairs were randomly 

selected spanning a range of ages (trials since last visit; Figure 1E). This enabled study 

of choice accuracy and confidence as a function of how long ago the queried episodes 

occurred. The distractor age was restricted to 1, 2, or 3 to limit the total number of trial 
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types for sufficiently powered analysis over a range of difficulties. The target age was 

strictly higher than the distractor age (e.g., for distractor age 1, allowable target ages are 

2, 3, 4, etc.). For each rat, the proportion of trials with distractor ages 1, 2, and 3 was 

approximately one-third each, across and within epochs (Figures S1G–S1J). Importantly, 

because distractor-target pairs 1–2, 1–3, and 2–3 are allowable, the task cannot be solved 

by simply remembering and universally avoiding ports aged 1, 2, and 3. After each trial, 

the choice is appended to the ongoing sequence of port visits within the epoch (Figure 1F). 

The correct choice on any given trial therefore depends on the history of actual visits, even 

if they were errors. This prevents high performance accuracy based exclusively on visual 

memory for the sequence of lit cues.

Rats learn and apply the memory rule with high choice accuracy

Correct performance across distractor-target pairs requires a comparison of when each 

location was last visited. This involved a temporal judgement reflecting memory on the 

timescale of minutes: rats took an average of approximately 45 s to perform a trial, and the 

previous visits to the target and distractor were often three or more trials in the past. The rats 

performed 50–100 trials per epoch and approximately 3,000 total trials each, maintaining 

stable performance accuracy across epochs (STAR Methods). Choice accuracy was 80.2% 

± 0.04% (mean ± SEM; n = 192 epochs pooled across 4 rats), substantially higher than 

what could be achieved by a random decision strategy, either across all six choice ports or 

between the two cued ports (Figures 2A and S2A–S2C).

Critically, choice accuracy could not be explained by a preference for individual ports 

or learned port sequences or by any of a variety of alternative strategies (e.g., select the 

leftmost of the two cued ports; STAR Methods; Figure S3). Nor could accuracy be explained 

by novelty judgements (i.e., have I been here before?): all arms were familiar to the animals 

based on extensive prior experience. High performance also required memories for visits 

to locations, not just memories for when lights at those locations had been lit on previous 

trials. Specifically, a given port could first be lit as a distractor and then shortly thereafter 

be lit as a target, and animals’ high performance accuracy reflected their memory of visiting 

the location, not their memory of when the light at that location was last lit: memory of 

lit portwould yield 68% correct, significantly lower than the ∼80% correct performance for 

each (p = 3.1 × 10−23, p = 3.0 × 10−24, p = 7.8 × 10−32, and p = 1.5 × 10−29 for rats T, 

S, D, and R). High performance further required memory for at least the last three visit 

locations, because distractor age was restricted to 1, 2, or 3. Additionally, the high levels of 

correct performance on target-distractor pairs aged 1–2 (correct = 2) and 2–3 (correct = 3) 

(Figure 2A) demonstrates that animals remembered the actual sequence order of at least the 

last three visits. Finally, we note that the stable performance accuracy indicates that temporal 

bets reflect uncertainty regarding the specific choice rather than uncertainty in the rule itself.

Temporal bets reflect decision confidence

Rats consistently gambled more time on choices that turned out to be correct (Figures 2B 

and S2D–S2F; average area under the curve [AUC] 0.74 ± 0.03 SEM, n = 4 rats; for 

each rat, one-sided rank-sum test p << 1 × 10−5), pointing to a representation of memory 

confidence. Similarly, temporal bets predicted overall choice accuracy in a graded manner 
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(Figure 2C). The difference was striking and consistent across rats: on average, temporal 

bets were 1.45 ± 0.33 s higher for correct than error trials (average ± SEM; n = 4 rats). 

Temporal bets were also longer for correct trials considering each port pair separately 

(Figures S2G–S2I; for each rat p << 1 × 10−5, one-sided rank-sum test).

The rats’ behavior on the occasional visits to one of the four uncued, invalid ports (4.6% 

± 0.2% of trials; n = 4 rats) also provided evidence for the knowledge of the rule and a 

metacognitive assessment of memory choice. The low fraction of these choices indicates 

that the rats had learned that only cued ports yield reward. If rats understood this task 

contingency, their confidence in receiving reward following an invalid choice should be 

low; hence, little or no time investment in these choices is optimal. Consistent with this 

prediction, the time gambled on invalid choices was significantly lower than for error 

trials (Figures 2D, 2E, and S2J–S2L; average AUC 0.74 ± 0.01 SEM, n = 4 rats; each 

rat, one-sided rank-sum test p < 1 × 10−5). In addition, the fraction of trials that were 

invalid was highest for the shortest temporal bets, consistent with the possibility that rats 

understood these trials as exploratory trials with low expected reward (Figure 2F). Also 

consistent with this possibility, errors to invalid ports were most common (69.1% ± 3.2%; 

n = 4 rats) on distractor age 1 trials (Figure S4), which had the highest proportion correct 

(Figures 3A–3D), indicating a strategy of selective exploration on easy trials. Hence, time 

bet in invalid trials can be viewed as another form of appropriate metacognitive assessment 

of memory choice, albeit one that is not formally considered to be decision confidence.39 

Excluding invalid errors, temporal bets were still significantly higher for correct than error 

trials (Figures 2D, 2E, and S2J–S2L; average AUC 0.71 ± 0.02 SEM, n = 4 rats; each rat, 

one-sided rank-sum test p < 1 × 10−5).

As expected from studies in humans and non-human primates,25,40 decision time (here, the 

elapsed time from nose poke at home to nose poke at choice port) was shorter for correct 

than error trials for all rats (one-sided rank-sum test p < 1 × 10−5, 0.95, 5.8 × 10−5, and 1.4 

× 10−14 for rats T, S, D, and R, respectively). In theory, both confidence and decision time 

are functions of discriminability, and experimentally, they are both reliably correlated with 

accuracy.40,41 This raises the question whether reported confidence should be interpreted as 

a sign of cognitive appraisal of a memory or, alternatively, a “lower level” measurement 

of choice latency itself, which is a public, external observable.42 We thus asked how well 

gambled times can be predicted from choice latency. Less than 10% of the variance in 

gambled time could be explained by choice latency alone (linear regression R2 for rats T, S, 

D, and R for error trials = 6%, 0.4%, 8%, and 7%; for correct trials = 0.4%, 0.1%, 0.4%, 

and 0.2%). By contrast, distractor age alone explains approximately three times more of 

the variance (linear regression R2 for rats T, S, D, and R of 20%, 10%, 20%, and 30%). 

