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Abstract

The Relative Performance of Targeted Maximum Likelihood Estimators Under Violations
of the Positivity Assumption

by
Kristin Elizabeth Porter
Doctor of Philosophy in Biostatistics
University of California, Berkeley

Professor Mark J. van der Laan, Chair

Observational studies often present the challenge of data sparsity due to violations of the
positivity assumption. Such violations occur when some subgroups never or rarely receive
a particular treatment or never or rarely are uncensored. Bias due to actual or practical
positivity violations often goes undiagnosed, and such bias can threaten valid inference for
estimation of the target parameter. It is important to recognize that different estimators
perform differently under a lack of positivity - in terms of both bias and variance. Common
estimators across many fields often perform poorly in this setting.

Alternatively, targeted maximum likelihood estimators (TMLE’s) tend to be relatively
robust under a lack of positivity. This dissertation compares the performance of TMLE’s to
many common estimators under violations of the positivity assumption for three different
target parameters: (1) a causal effect focused on the difference in mean outcomes for two
treatments, (2) a mean outcome that is subject to missingness but for which all possible
covariates for predicting missingness are measured, and (3) conditional relative risk in a
semi-parametric multiplicative regression model.

For each of these parameters, the parameter-specific positivity assumption is formally
presented and discussed. Also for each parameter, the theoretical properties of existing
methods are compared to the those of TMLE’s. The theoretical properties indicate how we
expect different estimators to behave under positivity violations. Also, using a variety of
simulations with various degrees of and reasons for positivity violations, the performance of
TMLE’s, relative to other estimators, is demonstrated. This dissertation also discusses how
to diagnose bias due to positivity violations and how to respond to resulting bias.
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Chapter 1

Introduction

A rigorous, statistical investigation of a scientific question involves not only a good re-
search design, reliable data, and an appropriate target parameter, but also careful consid-
eration of estimation methods for the target parameter. Analysts too often use standard
estimation methods, simply relying on status-quo procedures, popular software packages
and unvalidated assumptions. However, there are many choices to be made when consider-
ing different estimation methods, which can affect the bias and efficiency of results. While
it may seem obvious to state, it is not always fully appreciated that estimation methods
matter, often considerably. This dissertation illustrates this point.

What choices must an analyst weigh when making decisions about estimation methods?
One key choice is the estimator of the target parameter. For example, one may choose an
estimator that relies on a model for the conditional expectation of the outcome given covari-
ates; or, one may choose an estimator that relies on a model for the conditional expectation
of treatment or censoring given covariates (i.e. propensity). Alternatively, an analyst may
choose an estimator that incorporates both of these models - i.e. a double robust (DR)
estimator. For each type of estimator, there are a multitude of estimators to consider.

Another key choice when deciding on an estimation method, is the statistical model on
which a candidate estimator relies. For example, an analyst may use parametric models,
which rely on substantive knowledge to select covariates and a functional form. In contrast,
one may rely on non-parametric models, which instead let the data speak through data-
adaptive, or machine learning, algorithms, or one may opt for a semi-parametric model,
which combines both parametric assumptions and non-parametric, data-adaptive methods.

When weighing these choices, an analyst should consider many factors. For example,
the research design is one important factor. If one has a successful randomized control
trial (RCT), the choices of estimator and corresponding statistical model may not affect
consistency, but they can be very important in terms of efficiency (Rosenblum and van der
Laan [2010], Moore and van der Laan [2007]). On the other hand, in observational studies,
these choices can have a substantial effect on both consistency and efficiency, as will be
demonstrated throughout this dissertation. In both types of studies, many other factors can
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also affect the performance of different estimation methods, including data structure (such
as a nested or longitudinal structure vs. a point-treatment structure), censoring, and of
course, confidence in model assumptions.

One other key factor that can have substantial implications for choices related to the
estimation method, particularly related to the choice of estimator, is whether or not there is a
“lack of positivity” in the data. Lack of positivity, a common challenge in observational data,
occurs when there is a lack of support in the data for some subgroup(s) of subjects because
they never or rarely receive some treatments or never or rarely are not censored. More
formally, lack of positivity arises when there are either actual or theoretical (i.e. practical)
violations of what is referred to as the positivity assumption (see Robins [1986, 1987a,
1999], Petersen et al. [2010]) or the experimental treatment assignment (ETA) assumption
(Neugebauer and van der Laan [2005]). The assumption is parameter specific. For a causal
effect, it states that within each stratum of covariates, there is a positive probability for
all possible treatment assignments. For a mean outcome under missingness, it requires
that within each stratum of covariates, there is positive probability that the outcome is
not missing. Identifiability of the target parameter requires that the appropriate positivity
assumption is not violated. However, even if the assumption holds, theoretical violations
can lead to substantial bias, with or without inflated variance. The extent of bias and/or
variance inflation depends greatly on the estimator. Some estimators are constructed in a
such a way that they are much more robust to positivity violations.

Targeted maximum likelihood estimators (TMLE’s) make up a class of estimators that
are relatively robust to positivity violations compared to many other estimators that are
either used widely or are found in methodological literature across many disciplines. There
is a growing set of literature on TMLE’s (for a summary, see van der Laan et al. [2009] and
Rose and van der Laan [Eds.]), which exist for any parameter of interest, including those
defined by non-parametric, semi-parametric and parametric models. TMLE’s are double
robust and asymptotically efficient, substitution estimators that are obtained by fluctuating
an original estimate of the density of the data in a way that targets the parameter of interest.
Because they are substitution estimators, TMLE’s respect the fact that the true parameter
value is a particular function of the data generating probability distribution in the assumed
statistical model. Because of this property, TMLE’s respect the global constraints on the data
generating distribution and the parameter space. This results in their relative robustness
under lack of positivity.

TMLE’s can also incorporate data-adaptive likelihood or loss-based estimation proce-
dures to estimate both the conditional expectation of the outcome and of the missingness
or treatment mechanism. Moreover, TMLE’s allow for the incorporation of targeted esti-
mation of the censoring/treatment mechanism, which is introduced in what is referred to as
the collaborative TMLE (C-TMLE), thereby fully confronting a long-standing problem of
how to select covariates in the missingness or treatment mechanism of DR estimators. Such
an extension results in even greater improvements in robustness in the face of positivity
violations.
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In summary, this dissertation makes a clear point that choices related to estimation
methods can really matter, particularly in observational studies. Observational studies often
present the challenge of data sparsity due to a lack of positivity. Bias due to a lack of
positivity often goes undiagnosed. Such bias can threaten valid inference for estimation
of the target parameter. It is important to recognize that different estimators perform
differently under lack of positivity - in terms of both bias and variance. Common estimators
across many fields often perform poorly in this setting. Alternatively, TMLE’s tend to be
relatively robust under lack of positivity.

This dissertation compares the performance of many common estimators to TMLE’s un-
der violations of the positivity assumption for three different target parameters: (1) a causal
effect focused on the difference in mean outcomes for two treatments, (2) a mean outcome
that is subject to missingness but in which all possible covariates for predicting missingness
are measured, and (3) conditional relative risk in a semi-parametric multiplicative regression
model. For all parameters, the parameter-specific positivity assumption is formally presented
and discussed. Also, for all parameters, the theoretical properties of existing methods are
compared to the theoretical properties of TMLE’s. The theoretical properties indicate how
one expects the different estimators to behave under lack of positivity. Then, the relative
performance of the estimators is demonstrated through a variety of simulations with vari-
ous degrees of and reasons for positivity violations. The dissertation also discusses how to
diagnose bias to positivity violations, and how to respond to resulting bias.

To illustrate these points, the chapters of this dissertation are summarized as follows:

e Chapter 1 discusses the positivity assumption in the context of assessing model and
parameter-specific identifiability of causal effects. In this case, positivity violations
occur when certain subgroups in a sample rarely or never receive some treatments of
interest. Also, the parametric bootstrap is presented as a tool to assess the severity of
threats to valid inference due to positivity, and its utility as a diagnostic is explored
using simulated data. Several approaches for improving the identifiability of parameters
in the presence of positivity violations are also reviewed. All of the approaches can be
understood as trading off proximity to the initial target of inference for identifiability,
and should be considered systematically. This chapter is closely based on the published
technical reported titled “Diagnosing and Responding to Violations in the Positivity
Assumption” by Maya L. Petersen, Kristin E. Porter, Susan Gruber, Yue Wang, Mark
J. van der Laan (Petersen et al. [2010]).

e Chapter 2 delves more deeply into the relative performance of TMLE’s under lack
of positivity, while focusing on a simple missing data problem in which one wishes
to estimate the mean of an outcome that is subject to missingness and covariates
predicting missingness are measured. Based on a draft of an article titled “The Rela-
tive Performance of Targeted Maximum Likelihood Estimators” by Kristin E. Porter,
Susan Gruber (co-first authors), Mark van der laan and Jasjeet S. Sekhon, this chap-
ter highlights an active debate in the literature on censored data about the relative
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performance of model based maximum likelihood estimators, inverse probability of
weighting (IPCW) estimators, and a variety of DR, semi-parametric efficient estima-
tors. In particular, Kang and Schafer [2007] demonstrate the fragility of DR and IPCW
estimators in a simulation study with positivity violations. Responses by Robins et al.
[2007], Tsiatis and Davidian [2007], Tan [2007] and Ridgeway and McCaffrey [2007]
further explore the challenges faced by double robust estimators and offer suggestions
for improving their stability. In this chapter/article, we join the debate by presenting
several TMLE’s. We explain that TMLE’s, particularly those that guarantee that the
parametric submodel employed by the TMLE procedure respects the global bounds on
the continuous outcomes, are especially suitable for dealing with positivity violations
because in addition to being DR and semi-parametric efficient, they are substitution es-
timators. We also demonstrate the practical performance of TMLE’s relative to other
estimators in the simulations designed by Kang and Schafer [2007] and in modified
simulations with even greater estimation challenges.

e Chapter 3 focuses on a parameter that is defined by a semi-parametric model. Specif-
ically, it introduces two TMLE’s of conditional relative risk in a semi-parametric
multiplicative regression model for a binary outcome. The introduction of the semi-
parametric model is an approach that responds to bias due to positivity violations
but that maximizes flexibility for model specification. One of the two TMLE’s for
the parameter defined by the model correctly assumes that the binary outcome (e.g.
disease or no disease) has a binomial distribution. This results in a double-robust
(DR), efficient estimator of the parameter of interest in the model, but it is unstable,
due to convergence problems with the log-binomial regression model, which is used
for estimation. The second TMLE instead incorrectly assumes that the outcome is
a count of events and follows a Poisson distribution. However, we apply the second
TMLE to data in which the outcome is binary. In this case, the TMLE is no longer
efficient, but it does achieve stability. It also remains DR - that is, the efficient score
estimating function in the semi-parametric Poisson regression model is an unbiased
DR estimating function for the parameter of interest in the semi-parametric condi-
tional mean model, which does not assume a Poisson distribution. Consequently, this
second TMLE is consistent and can provide correct inference. We refer to this latter
TMLE as the “practical TMLE” of our parameter of interest when the outcome in
truly binary, and we focus on this TMLE in our implementation and simulations in
this paper. This chapter overlaps considerably with content found in Tuglus et al.
[2011] but is presented differently.

e Chapter 4 provides theoretical details at a level much greater than in any previous
chapters. Focusing on the third parameter of interest conditional relative risk in a semi-
parametric multiplicative regression model, this chapter provides rigorous derivations of
key features of the two corresponding TMLE’s introduced in Chapter 3. In particular,
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this chapter shows, for each of the TMLE’s, how to construct the efficient score and
efficient influence curve. It also presents the parametric fluctuation submodels for the
TMLE step, including the so called clever covariates that define the submodels.



Chapter 2

Diagnosing and Responding to
Violations in the Positivity
Assumption
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2.1 Introduction

Incomplete control of confounding is a well-recognized source of bias in causal effect
estimation- measured covariates must be sufficient to control for confounding in order for
causal effects to be identified based on observational data. The identifiability of causal ef-
fects further requires sufficient variability in treatment or exposure assignment within strata
of confounders. The dangers of causal effect estimation in the absence of adequate data
support have long been understood.Cochran [1957] More recent causal inference literature
refers to the need for adequate exposure variability within confounder strata as the assump-
tion of positivity or experimental treatment assignment. Robins [1986, 1987a, 1999] While
perhaps less well-recognized than confounding bias, violations and near violations of the
positivity assumption can increase both the variance and bias of causal effect estimates, and
if undiagnosed can seriously threaten the validity of causal inferences.

Positivity violations can arise for two reasons. First, it may be theoretically impossible for
individuals with certain covariate values to receive a given exposure of interest. For example,
certain patient characteristics may constitute an absolute contraindication to receipt of a
particular treatment. The threat to causal inference posed by such structural or theoretical
violations of positivity does not improve with increasing sample size. Second, violations or
near violations of positivity can arise in finite samples due to chance. This is a particular
problem in small samples, but also occurs frequently in moderate to large samples when
the treatment is continuous or can take multiple levels, or when the covariate adjustment
set is large and/or contains continuous or multi-level covariates. Regardless of the cause,
causal effects may be poorly or non-identified when certain subgroups in a finite sample do
not receive some of the treatment levels of interest. In this paper, we will use the term
“sparsity” to refer to positivity violations and near-violations arising from either of these
causes, recognizing that other types of sparsity can also threaten valid inference.

In this chapter, we discuss the positivity assumption within a general framework for
assessing the identifiability of causal effects. The causal model and target causal parameter
are defined using a non-parametric structural equation model (NPSEM) and the positivity
assumption is introduced as a key assumption needed for parameter identifiability. The
counterfactual or potential outcome framework is then used to review estimation of the
target parameter, assessment of the extent to which data sparsity threatens valid inference
for this parameter, and practical approaches for responding to such threats. For clarity,
we focus on a simple data structure in which treatment is assigned at a single time point.
Concluding remarks generalize to more complex longitudinal data structures.

Data sparsity can increase both the bias and variance of a causal effect estimator; the
extent to which each are impacted will depend on the estimator used. An estimator-specific
diagnostic tool is thus needed to quantify the extent to which positivity violations threaten
the validity of inference for a given causal effect parameter (for a given model, data-generating
distribution, and finite sample). Wang et al. [2006a] proposed such a diagnostic based on the
parametric bootstrap. Application of a candidate estimator to bootstrapped data sampled
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from the estimated data generating distribution provides information about the estimator’s
behavior under a data generating distribution that is based on the observed data. The true
parameter value in the bootstrap data is known and can be used to assess estimator bias.
A large bias estimate can alert the analyst to the presence of a parameter that is poorly
identified, an important warning in settings where data sparsity may not be reflected in the
variance of the causal effect estimate.

Once bias due to violations in positivity have been diagnosed, the question remains how
best to proceed with estimation. We review several approaches. Identifiability can be im-
proved by extrapolating based on subgroups in which sufficient treatment variability does
exist; however, such an approach requires additional parametric model assumptions. Alter-
native approaches for responding to sparsity include the following: restriction of the sample
to those subjects for whom the positivity assumption is not violated (known as trimming);
re-definition of the causal effect of interest as the effect of only those treatments that do
not result in positivity violations (estimation of the effects of “realistic” or “intention to
treat” dynamic regimes); restriction of the covariate adjustment set to exclude those covari-
ates responsible for positivity violations; and, when the target parameter is defined using a
marginal structural working model, use of a projection function that focuses estimation on
areas of the data with greater support.

As we discuss, all of these approaches change the parameter being estimated by trading
proximity to the original target of inference for improved identifiability. We advocate incor-
poration of this tradeoff into the effect estimator itself. This requires defining a family of
parameters, the members of which vary in their proximity to the initial target and in their
identifiability. An estimator can then be defined that selects among the members of this
family according to some pre-specifed criteria.

2.1.1 Outline

The chapter is structured as follows. Section 2.2 introduces a non-parametric struc-
tural equation model for a simple point treatment data structure, defines the target causal
parameter using a non-parametric marginal structural model, and discusses conditions for
parameter identifiability with an emphasis on the positivity assumption. Section 2.3 reviews
three classes of causal effect estimators and discusses the behavior of these estimators in
the presence of positivity violations. Section 2.4 reviews approaches for assessing threats to
inference arising from positivity violations, with a focus on the parametric bootstrap. Sec-
tion 2.5 investigates the performance of the parametric bootstrap as a diagnostic tool using
simulated data. Section 2.6 then applies the diagnostic tool to a real data example. Section
2.7 reviews methods for responding to positivity violations once they have been diagnosed,
and integrates these methods into a general approach to sparsity that is based on defining a
family of parameters. Section 2.8 offers some concluding remarks and advocates a systematic
approach to possible violations in positivity.
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2.2 Framework for Causal Effect Estimation

We proceed from the basic premise that model assumptions should honestly reflect in-
vestigator knowledge. The non-parametric structural equation model (NPSEM) framework
of Pearl provides a systematic approach for translating background knowledge into a causal
model and corresponding statistical model, defining a target causal parameter, and assess-
ing the identifiability of that parameter. Pearl [2000] We illustrate this approach using a
simple point treatment data structure. We minimize notation by focusing on discrete-valued
random variables.

2.2.1 Model

Let W denote a set of baseline covariates on a subject, let A denote a treatment or
exposure variable, and let Y denote an outcome. Specify the following structural equation
model (with random input U ~ Py):

W = fw(Uw) (2.1)
A= fa(W,Ua)
Y = fY<W7A7 UY)7

where U = (U, Uy, Uy ) denotes the set of background factors that deterministically assign
values to (W, A,Y") according to functions (fi, fa, fy). Each of the equations in this model
is assumed to represent a mechanism that is autonomous, in the sense that changing or
intervening on the equation will not affect the remaining equations, and that is functional,
in the sense that the equation reflects assumptions about how the observed data were in
fact generated by Nature. In addition, each of the equations is non-parametric, in the sense
that its specification does not require assumptions regarding the true functional form of the
underlying causal relationships. However, if aspects of the functional form of any of these
equations are known based on background knowledge, such knowledge can be incorporated
into the model.

A causal graph is derived from a non-parameteric structural equation model by connecting
each observed variable to its “parents” (the subset of covariates found in the right hand side
of the corresponding structural equation) with arrows emanating from the parents. The
causal graph corresponding to Model (2.1) is given in Figure 2.1. The background factors U
are assumed to be jointly independent in this particular model; or in other words, the model
is assumed to be Markov. Pearl [2000] This assumption is encoded in the absence of double
headed arrows between the elements of U in Figure 2.1. The NPSEM framework can also
be applied to non-Markov models.

Let the observed data consist of n i.i.d. observations Oy, ..., O, of

O=W,AY)~ D
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Figure 2.1: Causal graph for non-parametric structural equation model

Causal model (2.1) places no restrictions on the allowed distributions for F,, and thus implies
a non-parametric statistical model.

2.2.2 Target Causal Parameter

A causal effect can be defined in terms of the joint distribution of the observed data
under an intervention on one or more of the structural equations, or equivalently, under an
intervention on the causal graph. For example, consider the post-intervention distribution
of Y under an intervention on the structural model to set A = a. Such an intervention
corresponds to replacing A = fa(W,U,) with A = a in the structural model (2.1), as
follows:

W = fw(Uw) (2:2)
A=ua
Y = fy(VV, a, Uy)

The counterfactual outcome that a given subject with background factors u would have had
if he or she were to have received treatment level a is denoted Y, (u).Neyman [1923], Rubin
[1974] This counterfactual can be derived as the solution to the structural equation fy in
equation system (2.2) within input U = u.

Let Fx denote the distribution of X = (W, (Y, : a € A)), where A denotes the possible
values that the treatment variable can take (e.g. {0, 1} for a binary treatment). Fx describes
the joint distribution of the baseline covariates and counterfactual outcomes under a range
of interventions on treatment variable A. A causal effect can be defined as some function of
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Fx. For example, a common target parameter for binary A is the average treatment effect

or the difference in expected counterfactual outcome if every subject in the population had
received versus had not received treatment.

Alternatively, an investigator may be interested in estimating the average treatment
effect separately within certain strata of the population and/or for non-binary treatments.
Specification of a marginal structural model (a model on the conditional expectation of the
counterfactual outcome given effect modifiers of interest) provides one option for defining the
target causal parameter in such cases.Robins [1999, 1998, 1999] Marginal structural models
take the following form:

EFX(}/;I | V) = m(av Vv | 5)7 (24)

where V' C W denotes the strata in which one wishes to estimate a conditional causal effect.
For example, one might specify the following model:

m(a,V | B) = B + faa + B3V + BsaV.

For a binary treatment A € {0, 1}, such a model implies an average treatment effect within
stratum V = v equal to Sy + S,v.

The true functional form of Ep, (Y, | V) will generally not be known. One option is
to assume that the parametric model m(a,V | ) is correctly specified, or in other words
that Er, (Y, | V) = m(a,V | ) for some value 5. Such an approach, however, can place
additional restrictions on the allowable distributions of the observed data and thus change the
statistical model. In order to respect the premise that the statistical model should faithfully
reflect the limits of investigator knowledge and not be altered in order to facilitate definition
of the target parameter, we advocate an alternative approach in which the target causal
parameter is defined using a non-parametric marginal structural model. Under this approach
the target parameter [ is defined as the projection of the true causal curve Er (Y, | V') onto
the specified model m(a,V | ) according to some projection function h(a,V):

B(Fx,m,h) = argmﬂin Ep, Z(Ya —m(a,V|B))*h(a, V)| .Neugebauerandvan der Laan [2007]
acA
(2.5)
When h(a,V) = 1, the target parameter § corresponds to an unweighted projection of the
entire causal curve onto the model m(a, V|3); alternative choices of h correspond to placing
greater emphasis on specific parts of the curve (i.e. on certain (a, V') values).
Use of a non-parametric marginal structural model such as (2.5) is attractive because
it allows the target causal parameter to be defined within the original statistical model.
However, this approach by no means absolves the investigator from careful consideration of
marginal structural model specification. A poorly specified model m(a, V'|#) may result in a
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target parameter that provides a poor summary of the features of the true causal relationship
that are of interest.

In the following sections we discuss the parameter 5(Fy,m, 1) as the target of inference,
corresponding to a focus on estimation of the treatment-specific mean for all levels a € A
within strata of V' as projected onto model m, with projection h(a, V') =1 chosen to reflect
a focus on the entire causal curve. To simplify notation we use [ to refer to this target
parameter unless otherwise noted.

2.2.3 Identifiability

We assess whether the target parameter S of the counterfactual data distribution Fx
is identified as a parameter of the observed data distribution P, under causal Model (2.1).
Because Model (2.1) is Markov, we have that

PFX(Ya:y):ZPOO/ZMW:U}?A:(I)PO(W:U})? (26)

identifying the target parameter  according to projection (2.5).Pearl [2000] This identifia-

bility result is often referred to as the G-computation formula.Robins [1986, 1987a,b] The

weaker assumption of randomization, or the assumption that A and Y, are conditionally

independent given W, is also sufficient for identifiability result (2.6) to hold.
Randomization Assumption:

AT YalW for all a € A.Robins [1986, 1987a,b] (2.7)

Whether or not a given structural model implies that assumption (2.7) holds can be assessed
directly from the graph through the back door criterion. Pearl [2000]

The need for experimentation in treatment assignment

The G-computation formula (2.6) is only a valid formula if the conditional distributions in
the formula are well-defined. Let go(a | W) = Po(A =a | W),a € A denote the conditonal
distribution of treatment variable A under the observed data distribution F,. If one or
more treatment levels of interest do not occur within some covariate strata, the conditional
probability Py(Y = y|A = a, W = w) will not be well-defined for some value(s) (a,w) and
the identifiability result (2.6) will break down.

A simple example provides intuition into the threat to parameter identifiability posed
by sparsity of this nature. Consider an example in which W = I(woman), A is a binary
treatment, and no women are treated (go(1|W = 1) = 0). In this data generating distribution
there is no information regarding outcomes among treated women. Thus, as long as there
are women in the target population (i.e. Py(W = 1) > 0), the average treatment effect
Er, (Y1 —Y)) will not be identified without additional parametric assumptions.
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This simple example illustrates that a given causal parameter under a given model may be
identified for some joint distributions of the observed data but not for others. An additional
assumption is thus needed to ensure identfiability. We begin by presenting the strong version
of this assumption, needed for the identification of Pp ((Y, =y, W = w) : a,y,w) in a non-
parametric model.

Strong Positivity Assumption:

;g\gO(a | W) >0,- ae. (2.8)

The strong positivity assumption, or assumption of experimental treatment assignment
(ETA), states that each possible treatment level occurs with some positive probability within
each strata of W.

Parametric model assumptions may allow the positivity assumption to be weakened. In
the example above, an assumption that the treatment effect is the same among treated
men and women would result in identification of the average treatment effect (2.3) based on
extrapolation from the estimated treatment effect among men (assuming that other identifi-
ability assumptions were met). Parametric model assumptions of this nature are particularly
dangerous, however, because they extrapolate to regions of the joint distribution of (A, W)
that are not supported by the data. Such assumptions should be approached with caution
and adopted only when they have a solid foundation in background knowledge.

In addition to being model-specific, the form of the positivity assumption needed for
identifiability is parameter-specific. Many target causal parameters require much weaker
versions of positivity than (2.8). To take one simple example, if the target parameter is
E(Y7), the identifiability result only requires that go(1|7W) > 0 hold; it doesn’t matter
if there are some strata of the population in which no one was treated. Similarly, the
identifiability of 5(Fx,m,h), defined using a marginal structural model, relies on a weaker
positivity assumption.

Positivity Assumption for 5(Fy,h,m):

sup —h(a’ V) < 00,- a.e. (2-9)
acA g(alW)

Choice of projection function h(a, V') used to define the target parameter thus has impli-
cations for how strong an assumption on positivity is needed for identifiability. In Section
2.7 we consider specification of alternative target parameters that allow for weaker positivity
assumptions than (2.8), including parameters indexed by alternative choices of h(a, V). For
now we focus on the target parameter § indexed by the choice h(a,V) = 1 and note that
(2.8) and (2.9) are equivalent for this parameter.

Once a target parameter has been specified, an assessment of its identifiability should
precede estimation. Causal graphs provide a tool for assessment of identifiability assump-
tion (2.7); however, an additional tool is needed to assess threats to identifiability arising
from positivity violations or near violations. Section 2.4 reviews approaches for diagnosing
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such threats, with a focus on the parametric bootstrap. Because the impact of positivity
violations is estimator-specific, we first review several common estimators of S and discuss
their behavior in the face of sparsity.

2.3 Estimator-specific Behavior in the Face of Positiv-
ity Violations

Let W(P,) denote the target parameter of the observed data distribution, which under the
assumptions of randomization (2.7) and positivity (2.9) equals the target causal parameter
B(Fx,m,h). Estimators of this parameter are denoted \i/(Pn), where P, is the empirical
distribution of a sample of n i.i.d observations from Fy. We use Qow (w) = By(W = w),
Qoy (y|A, W) = Py(Y = ylA, W), and Qo(A, W) = Eo(Y|A, W). Recall that go(a|lW) =
Py(A = a|W). We review three classes of estimators ¥(P,) of § that employ estimators
of distinct parts of the observed data likelihood. Maximum likelihood-based substitution
estimators (also referred to as “G-computation” estimators) employ estimators of Qg =
(Qow, Qo). Inverse probability weighted estimators employ estimators of go. Double robust
estimators employ estimators of both gy and ()y. A summary of these estimators is provided
in Table 2.1. Their behavior in the face of positivity violations is illustrated in Section 2.5
and previous work. Neugebauer and van der Laan [2007, 2005], Bembom and van der Laan
[2007], Moore et al. [2009], Cole and Hernan [2008]

We focus our discussion on bias in the point estimate of the target parameter 5. While
estimates of the variance of # can also be biased when data are sparse, methods exist to
improve variance estimation. The non-parametric bootstrap provides one straightforward
approach to variance estimation in setting where the central limit theorem may not apply
as a result of sparsity; alternative approaches to correct for biased variance estimates are
also possible.Rosenblum and van der Laan [2001] These methods will not, however, protect
against misleading inference if the point estimate itself is biased.

2.3.1 The G-computation Estimator

The G-computation estimator \ilgcomp(Pn) provides a mapping from the empirical data
distribution P, to a parameter estimate BGcomp. \i/(;comp(Pn) is a substitution estimator
based on identifiability result (2.6). It is implemented based on an estimator of Qg =
(Qow, Qo) and its consistency relies on the consistency of this estimator.Robins [1986, 1987a]
Qow can generally be estimated based on the empirical distribution of W. However, even
when positivity is not violated, the dimension of A, W is frequently too large for Qg to be
estimated simply by evaluating the mean of Y within strata of (A, W). Due to the curse
of dimensionality, estimation of @, under a non-parametric or semi-parametric statistical
model thus frequently requires data-adaptive approaches such as cross-validated loss-based
learning.van der Laan and Dudoit [2003b], van der Laan et al. [2007], Hastie et al. [2009]
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Table 2.1: Overview of three classes of causal effect estimator.
G-computation Estimator (Section 2.3.1)

Needed for Implementation: | Estimator @Q,, of Qo

Needed for Consistency: Q. is a consistent estimator of Qg

Extrapolates based on @,

Sparsity can amplify bias due to model misspecification
IPTW Estimator (Section 2.3.2.)

