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Aortic valve tissue exhibits highly nonlinear, anisotropic, and heterogeneous material behavior due to its
complex microstructure. A thorough understanding of these characteristics permits us to develop numer-
ical models that can shed insight on the function of the aortic valve in health and disease. Herein, we take
a closer look at consistently capturing the observed physical response of aortic valve tissue in a contin-
uum mechanics framework. Such a treatment is the first step in developing comprehensive multiscale
and multiphysics models.
We highlight two important aspects of aortic valve tissue behavior: the role of the collagen fiber

microstructure and the native prestressing. We propose a model that captures these two features as well
as the heterogeneous layer-scale topology of the tissue. We find the model can reproduce the experimen-
tally observed multiscale mechanical behavior in a manner that provides intuition on the underlying
mechanics.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Aortic valve (AV) disease is a public health concern with no
effective treatment options available, due in part to our incomplete
understanding of the complex biological system. Computational
modeling is a promising approach for us to gain insight on AVs
and to develop viable prevention and treatment modalities. How-
ever, such modeling must first accurately reproduce the known
before we can use it to probe the unknown. Our focus here is to dis-
cuss critical aspects of developing a continuum biomechanical
model of AV tissue that is consistent with available experimental
data. This basic material specification is a fundamental building
block for more complex and comprehensive AV studies, such as
multiscale and multiphysics simulations.
1.1. Background

AV tissue is comprised of three layers: the fibrosa, the ventric-
ularis, and the spongiosa. The fibrosa and the ventricularis are
the main load-bearing layers and they consist of organized net-
works of collagen and elastin fibers. The crimped collagen fibers
align, uncrimp and quickly stiffen in response to loading, resulting
in the observed anisotropic, exponential stress-strain behavior. The
highly compliant spongiosa serves as a buffer between the other
two layers and is composed of proteoglycans. Little data is avail-
able on the mechanical behavior of the spongiosa, but the three
layers act together as a single unit (Sacks and Yoganathan, 2007).

Typical continuum models of AV tissue assume homogeneous
materials that aim to capture the gross mechanical response; see
e.g. Katayama et al. (2013), Labrosse et al. (2011), Weinberg et al.
(2009), Weinberg and Kaazempur Mofrad (2008) and Weinberg
and Mofrad (2007), as well as Bakhaty and Mofrad (2015) and
Weinberg et al. (2010) for reviews. Fewer studies look at the
heterogeneous nature of the trilayer AV structure; see for instance
Weinberg and Mofrad (2007), and Buchanan and Sacks (2014). This
heterogeneity is essential for correct multiscale modeling efforts
(Vesely, 1997; Sacks et al., 1998; Huang et al., 2007). Such models
rely upon layer-scale (and possibly finer scale) measurements that
can be incorporated into detailed composite models that predict
the behavior of intact AV tissue. The consistency of the layer level
response model and the composite tissue model is essential for the
validity of the entire exercise and a major goal of this paper.

1.2. Aortic valve tissue biomechanics

To understand the heterogeneous layer-scale and composite AV
tissue behavior, Stella and Sacks (2007) subjected excised AV tissue
samples to equibiaxial tractions along the ‘‘circumferential” and
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‘‘radial” axes.1 The layers (fibrosa and ventricularis) were then sep-
arated and tested individually. The average load-response curve for
each layer and the AV composite tissue is reproduced in Fig. 1. We
highlight the following from the experiments:

1. The tissue is highly anisotropic: the circumferential response
being significantly stiffer than the radial (due to the gross align-
ment of the collagen fibers in the circumferential direction
(Balguid et al., 2008). Additionally, the fibrosa is significantly
stiffer than the ventricularis.

2. At the layer-scale, we observe a ‘‘kickback” behavior in the cir-
cumferential direction, characterized by a decrease in stretch
with increasing load.

3. After separation, the fibrosa expands, while the ventricularis
contracts, indicating the existence of a prestress in the native
AV tissue.