Moreover, when we considered choices and gambles for specific choice latencies, long 

gambled times were predictive of high accuracy across a wide range of choice latencies 

(for each rat, gambles were longer on correct trials than error trials, with p < 1 × 10−5 for 

below-median latency and p = 1 × 10−30 for above-median latency; one-sided rank sum 

tests). Together, these results demonstrate that rats can predict choice outcome, consistent 

with a computation of confidence in memories.
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Choice accuracy depends on memory age and discriminability

What information do rats use to predict choice outcome? By design, trials spanned a range 

of difficulties determined by distractor and target ages. If choices are based on memory, they 

should be progressively harder for older targets and distractors.43 Choices should also be 

harder for lesser age differences between target and distractor, as episodes that occur closer 

together in time are more likely to be confused.44

Both of these predictions proved to be correct. The average choice accuracies for distractor 

ages 1, 2, and 3, respectively, were 89.5% ± 0.5%, 77.7% ± 0.7%, and 72.7% ± 0.7% (n = 

192 epochs pooled from 4 rats; Figures 3A–3D). In addition, choice accuracy increased with 

the age difference between distractor and target when controlling for distractor age (Figures 

3A–3D).

Constructing a synthetic decision variable

Together, these results suggest a memory confidence computation. To evaluate this 

possibility, we aimed to construct a model of memory confidence that would accurately 

predict confidence and temporal bets as a function of memory discriminability. We therefore 

had two goals: first, to characterize the memory discriminability axis for these memory 

confidence signatures and, second, to build a model of memory dynamics as a function of 

discriminability.

The first step, corresponding to a long-standing challenge in the study of memory 

confidence, was to identify an appropriate memory discriminability axis, or decision 

confidence variable (P. Masset and A. Kepecs, 2017, Conf. Cogn. Comput. Neurosci., 

conference). In studies of perceptual confidence, the relevant decision variable is typically 

defined by external task parameters (e.g., motion coherence), where a simple monotonic 

relationship between the task parameter and task difficulty can be demonstrated.17 

Alternatively, in the context of value-based decisions, the decision variable is often inferred 

using a model-based approach that posits a concrete computational model to explain choice 

behavior.45 Here, however, multiple task parameters could potentially influence the rats’ 

choices, and we are not aware of an existing computational model that could be used to fit 

the choice behavior.

We therefore sought a model-agnostic approach to derive a synthetic memory decision 

variable (MDV) that is a scalar summary of the available information that rats could 

potentially access from memory, where higher values of the MDV predict higher accuracy. 

We trained a deep neural network (DNN) to predict rat choice per trial based on an 

exhaustive 20-feature set (Figure 3E; STAR Methods). We included only those features 

accessible in memory, not directly observable on the given trial (e.g., previous reward 

amounts, but not current port identities); hence, a memory decision variable. A DNN in 

particular enabled the agnostic approach we sought: because it is robust to inclusion of 

redundant and correlated features, an intuitive or model-based feature selection step was not 

necessary; likewise, selection of interaction terms was not required.

Eighteen of the 20 features were, for each of target and distractor, age in units of trials and 

time; their last, maximum, and cumulative delivered reward amounts; time since last reward; 
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last and cumulative dwell times; and number of trials since any part of its trajectory was last 

traversed. The final two features were, for the target and distractor, their spatial and temporal 

(target age – distractor age) trial types. The DNN, trained by 5-fold cross-validation for 

each rat, output a single value, a detection statistic between 0 and 1 that corresponds to a 

predicted probability that the trial will be correct. As expected, this model outperformed 

both a model that learned only the overall proportion of correct trials and a model trained 

on memory age alone (Figure 3F). We reasoned that a higher DNN-predicted probability of 

correct output corresponded to lower trial difficulty, equivalent—because the input features 

were those available in memory—to memory discriminability. Thus, we defined the output 

of the DNN trained on the full feature set as the MDVDNN, with higher values corresponding 

to memory discriminability and predicting more accurate recall (Figure 3G). We note that 

any monotonic function of the inferred MDV will also have the same properties; hence, it is 

not unique.

A generative memory model (GeMM)

Identifying a memory discriminability axis enabled us to move to the second step of 

building a model of episode memory dynamics. Our goal was to build a model of memory 

retrieval, decision, and confidence, based on the MDV as an index of trial difficulty, with 

parameters fit to decision data, that would generate testable predictions for confidence 

and its underlying mechanisms. We focused on a subset of parameters and leveraged an 

understanding of memory phenomena to develop a GeMM that could predict choice and 

confidence (gambled time) given an underlying representation of memory.

We focused on memory age, an interpretable and established determinant of memorability 

that, in our task, independently influenced choice accuracy. We represented memory age 

as a random variable with probability distribution centered on a mental timeline at its time 

of occurrence. Realizations of this random variable represent specific memory retrievals, 

corresponding to estimates of how long ago the experience occurred. The distribution’s 

variance represents mnemonic noise from errors in encoding, consolidation, and/or retrieval. 

We postulated that (1) these errors accumulate over time such that the memory is less 

precise, reflected in an increasing variance over time; (2) the distribution should always take 

on positive values, as it is not possible to mistakenly retrieve an episode from memory as 

having occurred in the future; and (3) an episode should never be completely forgotten.

Given those constraints, we developed a mathematical formulation of the model. We define 

Mα as the actual number of trials since the last visit to port α (i.e., the age of that port). We 

define Mα’ as the subject’s recollection of the port age. Requirements (2) and (3) together 

specify an asymmetric noise profile with greater spread into preceding than subsequent 

times. We therefore model Mα’|Mα = mα as a lognormal random variable (uppercase 

symbols denote random variables, while lowercase symbols represent realizations of those 

random variables). To satisfy requirement (1), the family of lognormal distributions defined 

by mα = 1,2,...... nelapsed trials represents the memory’s evolution over time (Figure 4A). This 

family of lognormal distributions has a time-dependent mean a0mα and a time-dependent 

standard deviation σ0(1 + a1mα + a2mα
2). We parametrized memory age by elapsed trials 

and not elapsed clock time, as the number of elapsed trials was a better predictor of choice 
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outcome (Figure S5; STAR Methods). The separation parameter a0 sets the unit increment 

on the mental timeline that corresponds to one real-life trial, the standard deviation σ0 sets 

the baseline precision of each memory distribution, and the coefficients a1 and a2 set the rate 

of change for the standard deviation as a second-order polynomial function of its age mα, 

giving it flexibility to increase or decrease as a function of time, though our hypothesis was 

that it should strictly increase. For a given trial, two ports α and β are cued, with Mα > Mβ 
corresponding to target and distractor, respectively. Choice (Figure 4B) is determined by the 

sign of the difference mα’ – mβ’ and confidence by its magnitude |mα’ – mβ’| (Figure 4C).