Needed for Implementation: | Estimator g, of gg

gn is a consistent estimator of gg

go satisfies positivity

Does not extrapolate based on @,

Sensitive to positivity violations and near violations
DR Estimators (Section 2.3.3.)

Needed for Implementation: | Estimator g, of gg and Q,, of Qg

gn is consistent or @), is consistent

gn converges to a distribution that satisfies positivity
Can extrapolate based on Q,,

Without positivity, relies on consistency of @,

Response to Sparsity:

Needed for Consistency:

Response to Sparsity:

Needed for Consistency:

Response to Sparsity:

Given an estimator Q,, of Qp, the G-computation estimator can be implemented by gen-
erating a predicted counterfactual outcome for each subject under each possible treatment:
YW = Qn(a,W;) fora € A, i =1,...,n. The estimate ngmp is then obtained by regressing
Y, on a and V according to the model m(a,V | B), with weights based on the projection
function h(a, V).

When all treatment levels of interest are not represented within all covariate strata (i.e.
assumption (2.8) is violated), some of the conditional probabilities in the non-parametric
G-computation formula (2.6) will not be defined. A given estimate @, may allow the G-
computation estimator to extrapolate based on covariate strata in which sufficient experi-
mentation in treatment level does exist. Importantly, however, this extrapolation depends
heavily on the model for Qy and the resulting effect estimates will be biased if the model
used to estimate y is misspecified.

Moore et. al. illustrate the bias that can arise in the G-computation estimator when
simple model fitting algorithms such as forward and backward selection are used to estimate
Qo(A,W). Moore et al. [2009] While more sophisticated model fitting techniques can im-
prove estimator performance, they do not resolve the potential for data sparsity to result
in substatial bias. One possible source of positivity violations is collinearity between a con-
founder or set of confounders and the treatment or exposure of interest. If data-adaptive
methods are used to fit Q(A, W), covariates that are collinear or highly correlated with
treatment may be dropped from a model in which treatment is forced. If these covariates
are also confounders, resulting effect estimates will be biased.

Traditional Multivariable Approaches. A traditional approach to effect estimation
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in many fields is to estimate Qy = Eo(Y|A, W) using a multivariable regression model
and to report the estimated coefficient on A (or some transformation of this coefficient,
such as its exponentiated value) as the estimated causal effect. In some cases such an
estimate is equivalent to the G-computation estimate. For example, if the target of inference
is the average treatment effect for binary A, a traditional analysis might fit the model

E(Y|A,W) = G + B1A + k(W) and report an effect estimate of f;. In this case, 5, will
be equivalent to BGComp (assuming the same model is used for @, when implementing the
G-computation estimator).

In many cases, however, the coefficient on A in the multivariable regression model used to
estimate @y represents a distinct estimand. For example, for binary Y a_common approach
is to fit a logistic regression model such as E(Y|A, W) = 1/(1 + exp~FotAA+k(V)) - Here
exp(ﬁl), which is commonly reported as the causal effect estimate of interest, is an estimate
of the conditional odds ratio and is not equivalent to either the average treatment effect
or the marginal odds ratio. If G-computation is used to estimate either of the latter two
quantities then clearly the resulting estimates will not be equivalent. Traditional regression
approaches can consistently estimate causal parameters when identifiability conditions are
met and @, is correctly specified; however, care must be taken to ensure that the parameter
estimated corresponds to the causal question of interest.

2.3.2 The Inverse Probability of Treatment Weighted Estimator

The IPTW estimator ¥, gTW(Pn) provides a mapping from the empirical data distribution
P, to a parameter estimate 5;pry based on an estimator g, of go(A|WW').Robins [1999], Robins
et al. [2000] The estimator is defined as the solution in /3 to the following estimating equation:

0= 3 Sy A VDY (4, Vi ) 210)

where h(A, V') is the projection function used to define the target causal parameter (Fx,m, h)
according to (2.5). The IPTW estimator of § can be implemented as the solution to a

weighted regression of the outcome Y on treatment A and effect modifiers V' according to

model m(A, V|3), with weights equal to (( A Consistency of ¥ rprw (P,) requires that gg

satisfies positivity and that g, is a consmtent estimator of go. As with Qy, go can be estimated

using loss-based learning and cross validation. Depending on choice of projection function,

implementation may further require estimation of h(A,V'); however, the consistency of the

IPTW estimator does not depend on consistent estimation of h(A, V).

The IPTW estimator is particularly sensitive to bias due to data sparsity. Bias can arise
due to structural positivity violations (positivity may not hold for gg) or may occur because
by chance certain covariate and treatment combinations are not represented or sparsely
represented in a given finite sample. In the latter case, g, (a|WW = w) will have values of zero
or close to zero for some (a,w) even when positivity holds for go and g, is consistent. Wang
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et al. [2006a], Neugebauer and van der Laan [2005], Bembom and van der Laan [2007], Cole
and Hernan [2008], Moore et al. [2009] As fewer individuals within a given covariate stratum
receive a given treatment, the weights of those rare individuals who do receive the treatment
become more extreme. The disproportionate reliance of the causal effect estimate on the
experience of a few unusual individuals can result in substantial finite sample bias.

While values of g,(a | W) remain positive for all a € A, elevated weights inflate the
variance of the effect estimate and can serve as a warning that the data may poorly support
the target parameter. However, as the number of individuals within a covariate stratum
who receive a given treatment level shifts from few (each of whom receive a large weight
and thus elevate the variance) to none, estimator variance can decrease while bias increases
rapidly. In other words, when g,(a|WW = w) = 0 for some (a,w), the weight for a subject
with A = a and W = w is infinity; however, as no such individuals exist in the dataset,
the corresponding threat to valid inference will not be reflected in either the weights or in
estimator variance.

Weight truncation. Weights are commonly truncated or bounded in order to improve
the performance of the IPTW estimator in face of data sparsity. Wang et al. [2006a], Moore
et al. [2009], Cole and Hernan [2008], Kish [1992], Bembom and van der Laan [2008] Weights
are truncated at either a fixed or relative level (for example, at the 1st and 99th percentiles),
thereby reducing the variance arising from large weights and limiting the impact of a few
possibly non-representative individuals on the effect estimate. This advantage comes at a
cost, however, in the form of increased bias due to misspecification of the treatment model
Jn, a bias that does not decrease with increasing sample size. In Section 2.5, we use simulated
data to illustrate the performance of the IPTW estimator under a range of values for weight
truncation, illustrate how even in the face of sparsity, weight truncation can increase rather
than decrease estimator mean squared error, and discuss how the parametric bootstrap can
be used to approach truncation.

Stabilized Weights. Use of projection function h(a,V’) = 1 implies the use of unstabi-
lized weights. In contrast, stabilized weights, corresponding to a choice of h(a, V') = g(a|V)
(where g(a|V') denotes Py(A = a|V')) are generally recommended for the implementation of
marginal structural model-based effect estimation. The choice of h(a, V) = g(a|V) results
in a weaker positivity assumption, according to (2.9), by allowing the IPTW estimator to
extrapolate to sparse areas of the joint distribution of (A, V') using the model m(a, V|3). For
example, if A is an ordinal variable with multiple levels, V' = {}, and the target parameter is
defined using the model m(a, V'|8) = By + f1a, the IPTW estimator with stabilized weights
will extrapolate to levels of A that are sparsely represented in the data by assuming a linear
relationship between Y, and a € A. We note, however, that when the target parameter f is
defined using a non-parametric marginal structural model according to (2.5) (an approach
that acknowledges that the model m(A,V|3) may be misspecified), the use of stabilized
versus unstabilized weights corresponds to a shift in the target parameter via choice of an
alternative projection function.Neugebauer and van der Laan [2007]
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2.3.3 Double Robust Estimators

Double robust (DR) approaches to estimation of § include the augmented inverse prob-
ability weighted estimator (A-IPTW) and targeted maximum likelihood estimator (TMLE)
(which for the target parameter B(Fx,h,m) corresponds to the extended double robust
parametric regression estimator of Sharfstein et. al.).Robins [1999], Robins and Rotnitzky
[2001], Robins [2002], Scharfstein et al. [1999], van der Laan and Rubin [2006], Rosen-
blum and van der Laan [2010a] Implementation of the double robust estimators requires
estimators of both )y and gy; as with the IPTW and G-computation estimators, a non-
parametric loss-based approach can be employed in the estimation of both. An imple-
mentation of the TMLE estimator of the average treatment effect E(Y; — Yp) for binary
A is available in the R package tmleLite; an implementation of the A-IPTW estima-
tor in the point treatment setting is available in the R package cvDSA (both available at
http://www.stat.berkeley.edu/ laan/Software/index.html). Prior literature provides further
details regarding implementation and theoretical properties.Robins [1999], Neugebauer and
van der Laan [2007, 2005], Robins and Rotnitzky [2001], Scharfstein et al. [1999], van der
Laan and Rubin [2006], Rosenblum and van der Laan [2010a]

Double robust estimators remain consistent if either 1) g, is a consistent estimator of
go and g satisfies positivity; or, 2) @, is a consistent estimator of Qg and g, converges to
a distribution g* that satisfies positivity. Thus when positivity holds, these estimators are
truly double robust, in the sense that consistent estimation of either gy or @)y results in a
consistent estimator. When positivity fails, however, the consistency of the double robust
estimators relies entirely on consistent estimation of ()y. In the setting of positivity violations,
double robust estimators are thus faced with the same vulnerabilities as the G-computation
estimator.

In addition to illustrating how positivity violations increase the vulnerability of double
robust estimators to bias resulting from inconsistent estimation of (), these asymptotic
results have practical implications for the implementation of the double robust estimators.
Specifically, they suggest that use of an estimator g, that satisfies positivity (or in other
words, that yields predicted values in [0 + 7,1 — ] where 7 is some small number) can
improve finite sample performance. One way to achieve such bounds is by truncating the
predicted probabilities generated by g,, similar to the process of weight truncation described
for the IPTW estimator.

Alternative double robust estimators are available that make more sophisticated choices
in estimating go. In particular, the collaborative targeted maximum likelihood estimator (C-
TMLE) selects an estimator g, aimed at optimizing estimation of the target parameter as
assessed by the targeted log likelihood. In particular this implies that the C-TMLE estimator
includes in the fit of g,, only those covariates that improve estimation of the target.van der
Laan and Gruber [2009a] However, when the target parameter is poorly identified due to
positivity violations, C-TMLE may be forced to accept significant bias in its aim to optimize
mean squared error for the target parameter. Diagnostic procedures remain essential to alert
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the analyst that such a tradeoff is occurring,.

2.4 Diagnosing Bias Due to Positivity Violations

Positivity violations can result in substantial bias, with or without a corresponding in-
crease in variance, regardless of the causal effect estimator used. Practical methods are
thus needed to diagnose and quantify estimator-specific positivity bias for a given model,
parameter and sample. Cole and Hernan suggest a range of informal diagnostic approaches
when the IPTW estimator is applied.Cole and Hernan [2008] Basic descriptive analyses of
treatment variability within covariate strata can be helpful; however, this approach quickly
becomes unwieldy when the covariate set is moderately large and includes continuous or
multi-level variables. Examination of the distribution of the estimated weights can also pro-
vide useful information as near violations of the positivity assumption will be reflected in
large weights. As noted by these authors and discussed above, however, well-behaved weights
are not sufficient in themselves to ensure the absence of positivity violations.

An alternative formulation is to examine the distribution of the estimated propensity
score values given by g, (a|W) for a € A. Values of g, (a|W) close to 0 for any a constitute
a warning regarding the presence of positivity violations. We note that examination of the
propensity score distribution is a general approach not restricted to the IPTW estimator.
However, while useful in diagnosing the presence of positivity violations, examination of
the estimated propensity scores does not provide any quantitative estimate of the degree to
which such violations are resulting in estimator bias and may pose a threat to inference. The
parametric bootstrap can be used to provide an optimistic bias estimate specifically targeted
at bias caused by positivity violations and near-violations. Wang et al. [2006a]

2.4.1 The Parametric Bootstrap as a Diagnostic Tool

We focus on the bias of estimators that target a parameter of the observed data distribu-
tion; this target observed data parameter is equal under the randomization assumption (2.7)
to the target causal parameter. (Divergence between the target observed data parameter
and target causal parameter when (2.7) fails is a distinct issue not addressed by the proposed
diagnostic.) The bias in an estimator is the difference between the true value of the target
parameter of the observed data distribution and the expectation of the estimator applied to
a finite sample from that distribution:

Bias(¥, Py,n) = Ep,U(P,) — U(B,),

where we recall that W(P,) is the target observed data parameter, U(P,) is an estimator of
that parameter (which may be a function of g,, @, or both), and P, denotes the empirical
distribution of a sample of n i.i.d observations from the true observed data distribution F.
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Bias in an estimator can arise due to a range of causes. First, the estimators g,, and/or @,
may be inconsistent. Second, gy may not satisfy the positivity assumption. Third, consistent
estimators g, and/or @, may still have substantial finite sample bias. This latter type of
finite sample bias arises in particular due to the curse of dimensionality in a non-parametric
or semi-parametric model when g, and/or @, are data-adaptive estimators, although it can
also be substantial for parametric estimators. Fourth, estimated values of g, may be equal
or close to zero or one, despite use of a consistent estimator g, and a distribution gg that
satisfies positivity. The relative contribution of each of these sources of bias will depend on
the model, the true data generating distribution, the causal effect estimator, and the finite
sample.

The parametric bootstrap provides a tool that allows the analyst to explore the extent to
which bias due to any of these causes is affecting a given parameter estimate. The parametric
bootstrap-based bias estimate is defined as:

Biaspp(V, Py,n) = Ep W(PF) — U(By), (2.11)

where P, is an estimate of P, and P¥ is the empirical distribution of a bootstrap sample
obtained by sampling from By. In other words, the parametric bootstrap is used to sample
from an estimate of the true data generating distribution, resulting in multiple simulated data
sets. The true data generating distribution and target parameter value in the bootstrapped
data are known. A candidate estimator is then applied to each bootstrapped data set and the
mean of the resulting estimates compared with the known “truth” (i.e. the true parameter
value for the bootstrap data generating distribution).

We focus on a particular algorithm for parametric bootstrap-based bias estimation, which
specifically targets the component of estimator-specific finite sample bias due to violations
and near violations of the positivity assumption. The goal is not to provide an accurate
estimate of bias, but rather to provide a diagnostic tool that can serve as a “red flag” warning
that positivity bias may pose a threat to inference. The distinguishing characteristic of the
diagnostic algorithm is its use of an estimated data generating distribution P, that both
approximates the true P, as closely as possible and is compatible with the estimators Q,
and/or g, used in Iif(Pn). In other words, P, is chosen such that the estimator ¥ applied
to bootstrap samples from By is guaranteed to be consistent unless gq fails to satisfy the
positivity assumption or g, is truncated. As a result, the parametric bootstrap provides an
optimistic estimate of finite sample bias, in which bias due to model misspecification other
than truncation is eliminated.

We refer informally to the resulting bias estimate as ET'A. Bias because in many settings
it will be predominantly composed of bias from the following sources: 1) violation of the
positivity assumption by go; 2) truncation, if any, of g, in response to positivity violations;
and, 3) finite sample bias arising from values of g, close to zero or one (sometime referred
to as practical violations of the positivity assumption). The term ETA.Bias is imprecise
because the bias estimated by the proposed algorithm will also capture some of the bias
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in W(P,) due to finite sample bias of the estimators g, and Q, (a form of sparsity only
partially related to positivity). Due to the curse of dimensionality, the contribution of this
latter source of bias may be substantial when g,, and/or @,, are data-adaptive estimators in a
non-parametric or semi-parametric model. However, the proposed diagnostic algorithm will
only capture a portion of this bias because, unlike P, By is guaranteed to have a functional
form that can be well-approximated by the data-adaptive algorithms employed by g, and
Qn.

The diagnostic algorithm for ET A.Bias is implemented as follows.

Step 1. Estimate P,. Estimation of P, requires estimation of Qow, go, and Qoy, (i-e.
estimation of Py(W = w), Py(A = oW = w), and Fy(Y = y|A = a,IW = w) for all
(w,a,y)). We define Qpy = Qp,w (or in other words, use an estimate based on the
empirical distribution of the data), 9p, = Yn, and Qs Py = = (),. Note that the estimators
Qp,w, gn, and Q, were all needed for implementation of the IPTW, G-compuation, and
DR estimators; the same estimators can be used here. Additional steps may be required
to estimate the entire conditional distribution of Y given (A, W) (beyond the estimate of
its mean given by Q,). The true target parameter for the known distribution Py is only a
function of Q,, = (Qp,w, Qn), and \11(150) is the same as the G-computation estimator (using
@.) applied to the observed data:

\II(PO) = ®Gcomp(Pn>~

Step 2. Generate P/ by sampling from B,. In the second step, we assume that By is

the true data generating distribution. Bootstrap samples P#, each with n i.i.d observations,
are generated by sampling from P,. For example, W can be sampled from the empirical,
a binary A can be generated as a Bernoulli with probability ¢,(1|W), and a continuous Y
can be generated by adding a N(0,1) error to Q, (A, W) (alternative approaches are also
possible).

Step 3. Estimate Epo\if(Pf). Finally, the estimator ¥ is applied to each bootstrap
sample. Depending on the estimator being evaluated, this step involves applying the estima-
tors g,, @, or both to each bootstrap sample. If (), and/or g, are data-adaptive estimators,
the corresponding data-adaptive algorithm should be rerun in each bootstrap sample; other-
wise, the coefficients of the corresponding models should be refit. ET'A.Bias is calculated by

comparing the mean of the estimator ¥ across bootstrap samples (Ep, Uy prw (P#)) with the

true value of the target parameter under the bootstrap data generating distribution (¥(P,)).

The parametric bootstrap-based diagnostic applied to the IPTW estimator is available
as an R function check.ETA in the cvDSA package.Wang et al. [2006a] The routine takes the
original data as input and performs bootstrap simulations under user-specified information
such as functional forms for m(a,V | ), g, and @,. Application of the bootstrap to the
IPTW estimator offers one particularly sensitive assessment of positivity bias because, unlike
the G-computation and double robust estimators, the IPTW estimator can not extrapolate
based on (),,. However, this approach can be applied to any causal effect estimator, including
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estimators introduced in Section 2.7 that trade off identifiability for proximity to the target
parameter. In assessing the threat posed by positivity violations the bootstrap should ideally
be applied to both the IPTW estimator and the estimator of choice.

Remarks on interpretation of the bias estimate. We caution against using the
parametric bootstrap for any form of bias correction. The true bias of the estimator is
Ep,W(P,) — ¥(P,), while the parametric bootstrap estimates Epo\if(Pf) — U(P,). The per-
formance of the diagnostic thus depends on the extent to which B approximates the true
data generating distribution. This suggests the importance of using flexible data-adaptive
algorithms to estimate F,. Regardless of estimation approach, however, when the target
parameter W(F) is poorly identified due to positivity violations \I/(po) may be a poor esti-
mate of W(F). In such cases one would not expect the parametric bootstrap to provide a
good estimate of the true bias. Further, the EFT A.Bias implementation of the parametric
bootstrap provides a deliberately optimistic bias estimate by excluding bias due to model
misspecifcation for the estimators ¢, and Q,.

Rather, the parametric bootstrap is proposed as a diagnostic tool. Even when the data
generating distribution is not estimated consistently, the bias estimate provided by the para-
metric bootstrap remains interpretable in the world where the estimated data generating
mechanism represents the truth. If the estimated bias is large, an analyst who disregards
the implied caution is relying on an unsubstantiated hope that first, he or she has inconsis-
tently estimated the data generating distribution but still done a reasonable job estimating
the causal effect of interest; and second, the true data generating distribution is less affected
by positivity (and other finite sample) bias than is the analyst’s best estimate of it.

The threshold level of ET A.Bias that is considered problematic will vary depending on
the scientific question and the point and variance estimates of the causal effect. With that
caveat, we suggest the following two general situations in which ET A.Bias can be considered
a “red flag” warning: 1) when ET'A.Bias is of the same magnitude as (or larger than) the
estimated standard error of the estimator; and, 2) when the interpretation of a bias-corrected
confidence interval would differ meaningfully from initial conclusions.

Use of a data-adaptive algorithm for (,, may result in exclusion of those elements of W
responsible for positivity violations. Bootstrap data sampled from the resulting estimate Py
will contain less sparsity than is present in the true data generating distribution, resulting
in an underestimate of bias due to positivity violations. One approach to improving the
sensitivity of the diagnostic in such settings is to force the estimator Q,(A, W) to include
all W known or thought to contribute to positivity violations. The estimated propensity
score provides a convenient dimension reduction of exactly those W. Thus a more com-
prehensive approach to identifying threats to inference due to positivity bias could involve
implementing the bootstrap-based ET A.Bias diagnostic using several estimators @),, in-
cluding an estimator that forces inclusion of A but allows W to be selected data adaptively
and an estimator that forces inclusion of both A and the propensity score but allows W
to be selected data-adaptively. Finally, when the targeted maximum likelihood estimator
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is implemented, the bootstrap can sample from the targeted estimate of the likelihood it
provides, an estimate in which @), is already a function of the propensity score. We demon-
strate the propensity score-based approaches in Section 2.5; however, the performance of the
diagnostic when data-adaptive approaches are used and positivity violations are present, as
well as the relative performance of various approaches to improving diagnostic performance
in such settings, should be investigated further.

2.5 Simulations

Data were simulated under three data generating distributions with different degrees
and sources of positivity violations. In each set of simulations, four estimators described
in Section 2.3, G- computation, IPTW,  A-IPTW, and TMLE, were applied. (Specifically,
TMLE was implemented with a logistic fluctuation for continuous and binary Y.)Gruber and
van der Laan [2010a] For each simulation, each estimator was implemented using a range of
approaches to estimate gy and ()y. Both the behavior of the estimator and the performance
of the parametric bootstrap as a diagnostic tool were investigated under each scenario.
The objectives of these simulations were (1) to demonstrate how different estimators are
affected differently by violations of the positivity assumption; (2) to demonstrate the value
and limitations of the bootstrap-based diagnostic in different settings; and (3) to illustrate
how the diagnostic might be used in practice to inform interpretation of results. We provide
selected simulation results here; additional results together with simulation code are available
at http://www.stat.berkeley.edu/ laan/Software/index.html.

2.5.1 Data Generating Distributions

All three simulations used a binary A, and targeted the same causal parameter, F(Y;—Yj)
or the average treatment effect. This target parameter is a special case of 5(Fx,m,h)
corresponding to V' = {} and use of marginal structural model m(a|5) = By + fia, and a
case in which G-computation corresponds to traditional regression-based adjustment. The
true target parameter value W(FP) = ;.

The simulations were based, to varying degrees, on a data generating distribution used
by Freedman and Berk.Freedman and Berk [2008] Two baseline covariates, W = (Wi, W),
were generated bivariate normal, N(u,X), with g1 = 0.5, uz = 1, and ¥ = ? 1 } The
true conditional expectation of Y, given A and W, Qo(A, W) = Ey(Y|A, W) is given by:

Qo(A, W) =14+ A+ W, + 2Ws,

and Y was generated as Qo(A, W) + U, with U ~ N(0,1). The true value of the target
parameter W(F,) = 1. The true treatment mechanism, go(1|WW) = Fy(A = 1|W) is given by:

go(1|W) = ©(0.5 + 0.25W; + 0.75W3),
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where ® is the CDF of the standard normal distribution. In other words, the treatment
mechanism, or conditional probability of treatment given covariates, was based on a probit
model.

Simulation 1: For our first simulation, we modified gy to reduce the extent of positivity vi-
olations by multiplying all coefficients in gy by 0.3. Therefore, the true treatment mechanism
in Simulation 1 is given by:

go(1|W) = ®(0.3(0.5 + 0.25W; + 0.7515)).

With this treatment mechanism, gy € [0.48,0.92]. We generated 250 samples of size 1000 for
this simulation.

Simulation 2: Simulation 2 is identical to Freedman and Berk’s original simulation de-
scribed above. Again we generated 250 samples of size 1000. In this simulation, g, €
[0.001, 1].

Simulation 3: For this simulation, W1 ~ N(0.5,1) and W2 ~ Bernoulli(0.5). We varied
Qo(A, W) such that:

Qo(1, W) = expit(—1 4+ 5A + Wy + 10W3).

Binary Y was generated as a Bernoulli trial with probability Qy(1, W). The target parameter
E(Y1—Y;) for binary Y corresponds to the risk difference. For this simulation, ¥(Fy) = 0.29.
The treatment mechanism for this simulation is given by:

go(LW) = expit(—3 — 1W; 4+ 9W3).

Binary A was generated as a Bernoulli trial with probability go(1|WW). Under this treatment
mechanism A and W2 are collinear, with correlation 0.95 and gy € [0.001,1]. For this
simulation, we generated 250 samples of size 200 instead of size 1000. The smaller sample
size increased the sparsity in the data.

2.5.2 Investigation of Estimator Behavior and the Performance of
the Parametric Bootstrap-based Diagnostic

The bias, variance, and mean squared error of each estimator were estimated by applying
the estimator to 250 samples drawn from the three data generating distributions above. For
Simulations 1 and 2, each of the four estimators was implemented with each of the following
three approaches: 1) use of a correctly specified model to estimate both Qg and gy (a
specification referred to as “Qcgc”); 2) use of a correctly specified model to estimate Qy but
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omission of Wy from the model used to estimate go (“Qcgm”); and, 3) omission of W from
Q,, while correctly specifying the model used to estimate gy (“Qmgc”). In Simulation 3, each
of the four estimators was implemented using correctly specified models for both gy and Q,
(Qcgc), and using forward stepwise selection based on AIC to estimate both Qg and go, using
the R function step and forcing A to be included in Q, (“Qdgdl”) . The double robust
and IPTW estimators were further implemented using the following sets of bounds for the
values of g,: [0, 1] (or no bounding), [0.025,0.975],[0.05,0.95], and [0.1,0.9]. For the IPTW
estimator, the latter three bounds correspond to truncation of the unstabilized weights at
[1.03, 40], [1.05,20], and [1.11,11.1].

The parametric bootstrap was then applied to estimate ET A.Bias for 10 of the 250
samples from each of the three simulations. For each sample and for each model specification
(Qcge, @mge and Qcgm for Simulations 1 and 2; and Qcge and Qdgdl for Simulation 3),
the estimates (),, and g,, were used to draw 1000 parametric bootstrap samples. Specifically,
W was drawn from the empirical distribution for that sample; A was generated as a series of
Bernoulli trials with probability g,(1|W), and Y was generated either by adding a N(0,1)
error to Q, (A, W) (for continuous Y in Simulations 1 and 2) or as a series of Bernoulli trials
with probability @, (1|A, W) (for binary ¥ in Simulation 3). Each candidate estimator was
then applied to each bootstrap sample. In Simulation 3, an alternative implementation of
the diagnostic based on including the propensity score in @, was also applied (“Qdgd2”).
Specifically, the stepwise algorithm was forced to retain both A and the estimated propensity
score g,(1|W) as covariates in the estimate @, used to generate the bootstrap samples.

For the specifications Qcge, @mge and Qcgm, the models used to estimate gy and Qq
were held fixed across bootstrap samples and their coefficients refit in each bootstrap sample.
For the data-adaptive approaches QQdgdl and QQdgd2, the stepwise selection algorithm was
rerun in each bootstrap sample, and was forced to retain A in Q,,. ETA.Bias was estimated
for each of the 10 samples as the difference between the mean of the bootstrapped estimator
and the initial G-computation estimate W(Py) = Wgeomp(P,) in that sample.

2.5.3 Results: Simulation 1

In this simulation the positivity assumption is not violated, and as expected, all four
estimators performed well when correctly specified models were used to estimate gy and Qy.
The bias, variance, and MSE for each estimator are shown in Table 2.2. As described in
Section 2.3, misspecification of the model used to estimate @Q, introduced bias in the G-
computation estimator, misspecification of the model used to estimate gy introduced bias
in the IPTW estimator, and the double robust estimators remained minimally biased if the
model for either Qg or gy was correctly specified.