4. Interconnecting fibers that run transmurally (longitudinally/
axially) are believed to cause the AV tissue composite to act
as a single unit (see also Buchanan and Sacks, 2014).

5. The composite AV response in the radial direction is stiffer than
the individual layers in the same direction. Note the stiffness in
Fig. 1 may be misleading due to the use of membrane stress, but
when correcting for the relative size of the individual and com-
posite samples, the conclusion remains.

Our aim is to develop a model that captures the observed
mechanical response of the AV tissue composite within a contin-
uum mechanics framework, based upon layer-scale models which
are calibrated to layer-scale measurements.

We restrict our attention to the equibiaxial data presented in
Stella and Sacks, as opposed to more general biaxial experiments2

(Billiar and Sacks, 2000b). The latter study lacks data on the individ-
ual layers and it is our goal here to capture layer-scale consistency.
We do, however, consider the bending experiment of Sacks (2001)
to calibrate the small-strain response of the material.

1.3. Outline

The article is outlined as follows. In Section 2 we introduce the
modeling framework which we calibrate to existing experimental
data in Section 3. We conclude with a discussion, including limita-
tions, in Section 4.

2. Methods

2.1. Continuum mechanics framework

We model the AV tissue within a classical continuum mechan-
ics framework (see e.g., Holzapfel, 2000), wherein we seek to solve
the governing equations of motion for a body (manifold with
boundaries) subject to boundary conditions (tractions and dis-
placements). We define a one parameter (time t) family of finite
deformation maps ut : R

3 # R3 of a hyperelastic body (see Fung
(1990) or Holzapfel (2000, Chap. 6)), as is typical in modeling bio-
logical tissue. The equilibrium deformation map at time t is the one
that minimizes the potential energy (P) of the elastic system sub-
ject to conservative traction loading �tt:
ueq

t ¼ arg inf
ut

Pðut ;
�ttÞ: ð1Þ

Under the assumption of hyperelasticity, the 1st Piola-Kirchhoff
stress of the system, P, is obtained from the Helmholtz free energy,
ŵ, of the material:
1 These directions orient the tissue sample with respect to the valve organ; c.f.
Stella and Sacks (2007) or Sacks et al. (1998).

2 See Section 4.3 for a discussion.
P ¼ @ŵ
@F

; ð2Þ

where F ¼ ru is the deformation gradient. Although the solution to
(1) is in general not unique, polyconvexity (in the sense of Ball
(1976)) of the energy function (along with appropriate growth con-
ditions) guarantees the existence of a solution. We solve the prob-
lem with a standard Finite Element (FE) numerical procedure
(Section 2.4). Our challenge is to specify ŵ such that the FE model
is consistent with the observed experimental response.

2.2. Material model

For each individual layer we choose a Helmholtz free energy
wðI1; J4; JÞ :¼ ŵðFÞ of the form

w ¼ C1m exp C2mðI1 � 3Þ½ � � 1f g þ
Xnf
i¼1

C1f

2C2f
exp C2f ðJi4 � 1Þ3þ

h i
� 1

n o

þ c1ðI1 � 3Þ þ c2ðJ2 � 1Þ þ c3 lnðJÞ: ð3Þ
The first term on the right hand side is a Fung-like (Fung, 1990) iso-
tropic term, where I1 ¼ trðFTFÞ is the first invariant, and C1m; C2m are
material parameters. The second term is a directional term in the
spirit of Holzapfel (Holzapfel et al., 2000; Holzapfel and Ogden,
2010) to account for the nf collagen fiber directions, where