Given that model, we iteratively fit the GeMM parameters for each rat to choice accuracy 

(Figure 4D) across trial types based on a χ2 metric (STAR Methods). Based on that fit to 

memory accuracy (Figures 4E, S6A–S6C, S6E–S6G, S6I–S6K, and S6M–S6O), we then 

generated predictions for memory confidence.

Embedding the GeMM in data enables prediction of choice and confidence as a function of 
the MDV

Finally, we combined the MDV and the GeMM to produce a series of confidence tuning 

curves22 to which we could compare behavioral data (Figure 5). Generating GeMM 

predictions as a function of the MDVDNN enabled the best possible estimates and ensured 

our predictions spanned the full range of per-trial memory discriminability. First, for each 

trial, we input target and distractor age to the previously fitted GeMM to generate a 

distribution of simulated trial outcomes (correct versus error) and confidence values (Figure 

5A; GeMM simulation). Next, we converted these GeMM-predicted confidence values 

to gambled times by mapping, for each rat, the inverse cumulative distribution function 

(CDF) of the observed gambled time distribution (Figures S6D, S6H, S6L, and S6P; STAR 

Methods). Note that this mapping has no free parameters. Further, it only considers the full 

gambled time distribution, not individual trials; it does not separately map correct versus 

error trials or any other subset of the data; and it does not make assumptions about the match 

between the mappings of trial outcome to confidence for the model and data. Conceptually, 

this procedure captures the economic aspect of waiting based on the model, that is, how long 

the animal is willing to wait given a specific degree of confidence.

Every one of these simulated trials has the same MDVDNN, directly computed as the DNN 

output from the 20 input features of the data trial (Figure 5A; MDV calculation). Together, 

this procedure generated for each trial, (1) a predicted outcome (correct versus error), (2) 

a predicted gambled time, and (3) a calculated MDVDNN, which we used to generate three 

nominal tuning curves for memory confidence based on memory discriminability, temporal 

bets, and choice accuracy (Figure 5B). In effect, this procedure generates GeMM-predicted 

trends for gambled time that are based on all 20 features of the MDVDNN: although the 

GeMM only explicitly takes as input distractor and target ages, the GeMM-simulated trials 

inherit the 20 MDVDNN inputs from the data trial they are based on, thereby preserving 

the covariance structure of the data (i.e., they are embedded in the data, as for hybrid 

data-simulation models in collider physics).46
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The GeMM accurately predicts memory confidence behavior

We observed a striking match between GeMM predictions and observed behavior. Because 

all the assumptions of statistical decision confidence also apply to our memory confidence 

task, we could quantitatively assess the relationship of behavioral confidence reports and 

GeMM-derived confidence levels by focusing on the established set of comparisons to 

evaluate confidence as a decision variable.16 First, a calibration curve makes the intuitive 

prediction that trials with longer gambled times should have higher choice accuracy (Figures 

6A, 6D, 6G, and 6J). Consistent with this prediction, accuracy as a function of gambled 

time rises for both the model and the data. Second, for any given choice difficulty level 

(memory discriminability), accuracy should be higher on trials with higher confidence, 

where more time was gambled. We tested this prediction using a conditioned psychometric 

curve that divides the data into high and low predicted (GeMM) or actual (data) gambled 

times. We found that longer gambled times predict higher choice accuracy over a range 

of memorability for both data and the model (Figures 6B, 6E, 6H, and 6K). Third, for 

any given trial difficulty level, gambled times should be higher for correct as compared to 

error trials. Constructing this “vevaiometric” curve revealed consistently higher gambles for 

correct than error trials over a range of memory discriminabilities in both the model and data 

(Figures 6C, 6F, 6I, and 6L). For all three signatures and all four rats, the majority of the 

data points are within two standard deviations of the model, indicating surprisingly accurate 

predictions given the small number of model parameters and the fact that the model was fit 

only to choice behavior, not to gambled times. This analysis also revealed evidence of an 

intuitive signature of confidence consistent with the standard model of perceptual decision 

confidence: the difference in gambled time between correct and error trials is greater for 

more memorable trials.

DISCUSSION

We studied memory-based choice and confidence together, using a novel form of confidence 

report, time gambling, which was available on every trial. Critically, we found that temporal 

bets predicted choice accuracy in a graded manner. The task also allowed us to address 

the long-standing challenge of defining a MDV: we trained a DNN on an exhaustive list 

of task observables to predict choice accuracy and interpreted its output detection statistic 

as defining a synthetic memory difficulty axis or decision variable, the MDVDNN. Next, 

we developed a GeMM that posited the age of memories is represented as a lognormal 

distribution that evolves with experiences. We integrated the GeMM and MDVDNN in a final 

model that used the MDVDNN to assign a difficulty to each trial and found that, across 

the range of difficulties, GeMM predictions recapitulated choice and confidence behaviors. 

These findings are consistent with memory confidence in rats and introduce a simple, 

interpretable model of the underlying computation.

Studies of learning and memory in animals have typically focused on measures of memory 

accuracy (e.g., time spent freezing in a conditioned context).47 Our results indicate that 

rats can not only execute behaviors based on representations of multiple past experiences 

but also evaluate confidence in the content, storage, retrieval, and use of those memories. 

Rats gambled more time on trials when they had made a correct decision, even though the 
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outcome of the trial was not revealed until after the gambling period ended. That is, when 

the rats were more confident in a decision, they waited longer in the port, forgoing a smaller, 

earlier reward in favor of a larger, later reward (correct trials average ∼1.5 s longer than error 

trials or 0.8 standard deviations of the gambled time distribution).

Rarely, rats selected uncued ports, which were never rewarded (invalid choices), and when 

they did so, they gambled even less than on errors to cued ports, also consistent with an 

internal representation of confidence. Invalid choices most often occurred on easy trials 

(distractor age = 1), and overall, the lowest gambled times correspond to below-chance 

accuracy, attributable to a high proportion of invalid trials. This is suggestive of an 

exploration strategy where the true answer is known and “throwing” a trial can therefore 

ascertain that the optimal strategy is unchanged. Together, these results provide strong 

evidence of an ability to compute and act on confidence in a memory-guided decision in a 

non-primate animal. The present study extends the one previous study reporting a form of 

metacognition in the rat,36 with a novel, graded confidence report; collection of thousands of 

trials in neural-recording-enabled rats; and a quantitative model of memory confidence.