Table 2.3 reports the mean and variance of the estimated E'T'A.Bias for each estimator
and model specification across 10 of the 250 original samples. Consistent with the results
in Table 2.2, the estimated ET A.Bias was minimal and varied little across the 10 samples.
The parametric bootstrap would not have raised a red flag for any of the estimators in this
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Table 2.2: Performance of estimators by specification in Simulation 1: gq in [0.48,0.92],
shown for unbounded g, only. Results are based on 250 samples of size 1000.

Qcgc Qcgm Qmgc
Bias Var MSE Bias Var MSE Bias Var MSE
G-COMP 1.5e-03 5.9e-03 5.9e-03  1.5e-03 5.9e-03 5.9e-03  2.6e-01 1.9e-02 8.5e-02
IPTW 6.0e-03 9.2e-03 9.2e-03  2.6e-01 2.1e-02 9.0e-02  6.0e-03 9.2e-03 9.2e-03
A-TPTW 2.6e-04 6.2e-03 6.2e-03 5.9e-04 6.0e-03 6.0e-03  7.2e-04 6.7e-03 6.7e-03
TMLE -6.7e-06 6.2e-03 6.2e-03  3.9e-04 6.0e-03 6.0e-03  5.0e-04 6.6e-03 6.6e-03

scenario, an appropriate result given Table 2.2.

2.5.4 Results: Simulation 2

Simulation 2 introduced substantial data sparsity. Table 2.4 demonstrates the effect of
positivity violations and near-violations on estimator behavior across 250 samples. The G-
computation estimator remained minimally biased when the estimator ), was consistent;
use of inconsistent Q,, resulted in bias. Given consistent estimators @, and g,, the IPTW
estimator was more biased than the other three estimators, as expected given the practical
positivity violations present in the simulation. For this particular data-generating distribu-
tion and choice of misspecified model, misspecification of g,, increased the bias of the IPTW
estimator further; however, this will not always be the case.

The finite sample performance of the A-IPTW and TMLE estimators was also affected by
the presence of practical positivity violations. The DR estimators achieved the lowest MSE
when 1) Q,, was consistent and 2) g, was inconsistent but satisfied positivity (as a result
either of truncation or of omission of Wj, a major source of positivity bias). Interestingly,
in this simulation TMLE still did quite well when @Q,, was inconsistent and the model used
for g, was correctly specified but its values bounded at [0.025, 0.925].

Choice of bound imposed on g, affected both the bias and variance of the IPTW, A-
IPTW, and TMLE estimators. As expected, truncation of the IPTW weights improved the
variance of the estimator but increased bias. Without additional diagnostic information,
an analyst who observed the dramatic decline in the variance of the IPTW estimator that
occurred with weight truncation might have concluded that truncation improved estimator
performance; however, in this simulation weight truncation increased MSE. In contrast, and
as predicted by theory, use of bounded values of g, decreased MSE of the double robust
estimators in spite of the inconsistency introduced to g,.

Table 2.5 shows the mean and variance of the estimates of ET'A. Bias across 10 of the 250
samples. Based on the results shown in Table 2.4, a red flag diagnostic for the presence of
bias due to positivity violations was needed for the IPTW estimator at all levels of bounding
gn, and for the TMLE estimator with unbounded g,,. (The A-IPTW estimator had a small
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Table 2.3: True finite sample bias by specification (based on 250 samples of sample size 1000
with consistent g, and @,) and mean and variance of estimated ET A.Bias (based on the
first 10 of the 250 samples) in Simulation 1: gy in [0.48,0.92], shown for unbounded g, only.

G-COMP IPTW A-IPTW TMLE

True finite sample bias 1.51e-03 5.95e-03  2.61e-04 -6.71e-06
Mean(ETA.Bias) -4.21e-04 5.92e-04 -5.43e-04  -6.94e-04
Qcgc  Variance(ETA.Bias) 2.23e-06 2.81e-06  2.34e-06 2.35e-06
Mean(ETA.Bias)/True Bias -2.79e-01 9.94e-02 -2.08e+00 1.03e+02
Mean(ETA.Bias) 6.17e-04 1.27e-03  4.17e-04 2.42e-04
Qcgm  Variance(ETA.Bias) 7.32e-06 1.57¢-05  6.48e-06 6.54e-06
Mean(ETA.Bias)/True Bias 4.09e-01 2.14e-01  1.60e+00  -3.61e+401
Mean(ETA.Bias) 6.99e-04 1.51e-03  4.78e-04 3.05e-04
Qmgc Variance(ETA.Bias) 6.37e-06 8.18e-06  7.27e-06 7.25e-06

Mean(ETA.Bias)/True Bias 4.63e-01 2.54e-01 1.83e+00  -4.54e+01

Table 2.4: Performance of estimators by specification and by bound on g, in Simulation 2:
go in [0.001,1]. Results are based on 250 samples of size 1000.

Bound on g, Qcgc Qcgm Qmgc
Bias Var MSE Bias Var MSE Bias Var  MSE
G-COMP
None 0.007 0.009 0.009 0.007 0.009 0.009 1.145 0.025 1.336

[0.025,0.975] 0.007 0.009 0.009 0.007 0.009 0.009 1.145 0.025 1.336
[0.05,0.95] 0.007 0.009 0.009 0.007 0.009 0.009 1.145 0.025 1.336

[0.1,0.9] 0.007 0.009 0.009 0.007 0.009 0.009 1.145 0.025 1.336
IPTW
None 0.544 0.693 0.989 1.547 0.267 2.660 0.544 0.693 0.989

[0.025,0.975] 1.080 0.090 1.257 1.807 0.077 3.340 1.080 0.090 1.257
[0.05,0.95] 1.437 0.059 2.123 2.062 0.054 4.306 1.437 0.059 2.123

[0.1,0.9] 1.935 0.043 3.787 2.456 0.043 6.076 1.935 0.043 3.787
A-TPTW
None 0.080 0.966 0.972 -0.003 0.032 0.032 -0.096 16.978 16.987

[0.025,0.975] 0.012 0.017 0.017 0.006 0.017 0.017 0.430 0.035 0.219
[0.05,0.95] 0.011 0.014 0.014 0.009 0.014 0.014 0.556 0.025 0.334

[0.1,0.9] 0.009 0.011 0.011 0.008 0.011 0.011 0.706 0.020 0.519
TMLE
None 0.251 0.478 0.540 0.026 0.059 0.060 -0.675 0.367 0.824

[0.025,0.975] 0.016 0.028 0.028 0.005 0.021 0.021  -0.004 0.049 0.049
[0.05,0.95] 0.013 0.019 0.020 0.010 0.016 0.017 0.163 0.027 0.054
[0.1,0.9] 0.010 0.014 0.014 0.009 0.013 0.013 0.384 0.018 0.166
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to moderate level of bias with unbounded g,; however the high variance of this estimator
would have alerted an analyst to sparsity.) The parametric bootstrap correctly identified
the presence of substantial ET'A.Bias in the IPTW estimator regardless of truncation level
and in the TMLE estimator with unbounded g¢,. It suggested minimal ET A.Bias for the
remaining estimators.

For correctly specified @, and ¢, (g, unbounded), the diagnostic captured 78% and
69% of the true finite sample bias of the IPTW and TMLE estimators, respectively. The
fact that the true bias was underestimated in both cases illustrates a key limitation of the
parametric bootstrap- its performance suffers when the target estimator is not asymptotically
normally distributed (van der Vaart and Wellner [1996]). Bounding g,, improved the ability
of the bootstrap to accurately diagnose bias by improving estimator behavior (in addition to
adding a new source of bias due to use of inconsistent g, ). This finding suggests that practical
application of the bootstrap to a given estimator should at minimum generate ET A.Bias
estimates for a single low level of bounding g, in addition to any unbounded estimate. When
gn was bounded, the estimated ET A.Bias for the IPTW estimator captured 96-98% of the
true finite sample bias. The ETA.Bias for the TMLE estimator with bounded g, was
accurately estimated to be minimal. As expected, misspecification of g, or @, by excluding
a key confounder lead to an estimated data generating distribution with less sparsity than
the original, and as a result the parametric bootstrap underestimated the true extent of
positivity bias for these model specifications.

While use of an unbounded g, resulted in an underestimate of the true degree of E'T'A. Bias
for the IPTW and TMLE estimators, in this simulation the parametric bootstrap would still
have functioned well as a diagnostic in each of the 10 samples considered. Tables 2.6 and
2.7 report the output that would have been available to an analyst applying the parametric
bootstrap to the IPTW and TMLE estimators with unbounded g, for each of the 10 sam-
ples. In all samples and for both estimators, the estimated ET A.Bias was larger than the
estimated standard error of the estimator, and was of significant magnitude relative to the
point estimate of the causal effect.

Table 2.6 further demonstrates how the parametric bootstrap can be used to investigate
the tradeoffs between bias due to weight truncation/bounding of g, and positivity bias.
The parametric bootstrap accurately diagnosed both an increase in the bias of the IPTW
estimator with increasing truncation and a reduction in the bias of the TMLE estimator
with truncation. When viewed in light of the standard error estimates under different levels
of truncation, the diagnostic would have accurately suggested that truncation of g, for the
TMLE estimator was beneficial, while truncation of the weights for the IPTW estimator was
of questionable benefit. (The parametric bootstrap can also be used to provide a more refined
approach to choosing an optimal truncation constant based on estimated MSE.Bembom and
van der Laan [2008])
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Table 2.5: True finite sample bias and mean and variance of estimated ET' A.Bias (from first
10 of the 250 samples) by specification and bound on g,, Simulation 2: go in [0.001,1].

Bound on g,
None [0.025,0.975] [0.05,0.95]  [0.1,0.9]

G-COMP True finite sample bias 7.01e-03  7.01e-03 7.01e-03 7.01e-03
Mean(ETA.Bias) -8.51e-04 -8.51e-04 -8.51e-04  -8.51e-04
Qcgc Variance(ETA .Bias) 5.63e-06  5.63e-06 5.63e-06 5.63e-06
Mean(ETA .Bias)/True bias -1.21e-01 -1.21e-01 -1.21e-01  -1.21e-01
Mean(ETA.Bias) 2.39e-04  2.39e-04 2.39%¢-04 2.39%¢-04
Qcgm Variance(ETA.Bias) 1.37e-05  1.37e-05 1.37e-05 1.37e-05
Mean(ETA.Bias)/True bias  3.41e-02  3.41e-02 3.41e-02 3.41e-02
Mean(ETA.Bias) 5.12e-04  5.12e-04 5.12e-04 5.12e-04
Qmgc Variance(ETA .Bias) 1.22e-05  1.22e-05 1.22e-05 1.22e-05
Mean(ETA.Bias)/True bias  7.30e-02  7.30e-02 7.30e-02 7.30e-02
IPTW True finite sample bias 5.44e-01  1.08e+00 1.44e+00  1.93e+400
Mean(ETA.Bias) 4.22e-01  1.04e+00 1.40e+00  1.90e+4-00
Qcgc Variance(ETA . .Bias) 9.55e-03  2.19e-02 2.34e-02 2.39e-02
Mean(ETA.Bias)/True Bias 7.76e-01  9.63e-01 9.73e-01 9.80e-01
Mean(ETA.Bias) 1.34e-01  4.83e-01 7.84e-01 1.23e+00
Qcgm Variance(ETA.Bias) 1.96e-03  1.08e-02 1.83e-02 2.40e-02
Mean(ETA.Bias)/True Bias 2.46e-01  4.48e-01 5.46e-01 6.37e-01
Mean(ETA .Bias) 2.98e-01  7.39e-01 9.95e-01 1.35e+-00
Qmgc Variance(ETA.Bias) 3.75e-03  9.65e-03 1.09e-02 1.36e-02
Mean(ETA.Bias)/True Bias 5.48e-01  6.84e-01 6.93e-01 7.00e-01
A-TPTW  True finite sample bias 7.99e-02  1.25e-02 1.07e-02 8.78e-03
Mean(ETA .Bias) 1.86e-03  2.80e-03 5.89e-05 1.65e-03
Qcgc Variance(ETA .Bias) 1.51e-04  1.12e-05 4.68e-06 1.51e-05
Mean(ETA.Bias)/True bias  2.32e-02  2.24e-01 5.50e-03 1.88e-01
Mean(ETA.Bias) -3.68e-04  -6.36e-04 2.56e-05 5.72e-04
Qcgm Variance(ETA .Bias) 7.54e-05  1.16e-05 1.15e-05 1.53e-05
Mean(ETA.Bias)/True bias  -4.60e-03  -5.09e-02 2.39e-03 6.51e-02
Mean(ETA.Bias) -3.59e-04 1.21e-04 -1.18e-04  -1.09e-03
Qmgc Variance(ETA .Bias) 2.19e-04  1.04e-05 1.41e-05 5.31e-06
Mean(ETA .Bias)/True bias  -4.50e-03  9.70e-03 -1.10e-02  -1.25e-01
TMLE True finite sample bias 2.51e-01  1.60e-02 1.31e-02 9.98e-03
Mean(ETA.Bias) 1.74e-01  4.28e-03 2.65e-04 1.84e-03
Qcgc Variance(ETA . Bias) 3.26e-03  2.32e-05 6.26e-06 2.23e-05
Mean(ETA.Bias)/True bias  6.94e-01  2.67e-01 2.02e-02 1.84e-01
Mean(ETA .Bias) 2.70e-02  -3.07e-04 2.15e-04 7.74e-04
Qcgm Variance(ETA . Bias) 2.88e-04  1.50e-05 1.27e-05 1.46e-05
Mean(ETA.Bias)/True bias  1.08¢-01  -1.92¢-02 1.64e-02 7.76e-02
Mean(ETA.Bias) 1.11e-01  9.82e-04 -2.17e-04  -1.47¢-03
Qmgc Variance(ETA.Bias) 8.95e-04  2.59e-05 2.52e-05 6.48e-06

Mean(ETA.Bias)/True bias  4.44e-01  6.13e-02 -1.66e-02  -1.47e-01




CHAPTER 2. DIAGNOSING AND RESPONDING TO POSITIVITY VIOLATIONS 30

g00'0 TL00 1G0T 0000 G600  €90°T 000  FITO  €90°T PLT0 OLT0  TLT'T Wesy
€00°0- 6800  L06°0 7000 9210  8€80 $00°0- ISPT'0  GSL0 6600 €L1°0 8290  OI
700°0- 1200  9LT'T 100°0- LL00  GET'T L0000  ¥80'0  SLTT 19T°0 ¥IT0  TL6'T 6
0000 TL00  F¥¥6°0 G00°0- 7800 61670 €000 9600  0G6°0 88T'0 FIT0 9901 8
7000 LL00  STI'T 1000 G600  6ST'T 2000 SET0  E€FT'T 0ST°0 #ST'0  TSLT L
0000 TL00 €80T T000- 800  93T'T 0100  2T'0  LET'T VE€T0 8TT0 €S0 9
9000 LL00  S€0'T 0000 G600  S60°T 8000 0E€T'0  SOT'T GFz’0 T8I0 S¥SC g
€00°0- 100 9101 1000- TL00 89670 9000  LL00  988°0 TGT'0 6800  LETO id
1100 T.00  9ET'T 2000 800  L9T'T 0100 6800  T.T'T 1800 SOT'0  6LE'T ¢
€000 LL00  CITT €000 6800  FPTT 100°0- 00T0  ¥60°T eGT'0 FIT0  FELO z
€000 €900 S96°0 1000 LL00  GL60 1000  SOT0 2860 TLT'0 L6T0 1280 I
smgvVId HdAS  ATNLj  smgy g dAS  ATNLj smgy g dAS  dTNIf smgy g dS  dTNLg
[6°0‘1°0] [56°0°G0°0] [626°0°620°0] QuON

[1°700°0] t 05 :g wonemuug
ur ‘080() M b uo punoq Aq pue o[dures Aq 9)RUINSS SRI Y[/ PUe IOLD parepue)s ‘@rewnse TN :L'¢ el

L6S'T ¥61°0  TL6C L6E'T T6T0  80SC 0F0'T €6T°0  GET'T TTH'0 €020  €0TT ueON
9¢9°'T 1020  €IGC 61T 9020  LFS'T 88L°0 01Z0  68C'1 €920 8220  S60°0- 01
28T 6810 880°€ 9z&'T 9810 88T LL6°0 G810 69L°C 16€°0 ¥8T0  67L°C 6
TT6'T 96T°0  8L6C 86€'T ¥6T°0  00¥'C L00'T €610  SE6'T 0cv'0 G130 1L¥°0- 8
€I8'T ¥8T'0  GI6C 8ee'T IST'0  €8F'C 966'0 0ST'0 6661 9%€'0 0ST'0  66LT L
666'T S6T°0  ¥ST'E YOST T61°0  L9LT 9FT'T 96T°0  0SV'C 0260 9€2°0  €€0°0 9
000 2020  620°€ 01¢'T 961°0  1SG°C 8GT'T €610  L9T°C Go9c'0 610 10T°C G
0L1°C 6610  TIE€ TLYT 8610  €L6°C 01€'T 0020  8¥9°C 0TS0 9020  926'T id
LILT €81°0  088°¢C LITT IS8T0  €6VC 9,80 TST'0  T6I'C 90€°0 ¥ST'0  LS6'T ¢
Y26'T T61°0  €80°€E eIV'T 0610  S99°C LYO'T T61°0  6E€7T GTh'0 L6T°0  TTLT e
G96'T 1030  GIST 9¢7'T L6T°0  6ITC T60'T 96T°0  TIV'T €70 €030  L0ZT0 I
smgvVId dAS  MIdIp smgyrg  dS  MIdIip smgyrg  dS  MIdIn smgyrg dS MIdIp
[6:0°T°0] [g6°0°C0°0] [526°0°G20°0] QUON]

[1°700°0] ut %6 :z uoryemnuug
ur ‘080 yam “H uo punoq Aq pue ojduwres Aq 9jewI}se Serqg Y PUR IOLD palepur)s ‘9yewnse M LA :9°C °[qelL



CHAPTER 2. DIAGNOSING AND RESPONDING TO POSITIVITY VIOLATIONS 31

to the analyst having an bias estimate due to misspecification of gqg. It’s important to
remind the reader that E'TA.Bias includes bias both due to ETA and to bounding g,,.

We recommend that the parametric bootstrap be applied to the IPTW estimator in
addition to the analyst’s estimator of choice. Tables 2.5 and 2.6 illustrate the benefits of this
approach. Diagnosis of substantial bias in the IPTW estimator due to positivity violations
would have alerted an analyst that the G-computation estimator was relying heavily on
extrapolation, and that the double robust estimators were sensitive to bias arising from
misspecification of the model used to estimate Q.

2.5.5 Results: Simulation 3

This simulation investigated the performance of the parametric bootstrap as a tool for
diagnosing finite sample bias caused by collinearity between A and W, with the following
objectives: 1) investigate further the utility of the parametric bootstrap in a setting in which
estimators could not be assumed to be asymptotically normally distributed; 2) illustrate
how use of a data-adaptive approach to fit ), can result in a poorly performing diagnostic
tool unless specific measures are taken to ensure the bootstrapped data retains the sparsity
present in the original data; and 3) investigate whether inclusion of the propensity score
gn(1|W) as a covariate in @), improved the sensitivity of the diagnostic in the setting of
collinearity.

Table 2.8: Performance of estimators by specification in Simulation 3: gy in [0.001,1], shown
for unbounded g, only.

Qcgc Qdgd1
Bias Var MSE Bias Var MSE
G-COMP 0.133 0.038 0.055 0.212 0.027 0.072
IPTW 0.233 0.230 0.284 0.232 0.231 0.284
A-TPTW  0.134 0.038 0.055 0.175 0.027 0.057
TMLE 0.291 0.120 0.205 0.329 0.136 0.245

Table 2.8 demonstrates that all estimators exhibited substantial bias, even when Q,, and
gn were consistent. This remained true regardless of the level at which g, was bounded; in
the interest of space, results across bounding levels for g, are not shown for this simulation.
When stepwise selection was used to estimate @, (forcing inclusion of A), the algorithm did
not select W2 due to the collinearity with A. The consequences are reflected in the greater
bias of Qdgdl versus (Qcgc in those estimators that rely on Q).
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Table 2.9: True finite sample bias for G-computation, IPTW and A-IPTW estimators and
mean and variance of estimated ET A.Bias (from first 10 of the 250 samples) by specification,
Simulation 3: go in [0.001,1], shown for unbounded g, only.

G-COMP True finite sample bias 1.33e-01
Mean(ETA.Bias) 4.18e-02
Qcgc Variance(ETA . Bias) 5.62e-03
Mean(ETA.Bias)/True Bias 3.14e-01
Stepwise G-COMP  True finite sample bias 2.12e-01
Mean(ETA .Bias) 1.97e-02
Qdgd1 Variance(ETA.Bias) 1.21e-03
Mean(ETA.Bias)/True Bias  9.29e-02
Mean(ETA .Bias) 1.17e-01
Qdgd2 Variance(ETA Bias) 1.37e-02
Mean(ETA.Bias)/True Bias 5.52e-01
IPTW True finite sample bias 2.33e-01
Mean(ETA .Bias) 8.19e-02
Qcgc Variance(ETA Bias) 4.89e-03
Mean(ETA.Bias)/True Bias 3.51e-01
Stepwise IPTW True finite sample bias 2.32e-01
Mean(ETA .Bias) 7.03e-02
Qdgdi Variance 5.44e-03
Mean(ETA.Bias)/True Bias 3.03e-01
Estimated ETA.Bias 1.41e-01
Qdgd2 Variance(ETA.Bias) 1.34e-02
Mean(ETA.Bias)/True Bias 6.08¢e-01
A-TIPTW True finite sample bias 1.34e-01
Mean(ETA.Bias) 4.20e-02
Qcgc Variance(ETA .Bias) 5.63e-03
Mean(ETA.Bias)/True Bias 3.14e-01
Stepwise A-IPTW  True finite sample bias 1.75e-01
Mean(ETA.Bias) 1.47e-02
Qdgd1 Variance(ETA . Bias) 7.14e-04
Mean(ETA .Bias)/True Bias  8.40e-02
Mean(ETA .Bias) 9.66e-02
Qdgd?2 Variance 1.22e-02

Mean(ETA.Bias)/True Bias 5.52e-01
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Table 2.10: True finite sample bias for TMLE estimators and mean and variance of estimated
ETA.Bias (from first 10 of the 250 samples) by specification, Simulation 3: gy in [0.001,1],
shown for unbounded g,, only.

TMLE True finite sample bias 2.91e-01
Mean(ETA.Bias) 1.70e-01
Qcgc Variance(ETA.Bias) 1.05e-02
Mean(ETA .Bias)/True Bias 5.83e-01
Stepwise TMLE True finite sample bias 3.29e-01
Mean(ETA.Bias) 1.93e-01
Qdgd1 Variance(ETA.Bias) 1.24e-02
Mean(ETA.Bias)/True Bias 5.87¢-01
Mean(ETA.Bias) 2.56e-01
Qdgd2 Variance(ETA.Bias) 1.53e-02

Mean(ETA.Bias)/True Bias 7.78e-01
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The parametric bootstrap underestimated E'T'A.Bias more substantially in this simula-
tion. It would have provided a reasonable albeit imperfect diagnostic tool. Tables 2.9 and
2.10 demonstrate that for all estimators, when Q,, and g, were consistent the estimates of
ET A.Bias captured 30-35% of the true finite sample bias of the G-computation, IPTW, and
A-IPTW estimators , and 58% of the finite sample bias of the TMLE estimator. Tables 2.11
and 2.12 show the sample-specific ET A.Bias estimates for the IPTW and TMLE estima-
tors. When compared by an analyst to the corresponding point and variance estimates for
the target parameter, the diagnostic would have suggested caution in most but not all cases.
Tables 2.9 and 2.10 further demonstrate that use of a stepwise algorithm that forces A to be
included in Q,, generally resulted in a greater underestimate of ET A.Bias because bootstrap
data are simulated from a distribution in which sparsity plays less of a role. Retention of
the propensity score in the fit of )y that was used to generate the bootstrap data (Qdgd2)
improved the sensitivity of the diagnostic.

2.5.6 Discussion of Simulation Results

In summary, examination of the estimated treatment mechanism and corresponding
propensity scores g(a|WW) may provide an initial alert to the presence of positivity viola-
tions; however, this approach does not provide a quantitative estimate of the resulting bias.
The parametric bootstrap is a supplemental tool that allows the analyst to evaluate esti-
mator behavior under a range of hypothetical data-generating distributions in which both
the true value of the target parameter and the correct specification of nuisance parameter
models is known. Further study of the performance of the diagnostic under a range of true
and estimated data generating distributions is needed.

2.6 Data Example: HIV Resistance Mutations

2.6.1 Data and Question

We analyzed an observational cohort of HIV-infected patients in order to estimate the
effect of mutations in the HIV protease enzyme on viral response to the antiretroviral drug
lopinavir. The question, data, and analysis have been described previously.Bembom et al.
[2009] Here, a simplified version of prior analyses was performed and the parametric boot-
strap was applied to investigate the potential impact of positivity violations on results.

Briefly, baseline covariates, mutation profiles prior to treatment change, and viral re-
sponse to therapy were collected for 401 treatment change episodes (TCEs) in which pro-
tease inhibitor-experienced subjects initiated a new antiretroviral regimen containing the
drug lopinavir. We focused on 2 target mutations in the protease enzyme: p82AFST and
p82MLC (present in 25% and 1% of TCEs, respectively). The data for each target muta-
tion consisted of O = (W, A,Y), where A was a binary indicator that the target mutation
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was present prior to treatment change, W was a set of 35 baseline characteristics including
summaries of past treatment history, mutations in the reverse transcriptase enzyme, and a
genotypic susceptibility score for the background regimen (based on the Stanford scoring
system; http://hivdb.stanford.edu/). The outcome Y was the change in logo(viral load)
following initiation of the new antiretroviral regimen. The target observed data parameter
was Ew(E(Y|A = 1,W) — E(Y|A = 0,W)), equal under (2.7) to the average treatment
effect E(Y; — Yp).

2.6.2 Methods

Effect estimates were obtained for each mutation using the IPTW estimator and TMLE
with a logistic fluctuation. Gruber and van der Laan [2010b] Qo and g, were estimated with
stepwise forward selection of main terms based on the AIC criterion, using the step function
in the stats v2.11.1 package in R. Estimators were implemented using both unbounded values
for g,(A | W) and values truncated at [0.025,0.975]. Following standard practice in much
of the literature, standard errors were estimated using the influence curve, corresponding to
the standard output for the glm and tmle functions in R, treating the values of g, as fixed.
The parametric bootstrap was used to estimate bias for each estimator using 1000 samples
and the FTA.Bias algorithm, with the step function rerun in each parametric bootstrap
sample.

2.6.3 Results

Results for both mutations are presented in Table 2.13. p82AFST is known to be a
major mutation for lopinavir resistance.Johnson et al. [2009] The current results support this
finding; the IPTW and TMLE point estimates were similar and both suggested a significantly
more positive change in viral load (corresponding to a less effective drug response) among
subjects with the mutation as compared to those without it. The parametric bootstrap-based
bias estimate was minimal, raising no red flag that these findings might be attributable to
positivity bias.

The role of mutation p82CLM is less clear based on existing knowledge; depending on
the scoring system used it is either not considered a lopinavir resistance mutation, or given
an intermediate lopinavir resistance score (http://hivdb.stanford.edu/).Johnson et al. [2009]
Initial inspection of the point estimates and standard errors in the current analysis would
have suggested that p82CLM had a large and highly significant effect on lopinavir resistance.
Application of the parametric bootstrap-based diagnostic, however, would have suggested
that these results should be interpreted with caution. In particular, the bias estimate for
the unbounded TMLE was larger than the estimated standard error, while the bias estimate
for the unbounded IPTW estimator was of roughly the same magnitude. While neither
bias estimate was of sufficient magnitude relative to the point estimate to change inference,
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Table 2.13: Point estimate, standard error and parametric bootstrap-based bias estimates
for the effect of two HIV resistance mutation on viral response, by estimator and bound on

In-

TMLE Estimator IPTW Estimator
/BT]L{LE SE ETA.Bias BIPTW SE ETA.Bias
P82AFST
0, 1} 0.65 0.13 —0.01 0.66 0.15 —0.01
0.025, 0.975] 0.62 0.13 0.00 0.66 0.15 —0.01
p82MLC
0,1] 2.85 0.14 —0.37 1.29 0.14 0.09
0.025, 0.975] 0.86 0.10 —0.01 0.80 0.23 0.08

their size relative to the corresponding standard errors would have suggested that further
investigation was warranted.