Ji4 ¼ trðCMiÞ is the first mixed invariant for the fiber direction
indexed by i, with Mi ¼ mi �mi; jjmijj2 ¼ 1, as the rank-1 structure
tensor. C1f ;C2f are material parameters and ðxÞþ :¼maxðx;0Þ guar-
antees that the fibers do not take compressive load. The last three
terms represent a Neo-hookean ground substance (see Gundiah
et al., 2007) with parameters c1; c2; c3. The following conditions
must hold for the model to behave consistently as a linear elastic
material at small deformations (see Appendix A):

c1 ¼ l=2� C1mC2m; c2 ¼ K=4� l=6� C1mC
2
2m; c3

¼ 2C1mC
2
2m � K=2� 2l=3; ð4Þ

where l and K are the infinitesimal-strain shear and bulk moduli,
respectively. Expressions for the Cauchy stress and material tangent
are given in Appendix C. The parameter constraints,

C1m;C2m;C1f ;C2f ; c1; c2;�c3 > 0; ð5Þ
ensure polyconvexity of (3); see Appendix B for details (Morrey,
1952; Dacorogna, 2007; Schröder and Neff, 2003).

In valve tissue, the collagen fibers are primarily aligned in the
circumferential direction (Billiar and Sacks, 2000b). We define a
locally Cartesian coordinate system ðc; r;hÞ aligned with the cir-
cumferential, radial, and transmural directions, respectively (see
Fig. 2 and/or Billiar and Sacks (2000b)). In the spirit of Billiar and
Sacks (2000a), we assume a normally distributed family of fibers
lying in the ec � er plane. The structure tensor for each fiber is fully
defined by the direction

mi :¼ cosðhiÞec þ sinðhiÞer; ð6Þ
where hi 2 Nðlf ;rf Þ, a normal distribution with mean lf and stan-
dard deviation rf . Herein, we take lf ¼ 0 (i.e., mean alignment in
the circumferential direction) and let rf be a free parameter.

Little information is available regarding the mechanical proper-
ties of the Spongiosa, and thus, we assume it behaves like a Neo-
hookean material (i.e., C1m ¼ C2m ¼ C1f ¼ C2f ¼ 0).

Remark on the fiber model: We follow the discrete Holzapfel
fiber model (Holzapfel et al., 2000) as opposed to the continuous
one (Holzapfel and Ogden, 2010) because it allows us to explicitly
model the individual fiber directions. The latter gives the asymp-
totic response of the former (i.e., limnf!1) in a computationally



Fig. 1. Aortic valve layer equibiaxial stretch response via (Stella and Sacks, 2007). Circles indicate circumferential response and diamonds indicate radial response.

Fig. 2. (a) FEM trilayer tissue model generated with Paraview (Ahrens et al., 2005). (b) 1/4 symmetry FEAP model with boundary displacement and traction boundary
conditions. (c) FE bending simulation a la Sacks (2001).
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efficient manner. We recommend the continuous models (see also
Gasser et al., 2006; Freed, 2008) for larger problem sizes (e.g., full
aortic valve geometry), but the discrete model provides a more
accurate and insightful representation of the fiber micromechanics.

Note that unlike the Holzapfel model, we have ðJ4 � 1Þ3, rather
than ðJ4 � 1Þ2 so that w is smooth and twice differentiable (see
Appendix C) in the presence of the hinge ðxÞþ.

Remark on viscoelasticity: AV tissue demonstrates viscoelastic
behavior when subject to relaxation experiments (Lee et al., 1984).
Due to the slow nature of the loading in the referenced experi-
ments, one can safely neglect viscoelasticity.