Evidence for memory confidence and metacognition in rats

Our findings specifically indicate this ability for memories related to where the subject 

was on the previous three or more trials and at what relative order in time. This memory 

requirement is similar to that of N-back tasks, used in humans to study “working” 

memory,48 typically defined as memory on seconds to minutes timescale.49 Although 

our task does not distinguish a relative familiarity mechanism from a recollective one,50 

the recency judgments made by rats cannot be explained by access merely to whether 

a specific experience is novel or not. As such, its memory requirement differs from the 

visual recognition memory tasks that have established memory confidence in human and 

non-human primates,25–28 which require such an old or new judgment but do not require 

that the subject remember where or specifically when the item was seen. Finally, animals 

were required to recall an element of “what” had occurred and distinguish whether they had 

previously seen a visual cue (port light) versus visited its location.

Tasks that require elements of “what, where, and when” are often referred to as episodic 

or episodic-like.51 Here, we avoid those terms for lack of a precise definition that would 

allow determination of whether “episodic” is appropriate for any given non-human task. We 

note that, in general, it is not clear specifically which mechanism(s) rats use for temporal 

context or whether they qualify as episodic (when).52,53 Regardless, the GeMM operates on 

a memory decision variable that defines memories for episodes on a timeline and how they 

evolve over time and thus has the potential to describe memory dynamics in humans and 

non-human animals alike. As is the case for all tasks, multiple memory systems (procedural 

and semantic) are also required.

Our task uses a graded confidence report, where previous studies of memory confidence, 

in monkeys12 and rats,36 used decline option tasks. This class of task poses delayed 

match-to-sample decisions between target, distractor, and an additional option to decline 

the decision and earn a lesser reward. The claim that these tasks probe memory confidence 

rests on two response patterns: (1) the rate of decline choices increases with difficulty and 
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(2) choice accuracy is lower on forced choice trials compared with freely chosen memory 

tests. However, these choice patterns can be explained by more elementary processes than 

a confidence computation.6,42,54 Simple reinforcement learning mechanisms can explain 

why decline choices track difficulty, for example.55 Similarly, accuracy difference between 

forced and free choices can arise when animals have access to their own motivation or 

engagement levels, with high motivation and engagement predicting lower declines and 

higher accuracy.42,56

These interpretational challenges, and similar challenges associated with other tasks,35,57,58 

highlight the importance of specifying an explicit computational model, determining 

whether that model can accurately describe the data, and testing other possible explanations. 

Thus, an important contribution of our study is providing a new behavioral task design 

and a model of memory determining choice and confidence. The same framework is also 

applicable to human behavior and may therefore allow us to place memory confidence on 

the same footing across species.

A model of memory-guided choice and confidence

To build the model, we first used the behavioral data to infer a decision variable and then 

devised a generative model, fit its parameters to choice behavior, and generated confidence 

predictions to test against data. To deduce the memory decision variable, we used a model

agnostic, data-driven approach based on all variables potentially available to the rats in 

memory. Crucially, in contrast to perceptual59 or value-based60 tasks where the experimenter 

controls the difficulty of each trial, here, it was unknown how the various elements of each 

memory trial would interact to define the difficulty. Our DNN reached a high degree of 

prediction accuracy (∼80%), outperforming a network based on port age alone. Such an 

approach may be broadly useful when trial difficulty cannot be established a priori.

The nature of the DNN precluded an immediate understanding of how memory confidence 

might be computed. We thus focused, in the second, modeling step, on a subset of 

parameters, specifically target and distractor ages, to design a model to predict choice 

and memory confidence. Under the GeMM, a few parameters govern the evolution of the 

underlying lognormal distributions based on known features of memory processes. Each 

memory is represented at the time of encoding as a delta function and therefore does not 

include perceptual noise. At later time points, its variance represents mnemonic noise from 

processes including encoding. The GeMM parameters were fit to choice data for each rat 

and used to predict memory confidence. They define an increasing standard deviation with 

age, consistent with the understanding that memories become less precise over time and that 

memory retrieval for consolidation or use precipitates lability.61

Although the GeMM describes memory dynamics as a function of age only, the other 

MDVDNN features are accounted for by its embedding in the data in the full ensemble 

model. An alternative approach to generating confidence predictions from the GeMM would 

be to use the MDVDNN as a decision axis, assume that on each trial the memory decision 

and memory confidence are both determined based on a simple noise profile (e.g., Gaussian 

noise with fixed variance),50,62 and from this predict gambled time.18,22 Such a model 

would predict that confidence increases for correct trials and decreases for error trials as a 
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function of discriminability.16 However, in our data, gambled times do not increase with the 

ease of the decision; our model captures that feature with an asymmetric noise profile.

The GeMM builds on previous models related to signal detection and memory,63–67 

including strength theory63 and episodic trace models.65 It defines confidence as the 

absolute difference between two samples, or a balance of evidence,68 a model that has been 

successfully applied to confidence in perception14 and memory.25 This memory decision 

variable could be interpreted as the strength of association between memory items in a 

list, a key variable in the influential temporal context model of memory.66,67 As in models 

of decision making based on diffusion to a bound,40 the GeMM could support sequential 

sampling from memory distributions when multiple internal retrieval events are used to 

estimate memory age. Indeed, it has been proposed that decision time in memory-based 

decisions, as in perceptual discrimination, may also be the result of sequential sampling, 

potentially in the form of multiple memory retrievals.69–71 Recent reinforcement-learning 

(RL) models incorporate sampling from memory to explain choice,72–74 using a recency 

weighting coefficient that down weights older experiences to reflect possible environmental 

change. Our results suggest that incorporating a factor reflective of the perceived reliability 

of retrieved memories (i.e., memory confidence) into models of value-based decision 

making might increase their accuracy.

The importance of understanding memory confidence

Finally, we highlight that aberrant confidence in perceptions has been proposed to account 

for a variety of psychiatric symptoms.75–77 Distortions in memory confidence could account 

for additional dimensions of psychiatric pathology. Although psychological studies indicate 

memory confidence deficits as driving checking behaviors in obsessive compulsive disorder 

and a risk factor for developing schizophrenia,78 the study of memory confidence has 

lagged behind perceptual confidence in terms of behavioral tasks for animals and theoretical 

frameworks for quantifying memory-guided confidence reports. A deeper understanding 

of memory confidence has potentially broad applications, from judging the credibility of 

eyewitness testimony (e.g., in the 2018 Kavanaugh hearings)24 to quantifying distorted 

beliefs in mental illness.

STAR⋆METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Loren Frank (loren@phy.ucsf.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability—All original code has been deposited at GitHub: https://

github.com/hrjoo/TotalRecall and is publicly available as of the date of publication. All 

original data have been deposited at Zenodo: https://doi.org/10.5281/zenodo.5123545 and 

are publicly available as of the date of publication. DOIs are listed in the Key resources 
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table. DOIs are listed in the key resources table. Any additional information required to 

reanalyze the data reported in this paper will be made available upon reasonable request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All procedures followed the guidelines from the University of California San Francisco 

Institutional Animal Care and Use Committee and US National Institutes of Health. Male 

Long-Evans hooded rats, age 1–2 years at the time of data collection, were trained to 

perform a memory task with time gambling for liquid reward. Rats were housed in pairs 

during training (stages I – III, see below) and singly housed during data collection (stage 

IV).