In response, the non-parametric bootstrap (based on 1000 bootstrap samples) was applied
to provide an alternative estimate of the standard error. Using this alternative approach,
the standard errors for the unbounded TMLE and IPTW estimators of the effect of p82MLC
were estimated to be 2.77 and 1.17, respectively. Non-parametric bootstrap-based standard
error estimates for the bounded TMLE and IPTW estimators were lower (0.84 and 1.12,
respectively), but still substantially higher than the initial naive standard error estimates.
These revised standard error estimates dramatically changed interpretation of results, sug-
gesting that the current analysis was unable to provide essentially any information on the
presence, magnitude, or direction of the p82CLM effect. (Non-parametric bootstrap-based
standard error estimates for p82AFST were also somewhat larger than initial estimates, but
did not change inference).

In this example, F'T'A.Bias is expected to include some non-positivity bias due to the
curse of dimensionality. However, the resulting bias estimate should still be interpreted as
highly optimistic (i.e. as an underestimate of the true finite sample bias). The parametric
bootstrap sampled from estimates of gy and Q, that had been fit using the step algorithm.
This ensured that the estimators g, and Q, (which applied the same stepwise algorithm)
would do a good job approximating g5 and Q p, in each bootstrap sample. Clearly, no such
guarantee exists for the true F,. This simple example further illustrates the utility of the
non-parametric bootstrap for standard error estimation in the setting of sparse data and
positivity violations. In this particular example, the improved variance estimate provided
by the non-parametric bootstrap was sufficient to prevent positivity violations from leading
to incorrect inference. As demonstrated in the simulations, however, in other settings even
accurate variance estimates may fail to alert the analyst to threats posed by positivity
violations.
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2.7 Practical Approaches for Estimation in the Pres-
ence of Positivity Violations

How should analysis proceed once threats to inference due to data sparsity have been
identified? In this section we review several approaches to effect estimation in the presence of
positivity violations. These include changing the projection function h(a, V') used to defined
the target parameter 3, restricting the covariate adjustment set, restricting the sample, and
redefining the causal effect of interest through the use of realistic and intention to treat
parameters. Moore et. al. provide an extended review of these approaches. Moore et al.
[2009] All four approaches can be viewed as a means to define a family of parameters that
approximate the original target of inference to differing degrees. Estimators can then be
defined that select among members of a given family based on the tradeoff between degree
of divergence from the original target and identifiability.

2.7.1 Approach #1: Change the Projection Function h(A,V)

Throughout this paper we have focused on the target causal parameter 5(Fx,m,h) de-
fined according to (2.5) as the projection of the Er, (Y,|V') on the marginal structural model
m(a, V|3). Choice of function h(a, V') both defines the target parameter by specifying which
values of (A, V') should be given greater weight when estimating £ and, by assumption (2.9),
defines the positivity assumption needed for [ to be identifiable.

We have focused on parameters indexed by h(a, V) = 1, a choice that gives equal weight
to estimating the counterfactual outcome for all values (a,v).Neugebauer and van der Laan
[2007] Alternative choices of h(a, V') can significantly weaken the needed positivity assump-
tion. For example, if the target of inference only involves counterfactual outcomes among
some restricted range [c, d] of possible values A, defining h(a, V) = I(a € [c, d]) weakens the
positivity assumption by requiring sufficient variability only in the assignment of treatment
levels within the target range. In some settings, the causal parameter defined by such a
projection over a limited range of A might be of substantial a prior: interest. For exam-
ple, one may wish to focus estimation of a drug dose response curve only on the range of
doses considered reasonable for routine clinical use, rather than on the full range of doses
theoretically possible or observed in a given data set.

An alternative approach, commonly employed in the context of IPTW estimation and
introduced in Section 2.3.2, is to choose h(a,V) = g(a|V), where g(a|V) = P(A = a|V)
is the conditional probability of treatment given the covariates included in the marginal
structural model. In the setting of IPTW estimation this choice corresponds to the use of
stabilizing weights, a common approach to reducing both the variance of the IPTW estimator
in the face of sparsity.Robins et al. [2000] When the target causal parameter is defined using
a non-parametric marginal structural model, use of h(a,V) = g(a, V) corresponds with a
decision to define a target parameter that gives greater weight to those regions of the joint
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distribution of (A, V') that are well-supported, and that relies on smoothing or extrapolation
to a greater degree in areas that are not. Neugebauer and van der Laan [2007]

Use of a marginal structural working model makes clear that the utility of choosing
h(a,V) = g(a|V) as a method to approach data sparsity is not limited to the IPTW estima-
tor. Recall that the G-computation estimator can be implemented by regressing predicted
values for Y, on (a, V') according to model m(a, V'|3) with weights provided by h(a, V). When
the projection function is chosen to be g(a|V’), this corresponds to a weighted regression in
which weights are proportional to the degree of support in the data.

Even when one is ideally interested in the entire causal curve (implying a target parameter
defined by choice h(a,V) = 1), specification of alternative choices for h offers a means of
improving identifiability, at a cost of redefining the target parameter. For example, one can
define a family of target parameters indexed by hs(a,V) = I(a € [c¢(d),d(d)]), where an
increase in ¢ corresponds to progressive restriction on the range of treatment levels targeted
by estimation. Fluctuation of § thus corresponds to trading a focus on more limited areas
of the causal curve for improved parameter identifiability. Selection of the final target from
among this family can be based on an estimate of bias provided by the parametric bootstrap.
For example, the bootstrap can be used to select the parameter with the smallest  below
some pre-specified threshold for allowable ET A.Bias.

2.7.2 Approach #2: Restrict the Adjustment Set

Exclusion of problematic W (i.e. those covariates resulting in positivity violations or
near violations) from the adjustment set, provides a means to trade confounding bias for a
reduction in positivity violations.Bembom et al. [2008] In some cases, exclusion of covariates
from the adjustment set may come at little or no cost to bias in the estimate of the target
parameter. In particular, a subset of W that excludes covariates responsible for positivity
violations may still be sufficient to control for confounding. In other words, a subset W/ C W
may exist for which both identifying assumptions (2.7) and (2.8) hold (i.e. Y, [[ A | W’ and
go(a|W') > 0,a € A), while positivity fails for the full set of covariates. In practice, this
approach can be implemented by first determining candidate subsets of W under which the
positivity assumption holds, and then using causal graphs to assess whether any of these
candidates is sufficient to control for confounding. Even when no such candidate set can be
identified, background knowledge (or sensitivity analysis) may suggest that problematic W
represent a minimal source of confounding bias (Moore et. al. provide an example).Moore
et al. [2009] Often, however, those covariates that are most problematic from a positivity
perspective are also strong confounders.

As suggested with respect to choice of projection function h(a,V’) in the previous sec-
tion, the causal effect estimator can be fine-tuned to select the degree of restriction on the
adjustment set W according to some pre-specified rule for eliminating covariates from the
adjustment set, and the parametric bootstrap used to select the minimal degree of restriction
that maintains ET A.Bias below an acceptable threshold.Bembom et al. [2008] Also, the C-
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TMLE estimator mentioned briefly in Section 2.3.3, which includes in the fit of g,, only those
covariates that improve estimation of the target parameter, will restrict W in a ”black-box”
manner. In the case of substantial positivity violations, such approaches can result in small
covariate adjustment sets. While such limited covariate adjustment accurately reflects a
target parameter that is poorly supported by the available data, the resulting estimate can
be difficult to interpret and will no longer carry a causal interpretation.

2.7.3 Approach # 3: Restrict the Sample

An alternative approach, sometimes referred to as “trimming”, is to discard classes of
subjects for whom there exists no or limited variability in observed treatment assignment.
A causal effect is then estimated in the remaining subsample. This approach is popular in
the econometrics and social science literature; Crump provides a recent review.Crump et al.
[2006], LaLonde [1986], Heckman et al. [1997], Dehejia and S.Wahba [1999]

When the subset of covariates responsible for positivity violations is low or one dimen-
sional, such an approach can be implemented simply by discarding subjects with covariate
values not represented in all treatment groups. For example, say that one aims to estimate
the average effect of a binary treatment, and in order to control for confounding needs to
adjust for W, a covariate with possible levels {1,2,3,4}. However, inspection of the data
reveals that no one in the sample with W = 4 received treatment (ie. g¢,(1|W =4) = 0).
The sample can be trimmed by excluding those subjects for whom W = 4 prior to apply-
ing a given causal effect estimator for the average treatment effect. As a result, the target
parameter is shifted from E(Y; — Y) to E(Y; — Yy|W < 4), and the positivity assumption
(2.8) now holds (as W = 4 occurs with zero probability).

Often W is too high dimensional to make this straightforward implementation feasible; in
such a case matching on the propensity score provides a means to trim the sample. There is
an extensive literature on propensity score-based effect estimators; however such estimators
are beyond the scope of the current review. Several potential problems arise with the use of
trimming methods to address positivity violations. First, discarding subjects responsible for
positivity violations shrinks sample size, and thus runs the risk of increasing the variance of
the effect estimate. Further, sample size and the extent to which positivity violations arise
by chance are closely related. Depending on how trimming is implemented, new positivity
violations can be introduced as sample size shrinks. Second, restriction of the sample may
result in a causal effect for a population of limited interest. In other words, as can occur
with alternative approaches to improve identifiability by shifting the target of inference, the
parameter actually estimated may be far from the initial target. Further, when the criterion
used to restrict the sample involves a summary of high dimensional covariates, such as is
provided the propensity score, it can be difficult to interpret the parameter estimated. Fi-
nally when treatment is longitudinal, the covariates responsible for positivity violations may
themselves be affected by past treatment.Moore et al. [2009] Trimming to remove positivity
violations in this setting amounts to conditioning on post-treatment covariates and can thus
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introduce new bias.

Crump proposes an approach to trimming that falls within the general strategy of re-
defining the target parameter in order to explicitly capture the tradeoff between parameter
identifiability and proximity to the initial target.Crump et al. [2006] In addition to focusing
on the treatment effect in an a priori specified target population, he defines an alternative
target parameter corresponding to the average treatment effect in that subsample of the
population for which the most precise estimate can be achieved. Crump further suggests
the potential for extending this approach to achieve an optimal (according to some user-
specified criteria) tradeoff between the representativeness of the subsample in which the
effect is estimated and the variance of the estimate.

2.7.4 Approach #4: Change the Intervention of Interest

A final alternative for improving the identifiability of a causal parameter in the presence
of positivity violations is to redefine the intervention of interest. Realistic rules rely on an
estimate of the propensity score g(a|WW) to define interventions that explicitly avoid positivity
violations. This ensures that the causal parameter estimated is sufficiently supported by
existing data.

Realistic interventions avoid positivity violations by first identifying subjects for whom
a given treatment assignment is not realistic (i.e. subjects whose propensity score for a
given treatment is small or zero) and then assigning an alternative treatment with better
data support to those individuals. Such an approach is made possible by focusing on the
causal effects of dynamic treatment regimes.van der Laan and Petersen [2007], Robins et al.
[2008] The causal parameters described thus far are summaries of the counterfactual outcome
distribution under a fixed treatment applied uniformly across the target population. In
contrast, a dynamic regime assigns treatment in response to patient covariate values. This
characteristic makes it possible to define interventions under which a subject is only assigned
treatments that are possible (or “realistic”) given a subject’s covariate values.

To continue the previous example in which no subjects with W = 4 were treated, a
realistic treatment rule might take the form “treat only those subjects with W less than 4.”
More formally, let d(W) refer to a treatment rule that deterministically assigns a treatment
a € A based on a subject’s covariates W and consider the rule d(W) = I(W < 4). Let
Y, denote the counterfactual outcome under the treatment rule d(W'), which corresponds to
treating a subject if and only if his or her covariate W is below 4. In this example E(Y})
is identified as ) E(Y|W = w,A = 0)P(W = w); however, since E(Y|W = w,A = 1)
is undefined for W = 4, E(Y]) is not identified (unless we are willing to extrapolate based
on W < 4). In contrast, F(Yy) is identified by the non-parametric G-computation formula:
Y BE(Y =y|W =w,A=dW))P(W = w). Thus the average treatment effect E(Y; — Yp),
but not E(Y; — Yp), is identified. The redefined causal parameter can be interpreted as the
difference in expected counterfactual outcome if only those subjects with W < 4 were treated
as compared to the outcome if no one were treated.
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More generally, realistic rules indexed by a given static treatment a assign a only to
those individuals for whom the probability of receiving a is greater than some user-specified
probability a (such as a > 0.05). Let d(a,W) denote the rule indexed by static treatment
a. If A is binary, then d(1,W) = 1 if g(1|W) > «, otherwise d(1,W) = 0. Similarly,
d(0,W) =0 if g(0|W) > a; otherwise d(0, W) = 1. Realistic causal parameters are defined
as some parameter of the distribution of Yy wy (possibly conditional on some subset of
baseline covariates V' C W). Estimation of the causal effects of dynamic rules d(WW) allows
the positivity assumption to be relaxed to g(d(W)|W) > 0 -a.e (i.e. only those treatments
that would be assigned based on rule d to patients with covariates W need to occur with
positive probability within strata of W). Realistic rules d(a, W) are designed to satisfy this
assumption by definition.

When a given treatment level a is unrealistic (i.e. when g(a | W) < «), realistic rules
assign an alternative from among viable (well-supported) choices. Choice of an alternative
is straightforward when treatment is binary. When treatment has more than two levels,
however, a rule for selecting the alternative treatment level is needed. One option is to
assign a treatment level that is as close as possible to the orignal assignment while still
remaining realistic. For example, if high doses of drugs occur with low probability in a
certain subset of the population, a realistic rule might assign the maximum dose that occurs
with probability > « in that subset. An alternative class of dynamic regimes, referred to
as “intent-to-treat” rules, instead assign a subject to his or her observed treatment value if
an initial assignment is deemed unrealistic. Moore, et. al. and Bembom, et. al. provide
illustrations of both of these types of realistic rules using simulated and real data.Moore
et al. [2009], Bembom and van der Laan [2007]

The causal effects of realistic rules clearly differ from their static counterparts. The extent
to which the new target parameter diverges from the initial parameter of interest depends
on both the extent to which positivity violations occur in the finite sample (i.e. the extent
of support available in the data for the initial target parameter) and on a user-supplied
threshold «. The parametric bootstrap approach presented in Section 2.4 can be employed
to data-adaptively select o based on the level of ET A.Bias deemed acceptable.Bembom and
van der Laan [2007]

2.7.5 Selection Among a Family of Parameters

Each of the methods described for estimating causal effects in the presence of data spar-
sity corresponds to a particular strategy for altering the target parameter in exchange for
improved identifiability. In each case, we have outlined how this tradeoff could be made
systematically, based on some user-specified criterion such as the bias estimate provided by
the parametric bootstrap. We now summarize this general approach in terms of a formal
method for estimation in the face of positivity violations.

1. Define a family of parameters. The family should include the initial target of inference
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together with a set of related parameters, indexed by v in index set I, where v rep-
resents the extent to which a given family member trades improved identifiability for
decreased proximity to the initial target. In the examples given in the previous section,
v could be used to index a set of projection functions h(a, V') based on an increasingly
restrictive range of the possible values A, degree to which the adjustment covariate set
or sample is restricted, or choice of a threshold for defining a realistic rule.

2. Apply the parametric bootstrap to generate an estimate ET A.Bias for each v € I. In
particular, this involves estimating the data generating distribution, simulating new
data from this estimate, and then applying an estimator to each target indexed by ~.

3. Select the target parameter from among the set that fall below a pre-specified threshold
for acceptable E'T' A.Bias. In particular, select the parameter from within this set that
is indexed by the value v that corresponds to the greatest proximity to the initial
target.

This approach allows an estimator to be defined in terms of an algorithm that identifies
and estimates the parameter within a candidate family that is as close to the initial target
of inference as possible while remaining within some user-supplied limit on the extent of
tolerable positivity violations.

2.8 Conclusions

The identifiability of causal effects relies on sufficient variation in treatment assignment
within covariate strata. The strong version of positivity requires that each possible treat-
ment occur with positive probability in each covariate strata; depending on the model and
target parameter, this assumption can be relaxed to some extent. In addition to assessing
identifiability based on measurement of and control for sufficient confounders, data analyses
should directly assess threats to identifiability based on positivity violations. The para-
metric bootstrap is a practical tool for assessing such threats, and provides a quantitative
estimator-specific estimate of bias arising due to positivity violations.

The objective of the parametric bootstrap diagnostic is to raise a red flag in settings
where positivity violations (as well as bounding of g,,) may be resulting in bias of sufficient
magnitude to threaten reliable inference. The simulations showed that the diagnostic worked
best when (1) @,, and g,, were consistently estimated; (2) g, was at least minimally bounded
so that the estimator was more likely to be asymptotically normal; and, (3) any data-
adaptive algorithm used to fit Qo was forced to include not only A but also the propensity
score in order to retain sparsity in the bootstrapped distribution. Although the diagnostic
may underestimate the true E'T'A. Bias, in the simulations presented here the diagnostic was
generally successful in raising a red-flag for bias due to positivity violations in the settings
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where such a warning was needed. The performance of the diagnostic should be further
investigated under a range of true and estimated data generating distributions, however.

This paper has focused on the positivity assumption for the causal effect of a treatment
assigned at a single time point. Extension to a longitudinal setting in which the goal is to
estimate the effect of multiple treatments assigned sequentially over time introduces con-
siderable additional complexity. First, practical violations of the positivity assumption can
arise more readily in this setting. Under the longitudinal version of the positivity assump-
tion the conditional probability of each possible treatment history should remain positive
regardless of covariate history. However, this probability is the product of time point-specific
treatment probabilities given the past. When the product is taken over multiple time points
it is easy for treatment histories with very small conditional probabilities to arise. Second,
longitudinal data make it harder to diagnose the bias arising due to positivity violations.
Implementation of the parametric bootstrap in longitudinal settings requires Monte Carlo
simulation both to implement the G-computation estimator and to generate each bootstrap
sample. In particular, this requires estimating and sampling from the time-point specific
conditional distributions of all covariates and treatment given the past. Additional research
on assessing the impact of of positivity bias on longitudinal causal parameters is needed,
including investigation of the parametric bootstrap in this setting.

When positivity violations occur for structural reasons rather than due to chance, a causal
parameter that avoids these positivity violations will often be of substantial interest. For ex-
ample, when certain treatment levels are contraindicated for certain types of individuals, the
average treatment effect in the population may be of less interest than the effect of treatment
among that subset of the population without contraindications, or alternatively, the effect
of an intervention that assigns treatment only to those subjects without contraindications.
Similarly, the effect of a multilevel treatment may be of greatest interest for only a subset of
treatment levels.

In other cases researchers may be happy to settle for a better estimate of a less interesting
parameter. Sample restriction, estimation of realistic parameters, and change in projection
function h(a, V) all change the causal effect being estimated; in contrast, restriction of the
covariate adjustment set often results in estimation of a non-causal parameter. However, all
of these approaches can be understood as means to shift from a poorly identified initial target
towards a parameter that is less ambitious but more fully supported by the available data.
The new estimand is not determined a prior: by the question of interest, but rather is driven
by the observed data distribution in the finite sample at hand. There is thus an explicit
tradeoff between identifiability and proximity to the initial target of inference. Ideally, this
tradeoff will be made in a systematic way rather than on an ad hoc basis at the discretion
of the investigator. Definition of an estimator that selects among a family of parameters
according to some pre-specified criteria is a means to formalize this tradeoff. An estimate of
bias based on the parametric bootstrap can be used to implement the tradeoff in practice.

The parametric bootstrap also provides a means to optimize estimator performance with-
out changing the target parameter. The parametric bootstrap provides an estimate of the
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whole sampling distribution of a candidate estimator, and thus can be used to estimate MSE
and fine-tune estimator performance based on this estimate. Bembom et. al. illustrate this
approach by using the bootstrap to data-adpatively select the level of weight truncation that
minimizes the estimated MSE of the IPTW estimator; the same method can also be used to
minimize estimated MSE using alternative approaches such as progressive restriction of the
adjustment set. We emphasize, however, that use of the parametric bootstrap to minimize
estimator MSE is fundamentally different than use of the parametric bootstrap to select
among a family of parameters, as described in Section 2.7.5. The former represents a means
of improving estimator performance for the same target parameter (by fine-tuning the esti-
mator to optimize bias-variance tradeoff). In contrast, the family of parameters approach
shifts the target of inference to a parameter that is adequately supported by the data.

In summary, we offer the following advice for applied analyses: First, define the causal
effect of interest based on careful consideration of structural positivity violations. Second,
consider estimator behavior in the context of positivity violations when selecting an estima-
tor. Third, apply the parametric bootstrap to quantify the extent of estimator bias under
data simulated to approximate the true data generating distribution. Fourth, when positiv-
ity violations are a concern, choose an estimator that selects systematically among a family
of parameters based on the tradeoff between data support and proximity to the initial target
of inference.
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Chapter 3

The Relative Performance of Targeted
Maximum Likelihood Estimators

3.1 Introduction

This chapter delves more deeply into the relative performance of different estimators
under violations of the positivity assumption, with particular emphasis on a variety of double
robust (DR) estimators. The chapter mostly replicates a paper that is currently under review
for publication in the International Journal of Biostatistics, with title identical to the chapter
title and coauthored by Susan Gruber (co-first author), Mark van der laan and Jasjeet S.
Sekhon. Much of the material is also introduced in Rose and van der Laan [Eds.]. The paper
was motivated by recent literature in which there is much debate on the relative performance
of DR estimators when the positivity assumption is violated. In particular, Kang and Schafer
[2007] (KS) demonstrate the fragility of DR estimators in a simulation study with near, or
practical, positivity violations. They focus on a simple missing data problem in which one
wishes to estimate the mean of an outcome that is subject to missingness and all possible
covariates for predicting missingness are measured. Responses by Robins et al. [2007], Tsiatis
and Davidian [2007], Tan [2007] and Ridgeway and McCaffrey [2007] further explore the
challenges faced by DR estimators and offer suggestions for improving their stability.

In their article, KS introduce a variety of DR estimators and compare them to non-DR
inverse probability of censoring (IPCW) estimators, as well as to a simple parametric model
based ordinary least squares (OLS) estimator. As the KS simulation has practical positiv-
ity violations, some values of both the true and estimated missingness mechanism are very
close to zero. In this situation, the IPCW will be extremely large for some observations of
the sample. Therefore, DR and non-DR estimators that rely on IPCW may be unreliable.
As a result, KS warn against the routine use of estimators that rely on IPCW, including
DR estimators: this is in agreement with other literature analyzing the issue (Robins [1986,
1987a, 1999], Robins and Wang [2000], van der Laan and Robins [2003]), showing simulations



CHAPTER 3. THE RELATIVE PERFORMANCE OF TMLE’S 47

demonstrating the extreme sparsity bias of IPCW-estimators (e.g., Neugebauer and van der
Laan [2005]), diagnosing violations of the positivity assumptions in response to this concern
(Petersen et al. [2010], Wang et al. [2006a], Moore et al. [2009], Cole and Hernan [2008],
Kish [1992], Bembom and van der Laan [2008]), data adaptive selection of the truncation
constant to control the influence of weighting (Bembom and van der Laan [2008], and se-
lecting parameters that are relying on realistic assumptions (see van der Laan and Petersen
[2007], and Petersen et al. [2010]).

The particular simulation in KS also gives rise to a situation in which under dual mis-
specification, the OLS estimator outperforms all of the presented DR estimators. While this
is an interesting issue, it is not the main focus here. In our view, dual misspecification brings
up the need for other strategies for improving the robustness of estimators in general, such
as incorporating data adaptive estimation instead of relying on parametric regression models
for the missingness mechanism and the conditional distribution of responses, an idea echoed
in the responses by Tsiatis and Davidian [2007] and Ridgeway and McCaffrey [2007], and
standardly incorporated in the UC Berkeley literature on targeted maximum likelihood es-
timation (e.g., van der Laan and Rubin [2006], van der Laan et al. [2009]). In particular, we
note that a statistical estimation problem is also defined by the statistical model, which, in
this case, is defined by a nonparametric model: such models require data adaptive estimators
in order to claim that the estimator is consistent. Nonetheless, we explicitly demonstrate
the impact of the utilization of machine learning on the simulation results in a final section
of this article.

In their response to the KS paper, Robins et al. [2007] point out that a desirable prop-
erty of DR estimators is “boundedness,” in that for a finite sample, estimators of the mean
response fall in the parameter space with probability 1. Estimators that impose such a re-
striction can introduce new bias but avoid the challenges of highly variable weights. Robins
et al. [2007] discuss ways in which to guarantee that “boundedness” holds and present two
classes of bounded estimators-regression DR estimators and bounded Horvitz-Thompson
DR estimators. We define examples of these estimators below, and we evaluate their relative
performance in Section 3.6. The response by Tsiatis and Davidian [2007] offers strategies
for constructing estimators that are more robust under the circumstances in the KS simu-
lations. In particular, to address positivity violations, they suggest an estimator that uses
IPCW only for observations with missingness mechanism values that are not close to zero,
while using regression predictions for the observations with very small missingness mecha-
nism values. One might consider either a hard cutoff for dividing observations or weighting
each part of the influence curve by the estimated missingness mechanism. Tan [2007] also
points to an improved locally efficient double robust estimator (Tan [2006]) that is able to
maintain double robustness as well as provides guaranteed improvement relative to an initial
estimator, improving on such type of estimators that had an algebraic similar form but failed
to guarantee both properties (Robins et al. [1994], and see also van der Laan and Robins
[2003]). Many responders also make valuable suggestions regarding the dual misspecification
challenge.
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In the current paper, we add targeted maximum likelihood estimators (TMLE’s), or
more generally, targeted minimum loss based estimators (van der Laan and Rubin [2006])
to the debate on the relative performance of DR estimators under practical violations of
the positivity assumption in the particular simple missing data problem set forth by KS.
TMLE’s involve a two-step procedure in which one first estimates the conditional expectation
of the outcome, given the covariates, and then updates this initial estimator, targeting
bias reduction of the parameter of interest, rather than the overall conditional mean of the
outcome given the covariates. The second step requires specification of a loss-function (e.g.,
log-likelihood loss function) and a parametric submodel through the initial regression, so that
one can fit the parametric sub-model by minimizing the empirical risk (e.g., maximizing the
log-likelihood). The estimator of the target parameter is then defined as the corresponding
substitution estimator. Because TMLE’s are substitution estimators, they not only respect
the global bounds of the parameter and data (and thus satisfy the “boundedness” property
defined by Robins et al. [2007]), but, even more importantly, they respect the fact that the
true parameter value is a particular function of the data generating probability distribution.

TMLE’s are double robust and asymptotically efficient. Moreover, TMLE’s can incor-
porate data-adaptive likelihood or loss based estimation procedures to estimate both the
conditional expectation of the outcome and the missingness mechanism.The TMLE also
allows the incorporation of targeted estimation of the censoring/treatment mechanism, as
embodied by the collaborative TMLE (C-TMLE), thereby fully confronting a long stand-
ing problem of how to select covariates in the propensity score/missingness mechanism of
DR-estimators. In this article, we compare the performance of TMLE’s to other DR estima-
tors in the literature using the exact simulation study presented in the KS paper. We also
make slight modifications to the KS simulation, in order to make the estimation even more
challenging.

The DR parametric regression estimator of Scharfstein et al. [1999]), which was included
in the response of Robins et al. [2007], is a particular special case of a TMLE (Rosenblum and
van der Laan [2010b]). It defines a clever parametric initial regression for which the update
step of the general TMLE-algorithm introduced in van der Laan and Rubin [2006] results in a
zero-update, and is thus not needed. Such a TMLE falls in the class of TMLE’s defined by an
initial regression estimator, a squared error loss function and univariate linear regression sub-
model (coding the fluctuations of the initial regression estimator for the TMLE-update step).
Such TMLE’s for continuous outcomes (contrary to the excellent robustness of the TMLE for
binary outcome based on the log-likelihood loss function and logistic regression submodel)
suffer from great sensitivity to violations of the positivity assumptions, as was also observed
in the simulations presented in the Kang and Shafer debate. As explained in (Gruber and
van der Laan [2010a]) the problem with this TMLE defined by the squared error loss function
and univariate linear regression submodel is that its updates are not subject to any bounds
implied by the statistical model or data: that is, it is not using a parametric sub-model, an
important principle of the general TMLE algorithm. A valid TMLE for continuous outcomes,
defined by a different loss function and a univariate logistic regression parametric submodel,
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has been recently presented (Gruber and van der Laan [2010a]), which demonstrates that
the previously observed sensitivity of these two estimators to the positivity assumption was
due to those specific choices.

The remainder of this chapter is organized as follows. Section 3.2 presents notation,
which deviates from that presented in KS, for the data structure and parameter of interest.
Section 3.3 formally defines the positivity assumption and gives an overview of causes, di-
agnostics and responses to violations. Section 3.4 defines the estimators on which we focus
in this paper, including a sample of estimators in the literature and TMLE’s. Section 3.5
then compares the performance of the estimators in the original and modified KS simulation.
Finally, Section 3.6 summarizes the results and Section 3.8 concludes with a discussion of
the findings.