2.3. Parameter fitting

We consider calibrating the parameters in (3) to experimental
data. We first begin by drawing and fixing a set of nf ¼ 30 fibers3

from Nð0;1Þ, then scale appropriately by rf : Nð0;rf Þ ¼ rfNð0;1Þ.
The finite-strain parameters (C1m;C2m;C1f ;C2f ;rf ) are, by construc-
tion, negligible for infinitesimal deformation. However, the pre-
stressing engages these parameters and leads to a co-dependence
3 Our choice of nf ¼ 30 is a balance between accuracy and computational
efficiency.
between the finite-strain and infinitesimal-strain (l and K) parame-
ters. In light of this, we fit the full parameter set in an iterative man-
ner between the small deformation bending and large deformation
equibiaxial stretch experiments as follows:

1. Choose an initial value of l (K is fixed) from Euler-Bernoulli
beam bending theory.

2. Fit the finite-strain parameters for each layer with the proce-
dure described in 2.3.1.

3. Determine the necessary prestress for the composite tissue
with the procedure described in 2.4.4.

4. Determine l with the procedure described in 2.3.2.
5. Repeat 2–4 until convergence.

We present a metric in (7) to assess the goodness of fit for the
layers and the composite with respect to the equibiaxial stretch
experiments.

2.3.1. Equibiaxial stretch
We define a residual sum of squares loss

‘ðCÞ :¼
Xn

i¼1
ðkec � kmc ðCÞÞ2i þ ðker � kmr ðCÞÞ2i ; ð7Þ



Fig. 3. Convergence studies for AV trilayer FE meshes.
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where C :¼ ðC1m;C2m;C1f ;C2f ;rf Þ; k is the stretch for a given mem-
brane stress, obtained from the 1st Piola-Kirchhoff stress tensor,
and n is the total number of data points; the subscript indicates
the direction, and the superscripts e;m denote experimental and
model, respectively. We seek the parameters that minimize the
nonconvex loss:

C� ¼ argmin ‘ðCÞ subject to C > 0: ð8Þ
Despite the nonconvexity, we can converge to a sufficiently

good local minimum using warm-start projected gradient descent
with backtracking line-search (Nocedal and Wright, 2006, Chap. 3)
implemented in the MATLAB (Mathworks, 2017) package minConf
(Schmidt, 2008). Because ‘ðCÞ is not an analytical function (kmðCÞ is
computed from an FE model, detailed in Section 2.4), we estimate
the gradients (r‘) with finite differences by probing the FE model
with perturbed parameters:

@km

@Cj
� kmðC þ dejÞ � kmðCÞ

d
; ð9Þ

where ej 2 R5 is the standard Cartesian basis vector and d is a suit-
able differential.
4 Membrane stress here is the force divided by the initial length of the edge the
force is applied to, i.e., the 1st Piola-Kirchhoff membrane stress.
2.3.2. Bending
We fit the infinitesimal-strain parameters to the bending exper-

iment of Sacks (2001), where the AV tissue exhibits linear response
over the range of applied deformation. Since we fix the ‘‘bulk mod-
ulus” K ¼ 2:2� 103 kPa (see Section 2.4.5), all that remains is to fit
the ‘‘shear modulus” l such that the bending stiffness is consistent
with the values measured by Sacks. We assume all three layers
have the same K and l.

Sacks’ bending experiment consisted of � 14� 3� 0:4 mm
strips of AV tissue that are subject to 3-point bending. Positive
and negative midspan deflections were applied with a rigid rod
attached to a load cell and the beam deformation field was mea-
sured with markers along the edge. The moment-curvature (M ver-
sus j) response was observed to be linear over the range of applied
midspan deflections (� 	1 mm), with an effective Young’s modu-
lus E ¼ M=ðIjÞ � 5:3 kPa. Our bending model is described in 2.4.2
where we choose l such that M=ðIjÞ � 5:3 kPa. Note that due to
the linearity of the response, only a single simulation is needed
to determine l once K has been fixed.
2.4. Finite element modeling

2.4.1. Formulation
We use a finite element (FE) approach to solve (1). Let @Bu and

@Bt denote the partitions of the boundary (@B0) of the body, B0,
where deformation and tractions are imposed, respectively, with
@Bu \ @Bt ¼£; @Bu [ @Bt ¼ @B0. Eq. (1) is solved by satisfying the
weak form statement:

where q0 is the material density in B0 and we assume there is no
body force B.