METHOD DETAILS

Behavioral training and task—Behavioral testing was controlled by custom software 

written in Python using data acquisition hardware (Trodes ECU, SpikeGadgets LLC) to 

record rat nose-pokes and un-pokes at the ports and to control reward delivery.

Habituation—Four cohorts of experimental behavior-naive Long Evans male rats (3–4 

months old, 450–600 g; n = 8 rats in cohorts 1, 3, and 4; n = 6 rats in cohort 2) were 

habituated to daily handling for a week and to hand-delivered liquid food reward (evaporated 

milk plus 5 percent sucrose) from a syringe in the home cage for three days.

Stage I: Raised linear track plus delayed reward—Animals were then food deprived 

to 85–90 percent of their baseline weight and pre-trained on a raised linear track for 3–4 

days, 2–3 epochs/day, 10 mins/epoch (Figure S1A). A port was located at each end of 

the track, equipped with an LED light and an IR beam, to detect entry and exit from the 

port. Each port could automatically deliver reward, which was available for only a specified 

length of time as it flowed through the port at a rate of 0.17mL/sec to a drainage outlet and 

did not remain in the port. A variable delay τ between nose-poke and reward delivery was 

drawn from an exponential distribution, which was gradually incremented from τ = 0.2 – 

0.5 seconds to τ = 1 – 8 seconds. Only one port was cued by a light on each trial. After 

nose-poke detection, the light went out and reward was delivered. The two ports were lit 

alternatingly over the course of the epoch. Rats learned to run back and forth on the track to 

visit the currently lit port and to wait for the delayed reward. From each cohort, rats with the 

highest accuracy and speed were selected for training on the memory confidence task (from 

cohort 1, n = 2 rats; from cohort 2, n = 3 rats; from cohort 3, n = 2 rats, from cohort 4, n = 5 

rats).

Stage II: Full memory confidence task sequence with single light cue and experimenter
delayed reward

In Stage II, rats learned the basic task structure (Figures S1B–S1E), but with only one cue 

lit per trial and a pseudo-gambled time determined by the experimenter. The track has eight 

ports in total: one home port at the center, one back port, six choice ports at each end of 

six branches. As in Stage I, each port could be cued with a light and deliver liquid milk 

reward. On each day, data was collected over 1–3 periods, called epochs, between which 

the animal was returned to a sleep box or home cage. Each epoch was of a fixed length per 
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animal, during which trials were self-paced. The lit cue corresponded to the target selected 

by the same code as in the final task logic; lighting of the distractor port was suppressed. 

The sequence of visits within a trial was: home port light on; rat pokes at home port for a 

small fixed reward (350 ms); home port light off; after a variable cue delay, one choice port 

light on; rat pokes lit choice port; choice port light off and port delivers initial reward (350 

ms) and, after a variable, experimenter-controlled reward delay, a wait-dependent reward; 

back port light on; rat pokes back port; back port light off and port delivers back reward. 

Choice accuracy was measured as the percentage of trials for which the rat visited the lit 

choice well.

The cue delay was introduced to jitter the events of each trial relative to every other trial, 

to control for across-trial temporal correlations between behavioral and neural events. To 

train rats to wait for the cue lights to come on, the cue delay was gradually increased from 

range [0.2, 0.5] to [0.5, 2.0] seconds. Initially, the back port delivered the same reward 

amount as the wait-dependent reward regardless of trial outcome, which encouraged the 

animals to solidify knowledge of the port visit sequence (i.e., to not skip the back port). 

After three epochs, back port reward was only delivered on correct trials. The reward delay 

was determined by sampling from an exponential distribution with rate parameter λ = 1/2, 

accepting only samples that were between 1–3 at the start of this training phase and 2–10 

by the end, with a wait-dependent reward amount that increased accordingly, to allow rats 

to learn that a longer period spent nose-poked in the port would result in a larger reward. 

At this stage, three rats were excluded from cohort 4 for relatively low accuracy and trial 

counts.

For rats that were consistently performing at above 80 percent choice accuracy and waiting 

for the full reward delay, the initial reward was omitted. Once rats were able to wait for 

the majority of the reward delays (6–10 s), the switch was made to gambling logic. In the 

gambling logic of the final task, rats voluntarily reported the time they were willing to wait 

for a potential reward. The gambled time began at the time of nose-poke in the choice port 

and ended when rats withdrew from the port. Nose-poke withdrawal was detected with a 

‘grace period’ (800 ms for rats T, S, D; 700ms for rat R in final behavior, calibrated based 

on how quickly each rat moved) to allow for small head movements during the gambling 

period: rats were only declared to have ended the gambling period after a grace period had 

passed between the port’s IR beam re-forming (un-poke) and being broken again (re-poke).

Stage III: Binary choice—After gambled times were observed to be stable across at 

least three epochs, the distractor cue was introduced alongside the target cue, starting with 

distractor age 1 (Figure S1F). Distractors age 2 and 3 were introduced when choice accuracy 

was approximately 80 percent and stable. At this training stage, two rats were excluded from 

cohort 2 for relatively low accuracy or insufficient body weight (Figure S1A).

Neurosurgical device implantation and recovery—Rats (n = 7) with satisfactory 

performance, trial count, and body weight were implanted with neural recording devices. 

Intraoperative and post-operative mortalities (n = 3) resulted in a final cohort (n = 4) for 

behavioral data collection (Figure S1A).
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Stage IV: Data collection—Approximately 3000 – 4000 trials were collected from each 

of four rats following neural recording device implantation. Each rat had a typical length of 

time for which he would continuously perform the task, after which he would occasionally 

perform trials but otherwise sleep or lean off the edge of the track and attempt to eat the 

milk tubes or cables, and this determined the epoch length. Epochs shorter than 20 minutes 

(Rat T, n = 5 excluded epochs), 40 minutes (Rat S, n = 0 excluded epochs, and Rat D, n = 

2 excluded epochs) or 45 minutes (Rat R, n = 2 excluded epochs) were excluded from final 

analyses. This resulted in the following epoch and trial counts: From rat T, 2978 trials over 

42 epochs; from rat S, 4111 trials over 40 epochs; from rat D, 4369 trials over 61 epochs; 

from rat R, 3660 trials over 49 epochs. Typically rats ran an average of 350–400 m per 

day (the human equivalent of approximately five miles) and consumed 50 mL of sweetened 

evaporated milk.