3.2 Data Structure, Statistical Model, and Parameter
of Interest

Consider an observed data set consisting of n independent and identically distributed
(i.i.d) observations of O = (W, A;AY) ~ Fy. W is a vector of covariates, and A = 1
indicates whether Y, a continuous outcome, is observed. P, denotes the true distribution
of O, from which all observations are sampled. We view O as a missing data structure on
a hypothetical full data structure X = (W,Y’), which contains the true, or potential, value
of Y for all observations, as if no values are missing. We assume Y is missing at random
(MAR) such that Py(A =1 | X) = go(1 | W). In other words, we assume there are no
unobserved confounders of the relationship between missingness A and the outcome Y.

We define Qo = {Qo.w, Qo}, where Qow(w) = Po(W = w) and Qo(W) = Eo(Y | A =
1, W). We make no assumptions about y. The generalized Cramer-Rao information bound
for any parameter of )y does not depend on the statistical model for the missingness mech-
anism go. The parameter of interest is the mean outcome EyY for the sampled population,
as if there were not missing observations of Y. Due to the MAR assumption and the posi-
tivity assumption defined below, our target parameter is identified from F, by the following
mapping from Qy:

1(Py) = Eo(Y) = Ey(Qo(W)).

3.3 The Positivity Assumption

The identifiability of the parameter of interest u(F) requires MAR and adequate support
in the data. Regarding the latter, it requires that within each stratum of W, there is positive
probability that Y is not missing. This requirement is often referred to as the positivity
assumption. Formally, for our target parameter, the positivity assumption requires that:
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go(A=1|W) >0 Py-almost everywhere. (3.1)

The positivity assumption is specific to the the target parameter. For example, the pos-
itivity assumption of the target parameter Eg{Eo(Y | A = 1,W) — Ex(Y | A =0,W)} of
the probability distribution of O = (W, A,Y), representing the additive causal effect under
causal assumptions, requires that within each stratum there is a positive probability for all
possible treatment assignments. For example, if A is a binary treatment, then positivity
requires that 0 < go(A = 1|W) < 1. (The assumption is often referred to as the exper-
imental treatment assignment (ETA) assumption for causal parameters.) In addition to
being parameter-specific, the positivity assumption is also model-specific. Parametric model
assumptions, which extrapolate to regions of the joint distribution of (A,W) that may not
be supported in the data, allow for weakening the positivity assumption (Petersen et al.
[2010]). However, analysts need to be sure that their parametric assumptions actually hold
true, which may be difficult if not impossible.

Violations and near violations of the positivity assumption can arise for two reasons.
First, it may be theoretically impossible or highly unlikely for the outcome Y to be observed
for certain covariate values in the population of interest. The threat to identifiability due to
such structural violations of positivity exists regardless of the sample size. Second, given a
finite sample, the probability of the outcome being observed for some covariate values might
be so small that the observed sample cannot be distinguished from a sample drawn under
a theoretical violation of the positivity assumption. The effect of such practical violations
of the positivity assumption are sample size specific, and the resulting sparse data bias and
inflated variance are often as dramatic as under structural violations.

Several approaches for diagnosing bias due to positivity violations have been suggested
(see Petersen et al. [2010] for an overview). Analysts may assess the distribution of A
within covariate strata (or in the case of causal parameters, the distribution of treatment
assignment), but this method is not practical with high dimensional covariate sets or with
continuous or multi-level covariates, and also provides no quantitative measure of the result-
ing sparse-data bias. Analysts may also assess the distribution of the estimated missingness
mechanism scores, g,(A = 1|W), or inverse probability weights. While this approach may
indicate positivity violations, it does not provide any information on the extent of potential
bias of the chosen estimator. Wang et al. [2006b] introduce and Petersen et al. [2010] further
discuss a diagnostic that provides an estimate of positivity bias for any candidate estimator,
which is based on a parametric bootstrap. Bias estimates of similar or larger magnitude
than an estimate’s standard error can raise a red flag to analysts that inference for their
target parameter is threatened by lack of positivity.

When censoring probabilities are close to 0 (or 1 in the case of an effect parameter), a
common practice is to truncate the probabilities or the resulting inverse probability weights,
either at fixed levels or at percentiles (Petersen et al. [2010], Wang et al. [2006a], Moore
et al. [2009], Cole and Hernan [2008], Kish [1992], Bembom and van der Laan [2008]). The
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practice limits the influence of observations with large unbounded weights, which may reduce
positivity bias and rein in inflated variance. However, this practice may also introduce bias,
due to misspecification of the missingness mechanism g,. The extent to which truncating
gn hurts or helps the performance of an estimator depends on the level of truncation, the
estimator and the distribution of the data. In our simulations below, we examine the effect of
truncating missingness probabilities for all estimators that we introduce in the next section.

3.4 Estimators of a Mean Outcome when the Outcome
is Subject to Missingness

3.4.1 Estimators in the Literature

As a benchmark, KS compare all estimators in their paper to the ordinary least squares
(OLS) estimator. For the target parameter, the OLS estimator is equivalent to the G-
computation estimator based on a linear regression model. It is defined as:

1 <= ~o
Hn,0LS = E;Qn(VVJ

where Q¥ = my, is an initial linear regression fit of Qg, and S3, is given by:

B = g min Y A7 (1)

Under violation of the positivity assumption, the OLS estimator, when defined, extrapolates
from strata of W in which there is support to strata of W that lack adequate support. The
extrapolation depends on the validity of the linear regression model, and misspecification
leads to bias.

KS present comparisons of several DR (and non-DR) estimators. We focus on just a
couple of them here. Using our terminology with the terminology and abbreviations from
KS in parenthesis the estimators we compare are: the weighted least squares (WLS) esti-
mator (regression estimation with inverse-propensity weighted coefficients, fiyyrs) and the
augmented IPCW (A-IPCW) estimator (regression estimation with residual bias correction,
fipc—ors)- Both of these DR estimators are defined below.

The WLS estimator is defined as:

1 n
n = - i)
Un,WLS n ;:1 mpg, (Ws)
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where
Bn:argmin — Y, — mg(W; 2.
in D iy ¥~ a9

The A-IPCW estimator, introduced by J.M. Robins and Zhao [1994], is then defined as:

_ 1 A _
0 i 0
fina-tpew = Qp(Wi) + = > ———=(Y; — Q,(W3)).
n 2 gn(1[W3)

Both of these estimators rely on estimators of Qy and go. They are consistent if Q° or
gn is consistent, and efficient if both are consistent. Under positivity violations, however,
these estimators rely on the consistency of Q°, and require that g, converges to a limit that
satisfies the positivity assumption (see e.g., van der Laan and Robins [2003]).

%

Additionally, in comments on KS, Robins et al. [2007] introduce bounded Horvitz-Thompson
(BHT) estimators, which, as the name suggests, are bounded, in that for finite sample sizes
the estimates are guaranteed to fall in the parameter space. A BHT estimator is defined as:

_ 1 A,
pnprr = Qn(W) + = —————
! N G (1V)

This is equivalent to the A-IPTW estimator, but estimating go(1 | W) by fitting the
following logistic regression model

(Y; — Qn(W7)).

and hy (W) = Qu(W) = £ 31, Q(W5).

We also include another important class of doubly robust, locally efficient, regression-
based estimators introduced by Scharfstein et al. [1999], further discussed in Robins [1999]
and compared to the TMLE’s as defined in this paper in Rosenblum and van der Laan
[2010b]. This estimator is based on a parametric regression model which includes a “clever
covariate” that incorporates inverse probability weights. We use the abbreviation PRC. The
estimator is defined as:

1~
n = i)
Y. PRC - ;:1 Q,(W;)

where Q,,(W) = mg, ., (W) and mg (W) is a parametric model, which includes the clever

covariate H} (W) = —qrm, and (B,, €,) is the OLS.

gn (W)




CHAPTER 3. THE RELATIVE PERFORMANCE OF TMLE’S 53

3.4.2 TMLE’s

We compare the above estimators with several versions of TMLE’s. The targeted max-
imum likelihood procedure was first introduced in van der Laan and Rubin [2006]. For a
compilation of current and past work on targeted maximum likelihood estimation, see van der
Laan et al. [2009].

In contrast to the estimating equation-based DR estimators defined above (WLS, A-
IPCW and BHT), the PRC estimator and TMLE’s are DR substitution estimators. TMLE’s
are based on an update of an initial estimator of Fy that fluctuates the fit with a fit of a
clever parametric submodel. Assuming a valid parametric submodel is selected, TMLE’s
do not only respect the bounds on the outcome implied by the statistical model or data,
but also respect that the true target parameter value is a specified function of the data
generating distribution. Due to respecting this information, the TMLE does not only respect
the local bounds of the statistical model by being asymptotically (locally) efficient (as the
other DR estimators), but also respect the global constraints of the statistical model. Being
a substitution estimator is particularly important under sparsity, as implied by violations of
the positivity assumptions.

Although our target parameter involves a continuous Y, to introduce the TMLE for the
mean outcome, we begin by defining the TMLE for a binary Y. In this case, the TMLE is
defined as:

1~ ~
n - - ; VVz ; 3.2
HUn TMLE ”;Qn( ) ( )
where we use the logistic regression submodel

logitQ* (€)(W) = logitQ° (W) + eH}

9n

(W),

the clever covariate is defined as H; (W) = %+WV)’ and e, the fluctuation parameter, is
estimated by maximum likelihood in which the %oss function is thus the log-likelihood loss

function:
—L(Q)(0) = A{Y log QW) + (1 = ) log(1 — Q(W))} (33)

Thus e, is fitted with univariate logistic regression, using the initial regression estimator Q°
as an off-set:

o = argmin' Y L(Q3(€))(0))

For estimators Q° and g,,, one may specify a parametric model or use machine learning
or even super learner, which uses loss-based cross-validation to select weighted combination
of candidate estimators (van der Laan et al. [2007]).

Next, consider that Y is continuous, but bounded by 0 and 1. In this case, we can
implement the same TMLE as we would for binary Y in (3.2). That is, we use the same
logistic regression submodel, and the same loss function (3.3), and the same standard software
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for logistic regression to fit €, simply ignoring that Y is not binary. The same loss function
is still valid for the conditional mean )y (Wedderburn [1974], Gruber and van der Laan
[2010a):

Qo = arg rrgn EoL(Q).

Finally, given our continuous Y € [a,b], we can define Y* = (Y — a)/(b — a) so that
Y* € [0,1]. Then, let p*(Fy) = Eo(Eo(Y* | A =1,W)). We now compute the above TMLE
of u*(Pp), and we use the relation u(Py) = (b — a)u*(Py) + a.

We note that the previously proposed TMLE [Scharfstein et al., 1999] discussed in the KS
debate would use the squared error loss function L(Q)(0O) = (Y —Q(W))?, and the univariate
linear regression model Q% (¢) = Q° + ¢H i Dowever in this case, due to the fact that large
values of the clever covariate map into equally large values of the regression function, global
bounds may be violated, resulting in the loss of robustness. In our simulations, we include
this TMLE, defined by the squared error loss function and linear fluctuation, as well as the
TMLE defined by the quasi-log-likelihood loss function and the logistic fluctuation.

We note that our TMLE for continuous outcomes, that uses a squared error loss and
linear fluctuation function, uses the same clever covariate as introduced by Scharfstein et al.
[1999]. However, as also discussed in an addendum to Rosenblum and van der Laan [2010b],
the Scharfstein et al. [1999] it is a special type TMLE due to using a clever parametric
regression as initial estimator, thereby removing the need for the TMLE-update, but also
restricting the estimator to parametric regression models. Both of these TMLE’s (squared
error loss and linear fluctuation) suffer from the same sensitivity to lack of positivity.

Finally, a natural extension of all of the above TMLE’s is to make a more sophisticated es-
timate of go. Therefore, estimator p,, c—rum e is defined by (3.2) as well, but the algorithm for
computing )7 differs. For the C-TMLE, we generate a sequence of nested-logistic regression
model fits of gy, gn1,- -, gn.Kx, and we create a corresponding sequence of candidate TMLE’s
QZ,gn,w using ¢,k in the targeted MLE step, kK = 1,..., K, such that the loss-function (e.g.,
log-likelihood) specific fit of QZ,gn,k is increasing in k. Finally, we use loss-function specific
cross-validation to select k. The precise algorithm is presented in Gruber and van der Laan
[2010b] and the software is available, and posted on www.stat.berkeley.edu/ laan. As a
result, the resulting estimator g, used in the TMLE is aimed to only include covariates that
are effective in removing bias w.r.t. the target parameter: the theoretical underpinnings
in terms of collaborative double robustness of the efficient influence curve is presented in
van der Laan and Gruber [2009b].

3.5 Simulation Studies

In this section, we compare the performance of TMLE’s to the estimating equation-
based DR estimators (WLS, A-IPTW and BHT) as well as PRC and OLS; in the context of
positivity violations. The goal of the original simulation designed by KS was to highlight the
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stability problems of DR estimators, and they did this effectively. We wish to demonstrate
the performance of the TMLE’s in these simulations. We replicate the original KS simulation,
and we also modify it in two ways, in order to explore the relative performance of the
estimators under different and even more challenging data generating distributions.

3.5.1 Kang and Schafer Simulation
Kang and Schafer [2007] consider n i.i.d. units of O = (W, A, AY) ~ By, where W is a

vector of 4 baseline covariates, and A is an indicator of whether the continuous outcome, Y,
is observed. Kang and Schafer are interested in estimating the following parameter:

1(Fo) = Eo(Y) = Eo(Eo(Y|A =1, W))

Let (Z1,...,Z4) be independent normally distributed random variables with mean zero and
variance 1. The covariates W we actually observe are generated as follows:

Wi = exp(Z1/2)

Wy = Zo/(1+exp(Z1))+10
Wi = (Z:175/25+ 0.6)°

Wy = (Zy+ Z,+20)%

The outcome Y is generated as
Y =210+ 2747, + 13.7Z, + 13.725 + 13.7Z4 + N(0, 1).

From this one can determine that the conditional mean Qo(W) of Y, given W, which equals
the same linear regression in Zy (W), ..., Z4y(W), where Z;(W), j = 1,...,4, are the unique
solutions of the 4 equations above in terms of W = (W, ..., Wy). Thus, if the data analyst
would have been provided the functions Z;(W), then the true regression function is linear
in these functions, but the data analyst is measuring the terms W, instead.

The other complication of the data generating distribution is that Y is subject to miss-
ingness, and the true censoring mechanism, denoted by go(1|W) = Py(A = 1|W), is given
by:

go(1|W) = expit(—Z1 (W) + 0.5Z5(W) — 0.25Z35(W) — 0.1Z4(W)).

With this data generating mechanism, the average response rate is 0.50. Also, the true
population mean is 210, while the mean among respondents is 200. These values indicate a
small selection bias.

In these simulations, a linear main term model in the main terms (W7, ..., Wy) for either
the outcome-regression or missingness mechanism is misspecified, while a linear main term
model in the main terms (Z;(W), ..., Z,(W)) would be correctly specified.

Note that in the KS simulation, there are finite sample violations of the positivity as-
sumption. Specifically, we find go(A = 1|W) € [0.01,0.98] and the estimated missingness
probabilities g,(A = 1|W) were observed to fall in the range [4z107¢,0.97].
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3.5.2 Modification 1 of Kang and Schafer Simulation

In the KS simulation, when Qg or gy are misspecified the misspecifications are small. The
selection bias is also small. Therefore, we modified the KS simulation in order to increase the
degree of misspecification and to increase the selection bias. This creates a greater challenge
for estimators and better highlights their relative performance.

As before, let Z; be ii.d. N(0,1). The outcome Y is generated as Y = 210 4 50Z; +
2575+ 2573+ 257, + N(0,1). The covariates actually observed by the data analyst are now
given by the following functions of (71, ..., Z,):

Wy = exp(Zi/2)

Wy = 0.5Zy/(1 +exp(Z?)) +3
Ws = (Z223/25+0.6)> + 2
Wy = (Zo+0.624)% +2.

From this one can determine the true regression function Qo(W) = Eo(E(Y | Z) | W). The
missingness indicator is generated as follows:

A misspecified fit is now obtained by fitting a linear or logistic main term regression in
Wi, ..., Wy, while a correct fit is obtained by providing the user with the terms 71, ..., Zy,
and fitting a linear or logistic main term regression in Zi,...,Z4. With these modifica-
tions, the population mean is again 210, but the mean among respondents is 184.4. With
these modifications, we have a higher degree of practical violation of the positivity assump-
tion: go(A = 1|W) € [1.12107°,0.99] while the estimated probabilities, g,(A = 1|W), were
observed to fall in the range [2.22107'°,0.87.

3.5.3 Modification 2 of Kang and Schafer Simulation

For this simulation, we made one additional change to Modification 1: we set the coeffi-
cient in front of Z, in the true regression of Y on Z equal to zero. Therefore, while Z, is still
associated with missingness, it is not associated with the outcome, and is thus not a con-
founder. Given (W7y,..., W3), W, is not associated with the outcome either, and therefore
as misspecified regression model of Qo(W) we use a main term regression in (W, Wy, Ws).

This modification to the KS simulation enables us to take the debate on the relative
performance of DR estimators one step further, by addressing a second key challenge of the
estimators - that they often include non-confounders in the censoring mechanism estimator.
This unnecessary inclusion could unnecessarily introduce positivity violations. Moreover, this
unnecessary inclusion can itself introduce substantial bias and inflated variance, sometimes
referred to as Z-bias. If the relationships between the variables are linear, the inclusion on
non-confounders in the censoring mechanism will always increase bias [Bhattacharya and



CHAPTER 3. THE RELATIVE PERFORMANCE OF TMLE’S 57

Vogt, 2007, Wooldridge, 2009]. In the non-parametric case, the direction of the bias is less
straightforward, but increasing bias is a real possibility [Pearl, 2010]. While this problem
is not presented in the Kang and Schafer paper nor the responses, it is highlighted in the
literature, including Bhattacharya and Vogt [2007], Wooldridge [2009] and Pearl [2010].

As discussed earlier, the C-TMLE algorithm provides an innovative black-box approach
for estimating the censoring mechanism, preferring covariates that are associated with the
outcome and censoring, without “data-snooping”. With this modification to the KS simu-
lation, we can compare C-TMLE to the other estimators when not all covariates are true
confounders.

3.6 Results

For the three simulations described above, the OLS, WLS, A-IPCW, BHT, PRC, TML
and C-TML estimators were used to estimate p(F,) from 250 samples of size 1000. We
include the TMLE and C-TMLE based on the squared error loss function and linear regres-
sion submodel, as well as the TMLE (TMLEY*) and the C-TMLE (CTMLEY*) based on
the quasi-log-likelihood loss function and logistic regression submodel. We evaluated the
performance of the estimators by their bias, variance and mean squared error (MSE).

We compared the estimators of z(Py) using different specifications of the estimators of Qg
and go. In the tables below, “Qcgc” indicates that the estimators of both were specified cor-
rectly; “Qcgm” indicates that the estimator of @y was correctly specified, but the estimator
of go was misspecified; and “Qmgc” indicates that the estimator of Q, was misspecified, but
the estimator of gy was correctly specified. (Note that the co-authored paper also includes
results for “Qmgm”, indicating that both estimators were misspecified, but as as mentioned
above, since this is not a focus of the comparisons in this chapter, these results have been
currently omitted.)

For all estimators, we compared results with no lower bound on g¢,,(1 | W) with truncating
gn(1 | W) at three different lower bounds defined by three percentiles (0.01, 0.025, 0.05)
of g,(1 | Wy), ¢ = 1,...,n. We note that neither KS nor Robins et al. [2007] included
bounding g,(1 | W) when applying their estimators. Although, not bounding ¢, (1, W) has
the advantage that in any given application it is difficult to determine which bounds to use,
the theory teaches us that the DR estimators can only be consistent if g, is bounded from
below, even if in truth gy is unbounded.

Tables 1 to 3 present the simulation results without any bounding of g,,. The tables show
that in all three simulations, the TMLE and C-TMLE with a logistic fluctuation achieve
comparable or better MSE than the other estimators. When Q,, is misspecified, TMLEY*
performs well and C-TMLEY* stands out with a much lower MSE. The tables show the
importance of implementing a logistic fluctuation, as without it, the TMLE has substantial
bias and variability if @, or g, are misspecified. We note that in the case of “Qcgc”, the
TMLE’s (except for TMLE) suffer from greater bias than the other estimators. This is due
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Table 3.1: Simulation results with no bounding of ¢,, Kang and Schafer simulation, 250
samples of size 1000

Qcgc Qcgm Qmgc

Bias Var MSE Bias Var MSE Bias Var MSE
OLS -0.092 140 141 -0.092 140 141 -0.927 197 2.83
WLS -0.092 140 141 -0.092 141 142 0.099 1.84 1.85
A-IPCW -0.092 140 141 -0.101 145 1.46 0.036 2.52 2.52
BHT -0.092 140 141 -0.092 141 142 0.014 234 234
PRC -0.092 140 141 -0.116 144 145 0.558 3.61 3.92
TMLE -0.091 140 141 -0.094 1.39 1.40 0.095 2.52 2.53
TMLEY* -0.149 140 143 -0.141 141 143 -0.160 1.92 1.94
C-TMLE -0.156 140 143 -0.168 140 143 -0.327 1.81 1.92
C-TMLEY* -0.159 1.40 1.43 -0.163 140 143 0.021 1.62 1.62

Table 3.2: Simulation results with no bounding of ¢,, Modification 1 to Kang and Schafer
simulation, 250 samples of size 1000

Qcgc Qcgm Qmgc

Bias Var MSE Bias Var MSE Bias Var MSE
OLS -0.165 4.69 4.72 -1.65e-01  4.69e00 4.72e00 -35.562 16.6 1281.2
WLS -0.164 4.71 4.73 -1.64e-01  4.70e00  4.72e00 -4.401 41.9 61.3
A-IPCW -0.162 4.75 4.77 -1.65e-01  4.69e00 4.72e00 -1.827 193.7 197.1
BHT -0.162 4.73 4.76 -1.70e-01  4.71e00  4.74e00 -3.036 64.6 73.8
PRC -0.177 474 477 6.80e08  1.78e21 1.78e21 80.641 8650.7 15153.7
TMLE -0.169 4.71 4.74 -2.21e08  1.21el19 1.22¢l19 42.069 2402.6 4172.4
TMLEY* -0.385  4.77 4.92 -4.27e-01  4.73e00  4.91e00 -0.607 68.8 69.2
C-TMLE -0.448 4.77 497 -3.98¢-01 4.73e00 4.89¢00 4.490 96.1 116.3
C-TMLEY* -0.440 4.78 4.97 -4.13e-01  4.77¢00  4.94e00 -0.956 10.8 11.8

to bounding the predicted values by the range of the observed outcome, which is skewed due
to the informed missingness. One approach that can reduce this bias is to bound by a range
slightly larger (i.e. 10 percent) than the true range of the observed Y’s.

Together, the results from Modification 1 and Modification 2 show that the C-TMLE’s
have similar or superior performance relative to estimating equation-based DR estimators
when not all covariates are associated with Y. At the same time, even in cases in which all
covariates are associated with Y, C-TMLE’s still perform well.

Tables 4 to 6 compare results for each estimator when bounding g, at different levels.
We observe that bounding g,, can improve the bias and variability of the estimators, often
substantially. However, we also see that bounding can easily increase bias. The effect of
bounding and the desired level of bounding varies by estimator.

It is more important to note that C-TMLEY* and TMLEY™* are always well behaved.
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Table 3.3: Simulation results with no bounding of ¢,, Modification 2 to Kang and Schafer
simulation, 250 samples of size 1000

Qcgc Qcgm Qmgc
Bias Var MSE Bias Var MSE Bias Var MSE
OLS -0.068  3.93 3.94 -5.75e-02  3.93e00 3.94e00 -34.260 15.26 1189.01
WLS -0.067  3.96 3.96 -5.61e-02  3.94e00 3.94e00 -4.021 37.75 53.91
A-TPCW -0.0545 3.99 4.00 -5.68e-02  3.94e00 3.94e00 -1.248 172.94 174.49
BHT -0.055  3.98 3.98 -5.86e-02  3.96e00 3.97e00 -2.406 67.60 73.39
PRC -0.069  4.04 4.04 6.80e08  1.78¢21 1.78e21 78.135 7772.57 13877.69
TMLE -0.061  3.97 3.98 -2.21e08  1.21e19 1.22¢19 40.920 2136.03  3810.49
TMLEY* -0.274  3.97 4.05 -3.08e-01  3.91e00 4.01e00 -0.451 59.04 59.25
C-TMLE -0.331  3.98 4.09 -2.77e-01  3.94e00 4.02e00 4.356 76.01 94.99
C-TMLEY* -0.321  3.98 4.08 -2.97e-01  3.93e00 4.02e00 -1.175 7.49 8.87

In no simulation do they show marked instability. C-TMLEY* performs particularly well.
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Table 3.4: Simulation results, bounding g,,, KS simulation, 250 samples of size 1000

Lower Qcgc Qcgm Qmgc
In Bias Var MSE Bias Var MSE Bias Var MSE
OLS

None -0.0921 1.40 1.41 -0.0921 1.40 1.41 -0.9266 1.97 2.83

0.01 -0.0921 1.40 1.41 -0.0921 1.40 1.41 -0.9266 1.97 2.83

0.05 -0.0921 1.40 141 -0.0921 140 141 -0.9266 1.97 2.83
WLS

None -0.0915 1.40 1.41 -0.0916 1.41 1.42 0.0986 1.84 1.85

0.01 -0.0915 1.40 141 -0.0913 141 142 0.0986 1.84 1.85

0.05 -0.0915 1.40 141 -0.0920 141 141 0.1118 1.81 1.83
A-TPCW

None -0.0915 1.40 1.41 -0.1014 1.45 1.46 0.0361 2.52 2.52

0.01 -0.0915 1.40 1.41 -0.0913 141 142 0.0361 2.52 2.52

0.05 -0.0914 1.40 141 -0.0922 141 142 0.0807 2.28 2.29
BHT

None -0.0915 1.40 141 -0.0918 1.41 142 0.0139 2.34 2.34

0.01 -0.0915 1.40 141 -0.0916 1.41 1.42 0.0139 2.34 2.34

0.05 -0.0914 1.40 141 -0.0917 141 141 0.0877 1.98 1.99
PRC

None -0.0920 1.40 1.41 -0.1162 1.44 145 0.5584 3.61 3.92

0.01 -0.0921 1.40 141 -0.0940 140 141 0.5554 3.60 3.91

0.05 -0.0921 1.40 141 -0.0926 140 141 0.3939 3.01 3.16
TMLE

None -0.0914 1.40 141 -0.0944 1.39 1.40 0.0952 2.52  2.53

0.01 -0.0914 1.40 141 -0.0926 1.41 1.42 0.0948 2.52  2.52

0.05 -0.0915 1.40 141 -0.0923 141 141 0.1161 2.34 2.36
TMLEY*

None -0.1494 1.40 1.43 -0.1412 141 143 -0.1603 1.92 1.94

0.01 -0.1495 1.40 1.43 -0.1426 141 1.43 -0.1603 1.92 1.94

0.05 -0.1500 1.40 1.43 -0.1482 141 143 -0.1461 1.86 1.88
C-TMLE

None -0.1556  1.40 1.43 -0.1678 1.40 1.43 -0.3271 1.81 1.92

0.01 -0.1548 1.40 1.43 -0.1561 1.41 1.43 -0.3245 1.81 1.91

0.05 -0.1544 1.40 1.43 -0.1556  1.40 1.43 -0.2819 1.81 1.89
C-TMLEY*

None -0.1589 1.40 1.43 -0.1633 1.40 1.46 0.0213 1.62 1.62

0.01 -0.1587 1.41 1.43 -0.1604 1.41 1.46 0.0208 1.65 1.65

0.05 -0.1586 1.40 1.43 -0.1591 1.41 1.47 0.0162 1.64 1.64
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Table 3.5: Simulation results, bounding g,,, Modification 1 to KS simulation, 250 samples of
size 1000