2.4.2. Models and boundary conditions
We consider four models: (1) equibiaxial stretch of the fibrosa,

(2) equibiaxial stretch of the ventricularis, (3) equibiaxial stretch of
the trilayer AV composite, and (4) beam bending of the trilayer AV
composite. For all models, we tessellate the domain into 8-node
linear brick elements (Fig. 2a) to obtain an approximate numerical
solution to (10) using the FE software package FEAP (Taylor and
Govindjee, 2017).

The fibrosa and ventricularis equibiaxial stretch model dimen-
sions (c � r � h) are 11:5� 6:3� 0:20 mm and 8:0� 5:5�
0:15 mm, respectively, with amesh size of 13� 13� 1. TheAV com-
posite equibiaxial stretch model dimensions are � 9:0� 6:0�
0:46 mm with a mesh size of 13� 13� 3. The AV composite beam
dimensions are 14:0� 3:0� 0:46 mm with a mesh size of
80� 4� 12. A mesh convergence study is given in Fig. 3.

2.4.2.1. Equibiaxial stretch. Stella and Sacks (2007) applied equibi-
axial membrane stresses4 via four discrete points per side and mea-
sured the approximately homogeneous strain in the center of the
tissue on the surfaces of the fibrosa and the ventricularis. We
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demonstrate in Appendix D that the overall mechanical behavior of
the tissue is not affected by the technical details of these boundary
conditions. In fact, we can simply apply uniform normal tractions
along the circumferential and radial edges with (1/4) symmetry
boundary conditions on the respective opposite edges (Fig. 2b).
The nature of the biaxial testing rig forces the three layers to deform
together, so we apply stiff spring constraints along the thickness on
the boundaries where the traction is applied to ensure that the three
layers deform homogeneously in the plane (but heterogeneously out
of plane). Motion in the h direction is restrained at the bottom (ven-
tricularis) corners.5 Note that the boundary conditions apply to the
layer models as well as the composite model.

2.4.2.2. Bending. The simply supported bending model is depicted
in Fig. 2c. We apply symmetry boundary conditions in the r direc-
tion. A midspan deflection is incrementally imposed on the beam
and the resulting curvature is computed from a fourth order poly-
nomial fit to the nodal displacements at mid-depth. The prestress-
ing (see Section 3.4) results in an initial curvature j0, and thus the
moment-curvature response is measured relative to the initial cur-
vature (i.e., M versus Dj, where Dj ¼ j� j0).

2.4.3. Interconnecting fibers
The AV composite tissue is known to act as a single bonded unit

(Buchanan and Sacks, 2014). Dissection of the layers reveals inter-
connecting fibers that span from the fibrosa to the ventricularis
(Stella and Sacks, 2007). We model the effect of the interconnect-
ing fibers with perfectly bonded interfaces (i.e., no slip) between
adjacent layers.

2.4.4. Prestress
The average AV specimen dimensions from the experiments of

Stella and Sacks (2007) are � 9� 6� 0:5 mm, c � r � h respec-
tively. When separated, the fibrosa (on average) expands to
11:5� 7� 0:4 mm and the ventricularis (on average) contracts to
8� 5:5� 0:2 mm. We perform the experiment in reverse: we pre-
stress the native stress-free configurations of the layers and attach
them (with rigid links) to form the AV composite. The prestressing
procedure is summarized as follows:

1. The ventricularis and fibrosa are stretched from their ‘‘stress-
free” configurations to (approximately) the AV dimensions (as
reported by Stella and Sacks (2007)).

2. The layers are then attached and allowed to equilibrate. The AV
composite analysis (biaxial stretch and bending) is performed
with reference to the attached and equilibrated state.

Remark on prestressing
The fibrosa exhibits a corrugated structure when part of the

unloaded AV composite. This geometry is a consequence of a buck-
ling phenomenon in the fibrosa which makes it difficult to deter-
mine its true stress-free configuration with the material model
we consider here. Thus, we leave the stress-free configuration of
the fibrosa as a free parameter in item 1 above. We return to this
point in Section 4.