Parameter setting: distractor and target selection—The selection of distractor and 

target was random with temporal weighting, to guarantee that trials with distractor ages 1, 

2, and 3 were evenly distributed throughout the epoch. This also prevented success of the 

alternative strategy to choose the least recently lit port, rather than the true rule, to choose 

the least recently visited, by increasing the number of trials for which a port was lit but 

not visited. During an initialization period, the rat was cued to visit each of the six choice 

ports in a randomly generated order, establishing a history of visits. After every port was 

visited at least once, the logic used for selection of the two cued ports on each trial was: 

from the list of possible port pairs with their ages, for example, the top row of Figure 1F, 

[AB(4,5), BC(5,3), CD(3,1), DE(1,6), EF(6,2), FA(2,4)], select candidate pairs for which 

at least one of the ports has an allowable distractor age (1, 2, or 3), which are [BC(5,3), 

CD(3,1), DE(1,6), EF(6,2), FA(2,4)] here. If there is more than one candidate pair in this 

list, remove from it the candidate pairs with distractor ages equal to those presented on the 

last trial, the penultimate trial, and the trial before that, in that order, until candidate pairs 

with only one distractor age remain. If there is only one candidate pair in this set, select it 

as the presented pair. If there is more than one candidate pair in this set, randomly select 

between them with equal probability. For example, if the last three trials were distractor ages 

1, 2, 3 (N.B.: regardless of which ports these distractor ages corresponded to), then on the 

upcoming trial, the candidate pair(s) with distractor age 3, [BC(5,3)], would be removed 

first, then the candidate pair(s) with distractor age 2, [EF(6,2), FA(2,4)]. The candidate 

pair(s) with distractor age 1, [CD(3,1), DE(1,6)], would be selected; if there were more 

than one candidate pair with distractor age 1 remaining, the cued pair would be selected 

randomly from this set. On every trial, there will necessarily be a candidate pair with 

distractor age 1. There will not, however, be candidate pairs with distractor ages 2 and 3 

on every trial; this can occur in the case of revisits, where the port with distractor age 3 is 

the same as the port with distractor age 1 (or the age 2 port = the age 1 port, or the age 3 

port = the age 2 port = the age 1 port). This selection algorithm has the effect of sampling 

evenly across distractor types, resulting in approximately 1/3 each per epoch and preventing 

an alternation sequence from developing.

We verified by simulation (for each rat, n = 100 synthetic experiments, where each 

experiment matched the number of epochs and trials per epoch in experimental data) that 
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with this port selection rule, an alternative strategy using memory of when the ports were 

last lit would yield a maximum average performance accuracy of 68%. Rats that achieved 

stable performance accuracy higher than this could not be relying on a visual working 

memory of the light cues alone (see Evaluation of alternative strategies below).

Parameter setting: reward function—The reward function was designed to counter the 

potential effects of temporal discounting on gambled times. The expected effect of such 

temporal discounting is that rats would reduce their gambled times to receive a smaller 

reward sooner rather than waiting for a larger one. This effect may be greater on trials where 

they are highly confident in their memories and choice, as the option of a smaller reward 

sooner is more certain. This effect could obscure the difference between gambled times on 

correct and error trials by inducing a left shift of gambled times on correct trials. To counter 

this possible effect, the reward amount delivered was a piecewise function of gambled time 

with a relatively low derivative for the first 2.2 s and a relatively high derivative after 2.2 s 

(Figure 1B). On correct trials, for investments less than 2.2 s, the length of time for which 

a sweetened evaporated milk reward was delivered at a constant rate of 0.17 mL/sec was 

given by R = 0:27e0.34(t+0.8); for investments greater than 2.2 s, R = 2.6×log(0:44 ×(t + 0.8)). 

A ten-second wait, for example, will yield a four-second reward. The desired effect was to 

bias the rat toward longer gambled times on trials for which he would already have waited 

at least 2.2 s, as he could double the reward amount by waiting just one second longer. If 

rats were able to access memory confidence, these longer waits should be more common 

for correct trials, and the reward function could help resolve them from error trials. The 

non-zero intercept ensured that the rat received an appreciable reward amount (350 ms, 60 

mL, equal to approximately one drop, or minim) even for very short waits on correct trials, 

preventing the development of uncertainty in the memory rule itself following correct trials 

that resulted in zero reward due to short gambled times. To ensure a high enough number of 

trials per epoch to sample trial types evenly, we discouraged extremely long gambled times 

greater than 9.5 s by choosing a reward function with a derivative that fell by 9.5 s to the 

level it was prior to 2.2 s. Rats took an average of 15 s to perform a trial excluding gambled 

time. With a 9.5 s gambled time and the resulting 4 s reward delivered at both choice and 

back ports, this yields approximately 30 s trials and our aim of at least 80 trials per epoch.

Rats that performed many trials per epoch with a large spread in gambled times were 

implanted with hardware for recording neural data. Following a week or more of recovery, 

behavioral data in the final task were acquired from implanted rats.

QUANTIFICATION AND STATISTICAL ANALYSIS

Correlation of choice latency and gambled time—For analysis of correlation 

between gambled times and latency to choice, outliers with gambled times greater than 

10 s or latency to choice greater than 20 s were excluded, leaving over ninety percent of the 

data per rat. Linear regression was implemented in SciPy.

To test whether choice latency alone could account for the difference in gambled time for 

correct versus error trials, we excluded outliers as above, split each rat’s data by the median 

choice latency and performed a one-sided rank-sum test for a difference in the distribution of 
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gambled times for correct versus error in the low and high latency subsets: for rat T, n trials 

= 2770, median gambled time = 3.8 s, low p = 8.0 × 10−19, high p = 1.2 × 10−46; for rat S, n 

trials = 3930, median gambled time = 3.3 s, low p = 4.8 × 10−22, high p = 7.8 × 10−33; for rat 

D, n trials = 4026, median gambled time = 4.2 s, low p = 1.4 × 10−9, high p = 2.0 × 10−65; 

for rat R, n trials = 3247, median gambled time = 3.3 s, low p = 1.4 × 10−20, high p = 2.8 

× 10−73. These highly significant differences indicate that there was a difference in gambled 

times even when selecting trials to match latencies.

Evaluation of alternative strategies—For each rat, the proportion of times that each 

port was presented as target versus distractor were compared. Per epoch, these values were 

rarely above or below 50 percent by greater than 3 percent, and the majority of differences 

were not statistically significant at p = 0.05 by a t test for independent samples.

We tested whether there existed an alternative strategy that could better explain the rat’s 

choices than the true rule, which is to select the least recently visited of the two cued ports. 

For every trial in every epoch, for each rat, we determined whether the alternative rule would 

have resulted in the same choice as the one the rat made, or the same choice dictated by the 

true rule. This resulted in two proportions per epoch for each rat.