Lower Qcgc Qcgm Qmgc

In Bias Var MSE Bias Var MSE Bias Var MSE
OLS

None -0.165 4.69 4.72 -1.65e-01  4.69e00 4.72e00 -35.562 16.58 1281.2

0.01 -0.165 4.69 4.72 -1.65e-01  4.69e00 4.72e00 -35.562 16.58 1281.2

0.05 -0.165 4.69 4.72 -1.65e-01  4.69e00 4.72e00 -35.562 16.58 1281.2
WLS

None -0.164 4.71 4.73 -1.64e-01  4.70e00 4.72e00 -4.401 41.95 61.3

0.01 -0.165 4.71 4.73 -1.64e-01  4.70e00 4.72e00 -4.609 38.93 60.2

0.05 -0.166 4.70 4.73 -1.64e-01  4.70e00 4.72e00 -7.341 24.46 78.4
A-TPCW

None -0.162  4.75 4.77 -1.65e-01  4.69e00 4.72e00 -1.827  193.73 197.1

0.01 -0.165 4.71 4.74 -1.65e-01  4.69e00 4.72e00 -3.665 74.34 87.8

0.05 -0.166 4.70 4.73 -1.65e-01  4.69e00 4.72e00 -8.817 27.85 105.6
BHT

None -0.162 4.73 4.76 -1.70e-01  4.71e00  4.74e00 -3.036 64.63 73.8

0.01 -0.164 4.71 4.74 -1.69e-01  4.71e00  4.74e00 -3.579 49.69 62.5

0.05 -0.166 4.70 4.73 -1.66e-01  4.71e00  4.74e00 -7.179 23.62 75.2
PRC

None -0.177 4774 477 6.80e08  1.78e21 1.78e21 80.641 8650.67 15153.7

0.01 -0.164 4.70 4.73 -1.65e-01  4.70e00 4.72e00 20.820 870.27  1303.7

0.05 -0.164 4.70 4.72 -1.65e-01  4.70e00 4.72e00 6.301 61.46 101.2
TMLE

None -0.169 4.71 4.74 -2.21e08  1.21e19 1.22e19 42.069 2402.58 4172.4

0.01 -0.164 4.71 4.73 -1.65e-01  4.69e00 4.72e00 7.691  210.00 269.1

0.05 -0.165 4.70 4.73 -1.65e-01  4.69e00 4.72e00 -0.951 22.80 23.7
TMLEY*

None -0.385 477 4.92 -4.27e-01  4.73e00  4.91e00 -0.607 68.78 69.2

0.01 -0.392 4.78 4.93 -4.16e-01  4.77¢00  4.94e00 0.135 39.63 39.6

0.05 -0.402 477 4.94 -4.15e-01  4.77e00  4.94e00 -0.769 10.24 10.8
C-TMLE

None -0.448 477 497 -3.98e-01  4.73e00 4.89e00 4.490 96.10 116.3

0.01 -0.420 4.77 4.95 -3.95e-01  4.76e00 4.91e00 3.956 64.69 80.3

0.05 -0.411 476 4.93 -3.95e-01  4.76e00 4.91e00 -1.839 9.46 12.8
C-TMLEY*

None -0.440 4.78 4.97 -4.13e-01  4.77e00  4.94e00 -0.956 10.84 11.8

0.01 -0.429 477 4.96 -4.13e-01  4.77e00  4.94e00 -1.031 11.04 12.1

0.05 -0.422  4.77 4.95 -4.13e-01  4.77¢00  4.94e00 -2.535 8.49 14.9
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Table 3.6: Simulation results, bounding g,,, Modification 2 to KS simulation, 250 samples of
size 1000

Lower Qcgc Qcgm Qmgc
Jn Bias Var MSE Bias Var MSE Bias Var MSE
OLS

None -0.068  3.93 3.94 -5.75e-02  3.93e00 3.94e00  -34.260 15.26 1189.01

0.01 -0.068  3.93 3.94 -5.75e-02  3.93e00 3.94e00  -34.260 15.26 1189.01

0.05 -0.058  3.93 3.94 -5.75e-02  3.93e00 3.94e00  -34.260 15.26 1189.01
WLS

None -0.057  3.96 3.96 -5.61e-02  3.94e00  3.94e00 -4.021 37.75 53.91

0.01 -0.0567  3.96 3.96 -5.61e-02  3.94e00  3.94e00 -4.238 34.54 52.49

0.05 -0.058  3.95 3.96 -5.62e-02  3.94e00  3.94e00 -6.876 22.49 69.77
A-TPCW

None -0.055  3.99 4.00 -5.68e-02  3.94e00  3.94e00 -1.248  172.94 174.49

0.01 -0.057  3.96 3.97 -5.68e-02  3.94e00  3.94e00 -3.190 69.18 79.36

0.05 -0.058  3.95 3.95 -5.69e-02  3.94e00  3.94e00 -8.348 25.61 95.29
BHT

None -0.055  3.98 3.98 -5.86e-02  3.96e00 3.97e00 -2.406 67.60 73.39

0.01 -0.057  3.96 3.96 -5.84e-02  3.98¢00  3.98e00 -3.132 45.53 55.34

0.05 -0.058  3.95 3.95 -5.74e-02  3.96e00  3.96e00 -6.768 21.57 67.37
PRC

None -0.069  4.04 4.04 6.80e08  1.78e21 1.78e21 78.135 7772.57 13877.69

0.01 -0.056  3.96 3.97 -5.68e-02  3.94e00  3.94e00 20.389  798.43  1214.13

0.05 -0.067  3.95 3.95 -5.70e-02  3.94e00  3.94e00 6.274 56.28 95.64
TMLE

None -0.061 3.97 3.98 -2.21e08  1.21e19 1.22e19 40.920 2136.03  3810.49

0.01 -0.0567  3.96 3.96 -5.68e-02  3.94e00  3.94e00 7.714  189.96 249.47

0.05 -0.058  3.95 3.95 -5.69e-02  3.94e00  3.94e00 -0.738 20.58 21.12
TMLEY*

None -0.274  3.97 4.05 -3.08e-01  3.91e00 4.01e00 -0.451 59.04 59.25

0.01 -0.278  3.97 4.05 -2.96e-01  3.95e00 4.04e00 0.353 31.18 31.31

0.05 -0.285  3.97 4.05 -2.96e-01  3.95e00 4.04e00 -0.554 8.15 8.46
C-TMLE

None -0.331  3.98 4.09 -2.77e-01  3.94e00 4.02e00 4.356 76.01 94.99

0.01 -0.303  3.96 4.06 -2.76e-01  3.95e00 4.02e00 3.660 53.25 66.65

0.05 -0.293  3.96 4.05 -2.76e-01  3.95e00 4.02e00 -1.708 7.40 10.32
C-TMLEY*

None -0.3213 3.98 4.08 -2.97e-01  3.93e00 4.02e00 -1.175 7.49 8.87

0.01 -0.3115  3.97 4.07 -2.97e-01  3.93e00 4.02e00 -1.257 6.71 8.29

0.05 -0.3044 3.96 4.05 -2.93e-01  3.93e00  4.04e00 -2.459 5.90 11.95
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3.7 TMLE’s with Machine Learning for Dual Misspec-
ification

In this section, we couple super learning with TMLE and C-TMLE to estimate both Qg
and gg. For C-TMLEY*, four missingness-mechanism score-based covariates were created
based on different truncation levels of the propensity score estimate g,(1 | W): no truncation,
and truncation from below at the 0.01, 0.025, and 0.05-percentile. These four scores were
supplied along with the misspecified main terms W7, ..., Wy to the targeted forward selection
algorithm in the C-TMLEY™* used to build a series of candidate nested logistic regression
estimators of the missingness mechanism and corresponding candidate TMLE’s. The C-
TMLEY* algorithm used 5-fold cross-validation to select the best estimate from the eight
candidate TMLE’s. This allows the C-TMLE algorithm to build a logistic regression fit of
go that selects among the misspecified main-terms and super-learning fits of the missingness
mechanism score g,(1 | W) at different truncation levels.

An important aspect of super learning is to ensure that the library of prediction algo-
rithms includes a variety of approaches for fitting the true function Qo and go. For example,
it is sensible to include a main terms regression algorithm in the super learner library. Should
that algorithm happen to be correct, the super learner will behave as the main terms re-
gression algorithm. It is also recommended to include algorithms that search over a space
of higher order polynomials, non-linear models, and, for example, cubic splines. For binary
outcome regression, as required for fitting g, classification algorithms such as classification
and regression trees [Breiman et al., 1984], support vector machines [Cortes and Vapnik,
1995]), and k-nearest-neighbor algorithms (Friedman [1994]), could be added to the library.
The point of super-learning is that we cannot know in advance which procedure will be most
successful for a given prediction problem. Super learning relies on the oracle property of
V-fold cross-validation to asymptotically select the optimal convex combination of estimates
obtained from these disparate procedures (van der Laan and Dudoit [2003a], van der Laan
et al. [2004a], van der Laan et al. [2007]).

Consider the misspecified scenario proposed by KS. The true full-data distribution and
the missingness mechanism are captured by main terms linear regression of the outcome
on 4y, 2y, Z3, Zy. This simple model is virtually impossible to discover through the usual
model selection approaches when the observed data consists of misspecified covariates O =
(Wl, WQ, Wg, W4, A, AY), giVGIl that

Zy = 2log(Wy),
Zy = (Wy—10)(1+2W)),
25(Ws — 0.6)
2log(Wh)
Zy = YWy —20— (Wy—10)(1+2W7).

This complexity illustrates the importance of including prediction algorithms that attack

Zs
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the estimation problem from a variety of directions. The super learner library we employed
contained the algorithms listed below. The analysis was carried out in the R statistical
programming environment v2.10.1 [Team, 2010], using algorithms included in the base in-
stallation or in the indicated package.

e glm (base) main terms linear regression.

e step (base) stepwise forward and backward selection using the AIC criterion [Hastie
and Pregibon, 1992].

e ipredbagg (ipred) bagging for classification, regression and survival trees [Peters and
Hothorn, 2009, Breiman, 1996].

e DSA (DSA) Deletion/Selection/Addition algorithm for searching over a space of poly-
nomial models or order k (k set to 2). [Neugebauer and Bullard, 2010, Sinisi and van der
Laan, 2004]

e earth (earth) Building a regression model using multivariate adaptive regression splines
(MARS) [Milborrow, 2009, Friedman, 1991, 1993].

e loess (stats) Local polynomial regression fitting [W.S. Cleveland and Shyu, 1992].
e nnet (nnet) Single-hidden-layer neural network for classification [Ripley, 1996].

e svim (el071) Support vector machine for regression and classification [Dimitriadou
et al., 2010, Chang and Lin, 2001].

e k-nearest-neighbors* (class) classification using most common outcome among iden-
tified k nearest nodes (k set to 10) [Venables and Ripley, 2002, Friedman, 1994]

*

only for binary outcomes, added to library for estimating g

3.7.1 Results

In table 3.7 we report the results for TMLEY* and CTMLEY™* based on 250 samples of
size 1000, with predicted values for g, (1 | W) truncated from below at 0.025. The MSE for
both estimators is smaller than the MSE of jiors. C-TMLEY™* bias is slightly higher than
o LS bias, and TMLEY " is slightly better with respect to both bias and variance. More
importantly, the data-adaptive estimation approach improved efficiency of TMLEY™* by a
factor of 8.5. C-TMLEY™* efficiency improved by a factor of 1.5.
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Table 3.7: Results incorporating super learning into TMLE and C-TMLE, with g,(1 | W)
truncated at 0.025

Bias Var MSE

TMLEY* + SL. -0.771 1.51  2.10
CTMLEY* + SL  -1.047 1.54 2.64

3.8 Discussion

By mapping continuous outcomes into [0,1] and using a logistic fluctuation, we show that
the TMLE’s (both TMLEY* and C-TMLEY*) are more robust to violations of the positivity
assumption than the TMLE’s using the linear fluctuation function. We also show that C-
TMLE’s have superior performance relative to estimating equation-based DR estimators
when not all covariates are associated with the outcome Y. The C-TMLE algorithm provides
an innovative approach for estimating the censoring mechanism, preferring covariates that
are associated with the outcome Y and missingness, A. C-TMLE’s avoid data snooping
concerns because the estimation procedure is fully specified before the analyst observes any
data (or at least, not any data beyond some ancillary statistics). Even in cases in which all
observed covariates are associated with Y, C-TMLE’s still perform well.

Other recent work has also investigated the relative performance of DR estimators using
the KS simulations. Cao et al. [2009] and Tan [2010] use the simulation to compare nu-
merous existing non-DR and DR estimators to alternative estimators that they introduce.
Cao et al. [2009] present an estimator that achieves minimum variance when the estimator
of missingness mechanism is correctly specified (see also Rubin and van der Laan [2008] for
empirical efficiency maximization), and they address the effect of large IPCW by enhanc-
ing the missingness mechanism estimator in order to constrain the predicted values. They
demonstrate that their estimators perform comparably to existing estimators when Q,, is
correct, but outperform the others when ), is misspecified and g, is correct, as well as when
both are misspecified. No TMLE’s are included in their comparisons.

Tan [2010] presents the “calibrated likelihood estimator” and the “augmented likelihood
estimator,” both more robust versions of estimators originally introduced in Tan [2006]. The
first of these two estimators respects global bounds and is semi-parametric efficient, while the
second respects a weaker form of boundedness. Tan [2010] finds that these two estimators
achieve the lowest MSE in the simulation when compared to numerous existing estimators.
Included in the comparisons is the TMLE for a continuous Y using the linear fluctuation
function. Tan [2010] does not include the estimators in Cao et al. [2009] in the comparisons.

Related work is also being done with respect to other parameters of interest. Both Cao
et al. [2009] and Tan [2006] include discussions on applying their estimators to causal effect
parameters. In addition, Freedman and Berk [2008], focus on a causal effect parameter,
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and demonstrate that DR estimators (and the WLS estimator in particular) can increase
variance and bias when IPCW are large.

Overall, comparisons of estimators, beyond theoretical studies of asymptotics as well as
robustness, will need to be based on large scale simulation studies, including all available
estimators, and cannot be tailored towards one particular simulation setting. Future research
should be concerned with setting up such a large scale objective comparison based on publicly
available software, and we are looking forward to contribute to such an effort.

The research underlying TMLE’s was motivated, in part, by the goal of increasing the
stability of DR estimators, and the KS simulations provide a demonstration of the merits
of TMLE’s under violations of the positivity assumption. TMLE’s are estimators defined
by the choice of loss function, and parametric submodel, both chosen so that the linear
span of the scores at zero fluctuation w.r.t. the loss function includes the efficient influence
curve/efficient score. All such TMLE’s are double robust, asymptotically efficient under cor-
rect specification, and substitution estimators, but the choice of loss function and submodel
can affect the finite sample robustness, as observed in the current simulations. In addi-
tion, TMLE’s can be combined with super learning and empirical efficiency maximization
(Rubin and van der Laan [2008] and van der Laan and Gruber [2009b]) to further enhance
their performance in practice. We hope that by showing that these estimators perform well
in simulations and settings created by other researchers, for the purposes of showing the
weaknesses of DR estimators, as well as in modified simulations that make estimation even
more challenging, we provide probative evidence in support of TMLE’s. Of course, much
can happen in finite samples, and we look forward to further exploring how these estimators
perform in other settings.
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Chapter 4

Targeted Maximum Likelihood
Estimation of Conditional Relative
Risk Parameters in a Semi-parametric
Multiplicative Regression Model

4.1 Introduction

The first two chapters of this thesis illustrated the challenges of estimating two different
parameters under violations of the positivity assumption and demonstrated the improved
robustness one can obtain by using TMLE’s, particularly when incorporating a logistic fluc-
tuation. The first chapter also included a discussion of approaches for responding to bias
due to positivity violations for any given estimator. The approaches all involved making
trade-offs between proximity to the initial target parameter and identifiability. Another ap-
proach for responding to positivity bias that was not mentioned earlier is to introduce model
assumptions, thereby modifying the statistical model. This does not necessarily change the
parameter of interest, as the approaches in Chapter 1 do, except that if the model we assume
is not correct, we are not estimating the parameter we intended. For this reason, making
model assumptions is not ideal. However, we can use semi-parametric methods to maximize
flexibility. In addition, we can implement targeted maximum likelihood estimation for pa-
rameters in the semi-parametric model. As a result, assuming the semi-parametric model
results in a correct model, we can obtain robust estimators under positivity violations.

In this chapter, we demonstrate the value of this approach, focusing on a new parameter
compared to those presented in Chapters 1 and 2. In particular, we introduce a semi-
parametric multiplicative regression model for a binary outcome. We then consider two
TMLE’s of the parameter of interest in the assumed model (which may be a vector), a pa-
rameter that relates exposure to changes in conditional relative. One of these two TMLE’s
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correctly assumes that the binary outcome (e.g. disease or no disease) has a binomial distri-
bution. This results in a double-robust (DR), efficient estimator of the parameter of interest
in the model, but it is unstable, due to convergence problems with the log-binomial regression
model, which is used for estimation. The second TMLE instead assumes that the outcome
is a count of events and follows a Poisson distribution. If the outcome truly did follow a
Poisson distribution, this TMLE would also be a DR, efficient estimator of the parameter
of interest, which would then relate exposure to changes in the conditional incidence rate
rather than to changes in conditional relative risk. However, we apply the second TMLE to
data in which the outcome is binary and therefore the assumption of a Poisson distribution
is always wrong. In this case, the TMLE is no longer efficient, but it does achieve stability.
It also remains DR - that is, the efficient score estimating function in the semi-parametric
Poisson regression model is an unbiased DR estimating function for the parameter of interest
in the semi-parametric conditional mean model, which does not assume a Poisson distribu-
tion. Consequently, this second TMLE is consistent and we can provide correct inference.
We refer to this latter TMLE as the “practical TMLE” of our parameter of interest when the
outcome in truly binary, and we focus on this TMLE in our implementation and simulations
in this paper.

The layout of this chapter is as follows. In Section 4.2, we present the data structure.
In Section 4.3, we present the semi-parametric multiplicative model and formalize the pa-
rameter of interest, which is implied by the model. Then in Section 4.4, we introduce the
two TMLE’s of the parameter in the semi-parametric multiplicative regression model - the
“correct” TMLE and the “practical” TMLE. In this section we also describe how the es-
timation procedure for both TMLE’s can be easily modified for case-control data. Section
4.5 provides a step-by-step implementation for the “practical” TMLE in either a prospective
or case-control sample, and in Section 4.6, we demonstrate the performance of this TMLE
with results from a variety of simulations. This section includes comparisons to common
estimation methods in the epidemiology and medical literature. Finally, a brief summary
discussion is provided in Section 4.7. The final chapter of this thesis provides methodological
details for the TMLE’s discussed in this paper. We note that the content of this chapter is
summarized in Tuglus et al. [2011].

4.2 Data Structure

Consider an observed point treatment data set consisting of n independent and identically
distributed (i.i.d.) observations of O = (W, A,Y) ~ By € M. W is a vector of baseline
covariates, A is the exposure of interest and Y = {0, 1} is a binary outcome. Py denotes the
true distribution of O, from which all subjects are sampled. Fj is an element of a statistical
model M, which is a semi-parametric model defined below in Section 4.3.

Note that for causal effects, we assume that O is a missing data structure on a hypo-
thetical full data structure X = (W,Y, : a € A), which contains all counterfactual outcomes
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Y,. We therefore view A as the missingness variable, as O contains only one of all possible
counterfactual outcomes, Y = Y.

4.3 Semi-parametric Multiplicative Model and Param-
eter of Interest

We define the statistical model with the following semi-parametric multiplicative model:

Qo(A, W) = ™o AV)gy (W), (4.1)

where Qo(A, W) = Py(Y = 1|A, W), mg, (A, V) is a specified function of A and effect
modifiers V' C W, and 0y(W) = Py(Y = 1|]A = 0,W) is a non-parametric model of the
conditional expectation of Y given no exposure and baseline covariates W. For mg, (A, V),
we generally specify a linear function of A such as (1) mg,(A4,V) = foA or (2) mg,(A,V) =
BoyA + Bo@)A : V, where the importance of the exposure is modified by covariate V. In
this chapter, we primarily focus on the former, where mg, (A, V) = By A. In this case, we can
write

pod _ Qéi%v)’ (4.2)

or

The parameter of interest, By = ¥(Qy), which is implied by the model in (4.1) is then
equivalent to the change in the log conditional relative risk associated with a unit increase
of exposure A.

One motivation for this semi-parametric multiplicative model is that regardless of whether
or not we believe our model, we can still accurately test the following strong null hypothesis:

TR =1A=0,W)

for all W. Under this null, the model is always correct. Therefore, we can construct valid
hypotheses tests.

We note that the model, as seen in (4.2), requires that both Qo(A, W) > 0 and 6y(W) > 0.
In order for this to be true, we must have that Py(A = a|W) > 0 for all a,w. This latter
requirement is often referred to as the positivity assumption (Robins [1986, 1987a, 1999]), or
the experimental treatment assignment (ETA) assumption (Neugebauer and van der Laan
[2005]). Therefore, (4.2) is true only for a,w for which there is support in the data. So
returning to the general case for any mg,(A, V) and to be more precise, we can write
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Moo (@) = —QO(a’w>[(a weA)
Op(w) 7

where A’ contains the subset of a,w for which the positivity assumption is not violated
(i.e. for which Py(A = a|W) > 0). This allows us to estimate the importance (i.e. risk) of
exposure A in predicting the outcome Y, conditional on W, for those strata of W in which
the data have sufficient support. The analyst may want to allow for extrapolation across all
a,w, but this would be unwise if the model was not true for all a, w.

In order for the parameter of interest to have a causal interpretation, we require that
not only that O is a missing data structure on a hypothetical full data structure X =
(W, Yy, Y1), as described in Section 4.2, but we also require the randomization assumption:
{A LYy, Y1|W}. However, even in the case where these assumptions do not hold, the parame-
ter [y is still a well-defined and meaningful parameter of variable importance (i.e. association
adjusted for W.)

4.4 Targeted Maximum Likelihood Estimation

In this section, we introduce two TMLE’s of 3 in the given semi-parametric multiplicative
regression model in (4.1). As mentioned above, the first TMLE correctly assumes that the
conditional distribution of Y follows a binomial distribution and the second which incorrectly
assumes it follows a Poisson distribution. Like the TMLE’s introduced in earlier chapters,
and all TMLE’s, the TMLE’s of 3y in our semi-parametric multiplicative model are double
robust (DR) and asymptotically linear, substitution estimators, which involve two steps:
(1) obtaining an initial estimator of the likelihood of the data (or in the current case, an
estimator of Qy = Py(Y = 1|A,W)), and (2) updating this initial estimator in order to
target bias reduction in the parameter of interest. Below, we describe each of these steps
and how they differ for each of the TMLE’s.

4.4.1 Initial Estimator, Q°

To obtain the initial estimator of Qy, we first need an estimator of 6. We do this by using
a pre-specified data-adaptive estimator, preferably super learner, to obtain an estimator of
Py(Y = 1|A, W) of general model form. As noted in earlier chapters, super learner takes a
comprehensive library of data adaptive estimators and uses cross-validation to combine these
estimators into at least an equal, but more often a better, estimator than any individual
candidate in the library (van der Laan et al. [2007]). Using the resulting fit, we obtain 6,
by predicting the outcome given the observed data with all observations set to A = 0. We
then fit the model e™#% (AW (1) using a parametric regression model (i.e. log-binomial or
Poisson). This gives us an initial estimator, QQL (A, W) of the correct semi-parametric model
form, with its corresponding estimate 3° by substitution.
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4.4.2 Updated, Targeted Estimator, Q

Once we have our initial estimator Q°, we want to update it in order to target bias
reduction in 52 due to residual confounding and non-targeting. In other words, we want to
find QF such that the TMLE % = W(Q?) is an unbiased estimator of 3,. We find Q¥ by
fluctuating the initial estimators of Qy and 6. Therefore, we fluctuate our initial estimator,
QP by defining a parametric submodel of our original model, with fluctuation parameter e.
The general parametric fluctuation submodel (without yet making any particular parametric
assumptions about the distribution of Y') is given by

logQ g0 (€)(A, W) = (B, + €) A + logf (e) (W).
where 62(e)(W) = 09 (W )exp( (W)). The function r%, (W) depends on Q° (i.e.

ers -
Q?ngn Q%,gn
on B2 and 0%), as well as on g,(A|W), an estimator of the nuisance parameter go(A|WW) =

Py(A|W). Therefore, we have

logQﬁgﬂg (A, W) = (B2 +e)A+1ogh? (W) + erégﬂgn(W) (4.3)
= BYA +1ogl (W) + (A + 50 gn(W)).

Therefore, the fluctuation parameter € is a coefficient on an “clever covariate” given by
A+15 4, (W), which is added to the log-linear model. To construct 5o 4, (W), we require
that when ¢ = 0, we have the initial density, Q°(A, W) and we have that the score of
the submodel corresponding with this choice rz?% ’gn(W) is equal to the efficient score of the
parameter of interest, Sy. The efficient score and therefore the clever covariate will depend
on our assumptions about the distribution of Qy. For this reason, depending on whether we
assume a binomial or Poisson density, we derive a different TMLE. We provide more details
for each TMLE below.

For both TMLE’s, we fit € with maximum likelihood, which results in a first step update
of Q°, and we iteratively update an initial estimator until the next MLE of ¢ is close to zero.
In other words, for each of k = 0... K iterations, we compute an updated Q_ﬁﬁ,gﬁ(ﬁﬁ), using

the function r%k o At convergence, the final updated estimator of Q (for either outcome

type/parameter) is given by QF = QX and we evaluate 3 by substitution.

TMLE 1: Correctly assuming Y is binary and has a binomial distribution

When we correctly assume that Py(Y'|A, W) follows a binomial distribution, the efficient
score for the parameter of interest, 3, in our semi-parametric multiplicative model is given
by the following when we let mg, (A4, V) = BoA:
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Eo |V ]
s;;ogo(o)zl_#@0 A- ;fﬁ zo)W]] (Y — Qo).

Then to find 6o g0 e arrange that the score of the fluctuation model at € = 0 equals
this efficient score. We can then compute the clever covariate, which is given by

: Eo |51
HQ0790 = A a
Eo ;%]

Detailed derivations for the above efficient score, T Go.40 and H Do.g0 AT€ provided in the
next chapter. For the more general case, the efficient score is given by

dfg mBO QO

N PR il
il — _ —m — —
Qoo 1=Qo | dbo ” Ey [1?820 |W]

(Y = Qo).

We note that this can also be represented as

589.60(0) = R*(A | W) (Y — Qo),
where
dBO BOQO
1 d Eo { =N |W]
R (A|W) =

_m J— —
1-Qo | dBo ™ Ey [162% |W}
—&0

This can also be written as B B

h*Qo/00(Y 60/Qo — o),
where Q/0y = exp(mg,), and h*Qq /0y is a function satisfying Fo(h*Qo/0y | W) = 0. This
latter representation can be used to prove that S§0797 gO(O) has mean zero for all 6, thereby

proving the double robustness of the efficient score as estimating function for fy.
In the general case, for any mg, (A4, V'), the clever covariate is given by

1-Qo(A,W) dB
Ey [_QQM‘W}

Ey [M Mg, (A, V)|W]

Hé_?o,go dﬂ mﬁo (A V)
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TMLE 2: Incorrectly assuming Y is a count of events and has a Poisson distri-
bution

When we incorrectly assume that Py(Y|A, W) follows a Poisson distribution, the efficient
score for the parameter of interest, 5y in our semi-parametric multiplicative model is given
by the following when we let mg, (A, V) = GyA:

0 AeﬁoA _
Qo:go(o) - <A - EEO[[660A|%}> (Y - QO)

Then, as above, to find r’éo % for this TMLE, we arrange that the score of the fluctuation
model at € = 0 equals this efficient score. The clever covariate is then given by

Ey [AePoA\W
H _ g Bo[ARAW]
0,90 EO [e,BoA|W]
Detailed derivations for both the efficient score, TQ 0.0 and H * . under the Poisson

density assumption are also provided in the next chapter. In this Case the efficient score in
the general case is given by

(4.4)

d UM
As above, we can again represent the efficient score as
5090 (O) = B (A W) (Y = Qo)
but now
b ) Eo [ dsma,emso|W ]

By T T Byl W]

which again is a function satisfying Ey(h*(A | W)exp(mg,) | W) = 0, so that again
we can prove that S5 , gO(O) has mean zero for all #, proving the double robustness of the
efficient score as estimating function for gy for this TMLE as well.

Here, the clever covariate in the general case for mg, (A, V) is given by

E[ms, (A, V)04V [iv]
* p o
HE 0= dﬂmﬁo(A V) — { e TY] : (4.6)

In addition to being DR, as mentioned earlier, this TMLE is an efficient estimator of
Bp in our assumed semi-parametric multiplicative model if Y is a count of events and the
distribution for Py(Y'|A, W) truly is Poisson. In this case, the parameter that the TMLE
is estimating, when mg, = ByA for example, can be interpreted as the change in the log
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conditional incidence rate associated with a unit change in A, rather than the change in the
log conditional relative risk. However, we can apply this TMLE to estimate the change in log
conditional relative risk as well - when our outcome is truly binary and therefore Py(Y|A, W)
cannot have a Poisson distribution. For this target parameter, this second TMLE is no
longer efficient. However, we can still achieve asymptotic linearity and proper inference.
Therefore, we opt to implement this TMLE as an estimator of [y with binary Y. The
TMLE is computationally stable, unlike the first TMLE, which very often suffers from non-
convergence due to it’s reliance on log-binomial regression. Going forward, we provide a
step-by-step implementation for this practical TMLE and we demonstrate its performance
in simulations. But first, we briefly discuss how we can adapt the TMLE’s when the data
come from an independent case-control, rather than from a prospective, sampling design.