2.4.5. Quasi-incompressibility
AV tissue exhibits quasi-incompressibility (Sacks and

Yoganathan, 2007). To obtain a numerically stable, quasi-
incompressible material response, we choose a ‘‘bulk modulus”
of K ¼ 2:2� 103 kPa. Note from (4), K acts as a penalty-like
enforcement of J ¼ detF � 1. We accordingly use u� p� #
5 The corner boundary conditions translate to only one of the four corners for the
1/4 symmetry model.
mixed-formulation elements (Malkus and Hughes, 1978). We
observe a change of volume well below 1% for the biaxial stretch
and bending simulations.

2.4.6. Solution of the nonlinear equations
The static equilibrium FE equations to be solved are posed as a

nonlinear vector equation:

RðutÞ ¼ f t ; ð10Þ
where R are the force resultants of a state of displacements ut at
time t, which must be in equilibrium with the applied nodal forces
f t at time t. We take an iterative Newton-Rhapson approach to solve
(10). Given an initial state u0

t , the update equations are

ukþ1
t  uk

t � K�1T ðuk
t Þf t ; ð11Þ

where KT ¼ @R=@u is the tangent stiffness, and the iterations are
carried out until a stopping criterion, such as the satisfaction of
(10) with some tolerance. For the Newton-Rhapson strategy to con-
verge, the initial guess must be in the neighborhood of the solution.
This requirement poses an issue for the highly nonlinear AV tissue,
particularly in the low stiffness regime. To address this problem, we
apply the load incrementally and adaptively. We start with a small
load factor at (f t ¼ atf 0) and adjust the factor heuristically based on
the number of iterations (ni) it takes for (11) to converge (at / n�1i ).
In this manner, we are able to circumvent the use of unreasonably
small load factors (i.e., excessive computational time) during the
entire load path. If a load factor is too large and the Newton-
Rhapson algorithm diverges, we appropriately scale the load factor
down.

Remark on FE modeling
Note that although we can solve the biaxial stretch problem for

the individual layers analytically, the prestressed trilayer AV com-
posite requires a numerical approach.
3. Results

3.1. Mesh convergence

Fig. 3 shows mesh convergence studies for our beam and equib-
iaxial models for the AV composite system, in both prestressed and
non-prestressed states. The mesh densities we use in our study are
consistent with converged mesh densities from these plots. The
quantities we monitor for convergence are those relevant to the
data analysis we are interested in. Note that for brevity we do
not show the convergence study for the single layer equibiaxial
cases, and simply note they are similar.

3.2. Parameter fitting

The parameter fitting is performed using the equibiaxial data
for the AV composite plus the individual layers, together with
the bending data. Table 1 summarizes each layer’s calibrated
finite-strain parameters. Also shown are 95% confidence intervals
computed via bootstrap (Efron, 1979) and the convergence curve
for the loss ‘ðCÞ per (7) is shown in Fig. 4 top; the loss curves of
both layers have the same characteristic shape. Fig. 4 bottom fea-
tures a perturbation analysis of the fit parameters and demon-
strates convergence to a minimum. Note the relative sensitivity
of C2m. The individual layer load-deformation curves are presented
in Fig. 5 bottom.

We find the moment-curvature response of the bending simula-
tion to be linear, for a midspan deflection loading of 	1 mm,
despite a prestressed initial state (per Section 3.4). We find
l ¼ 478 Pa results in M=ðIDjÞ � 5:3 kPa.



Table 1
Summary of calibrated model parameters for a normally distributed fiber model with nf ¼ 30; see (3). Fibrosa loss ‘ ¼ 5:13� 10�4 and ventricularis loss ‘ ¼ 8:01� 10�3. 95%
confidence intervals computed via bootstrap are reported below the corresponding value. For all layers, K ¼ 2:2� 103 kPa and l ¼ 478 Pa.