To compare each rat’s performance accuracy to that which could be achieved by relying on 

a visual working memory of the light cues alone, we simulated 100 experiments for each rat, 

matching the number of epochs and trials per epoch to experimental data. The simulated rat 

made visits to the least recently cued port, and made no errors aside from those introduced 

by this logic. A one-sided rank-sum test compared the overall distribution of per-epoch 

accuracies in data to those in simulation for each rat.

Evaluation of logistic regression and neural network models of choice 
accuracy—We used a DNN model to predict choice outcome (correct or error) as a 

function of an exhaustive feature set, or a feature set comprised of target age and distractor 

age alone. The exhaustive feature set included for each of target and distractor: age in trials 

and time; their last, maximum, and cumulative delivered reward amounts; time since last 

reward; last and cumulative dwell times; number of trials since any parts of its trajectory 

was last traversed. The feature set also included, for the target and distractor, their spatial 

trial type (branch/stem) and temporal (target age – distractor age) relationships. The features 

were each standardized to have zero mean and unit variance. The DNNs were feedforward, 

fully connected networks implemented in KERAS using the TENSORFLOW backend and 

optimized using ADAM. Each network had three hidden layers with 32 nodes each and the 

rectified linear unit activation. The output of the last layer was a sigmoid and the binary 

cross-entropy was the loss function. Networks were trained with 200 epochs with early 

stopping using a patience of 5 epochs. A k = 5-fold training procedure was used whereby 

1/kth of the data were withheld for testing, 1/kth were withheld for validation and the rest 

were used for training. Datasets used for training were subsets of the full dataset for each 

of rats T, S, D, R (N = 2857, 4031, 4246, 3452, respectively) due to the requirement that 

training trials have data for every feature in the exhaustive set. The trials that comprise 

each fold were uniformly selected at random. A total of 10 networks were trained for this 

configuration and the network with the best validation loss was used to evaluate on the 
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test set. The test set was then rotated k times until all data are used for testing. The loss 

was weighted during training so that the weighted number of instances from the two trial 

outcomes (i.e., correct or error) are the same.

Logistic regression was implemented in KERAS, where it is simply a neural network 

without any hidden layers.

Fitting the generative memory model (GeMM) parameters—The GeMM was fit 

on a subset of distractor-target trial types for which there was enough data, excluding 

invalid errors. The reduced datasets were 1877, 2593, 2722, and 2284 trials for rats T, S, 

D, R, respectively. Model parameters a0, a1, a2 and σ0 were fit for each rat based on its 

performance across trial types defined by distractor and target - distractor ages (excluding 

invalid error trials and target - distractor ages > 4). The probability density of the difference 

between two lognormal distributions (whose negative density is the error rate) does not have 

a closed-form analytic solution, so we simulated 104 trials for each trial type within the 

fit. Each simulated trial generated an m1′and m0′, from which we computed an outcome 

(correct or error). Across many simulated trials, this returned a predicted error rate pattern 

across trial types for the current set of parameters.

A χ2 metric was used to evaluate model performance and find the best fit parameters:

∑
trial type i

εi, data − εi, model
σεi, data

2
,

where ε is the error rate and σε is the uncertainty in the error rate. The uncertainty σε 
is determined via bootstrapping, accounting for correlations between the number of trials 

that were incorrect (Ni) and the total number of trials (NT) by modeling each as an 

independent Poisson random variable and taking the standard deviation of Ni/(Ni + Nc) over 

100,000 simulated trials. We use the Nelder-Mead method with 200 maximum iterations as 

implemented in SCIPY, minimizing the χ2 fit to error rates across trial types. Then, using 

these parameters, we generated the distributions corresponding to each episode memory 

and sampled from each 100,000 times to generate target memories, distractor memories, 

the outcome of the trial (correct/error) and a confidence (absolute value of the difference 

between target and distractor).

Mapping GeMM-predicted confidence to gambled time—To convert the simulated 

confidence values to invested times, we mapped the confidence (C) probability density onto 

the probability density of the rat’s invested times (T). Let F(x)= Pr(C ≤x) be the cumulative 

distribution function (CDF) for C and G(x)= Pr(T < x) be the CDF of the invested times. 

Then, the mapping procedure proceeds as follows:

1. Compute the empirical CDF of the confidence values from the model F using 

ECDF from STATSMODELS. Trials are generated from the model such that the 

number of trials from each trial type follows the relative rates in data which are 

not uniform. The minimum number of trials generated is 104.
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2. Compute the empirical CDF of the wait times from data G using ECDF from 

STATSMODELS. This is inclusive over trial types.

3. For each confidence value c, evaluateG−1(F(c)). The inverse G−1 is computed 

via linear interpolation (using NUMPY’s interp function) inverting the x and y 

coordinates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A novel rodent task combines a memory-guided choice and confidence report

• Rats demonstrate the ability to compute memory confidence

• A deep-neural-network-derived memory decision variable tracks trial 

difficulty

• A generative model of evolving memory distributions predicts choice and 

confidence
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Figure 1. Memory task with time gambling
(A) Self-paced trials are initiated by nose poke at a home port. Two choice port options are 

cued with a light; four are uncued, invalid options that are not correct. One cued port was 

visited longer ago in the ongoing visit sequence (remote, the target) than the other (recent, 

the distractor), and is correct. Memory choice is indicated by nose poke at a port. Time 

investment, rats gamble on the choice outcome by maintaining the nose-poke position for a 

self-determined interval. Reward payoff depends, for correct trials only, on gambled time.

(B) Reward amount (blue) is a function of gambled time and is received at the choice port. 

On error trials (red), no reward is received.
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(C) Track geometry showing back (black), home (gray), and choice ports A–F. After leaving 

choice port, rats receive at back port the same, gamble-dependent reward, completing the 

trial. Scale bar, 1 m.

(D) Cued ports are always adjacent, producing three pairs on the same branch that differ by 

a stem (top, stem trials: AB; CD; and EF) and three that differ by both branch and stem 

(bottom, branch trials: BC; DE; and FA) trials. Scale bar, 1 m.

(E) Distractor ages 1, 2, and 3, with targets older than given distractor, are allowed (yellow).

(F) Example sequence (top to bottom) of cued ports (yellow) and correct (left, blue outlines) 

or error (right, red outlines) choices for a range of target (bold number) and distractor 

(number) ages. After each trial, unvisited port ages increment; last-visited port is set to age 

1. Note that trials following error could, but did not usually, present again the same ports.

See also Figure S1 and Video S1.
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Figure 2. Gambled time predicts choice accuracy
(A) Choice accuracy is stable per epoch, as shown for representative rat T at 80.9% ± 0.9%, 

significantly above random choice between all six ports (light gray line, 17%) or the two 

cued ports (dark gray line, 50%).