4.4.3 Adapting the TMLE’s for Independent Case-Control Sam-
pling

Case-control studies are commonly used to analyze parameters for binary outcomes when
the probability of an event (referred to as the prevalence probability) is very small in the
population of interest. Case-control data are biased in that the number of cases in the data
is disproportionate to the number in the sampled population. This allows for a sufficient
number of cases to be obtained without extensive sampling. Case-control sampling can also
result increased efficiency relative to prospective sampling. Both TMLE’s discussed above
can easily to be adapted to be applied to data from an independent case-control design.

With such a design, the experimental unit is a cluster of observations consisting of one
case and J controls. As described in van der Laan [2008] and Rose and van der Laan [2008],
(W1, Ay) are first sampled from the conditional distribution of (W, A) given Y = 1. Next,
(Wg ,Aé) are sampled from (W, A) given Y = 0 for j = 1,...,J. Therefore, the observed
data structure for independent case-control sampling is defined as

O = ((W17A1)7 (W87A%)7Y) ~ P07

such that (Wi, A;)) = (W, AlY = 1) and (W], A})) = (W, A]Y = 0). The underlying
experimental unit is represented by O* = (W, A,Y) ~ Fj.

The adaptations to the above TMLE’s when we have this case-control data structure are
straight-forward. First, we estimate 3° using the case-control weighting described in van der
Laan [2008] and Rose and van der Laan [2008]. In van der Laan [2008], it is shown that
with such a weighting scheme, any estimation method developed for prospective sampling
can be mapped into an estimation method based on case-control sampling. The weighting
method requires knowledge of the incidence probability in the sampled population, ¢y. If ¢
is unknown, it may be estimated as reliably as possible from existing studies.

As above, for the TMLE’s applied to prospective sampling, we first estimate 6y, using a
single data-adaptive estimator or super learner, forcing A into the model, but now cases are



CHAPTER 4. TMLE’S OF COND. RR IN A SEMI-PARAMETRIC MODEL 75

weighted by ¢y and controls are weighted by (1 — ¢qy)/J. Then as before, we set A = 0 for all
observations to get 6,,. We proceed with a parametric regression model (either log-binomial
or Poisson), again with case-control weighting, to obtain, 3° and Q°. Next, the targeted
maximum likelihood fluctuation step follows the same general approach. The only difference
is that observations’ assigned weights are used with each update. Also, in order to obtain the
correct inference (i.e. correct standard error estimates), we need to use the correct version
of the efficient influence curve so that the relationships in the data structure are taken into
account. This is presented in the next section, a step-by-step guide to implementing the
Poisson-derived, “practical” TMLE in either a prospective or case-control sample.

4.5 Step-by-Step Implementation

In this section, we provide a step-by-step description of how to implement the Poisson-
derived, “practical” TMLE to estimate (5, in the assumed semi-parametric multiplicative
regression model for a binary Y, as shown in (4.1).

(1) If data are from an independent case-control design, assign case and control
weights.

Let qo = Py(Y = 1), and assign weights ¢o to the cases and weights (1 — ¢qo)/J to the J
controls. If ¢y is unknown, it may be estimated as reliably as possible from existing studies.

(2) Define mg, (A, V).

Based on substantive knowledge, the analyst needs to decide on the best model to assume
for mg, (A, V) (e.g. Bo(A) or BylA, A:V]).

(3) Estimate Q(A, W).

To obtain the initial estimator of Q,, we first first need an estimator of #,. To do so,
we first obtain a general form estimator of Q, using a data adaptive algorithm, preferably
super learner, forcing A into the model. We then set A = 0 for all observations in order to
get 60, Then, we fit logQo(A, W) = mg, (A, V) + loghy(W) using a Poisson regression model
to obtain the initial estimator Q°. If we have independent case-control data, we weigh the
observations by their assigned weights g or (1 — ¢qq)/J.

(4) If unknown, estimate go(A|W).

In clinical trials and other experiments, A is randomized and gq is known. If gg is
unknown, then when A is binary or categorical, estimation is straight-forward. Ideally,
we would use a data-adaptive procedure or super learning. If A is continuous, we can
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skip directly estimating go and instead use a data-adaptive procedure to obtain both the
numerator and denominator of the second term of the clever covariate given in (4.4) and
(4.6), both which incorporate g,.

(5) Calculate the clever covariate estimator, Hg, (W).

Referring to (4.6), H 50 . is based on observed values of A, W, Q° and g, (or g if

known). For example, if we have mg,(A,V) = foA and A € [0, 1], the initial estimator of
the clever covariate is given by

eﬂggn(l,W)

Hy — A— — .

Q?L In

*

Or, if A is a non-ordered categorical variable with J values, 099 g

is a 7 dimensional

vector such that the j% entry is given by

) MU= g, (A = jIW)
eBIA=D g (A= jIW) + (1 — gu(A = j|W))’

Hy = A

Q% sgnsJ

As noted in Step (4), when A is continuous, the numerator and denominator of the
second term in H, g, CAN each be estimated with machine learning. We do not necessarily

nyyn

recommend super learning here, as the TMLE may require many iterations and super learning
can be too computationally intensive.

(6) Update Q°(A, W).
We update Q¥ by fitting the following regression model:

logQL (A, W) = BYA + logt? + elHE—?O o
Therefore, to implement, we can use standard regression software for Poisson models,
regressing Y on HY%, o with no intercept and and with logQ® as an offset. The updated

parameter estimate is given by 8! = 3% + ¢.. If we have independent case-control data, we
use weighted maximum likelihood using the assigned weights from Step (1).

We iterate this process (Steps 5 and 6) until €& ~ 0. After iterating k times, the esti-
mator of our parameter is given by B = B. Therefore, the TMLE [ is an update of the
original estimate 32, correcting for bias due to residual confounding and non-targeting.

(7) Calculate standard errors.

If we assume that g, is consistent, we can estimate the variance of 3 with the empirical
variance of the efficient influence curve. The efficient influence curve is given by
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Dngo (O) =-K {d_ﬁostgo (O):| SQ(LQO(O)’

where 55 (0O) is the efficient score given in (4.5).
For a case-control design, the efficient influence curve for the cluster observation O is
given by the following if, for example, j = 1:

* d * d * —
D5, 00(0) = [qod_ﬁoEOSQO’gO(la A, Wh) + (1 - qo)d_ﬂoEOSQO’go(O’ Ag, Wo)] ™

[QQSEmgO(l, Al, Wl) + (1 — QO)S(SO,QO (0, A(), Wo)]
Using the empirical variance of the appropriate efficient influence curve, we can then
calculate standard errors, p-values and confidence intervals.

4.6 Simulations

In this section, we assess the properties of the Poisson-derived TMLE of (3, with simu-
lations that cover a range of scenarios seen in actual data sets. With these simulations, we
demonstrate the double robustness properties of the Poisson-derived, practical TMLE and
differences in variability when we estimate Qo(A, W) and/or go(A|W) consistently or with
super learner. We compare our results to those from common estimators in the literature -
for a prospective design, those obtained from parametric log-binomial and Poisson regression
models and for an independent case-control design, those obtained from a parametric logistic
regression model (approximating conditional relative risk with the conditional odds ratio).
Overviews and comparisons of the methods for a prospective design can be found in papers
by L. McNutt and Hafner [2003], Barros and Hirakata [2003] and Lumley and Ma [2006],
and a discussion of using logistic regression to approximate conditional relative risk can be
found in Hogue et al. [1983],Greenland [2003]. We also compare the TMLE results to those
obtained from an original fit of the semi-parametric model, using super learner to estimate
0. To evaluate the performance of all estimators, we focus on bias, variance, mean squared
error (MSE) and confidence intervals.

We show that the relative performance of the TMLE, when compared to the other esti-
mators, depends partly on the degree of practical positivity violations, that is within strata
defined by W, the extent to which values of g, are bounded away from 0 and 1. When A is
binary or categorical and is perfectly randomized, this is not an issue. The common methods
in the literature perform well under this scenario. However, in observational studies, analysts
often have the challenge that some values of g, (A|W) are very small, particularly when there
are many covariates in W, some covariates are continuous, and/or when A is continuous.

Different estimators are affected by positivity violations in different ways. In the following
simulations, we demonstrate the relative performance of the practical TMLE of [y, for both a
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binary and a continuous A, when (1) A is perfectly randomized, (2) the relationship between
A and Y is confounded by W but there are no positivity violations and (3) there are extreme
positivity violations.

In all simulations, Y € {0, 1} is a binary outcome such as an indicator of disease status.
Also in all of the simulations, W is a vector of five covariates, which were generated as
follows:

Binom(1,0.3)
Binom(1,0.65)
N(0,2)

N (100, 10)
N(1,0.3).

Qo(A, W) is given by

where [ takes the following values for the various simulations:

Qo(A, W) = e 0140 1Ws0.02W2 W5 —0.01W2 Wi —0.02Ws,

(4.7)

Binary A Continuous A
Design Simulation 1 | Simulation 2 | Simulation 3 || Simulation 1 | Simulation 2 | Simulation 3
Prospective -0.8 -0.8 -1.0 -0.8 -0.4 -1.4
Case-control -4.0 -4.0 -4.0 -4.0 -4.0 -4.0

As (4.7) shows, By = —0.1 in all simulations. Also, (4.7) shows that mg, = ByA, so
we have assumed there are no effect modifiers. For the case-control data simulations, we
followed case-control sampling as described in Section 4.4.3 with j = 1, so that for each case,
there is one control.

4.6.1 Simulations for Binary A

For a binary A, we consider the following three conditional distributions for go(A|W):

1. For the first simulation, A is perfectly randomized such that go(A|W) = 0.5. When

go(A|W) is misspecified for this simulation, g,(A|W) = 0.6.
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2. For the second simulation, A is dependent on W such that

1

90(AIW) = 1 exp(—(0.1Ws))

With this mechanism for exposure, the correlation between A and Wj is 0.10, and
values of go(A|W) range from 0.28 to 0.73, with a median of 0.49. Therefore, we do
not have positivity violations. For this simulation, when g, (A|W) is misspecified, the
estimator depends only on Wj.

3. For the third simulation, A is again dependent on W; but now we have

1
1+ exp(—(l.OWg,)) .

go(A[W) =

This mechanism for exposure leads to positivity violations because go(A|W) € [5.4 x
107°,1.0]. The median value is 0.54. The correlation between A and Wj is now 0.61.
Misspecification of g, (A|WW) again occurs by having the estimator only depend on Wj.

4.6.2 Simulations for Continuous A

For continuous A, we again varied go(A|W) three ways:

1. For the first simulation, A is not dependent on W. It is normally distributed such that
A~ N(1,0.6).

2. For the second simulation, A is dependent on W such that A ~ N(1,0.6) +0.1W3. In
this simulation, the correlation between A and W3 is —0.1.

3. For the third simulation, A is dependent on W such that A ~ N(0,0.6) — 0.8W3. The
correlation between A and W3 in this simulation is —0.6.

For all simulations, we generated 1000 samples of size 1000. All data were generated and
all estimators were implemented using R (Team [2010]).
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4.6.3 Prospective Sample Simulation Results

Tables 4.1 and 4.2 present results for estimating Sy from a prospective sampling design,
when A is binary and when A is continuous. For a continuous A, we estimated the numerator
and denominator of the clever covariate using the lars package in R (Efron et al. [2003]). The
first column of the tables presents the initial substitution estimator, 59, based on the initial
estimate of Qy. The second column presents the TMLE, 8, obtained by substitution after k
iterations of updating Q° to obtain Q*. The subsequent columns provide the estimated bias,
mean squared error (MSE) and empirical variance, calculated from 1000 samples. We also
include the mean of the variance estimates calculated from the empirical variance of efficient
influence curve divided by the sample size of 1000. Finally, the last column shows the
coverage probability (CP), or the percentage of the time that the estimated 95% confidence
interval contains the true value of 5y, = —0.1.

Each panel in the tables corresponds to the simulations described above, and the rows in
each panel indicate the specification of the estimators of @y and ¢y, on which the TMLE is
based. For example, “Qcgc” indicates that the correct terms were included when estimating
both @y and gy. “Qcgm” indicates that the estimator of gy was misspecified as described
above, while the estimator of Q, included the correct terms; and “Qgmc” indicates that the
estimator of @y was misspecified as described above, while the correct terms were included
when estimating ¢o. Finally “Qslgsl” indicates that the super learner was used for the
estimators of both Qg and gj.

Tables 4.1 and 4.2 illustrate the properties we expect to see for the TMLE of fy:

e The TMLE is double-robust. The finite-sample bias is close to zero if the estimator of
either () or gy is consistent. We achieve this result even under substantial confounding
and extreme violations of positivity in Simulation 3.

e When the estimator of gy is consistent, the variance estimate obtained from the em-
pirical variance of the efficient influence curve is approximately equal to the variance
of the 1000 TMLEs and the coverage probability is approximately 95%. When the
estimator of g, is inconsistent, this variance estimate is asymptotically conservative.

e Using the super learner to estimate both Qo and gy provides robust estimates of either
Qo or gy so that we achieve comparable bias and variance as obtained when correctly
specifying the models for )y and/or go.

Tables 4.3 and 4.4 compare the performance of the TMLE of 3, to the common estimators
in the literature when the initial working model for Qo(A, W) is incorrect. All of the estima-
tors in the literature will perform well when the parametric models on which they rely are
correctly specified. However, we are very doubtful that anyone can ever specify a parametric
model correctly. Therefore, we present comparisons under a more realistic scenario.

Within each panel for each simulation, the first two rows present results (bias, variance
and MSE) for the common methods in the literature - using log binomial and Poisson regres-
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Table 4.1: Performance of Poisson-derived TMLE, binary A, by simulation for prospective
sample

B2 - Bias MSE Var(p)) Var(ICess)/n CP

Simulation 1

Qcgc -0.102 -0.102 -0.002 0.006 0.006 0.007 0.964

Qcgw -0.102 -0.102 -0.002 0.006 0.006 0.011 0.990

Qwgc -0.101  -0.101 -0.001 0.006 0.006 0.007 0.966

Qslgsl -0.090 -0.102 -0.002 0.006 0.006 0.007 0.960
Simulation 2

Qcgc -0.103 -0.103 -0.003 0.007 0.007 0.007 0.950

Qcgw -0.103 -0.103 -0.003 0.007 0.007 0.007 0.952

Qwgc -0.057 -0.102 -0.002 0.007 0.007 0.007 0.944

Qslgsl -0.088 -0.101 -0.001 0.007 0.007 0.007 0.948
Simulation 3

Qcgc -0.111  -0.111 -0.011 0.017 0.017 0.016 0.950

Qcgw -0.111  -0.111 -0.011 0.016 0.016 0.008 0.816

Qwgc 0.169 -0.109 -0.009 0.017 0.017 0.016 0.944

Qslgsl -0.091 -0.109 -0.009 0.017 0.017 0.016 0.940

Table 4.2: Performance of Poisson-derived TMLE, continuous A, by simulation for prospec-
tive sample

B0 B Bias MSE Var(8;) Var(IC.rf)/n CP

Simulation 1

Qcgc -0.099 -0.099 0.001 0.005 0.005 0.005 0.946

Qcgw -0.099 -0.099 0.001 0.005 0.005 0.005 0.946

Qwgc -0.098 -0.098 0.002 0.005 0.005 0.005 0.950

Qslgsl -0.089 -0.099 0.001 0.005 0.005 0.005 0.950
Simulation 2

Qcgc -0.098 -0.098 0.002 0.005 0.005 0.005 0.956

Qcgw -0.098 -0.098 0.002 0.005 0.005 0.005 0.956

Qwgc 0.016 -0.099 0.001 0.005 0.005 0.005 0.956

Qslgsl -0.089 -0.099 0.001 0.005 0.005 0.005 0.958
Simulation 3

Qcgc -0.102 -0.103 -0.003 0.003 0.003 0.065 0.956

Qcgw -0.102 -0.103 -0.003 0.003 0.003 0.065 0.956

Qwgc 0.025 -0.103 -0.003 0.003 0.003 0.004 0.958

Qslgsl -0.096 -0.105 -0.005 0.003 0.003 0.003 0.948
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Table 4.3: Relative performance of Poisson-derived TMLE, binary A, prospective sample
Bias Var MSE

Simulation 1
Log Binomial, incorrect -0.004 0.007 0.007

Poisson, incorrect -0.004 0.007 0.007
0 incorrect -0.001 0.006 0.006
0 SL 0.010 0.008 0.008

Bk Qwgc -0.001 0.006 0.006

B Qslgsl -0.002 0.006 0.006

Simulation 2
Log Binomial, incorrect  0.046 0.007 0.009

Poisson, incorrect 0.047 0.007 0.009
0 incorrect 0.043  0.007 0.009
2, SL 0.012 0.009 0.009

B Qwgce -0.002 0.007 0.007

B Qslgsl -0.001  0.007 0.007

Simulation 3
Log Binomial, incorrect ~ 0.277 0.010 0.087

Poisson, incorrect 0.277 0.010 0.087
0 incorrect 0.269 0.010 0.083
0 SL 0.009 0.016 0.016

B Qwgc -0.009 0.017 0.017

B Qslgsl -0.009 0.017 0.017

sion to estimate W-adjusted relative risk. The third and fourth rows present results for the
initial estimate of Sy, 3%, when Q% (A, W) is incorrectly specified and when it is estimated by
super learning. The last two rows then present results for the TMLE, 3%, when Q% (A, W)
is incorrectly specified and when it is estimated by super learning.

Figures 4.1 and 4.2 also compare the performance of TMLE to other relative risk esti-
mators The following summarizes key observations from both the tables and figure:

e In a randomized trial, as demonstrated in Simulation 1, all estimators perform com-
parably well, as expected, for both binary and continuous A.

e As the relationship between the true confounder and A increases in Simulations 2
and 3, the estimators utilizing on log-binomial regression and Poisson regression are
increasingly biased, while the variance (of the 1000 sample estimates of y) remains at
the same or similar level (for binary A) or decreases (for continuous A).

e The TMLE’s of 3y achieve the lowest MSE in both simulations with confounding
(Simulations 2 and 3). We see a small trade-off in variance for removal of bias.

e Even with positivity violations, the TMLE’s are relatively robust.
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Table 4.4: Relative performance of Poisson-derived TMLE, continuous A, prospective sample

Bias Var MSE

Simulation 1
Log Binomial, incorrect ~ 0.000 0.004 0.004

Poisson, incorrect -0.002 0.005 0.005
0 incorrect 0.002 0.005 0.005
0 SL 0.011  0.007 0.007

B Qwgc 0.002  0.005 0.005

B Qslgsl 0.001  0.005 0.005

Simulation 2
Log Binomial, incorrect ~ 0.111 0.004 0.017

Poisson, incorrect 0.110 0.004 0.016
0 incorrect 0.116 0.005 0.018
0 SL 0.011 0.007 0.007

Bt Qwgc 0.001 0.005 0.005

B Qslgsl 0.001 0.005 0.005

Simulation 3
Log Binomial, incorrect ~ 0.120 0.000 0.015

Poisson, incorrect 0.123 0.000 0.015
0 incorrect 0.125 0.000 0.016
0 SL 0.004 0.003 0.003

B Qwgc -0.003 0.003 0.003

B Qslgsl -0.005 0.003 0.003
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Figure 4.1: Estimates and 95% confidence intervals by method, binary A, prospective sample
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Continuous A
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Figure 4.2: Estimates and 95% confidence intervals by method, continuous A, prospective
sample
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Table 4.5: Performance of Poisson-derived TMLE, binary A, by simulation for case-control
sample

B0 B Bias MSE Var(p)) Var(ICess)/n CP

Simulation 1

Qcgc -0.096 -0.096 0.004 0.018 0.017 0.017 0.945

Qcgw -0.096 -0.096 0.004 0.018 0.017 0.027 0.984

Qwgc -0.097 -0.097 0.003 0.017 0.017 0.017 0.950

Qslgsl -0.017 -0.096 0.004 0.016 0.016 0.015 0.944
Simulation 2

Qcgce -0.111  -0.111 -0.011 0.020 0.020 0.017 0.932

Qcgw -0.111  -0.111 -0.011 0.020 0.020 0.018 0.935

Qwgc -0.064 -0.109 -0.009 0.019 0.019 0.017 0.939

Qslgsl -0.020 -0.099 0.001 0.017 0.017 0.015 0.939
Simulation 3

Qcge -0.109 -0.108 -0.008 0.031 0.031 0.028 0.931

Qcgw -0.109 -0.109 -0.009 0.029 0.029 0.014 0.833

Qwgc 0.172 -0.104 -0.004 0.030 0.030 0.028 0.933

Qslgsl -0.018 -0.101 -0.001 0.029 0.029 0.025 0.931

4.6.4 Case-Control Sample Simulation Results

Tables 4.5 and 4.6 present the same results when estimating (3, from a case-control sample.
The results have the same properties that we observed for prospective sampling.

Tables 4.7 and 4.8 and Figures 4.3 and 4.3 show the performance of the practical, Poisson-
derived TMLE of 5y compared to using logistic regression and then converting odd-ratio
parameters to relative risk parameters, as the odds ratio approximates the relative risk when
the prevalence probability is close zero (Hogue et al. [1983],Greenland [2003]). Bias in this
approximation increases as the true prevalence probability increases. As above we compare
results when the working parametric model for Qo(A, W) is misspecified.

As we saw in the results from prospective sampling, all estimators perform well when A
is randomized in Simulation 1. In Simulations 2 and 3, with more confounding and with
theoretical ETA violations, the TMLE’s perform much better than using logistic regression
to estimate an odds ratio and then using that odds ratio as an estimate of relative risk. For
both both binary and continuous A, the TMLE’s achieve far less bias and better MSE.
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Table 4.6: Performance of Poisson-derived TMLE, continuous A, by simulation for case-
control sample

B0 B Bias MSE Var(8}) Var(IC.ss)/n CP

Simulation 1

Qcgc -0.100 -0.100  0.000 0.013 0.013 0.011 0.912

Qcgw -0.100 -0.100  0.000 0.013 0.013 0.011 0.912

Qwgc -0.099 -0.099 0.001 0.013 0.013 0.011 0.919

Qslgsl -0.019 -0.101 -0.001 0.012 0.012 0.010 0.919
Simulation 2

Qcgc -0.100 -0.100  0.000 0.012 0.012 0.011 0.931

Qcgw -0.100 -0.100  0.000 0.012 0.012 0.011 0.931

Qwgc 0.014 -0.098 0.002 0.011 0.011 0.011 0.937

Qslgsl -0.018 -0.098 0.002 0.011 0.011 0.010 0.942
Simulation 3

Qcgc -0.097 -0.102 -0.002 0.016 0.016 0.020 0.949

Qcgw -0.097 -0.102 -0.002 0.016 0.016 0.020 0.949

Qwgc 0.023 -0.102 -0.002 0.016 0.016 0.323 0.946

Qslgsl -0.017 -0.102 -0.002 0.016 0.016 1.858 0.946

Table 4.7: Relative performance of Poisson-derived TMLE, binary A, case-control sample
Bias Var MSE

Simulation 1
Logistic, incorrect  0.002 0.017 0.017

B9, incorrect 0.003 0.017 0.017

0 SL 0.083 0.001 0.008
B Qwgc 0.003 0.017 0.017
B Qslgsl 0.004 0.016 0.016

Simulation 2
Logistic, incorrect ~ 0.037 0.019 0.020

0 incorrect 0.036 0.019 0.020
0. SL 0.080 0.001 0.007
B Qwegc -0.009 0.019 0.019
B Qslgsl 0.001 0.017 0.017

Simulation 3
Logistic, incorrect ~ 0.275 0.017 0.093

0 incorrect 0.272 0.017 0.091
0 SL 0.082 0.001 0.008
B Qwgc -0.004 0.030 0.030

B Qslgsl 20.001 0.029 0.029
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Table 4.8: Relative performance of Poisson-derived TMLE, continuous A, case-control sample

Bias Var MSE

Simulation 1
Logistic, incorrect ~ 0.000 0.013 0.013

0 incorrect 0.001 0.013 0.013
0 SL 0.081 0.001 0.007
B Qwec 0.001 0.013 0.013
B Qslgsl -0.001 0.012 0.012

Simulation 2
Logistic, incorrect  0.114 0.010 0.023

0 incorrect 0.114 0.010 0.024
0 SL 0.082 0.001 0.007
B Qwgc 0.002 0.011 0.011
By, Qslgsl 0.002 0.011 0.011

Simulation 3
Logistic, incorrect ~ 0.124 0.001 0.017

0 incorrect 0.123 0.002 0.017
0 SL 0.083 0.001 0.007
B Qwgc -0.002 0.016 0.016

B Qslgsl -0.002 0.016 0.016
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Figure 4.3: Estimates and 95% confidence intervals by method, binary A, case-control sample
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Figure 4.4: Estimates and 95% confidence intervals by method, continuous A, case-control
sample
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4.7 Discussion

This chapter introduced two TMLE’s for a parameter that relates an exposure to con-
ditional relative risk, a common objective in medical and epidemiology studies when the
outcome is binary. The TMLE’s were developed under a semi-parametric multiplicative
model, which provides more flexibility than a fully parametric model, while still providing
an interpretable parameter of interest. In practice, semi-parametric modeld can of course
be misspecified. However, semi-parametric models are particularly attractive when there is
interest in effect of a continuous exposure since nonparametric model-based estimators of
the effects of continuous exposures tend to be unstable. Note that an alternative approach
is to define parameters in nonparametric models that are extensions of the parameters as
defined by semi-parametric regression models, so that the target parameter remains defined
outside the semi-parametric model. Such work is in progress.

The first of the two TMLE’s in this chapter is the “correct” TMLE for a binary out-
come and was derived by correctly assuming a binomial density. The second TMLE is the
correct TMLE for a count outcome with a Poisson distribution and was derived under this
assumption. The Poisson assumption is always wrong when the outcome is truly binary, but
we can apply this second TMLE to binary data. We refer to this as the “practical” TMLE
because it is does not suffer from convergence problems like the first, correct TMLE. When
applied to data with a binary outcome, this practical TMLE is not efficient, but it does
remain DR, asymptotically linear and achieves the correct inference. If the outcome were
instead a count of events and followed a Poisson distribution, this second TMLE would be
an efficient estimator of 3y in the model (and the interpretation of 5y would change).

Unlike other some other TMLE’s, including those in Chapters 1 and 2, the TMLE’s
presented in this chapter do not depend on inverse probability weighting, and therefore
should be relatively robust to positivity violations. We demonstrated this property for the
practical, Poisson-derived TMLE with simulation studies. We also compared this TMLE to
common parametric methods in the literature and illustrated the strong performance under
various degrees of positivity violations. We also saw the superior performance of the TMLE
as confounding increased. We confirmed these findings for both prospective and case-control
samples.

In sum, this chapter has illustrated the value of introducing model assumptions in order
to address positivity violations. Because we relied on a semi-parametric model rather than
a parametric model, we have maximized flexibility. We have shown that with a TMLE, we
can obtain robust estimates of a parameter that relates exposure to changes in conditional
relative risk, even under strong confounding and positivity violations. We demonstrated
the practical, Poisson-derived TMLE’s DR properties in both prospective and case-control
samples, illustrated that it achieves proper inference and showed its improved performance
over existing methods. The next chapter provides more methodological details for both
TMLE’s.
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Chapter 5

Constructing the Efficient Score and
Clever Covariate for Targeted
Maximum Likelihood Estimators of
Conditional Relative Risk Parameters
in a Semi-parametric Regression

Model

5.1 Introduction

This chapter delves into the methodological details of the TMLE’s introduced in Chapter
3, as well as in Tuglus et al. [2011]. The TMLE’s estimate parameters that relate log
conditional relative risk to exposure as defined by a semi-parametric multiplicative regression
model. One TMLE correctly assumes that the binary outcome (i.e. disease or no disease)
has a binomial distribution, and one TMLE treats the binary outcome as a count of events
and therefore incorrectly assumes a Poisson distribution. The first of these TMLE’s is an
efficient estimator of the parameter of interest but is unstable due to convergence problems
with the log-binomial model, which is used for estimation. The second of these TMLE’s is
an efficient estimator of change in the log conditional incidence rate associated with a unit
change in exposure, the parameter of interest when the outcome is truly a count of events and
follows a Poisson distribution. However, this second TMLE can also and has been applied to
a binary outcome, estimating our first parameter of interest. In this case, the TMLE is no
longer efficient, but it does achieve stability. It also remains DR - that is, the efficient score
equation solved by this second TMLE is unbiased DR estimating equation for the parameter
of interest in the conditional mean model, which does not assume a Poisson distribution.
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Consequently, we obtain consistency and correct inference.