Model C1m [Pa] C2m [–] C1f [Pa] C2f [–] rf [
]

Fibrosa 4:38
ð1:15;7:15Þ

8:82
ð8:20;10:40Þ

18:0
ð5:11;50:72Þ

1:53� 103

ð0:76;1:98Þ � 103
6:28

ð5:87;7:59Þ
Ventricularis 1:13

ð0:45;2:13Þ
4:11

ð3:76;4:51Þ
8:68� 10�2

ð0:24;40:1Þ � 10�1
46:10

ð25:06;58:67Þ
8:19

ð7:21;10:53Þ

Fig. 4. Top: Convergence of loss (7) using warm-start projected gradient descent with backtracking line-search. Bottom Perturbation analysis of parameters for fibrosa (left)
and ventricularis (right). For clarity of exposition, the abscissa on the ventricularis plot is truncated.
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3.3. Fiber distribution

To illustrate the significance of the fiber distribution model, we
present two equibiaxial stretch results for the individual layers: (1)
a single family of circumferentially oriented fibers (nf ¼ 1;rf ¼ 0


(3)) in Fig. 5 top and (2) a normally distributed family of fibers with
nf ¼ 30 in Fig. 5 bottom. Unique parameters are fit for each model.
Fig. 6 is a close-up look at the response for low membrane stresses.



Fig. 5. Equibiaxial stretch response of individual layers plotted against experimental data. The two leftmost curves are the responses in the circumferential direction and the
two rightmost curves are the responses in the radial direction. Top: Single family of fibers: nf ¼ 1;rf ¼ 0
 . Bottom: Distributed family of fibers: nf ¼ 30;� Nð0;rf Þ, see
Table 1 for rf values.
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We notice ‘ðCÞ goes from 1:01� 10�3 to 5:13� 10�4 for the fibrosa
and from 2:50� 10�2 to 8:01� 10�3 for the ventricularis as we
include dispersion in the fiber distribution.

We observe that the single fiber family model fails to capture
the ‘‘kickback” response, despite being highly anisotropic. The dis-
tributed fiber model captures the ‘‘kickback” response and boasts a
lower loss.
3.4. Trilayer composite biaxial stretch

Next, we look at the equibiaxial stretch response of the trilayer
composite, with material parameters per Table 1 and no prestress-
ing, presented in Fig. 7 top. Note the poor fit despite each layer
being consistent with its corresponding experiment.

We can reconcile this inconsistency by applying the prestress-
ing procedure outlined in Section 2.4.4. We take the initial config-
uration of the fibrosa (i.e., the dimensions along the c and r
directions) as free parameters, which we tune to obtain the
response in the bottom of Fig. 7.
We find that an initial size of 9:05� 4:85� 0:145 mm of the
fibrosa results in the best response, with a loss ‘ ¼ 1:71� 10�2

(as opposed to ‘ ¼ 1:55� 10�1 for the non-prestressed case). It is
worth remarking that due to the nature of our prestressing proto-
col, the ‘‘initial” (i.e., after prestressing but prior to loading) size of
the AV specimen is 8:7� 5:3� 0:46 mm.
4. Discussion

4.1. Fiber micromechanics

In Fig. 5, we see that AV tissue exhibits a peculiar layer-scale
‘‘kickback” behavior in the circumferential direction, wherein
increasing load initially results in increasing stretch, followed by
a sustained decrease in stretch. We do not observe this behavior
when the fibers are oriented in just the circumferential direction
(top plot in Fig. 5), despite an anisotropic material specification.
We observe the ‘‘kickback” behavior in the bottom plot of Fig. 5
when the distribution of fibers is explicitly included.



Fig. 6. Close-up of circumferential response in Fig. 5. Left: Single family of fibers: nf ¼ 1;rf ¼ 0
 . Right: Distributed family of fibers: nf ¼ 30;� Nð0;rf Þ.