(B) For representative rat T, average gambled times (dashed vertical lines) were significantly 

higher for correct (blue) than error choices (red), inclusive over all trials in all epochs (p = 

4.8 × 10−69).

(C) For each rat, gambled time (10 percentile bins) predicts choice accuracy, measured as 

proportion correct. For rats T, S, D, R, n trials = 2,978, 4,111, 4,369, and 3,660.

(D) For representative rat T, average gambled times (dashed vertical lines) were significantly 

shorter for invalid choices (yellow) than for errors to the cued port (red; p = 2.5 × 10−10). 

Invalid choices represented the following percentages of total trials: rat T, 3.3%; rat S, 1.7%; 

rat D, 2.7%; and rat R, 4.6%. Excluding invalid choices, average gambled time on correct 

trials (blue dashed line) is still significantly longer than for errors (red dashed line; p = 6.6 × 

10−48).

(E) For all four rats, gambled times for correct trials were significantly higher than error 

trials (rat S, p = 4.9 × 10−60; rat D, p = 5.0 × 10−81; rat R, p = 6.5 × 10−118), which were 

significantly higher than invalid error trials (rat S, p = 2.2 × 10−9; rat D, p = 5.6 × 10−14; rat 

R, p = 2.2 × 10−17).

(F) Low gambled times (10 percentile bins) predict a higher proportion of invalid trials for 

all four rats. All error bars represent SEM, and all statistical tests were one-sided rank sum.

See also Figures S2–S4.
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Figure 3. Defining a memory decision variable
(A–D) Choice accuracy depends on target and distractor ages. For rats S, T, R, and D, 

the proportion of correct trials decreases with distractor age (columns) and, for a given 

distractor, increases with target age (rows); marginal performance at left and bottom, 

respectively. Black boxes indicate trial types not permitted by task logic.

(A) For rat S, proportion correct and SEM are annotated. Target ages below 6 are shown, 

with n trials: rat S, 2,720; rat T, 2,008; rat R, 2,499; and rat D, 2,881. Color bar (A) applies 

to all four rats.

(E) A DNN trained by 5-fold cross-validation for each rat takes as input 20 features, a subset 

of which are depicted in the input layer (left, dark blue). The DNN hasthree hidden layers, 

Joo et al. Page 28

Curr Biol. Author manuscript; available in PMC 2021 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



each with 32 nodes (gray), and outputs a detection statistic related to the probability a trial 

will be correct, defined as a memory decision variable (MDVDNN) (green).

(F) Performance (receiver operating characteristic, area under the curve [ROC AUC]) of the 

DNN trained on the full feature set far exceeded that of a constant model using only the 

overall proportion correct (constant, cyan), as well as that of a model trained on target and 

distractor ages only (teal). Error bars = SEM.

(G) For all four rats, a higher MDVDNN predicts a higher proportion of correct choices. 

Horizontal and vertical error bars = SEM.
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Figure 4. The generative memory model (GeMM)
(A) Family of lognormal distributions representing the probability density of recalled 

episode ages Mα’|Mα = mα as the true age mα increments from 1 to 4 for port α. Uppercase 

symbols denote random variables (e.g., Mα’ and Mα) while lowercase symbols represent 

realizations of those random variables (e.g., mα’ and mα).

(B) Example trial has target port with age mα = 4 and distractor port with age mβ = 1. A 

correct (blue) and error (red) realization of the recalled ages for the two ports is shown as 
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vertical dashed lines for the target (purple) and distractor (orange) at values mα’ and mβ’, 

respectively.

(C) The probability density of Mα’ – Mβ’ given Mα and Mβ; the area to the right of 0 is the 

proportion correct for this target-distractor age pair. Confidence (c) is computed as | mα’ – 

mβ’ |, and the average confidence is indicated for correct (blue) and error (red) trials.

(D) Observed choice accuracy across 12 specifiedtrial types, excluding invalid choices.

(E) Model-predicted choice accuracy across 12 specified trial types, excluding invalid 

choices. Representative rat D is used for all plots. For rat D, the GeMM uses fitted 

parameters a0 = 1.20, a1 = 0.32, a2 = 0.38, and σ0 = 0.38 for a lognormal distribution 

with mean a0mα and standard deviation σ0(1 + a1mα + a2mα2):Positive a1 and a2 define 

distributions with increasing variance with elapsed trials; σ0 << 1 sets a low overlap between 

neighboring densities, consistent with high observed choice accuracy.

See also Figures S5 and S6.
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Figure 5. Ensemble model
(A) For each trial in data, task features (left) include the 20 features used to calculate the 

MDVDNN, gambled time, and trial outcome. A subset of these, the distractor age and target 

age, are input to the fitted GeMM (top panel) to simulate two GeMM outputs: a predicted 

trial outcome (correct or error; lime) and a predicted confidence value, which is converted 

by a monotonic mapping function, shown for representative rat T, to predicted gambled time 

(pink). The process is repeated n = 10 times per trial in data to produce a distribution of 

model-simulated gambled times per observed gambled time, all with the same MDVDNN 

(bottom panel). The MDVDNN is calculated from the 20 input features to the trained DNN 

(green).
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(B) The ensemble model makes three signature predictions of memory confidence based 

on accuracy (lime), gambled time (pink), and the MDVDNN (green), as a memory 

discriminability axis, to which trends in data can be compared (here, representative 

schematics). Middle: blue represents upper half of gambled times, and red represents lower 

half of gambled times. Right: blue represents correct trials, and red represents error trials.
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Figure 6. The GeMM predicts trends in memory discriminability, choice, and gambled times in 
data
Each plot shows GeMM predictions (lines) with data (points) overlaid.

(A, D, G, and J) GeMM-predicted calibration curves (gray lines) for accuracy as a function 

of mean-normalized gambled time compared to data (black points), for the lowest 14 of n = 

15 percentile bins. Horizontal bars represent bin widths.

(B, E, H, and K) Conditioned psychometric curve predicted by the GeMM shows proportion 

correct for upper half (dark blue) versus lower half (red) of gambled times compared to 
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proportion correct in upper half (light blue) versus lower half (orange) in data, each in n = 7 

percentile bins.

(C, F, I, and L) Vevaiometric curve depicts gambled times predicted by the GeMM for 

correct (dark blue) and error (red) trials compared to correct (light blue) and error (orange) 

in data, each in n = 7 percentile bins. Vertical error bars represent SEM for all plots.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: organisms/strains

Rattus norvegicus: Crl:LE strain code 006: Long Evans rats Charles River Laboratories RRID: RGD_2308852

Deposited data

Raw data This paper https://doi.org/10.5281/zenodo.5123545

Software and algorithms

Code repository for this paper This paper https://github.com/hrjoo/TotalRecall
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