The previous chapter and Tuglus et al. [2011] present some basic theoretical features
needed to construct both the “correct” TMLE (for a binary outcome) and the “practical”
TMLE (for a count outcome applied to a binary outcome) - the efficient scores and efficient
influence curves for the two different targeted parameters, as well as the parametric fluc-
tuation submodels for the TMLE step, including the so called clever covariates that define
the submodels. This chapter provides important methodological details for deriving these
features. Specifically, this chapter first provides the theoretical derivation of the efficient
score and efficient influence curve for our primary parameter of interest, change in log rela-
tive risk associated with a unit change in exposure. We also present the correct parametric
submodel through the initial estimator of the density that has score equal to the efficient
score. We thus derive the clever covariate needed for the fluctuation step. This results in
an efficient, but unstable TMLE. This chapter also considers the case in which the outcome
truly is a count of events. For the corresponding parameter of interest, the change in log
conditional incidence rate associated with a unit change in exposure, we present the efficient
score and efficient influence curve. Rather than carry out the entire derivation, we include
a proof that the efficient score and efficient influence curve presented are indeed those. We
then derive the clever covariate for this TMLE. We also discuss the properties of this TMLE
when applied to our original parameter of interest, when the outcome is truly binary.

After a brief review in Section 5.2 of the data structure (focusing only on a prospective
point-treatment sample), the semi-parametric regression model, the parameter implied by
the model and the parametric fluctuation model, all as laid out in Chapter 3, the remainder
of this chapter is organized as follows. In Section 5.3, we focus on the the “correct” TMLE
for the relative risk parameter, and in Section 5.4, we focus on the TMLE for the incidence
rate parameter, while commenting on applying it as a “practical” TMLE for the relative
risk parameter, as we did in Chapter 3. The current chapter concludes with a summary in
Section 5.5.

5.2 Overview of Data Structure, Semi-parametric Re-
gression Model, Parameter and Parametric Fluc-
tuation Model

As in Chapter 3, we consider n independent and identically distributed (i.i.d.) obser-
vations of O = (W, A,Y) ~ Py € M, where W is a vector of baseline covariates, A is an
exposure of interest, and Y = {0, 1} is a binary outcome (although also considered a count
outcome for our second TMLE in Section 5.4). Fy denotes the true distribution of O, from
which all subjects are sampled, and Fy is an element of the statistical model M. We define
the statistical model by our assumed semi-parametric multiplicative regression model
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Qo(A, W) = emsoAVIg (W), (5.1)

where Qo(A, W) = Py(Y = 1| A, W) (or in the case of a count outcome, Qo(A, W) =
Ey(Y | A,W)), mg,(A, V) is a specified function of A and effect modifiers V' C W, and
QW)= Py(Y =1] A=0,W) (or in the case of count data, 6o(WW) = Eq(Y | A =0,W)).
We focus on the case in which mg, (A, V) = ByA. Therefore, our parameter of interest when
Y is binary, By, is equivalent to the change in the log conditional relative risk associated with
a unit increase of exposure A on outcome Y. When Y is considered a count of events, the
true parameter of interest, 3y, becomes the log conditional incidence rate associated with a
unit increase in exposure A.

We obtain 3°, our initial estimate of 3y, by first estimating ;. We do this by using a
pre-specified data-adaptive estimator or, preferably, an ensemble data-adaptive estimators
such as super learner (van der Laan et al. [2007]), forcing A into the model to be selected.
We then set A = 0 for all observations to get predicted values for an estimator 6° of 6. Then
to obtain 82, we can use the parametric regression model corresponding to our assumption
about the distribution of Y (i.e. log-binomial or Poisson regression). With 6% and (2, we
have the initial estimator Q% of Q.

For the targeted maximum likelihood step, we fluctuate Q° (which we write as Qﬁgﬂg
to emphasize the reliance on 82 and %) to be tailored to estimation of the parameter of
interest, Jy. The general parametric fluctuation submodel (without making any particular
parametric assumptions about the distribution of Y') is given by

logQ0 09 (€) (A, W) = (8, + €) A + logty, () (W),
where 6% (e)(W) = 69 (W )exp( (W)). The function 7%, (W) depends on Q° (i.e.

€r’;
Q9,9n Q%,9n
on (2 and %), as well as on g, (A | W), an estimator of the nuisance parameter go(A | W) =

Py(A | W). Therefore, we have

logQpn.e ()(A, W) = (B, + )A +loghy (W) +erg , (W) (5.2)
= BpA+loghh (W) + e(A+rg , (W)).

Therefore our clever covariate is given by A + g,  (W). To construct rg, (W), we

n gn

require that when ¢ = 0, we have the initial density, Q°(A4, W) and that the score of this
submodel with parameter € has score at ¢ = 0 equal to the efficient score of the target
parameter (3. Because we have not yet made any assumptions about the distribution of
Y, so far, this applies to both types of outcomes (binary and count) and corresponding
parameters of interest.

We fit € with MLE, which results in a first step update of Q°, which plays the role of
the initial estimator in the next update step. As described in the previous chapter, in the
TMLE algorithm, we iteratively update an initial estimator until the next MLE of € is close
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to zero. Therefore, for each of k = 0... K iterations, we compute an updated Qﬁggeg(efb),
using the function r At convergence, the final updated estimator of @)y (for either

gﬁzgn' — —
outcome type/parameter) is given by Q% = QX and we evaluate 5% by substitution.

5.3 Conditional Relative Risk Parameters in a Semi-
parametric Regression Model

In this section, we assume Y is binary and follows a binomial distribution and that
the logarithm of its expected value can be modeled by a linear combination of exposure
and covariates (i.e. we use a log-binomial regression model). We focus on the case in
which mg,(A4,V) = BpA. Therefore, the parameter of interest, J, in our semi-parametric
multiplicative regression model is the change in log conditional relative risk associated with
a one unit change in exposure A. Below, in Section 5.3.1, we first construct the efficient
score and efficient influence curve for 5y. Then in Section 5.3.2, we derive the TMLE for
this parameter. Therefore, we present the form of the parametric fluctuation submodel
through the initial estimator, find the score of this fluctuation submodel and derive the
clever covariate such that the score of the fluctuation submodel equals the efficient score.
This clever covariate allows us to define the specific fluctuation submodel for the TMLE
step.

5.3.1 Constructing the Efficient Score and Efficient Influence Curve

Recall that the probability distributions of Y, given A, W, in the semi-parametric model
are indexed by a finite dimensional parameter § and infinite dimensional parameter 6. Note
that for semi-parametric models, the efficient influence curve, DZ?O % (O) is defined as

Di(0) = = | 5 El5,0,O)]  52,,(0)

where 57, (O) denotes the efficient score given by

Sx

QO,QO(O) = Sﬁo - H(Sﬂo | Tnui8>‘ (5~3)
Here Sp, = Sp, (Y | A, W) = d%olog Qo0 (Y | A, W) is the score of the parameter of
interest, [y, and T}, is the nuisance tangent space, viewed as a subspace of the Hilbert
space L3(Py) endowed with the inner product (hy,hs) = Eohiho(O). Because the data
generating distribution is indexed by a parameter of interest 5, and a variation independent
nuisance parameter, the efficient score is equal to the score of the parameter of interest minus
the projection of this score onto the nuisance tangent space. Recall that a projection of a

function S on a subspace T,.;s of a Hilbert space is uniquely defined by 1) the projection
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that is an element of the subspace T};s, and 2) S —TI(S | Thuis) L Thuis- And note that T
is the direct sum of the three orthogonal spaces involving each of the nuisance parameters:

Tuis = Tw @ Taw P T,

where Ty consists of all functions in LZ(Fy) of W with mean zero; Tqw consists of all
functions in LZ(P) of (A, W) with conditional mean zero, given W; and Ty is the tangent
space spanned by all the scores of parametric submodels through F, that only fluctuate 6.

Therefore, we can write Equation 5.3 as:

S60a0(0) = S = | T1(Sa | Tw) + TT (S0 | Taw) + [T (S 1 T0)] (5.4)

Given Equation (5.4), we carry out the following steps to construct the efficient score.

1. First, we calculate Sg,. The probability distribution Pzg(Y | A, W) is indexed by
Bo and function fy. We have log Pg, 0,(Y = 1 | A,W) = logy(W) + BoA. Tt follows
that d;g’o log Pg, 0, (Y | A, W) = > (Y - Qﬁoﬁo (A> W))

1-Qgy,6,

2. Next, we calculate the nuisance scores for each nuisance parameter.

We do this by fluctuating each of the nuisance parameters. First, to calculate Ty,
we note that the probability distribution Py varies over a non-parametric model.
Therefore, we can fluctuate it as follows:

By(e)(W) = (L + eha(W)) Fo(W),

where hi(WW) is any function of W such that Eo(hi(W)) = 0 and Ey(h3(W)) < oc.
Then the nuisance score generated by this parametric submodel is given by h;. This
shows that Ty = {W — hy(W) : Eghy(W) = 0, Egh3(W) < oo}

To calculate Ty, we note that Iy 4w also varies over a non-parametric model, so
that we can fluctuate it as follows:

Fo(e)(A | W) = (14 eha(A, W) Po(A | W),

where hy(A, W) is any function of A and W such that Egy(ho(A, W) |
Eoh3(A, W) < co. As above, it follows that Tayw = {(A, W) — ha(4,
W) =0, Egh2 < oo}

W) = 0 and
W) : E()(hz |
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Finally, to calculate Ty, we consider submodels Qq(€)(Y | A, W) implied by log Qo (€)(A, W) =
log 0g(W') + BoA + ehs3(W) for an arbitrary function hs. Notice that this implies a sub-
model in our semi-parametric regression model. It is straightforward to show that the

score of this submodel at € = 0 equals 1/(1 — Qo(A, W))hs(W)(Y — Qo(A, W)). This
shows that Ty = {1/(1 — Qo(A, W))hs(W)(Y — Qo(A,W)) : hz}.

Therefore, we can conclude that the nuisance tangent space is defined as:

Toiis = {(W): E(h(W)) = 0; E(h{(W)) < oo}
{ha(A, W) : E(hao(A, W) | W) = 0; E(h3(A, W) < oo}

hs(W) . 2
- {1—QO<Y Qo(A, W) : (h3(W))=0,E(h3(W))<oo}.

+

3. Finally, we calculate the projections of Sg, onto each of the nuisance tangent
spaces, as seen in (5.4).

The first two are straight-forward. Because S, has conditional mean, given A, W,
equal to zero, it follows that it is orthogonal to Ty and T4 . Therefore we have

[1(Ss [ Tw) = 0
1186 | Taw) = 0.

For [[(Ss, | Tp) the calculation is more complicated. We define V = V(Y, A, W) as
a function of the data such that Eo(V | A,/W) = 0. As repeatedly used and shown
in van der Laan and Robins [2003]: any function S(B, Pa(B)) of a binary variable
B and other variables Pa(B), which has conditional mean zero, given Pa(B), can be
written as (S(1, Pa(B)) — S(0,Pa(B))(B — P(B = 1 | Pa(B))). Let hy(A,W) =
(V(1,A, W) = V(0,A,W)) so that V — Eo(V|A, W) = hy (A, W)(Y — Q). Thus,

[Hviz) = [V - E(VIAW)|Ty)
= AV AW) = V(0,4 W)HY - Qo)|Ty).

We have

[T - mvia ) = T (mty - el { S5 280 ) 63
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In particular, if V = Sg, 4,, we have V = A/(1 — Qo)(Y — Qo) so that h = A/(1 — Qo).

Thus, we need to find the function hj such that for all hg

(v (A, W)Y = Qo) = (Y = Qo)h3(W), (Y — Qo)hs(W)) = 0.

Therefore, we want to find h3 such that

Ey Hh(A, WY — Qo) — f_ogz (Y — QO)} 15”@;2(1/ QO): = 0 for all (W)
Ey Kh(A, W) — its_(ng ) ?3—(“@2 (Y — QO)Q: = 0 for all h3(W)

A Kh(A, W) — ?{gi) fi’fvgzam, W): — 0 for all hy(W)

Ey Kh(A, W) fQQO - (1@—%3)2“2) ()| =0 for all hs(V)

Ey [E {h(A g/) Qyw] — B (W) E, {ﬁyw} hg(W): = 0 for all hy(W),

where 0?(A, W) = VARy(Y | A,W). Therefore:

By (M40 )

Bo (%)W)

hy(W) =

Plugging into (5.5), we see that

B [y (A, W)/ (1 = QW] (¥ — Qu)
E[?/0-QPW]  1-Gp

By [(V(l, A,W) — V(0, A, W))f;—ow} & — Q)

[[V - EvIAW)IT) =

Ey [1 QO)Q\W} 1—Qo
_ B [(VL, A W) — V(0,4 W))QoW] (Y — Qo)
Eo[l Qo)|W} L=

So this tells us how to project any V' onto the nuisance tangent space T},,;s. Now we
know how to project Sg, on Tj, so we have
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Eo |- Qo 2’W] (Y — Qo)
3 T,
| (1— Qo 2|W] @

Fo :<1 Qo) |W} (Y = Qo).
Ey [1 QO|W] 1 — Qo

1165670 =

Now finally, by plugging Sz, = A/(1 —Qo)(Y — Qo) and all projections into (5.4), we can
write down the efficient score:

Séo,go<0) = Spy — H(SﬁolTnuis) as above
= S, — [ TS I7w) = TT(S5 [Taw) — [T (Sl 70)]

_ (AR,
T\ R ] ) Y

As noted in the last chapter, it is of interest to note that this can also be represented as
where
_ AQ
_ Q A_Eo[l QO)|W]
Qo(0, W)(1 — Qo) E, [12%0 \W}

is a function satisfying Eo(h*(A | W) | W) = 0. This representation can be used to prove
that Sj 4, (0) has mean zero for all §, thereby proving the double robustness of the efficient
score as estimating function for fy.

WA W) =

Recall, this entire derivation assumes that mg, (A, V) = BpA. For the more general case,
if log Qo = mg, + log Oy, the efficient score is given by

dB BoQO
1 d EO|: (01 Qo)

=0 | a3 g [aw]

Recall the efficient influence curve is then given by

]

Sé?o 9o (O) - (Y - QO)

d —1
Dz?mgo (O) - [dﬁ 220 90 (O):| Sé)o go<0)‘
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5.3.2 Deriving the TMLE

Defining the parametric fluctuation submodel

In this case, we assume a binomial regression model for the parametric fluctuation sub-
model given in (5.2). Therefore, we have

1-Y

Y
Papan ()Y | A, W) = [eB9290 )0, )] [1 = 008 )0, )|,

where, as defined above, 6%(¢)(0, W) = 6°(0, W)eerz?%,gn(w),

Of course, we can also write down the parametric fluctuation model at the truth, which
is given by

Paoso(€) (Y | A, W) = [e0t940(e) (0, )] [1 — ePt940(e)(0,W)]' ", (5.6)

where now 6y (€)(0, W) = 6,(0, W)eETEngo(W). We wish to determine the function g (W)
so that the score at € = 0 equals the efficient influence curve at Fy, and we do this below.

Calculating the score of the parametric fluctuation submodel at ¢ =0

To calculate the score of the fluctuation model in Equation 5.6, we take logs, take the
derivative with respect to € and evaluate at e = 0.

At Y =1, we have

Payy ()Y = 1A W) = el®+9495(0, W) a0m ™)
logPg, 0,(€)(Y = 1|[A, W) = (Bo+ €)A+1oghy(0, W) + ETZ?o,gO(W)

d *
alogpgo,go(ﬁ)(y =1A,W)le=o = A+ Tngo(W)'

At Y =0, we have
P00 (€)(Y = 0[A, W) = 1= Ps,(e)(Y = 1{A, W)
= 1- |:€('80+€)A€0(0, W)eerz?ovgo(w)]

d _@B ,0, *
PO =04 Wy = 772 (A1, (W)

Therefore, the score of the fluctuation model at € = 0 is given by
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d _
T10gQauan (Y | AW) = ¥ [A+r5,(W)] - (1-Y) [ Qg;j; (A+75,5(W)
1
= TG A am W] I - Qua)

Next, we want to determine the function 7, . that makes this score equal the efficient
score. We do this below.

Constructing the parametric fluctuation submodel with score spanning the effi-
cient score

If we assume Qo = exp(mg, (A, W))0(W), and we use as submodel log Qo(€) = Mg+ +
log 6y + er, then the score equals (d/dBymg, +7)(Y — Qo)/(1 — Qo). Thus, to arrange that
this score equals the efficient score, we have

EO [d/dﬁo'n’iﬁo QO |W:|

T* _ (17Q0)
Qo.90 —
Eo [ 2517
We can then compute the clever covariate, which is given by
: Eo |45 |
HQO:QO = A -
Bo S|
Also, in the general case, for any mg,(A,V), the clever covariate Hj = Hj o o is

given by

Qo(AW)
Ey [1 ggo(Aw) dﬁmﬁ()(A V)’W]

[

We add the clever covariate to logQF, which we hold constant and then estimate the
fluctuation parameter ¢ by maximum likelihood. This yields the k" + 1 update of the initial
fit. We then repeat the fluctuation until € is very close to zero, at which point we have
our final targeted estimate of the density, Q% (A, W). The TMLE, 3 is then evaluated by
substitution, or to calculate, we can simply add the sum of all ¢ estimates to 3°. We can
then estimate the variance of the influence curve with the empirical variance and calculate
standard errors, p-values and confidence intervals for 3.

2B (A V)

Hﬁoﬂo,go = dﬁ
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5.4 Conditional Incidence Rate Parameters in a Semi-
parametric Regression Model

In this section, we assume Y is a count of events and that Y has a Poisson distribution. We
again assume that the logarithm of its expected value can be modeled by a linear combination
of exposure and covariates, but now we are assuming this is a Poisson regression model. Our
parameter, [y, in this case (again focusing on the case in which mg, (A, V) = ByA), is the log
conditional incidence rate associated with a unit change in exposure. Below, in Section 5.4.1,
we construct the efficient score and efficient influence curve for this fy. Then in Section 5.4.2,
we derive the TMLE for £y in the semi-parametric Poisson regression model. As discussed
in the introduction, we can apply the resulting TMLE for count data to binary data, which
is illustrated in Chapter 3. In this case, the TMLE is no longer efficient, but it is a valid
estimator of conditional relative risk in a semi-parametric regression model. In Section 5.4.3
we discuss the implications in more detail.

5.4.1 Constructing the Efficient Score and Efficient Influence Curve

As above, the efficient influence curve, D5, gO(O) is defined as

D000 O) = = | 75, 0056000 OD] 50,0(O)-
where 5% (O) is the efficient score. In order to construct S  (O) when we assume
0,90 QO:g

0
that Y is a count of events and follows a Poisson distribution, we need that the score of the
Poisson-distribution fluctuation at € = 0 is an element of the orthogonal complement of the
nuisance tangent space. Therefore, we carry out the following steps:

1. First, we find the set of all scores of the Poisson fluctuation at ¢ = 0.

For the TMLE in the Poisson semi-parametric regression model, we need a paramet-
ric fluctuation model through the initial estimator that is a submodel of the semi-
parametric Poisson regression model. We select submodels of the form:

Py |Aw) = CasORIL 0 @ o@w)

e(BR+aAQO (¢ v 0
_ [ 6;7/1'( )(W)] exp(—(6(67’+E)A92(6)(W)),

where 62 (¢)(W) = 0% (W )exp(ers, g, (W)). Or, at the truth, we have

n n9gn
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[0ty () (W)
Y!

By 00 (€)Y [ A, W) = exp(— (™Mo (e)(W)),  (5.7)

where 6°(e)(W) = Oo(W)exp(erg, . (W)). To calculate the score of the fluctuation
model in Equation 5.7, we first take logs, so that we have

log P ()Y | A, W) =Y ((Bo + ) A+ logho + erfy ) = 4o 0 — logY.

Therefore, to obtain the score at € = 0, we have

d
—l0gPs,0,(e)(Y | A W) = YA+15

(Bo+e)A 5. (Bo+e)Ap €5 g0k
de (e Abge” @00 + e Ooe o gOTQovgo)

Q0,90

= Y(A+r; (Pt I4G0e 2000 ) (A + 1

Qo, go) Qo, 90)

Y - ( (Boe) Ae € QOgO))(A_'_TQogo)

Qo, go)
Y — Qﬁo 90)<A + TQO go>

(

d

&logpﬁoﬂo@) (Y | A7 W>|€:0 - (Y EOAQO)(A +7¢
(

Therefore, the set of all scores at € = 0 for a Poisson fluctuation, which is indexed by

a function 7, (W), can be written as follows when mg, (A, V) = o A:

%lOgP()( )lé -0 — {A +7’QO 90}(Y — Qo),

or in the general case as:

d

% 10% PO(E)’e:O - { 5 Mg, + TQO go}(Y - QO)

dbo
2. Next, we need the orthogonal complement of the nuisance tangent space.

From a result in van der Laan et al. [2004b], for any mg, (A, V'), the orthogonal comple-
ment of the nuisance tangent space consists of functions given by mj h(A | W)(Y —Qy),

indexed by functions h(A | W) with conditional mean zero given W, where mj, =
e "Moo,
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3. Therefore, we need to find h(A | W) with E(h(A| W) | W) =0 such that

d

mg, (A | W)(Y = Qo) = {d_ﬁomﬁ(’ + 750,901 (Y = Qo).
Therefore, we have
BA | ) = 2870 TG (5.8)
M
Then,
%mﬁo + 7”5
O=FE[hA|W)|W]=F|= 00 W (5.9)
Bo

4. Finally, we find r5 _(W).

The only 1, (W) =15 4,.4,(W) that makes (5.9) true is given by

1 d
Eg, (W%mﬁo | W)

Tgoﬂo,go(w) = = (OWL*|W)
Bo

L,

Plugging this into (5.8), we see that this rj o (W) corresponds with a function
h(A | W), which we refer to as hop(5o, 6o, go)(W), given by

1 d

hopt(ﬁO; 907 90)(W) = mZ’O {d_ﬁomﬁo + T'80,00,90 (W)} )

which indeed has conditional mean zero, given W. Therefore, we can write down the
efficient score as given by

. d E [6’”130 %m[goﬂ/V] -
Sﬁoﬁo,go (O) = d_ﬂomﬁo - B [emﬁo |W] (Y - Qﬂoﬁo)'

When we assume mg, (A, V) = BoA, it is given by

* B[4 AW] i
Sh0.80,90(O) = (A - W) (Y = Qpo.0)-
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5.4.2 Deriving the TMLE

When mpg, (A, V) = BoA, the clever covariate, which is given by A+ 77 4 . 18
i E [ePA AW ]
Hﬁo 00,90 A— :
o E [efoA W]

In the general case, for any assumed mg, (A, V'), the clever covariate is given by ﬁm 50 (A, V)+
T50.00.900 SO the clever covariate is given by

d E [emﬁo (A’V)ﬁmﬁo (A, V) |W]

Hﬁoﬁo,go - d_ﬂomﬁo (A7 V> B E [emBO(A7V)|W:|

For each of k iterations of updating our initial estimate of Q¢(A, W), we estimate the
clever covariate, so that when mg, (A, V) = fBpA, we have:

E [eﬁﬁAA|W]
Bk Ok g A= B [eﬂﬁAlw} :

As described above for the “correct” TMLE, we add this clever covariate to logQ¥, which
we hold constant and then estimate the fluctuation parameter ¢ by maximum likelihood.
This yields the k' + 1 update of the initial fit. We then repeat the fluctuation until € is very
close to zero, at which point we have our final targeted estimate of the density, Q% (A, W).
The TMLE, 3} is then evaluated by substitution, or to calculate, we can simply add the sum
of all € estimates to 2. We can then estimate the variance of the influence curve with the

empirical variance and calculate standard errors, p-values and confidence intervals for /.

5.4.3 Remarks on Applying the TMLE of the Semi-parametric
Poisson Regression to a Binary Outcome

As discussed above, as well as in Chapter 3, we can implement the TMLE described in
this section - the TMLE that assumes Y is a count of events - to estimate our parameter
of interest when Y is actually binary, the change in log conditional relative risk associated
with a unit change in exposure. When we apply this TMLE to a binary outcome, the
Poisson model is always wrong. However, the TMLE is still a DR and asymptotically linear
estimator of the relative risk parameter of interest. It is not efficient, however. We make
this trade-off - of using the TMLE for a count outcome rather than the TMLE for a binary
outcome - because the Poisson-based TMLE is much more practical in application. It is much
more computationally stable as the log-binomial model often suffers from non-convergence
problems.
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However, for both TMLE’s, the efficient score equations are derived from the overall
efficient score equation, which makes no distributional assumptions on the distributional
form of the residuals. For a proof of this property, see the appendix in Tuglus et al. [2011].
Consequently, because inference for the TMLE is based on solving the efficient score equation,
the inference remains valid, regardless of the form of the parametric submodel.

5.5 Discussion

This chapter has provided theoretical details for defining and implementing two TMLE’s
for estimating parameters relating conditional relative risk to exposure defined by a semi-
parametric multiplicative regression model. We began by assuming a binary outcome, Y,
for which Py(Y = 1|A, W) is modeled as a semi-parametric multiplicative model, such that
Py(Y = 1|A, W) = Qo(A, W) = e™50AV)go(W). For the first TMLE, we correctly assumed
that Y has a binomial distribution, and for the second TMLE we incorrectly assumed that
Y has a Poisson distribution, as if it were actually a count of events. When we consider
mg, (A, V) = PoA, the latter of the two TMLE’s actually is an estimator for the change in
the log conditional incidence rate associated with a unit change in A, rather than estimator
or our parameter of interest, the change in the log conditional relative risk associated with
a unit change in A. However, we can apply this second, count-data, or “practical” TMLE
to our parameter of interest for binary data, and we can show that it remains a DR and
asymptotically linear estimator. See Tuglus et al. [2011] for an illustration and proof.

For both TMLE’s, the distinguishing component is the parametric submodel through
the initial estimator of the density of the data that has score equal to the efficient score.
Therefore, in this chapter, for each of the TMLE’s, we have provided theoretical details for
constructing the efficient score for the corresponding true parameter of interest. We have
also derived in each case the corresponding clever covariate for carrying out the fluctuation.
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Chapter 6

Conclusion

As a whole, this dissertation has demonstrated the importance of the estimator selection
when estimating parameters under a lack of positivity. It began with a thorough investiga-
tion of the positivity assumption, how different estimators respond to positivity violations, a
diagnostic for bias due to positivity violations, based on the parametric bootstrap, and a dis-
cussion of options for responding to any remaining, diagnosed bias due positivity violations.
This dissertation also delved more deeply into the relative performance of TMLE’s under lack
of positivity, focusing on three common parameters of interest. It described the theoretical
features of the TMLE’s which indicate why they tend to be relatively robust under positivity
violations and illustrated the robustness with a wide variety of simulations. Many of the
simulations were based on studies presented in the literature. This allowed us to benchmark
our performance against existing work and avoid the criticism of developing simulations
designed to illustrate our points. We also tweaked the existing simulations to make the
estimation problem even more challenging, providing an even more valuable demonstration
of the relative performance of TMLE’s in a variety of settings. Finally, this dissertation also
delved into the theoretical details on which TMLE methodology is based. Focusing on two
different TMLE’s of conditional relative risk in a semi-parametric multiplicative regression
model, the final chapter provided an in-depth look at how to construct important TMLE
features - the efficient score, efficient influence curve and the clever covariate that defines
the targeted fluctuation. Overall, the following summarizes the main conclusions that can
be drawn from the work presented across all chapters in this dissertation:

e The estimation method can really matter, particularly in observational studies.

e Positivity violations are a common challenge in observational data and can threaten
valid inference for many parameters of interest.

e Bias due to positivity violations often goes undiagnosed. However, the parametric
bootstrap is a valuable tool that can identify bias not necessarily evident with other
diagnostic approaches.
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e Different estimators are affected differently by lack of positivity (and by bounding g,,).
e TMLE’s and C-TMLE’s are more robust to violations of the positivity assumption.

e C-TMLE’s provide an innovative “black-box” approach for estimating the censoring
mechanism, preferring covariates that are associated with Y and A.

e TMLE'’s, as well as other estimators, can be combined with data-adaptive methods
such as super learning, which improves robustness due to model misspecification.

e The parametric bootstrap diagnostic can be a valuable tool for evaluating different
estimators and helping to select among them.

e When bias in a chosen estimator is still diagnosed, analysts must consider alternative
parameters with better identifiability (e.g. modify adjustment set or sample). These
parameters may be more appropriate to research goals.
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