Fig. 7. Equibiaxial stretch response of AV composite tissue with and without prestress, bottom and top respectively.
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The ‘‘kickback” behavior is a result of the fibers, predominantly
aligned in the circumferential direction, rotating into the radial
direction, and ‘‘transfering” stiffness over. To see this more clearly,
consider the deformation gradient at the maximum biaxial loading
shown in Fig. 1, F ¼ kcec � ec þ krer � er þ kheh � eh, where kc < kr
are the circumferential and radial stretches, respectively. Take an
arbitrary unit vector along a particular fiber,
m ¼ cosðhÞec þ sinðhÞer . The orientation of this fiber with respect
to ec is given by h. The fiber transforms as
mt :¼ Fm ¼ kc cosðhÞec þ kr sinðhÞer with the deformation. We can
compute the deformed fiber’s angle as:

jht j ¼ atan
er �mt

ec �mt

� �����
���� ¼ atan

kr
kc

tanðhÞ
� �����

���� > jhj; ð12Þ

since kr=kc > 1 and arctangent is a monotonically increasing odd
function. Thus, we see a geometric softening in the circumferential
direction and a corresponding stiffening in the radial directions, as
the fibers rotate under the influence of the applied biaxial loading.

It is possible to capture this behavior with other models. For
instance, the general Fung model (Fung, 1990) with appropriate
choice of parameters can result in the same behavior for equibiax-
ial stretch. Our model, however, serves as an intuitive (and heuris-
tic) understanding of the micromechanics by explicitly modeling
the discrete fiber directions and tracking their respective rotations.
Furthermore, this model allows us to model planar (spanfec; erg)
heterogeneity of the fibers.
4.2. Prestressing

Stella and Sacks (2007) remark on a native prestress in AV tis-
sue, as evidenced by the deformation of the fibrosa and ventricu-
laris post-dissection. We observe that a model that lacks
prestressing (Fig. 7 top) fails to capture the AV composite behavior,
despite consistent layer-scale behavior. When we apply a prestress
(Fig. 7 bottom), we observe a more consistent material response.
We conclude that to properly model AV tissue response with
layer-scale consistency, prestressing must be included.
4.3. Limitations

4.3.1. Prestressing
The main limitation of our model comes from the rather artifi-

cial prestressing, in the sense that we do not have the exact same
before-and-after dimensions as in the experiments of Stella and
Sacks (2007). The fibrosa exhibits a corrugated structure when part
of the AV composite, but becomes flat when removed, indicating a
buckling phenomenon. We contend that to have a fully consistent
model, the buckling micromechanics of the collagen fibers in the
fibrosa would need to be considered.
4.3.2. Affine fiber transport
We have assumed that the fibers deform affinely, but it is

known that this is not always true (Hepworth et al., 2001;
Chandran and Barocas, 2006). Further study is required to properly
account for non-affine fiber transport.
4.3.3. Equibiaxial stretch
By restricting our attention to equibiaxial stretch experiments,

we risk overfitting the model. Indeed, biaxial stretch experiments
alone may be insufficient for fully characterizing material response
(Holzapfel and Ogden, 2009). However, the lack of consistent layer-
specific data for AV tissue leaves few options, though we have
incorporated the bending experiments to better capture the true
material response. Note that our general modeling framework
makes it relatively straightforward to efficiently fit to larger data-
sets, should they become available.

5. Conclusion

Herein, we presented a method to consistently model AV tissue.
We demonstrated the significance of modeling the normal distri-
bution of fibers in the microstructure (in corroboration of the find-
ings of Billiar and Sacks (2000a)). We further demonstrated the
need for appropriate prestressing of the AV composite to achieve
consistent trilayer mechanical behavior. Our demonstration, how-
ever, did not investigate the complex stress state associated with
the buckling of the fibrosa in the AV composite, a point that war-
rants further study.
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