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Abstract

Ordinal data are extremely common in psychological research, with variables often 

assessed using Likert-type scales that take on only a few values. At the same time, researchers 

are increasingly fitting network models to ordinal item-level data. Yet very little work has 

evaluated how network estimation techniques perform when data are ordinal. We use a Monte 

Carlo simulation to evaluate and compare the performance of three estimation methods applied 

to either Pearson or polychoric correlations: EBIC graphical lasso with regularized edge 

estimates (“EBIC”), BIC model selection with partial correlation edge estimates (“BIC”), and 

multiple regression with p-value-based edge selection and partial correlation edge estimates 

(“MR”). We vary the number and distribution of thresholds, distribution of the underlying 

continuous data, sample size, model size, and network density, and we evaluate results in terms 

of model structure (sensitivity and false positive rate) and edge weight bias. 

Our results show that the effect of treating the data as ordinal versus continuous depends 

primarily on the number of levels in the data, and that estimation performance was affected by 

the sample size, the shape of the underlying distribution, and the symmetry of underlying 

thresholds. Furthermore, which estimation method is recommended depends on the research 

goals: MR methods tended to maximize sensitivity of edge detection, BIC approaches minimized

false positives, and either one of these produced accurate edge weight estimates in sufficiently 

large samples. We identify some particularly difficult combinations of conditions for which no 

method produces stable results. 

Keywords: network psychometrics; network models; ordinal data; nonnormal data
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Translational Abstract

Psychometric network models are statistical models used to explore the associations 

among variables thought to mutually influence each other, and have been widely applied in 

psychopathology, politics, and intelligence. Although psychological researchers often collect 

data measured on an ordinal scale, meaning that variables can only take on a few values, little 

research has examined how network models perform when applied to such data, or which 

estimation technique researchers should use. In this paper, we conduct a simulation study 

evaluating and comparing three different estimation methods when applied to ordinal data, 

varying how the data was treated and characteristics of both the data and network model. The 

three approaches we compare are: EBIC graphical lasso (“EBIC”; a widely-used network 

estimation approach), BIC model selection (“BIC”; a popular nonregularized approach), and a 

multiple regression-based approach (“MR”). 

Our results indicate that if researchers are interested in estimating networks with ordinal 

data, then they should be aware that estimation performance of all three methods is affected by 

whether the data is treated as ordinal versus continuous, the sample size, the shape of the 

underlying continuous distribution, and the symmetry of the underlying thresholds. Furthermore, 

which estimation method we recommend depends on the research goal: MR methods maximize 

the ability to detect relations between variables, BIC methods minimize the detection of false 

positive relations, and either of these approaches accurately estimate the strength of the relations 

once the sample size is large enough.
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Comparing Estimation Methods for Psychometric Networks with Ordinal Data

Psychological researchers are often interested in exploring associations among variables 

that are thought to mutually influence each other, and network models are an increasingly 

popular method to do so. Network models depict variables as nodes in a system, which are 

connected by edges that represent the associations among pairs of variables. Although initially 

proposed as an alternative to latent variable models for psychopathology (Borsboom & Cramer, 

2013), network models have since been widely applied in a variety of subfields of psychology. 

For example, network models have been used to investigate the structure of intelligence (van der 

Maas et al., 2017), political attitudes (Dalege et al., 2017a, 2017b), and classroom dynamics 

(Abacioglu et al., 2019).

In most psychological network models, edges represent the unique relation between a 

pair of variables, controlling for other variables in the network. These edges are typically 

estimated using partial correlations, which are computed by inverting the matrix of Pearson 

correlations that represents the linear associations among variables. Yet many psychological 

variables are assessed using Likert-type scales and thus can only take on a few values (e.g., a 

participant responds on a 7-point scale ranging from strongly disagree to strongly agree). When 

data are ordinal, methodologists have recommended using polychoric correlations to estimate 

edge weights (Epskamp & Fried, 2018). Polychoric correlations, used when both variables are 

ordinal, assume that a latent continuous, normally distributed variable underlies each ordinal 

variable, and the relation between a continuous value and the observed ordinal response is 

determined by a set of thresholds. The polychoric correlation between two ordinal variables 

estimates the Pearson correlation that would be obtained if one had measured the underlying 

variables on their original continuous metric (Olsson, 1979). 
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Estimating Networks in Psychological Research

Regardless of the correlation type used, the first step in calculating the partial correlation 

matrix, Ρ , is to invert the variance-covariance matrix of the data, Σ, to obtain the precision 

matrix, K:

Σ−1
=K=[k ii ¿

⋮ ¿
¿kij¿⋯¿k jj¿ ].

The off-diagonal elements of this precision matrix are then standardized and the sign reversed to 

obtain the partial correlation ρij

ρij=
−k ij

√k ii k jj
,i ≠ j.

Due to the sampling variability present in a finite sample, even two conditionally independent 

variables are likely to have an estimated partial correlation that is nonzero (although it may be 

small). One goal of network estimation is to limit the number of false positives by setting some 

partial correlations to zero, thereby imposing sparsity on the precision matrix (Epskamp & Fried,

2018). Sparse networks are preferred for their ease of interpretation: by interpreting absent (zero)

edges as likely conditional independencies, researchers may more readily identify network 

features such as central nodes (i.e., nodes that have more and stronger connections). 

Numerous methods are available for introducing sparsity into the precision matrix, but 

the most commonly-used method in psychology involves l1-regularization, or lasso, which 

introduces a penalty parameter that shrinks edge estimates toward zero, and shrinks many to 

exactly zero. This method was developed for use in high-dimensional settings where the number 

of variables was greater than the sample size, as methods that did not involve regularization 

(such as forward search algorithms used in regression models) could not guarantee a solution and
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were oftentimes impractical in these settings (Meinshausen & Bühlmann, 2006; Tibshirani, 

1996). 

Although psychological research often takes place in low-dimensional settings and 

therefore does not have the same restriction against nonregularized approaches, the lasso 

approach is a convenient way to obtain a sparse network with an easily interpretable structure. A 

specific variant of the l1-regularization approach – called EBIC graphical lasso (see Network 

Estimation Methods section for technical details) – has been the most popular estimation 

technique in psychological applications. Since ordinal data violate the assumption of multivariate

normality required by the lasso approach, it is recommended that the EBIC graphical lasso 

method is applied to the matrix of polychoric correlations instead of Pearson correlations when 

data are ordinal (Epskamp & Fried, 2018; Meinshausen & Bühlmann, 2006). 

Epskamp (2017) showed that the EBIC graphical lasso approach works well with 

continuous data. This study evaluated performance by examining (a) how well EBIC graphical 

lasso was able to correctly identify which edges were present or absent (in other words, how well

it recovered the true structure of the network) and (b) how accurately it estimated the values of 

the edges (i.e., how close the estimated edge weights were to the true partial correlations). The 

method performed well in determining which edges were truly absent, and its ability to 

determine which edges were truly present increased as sample size increased. Furthermore, EBIC

graphical lasso accurately estimated the edge weights, especially at larger sample sizes. 

Despite the promising performance of EBIC graphical lasso, recent work has indicated 

that some nonregularized approaches to imposing sparsity often perform as well as or better than 

EBIC graphical lasso in the low-dimensional settings common to psychological research. 

Williams and Rast (2019) compared EBIC graphical lasso to a nonregularized method that 
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identified present edges based on either the 95% or 99% confidence intervals of the partial 

correlations. In their simulation, the ability of EBIC graphical lasso to correctly identify the 

presence of absent edges decreased with increasing sample sizes (especially in denser networks), 

whereas the confidence interval method showed consistent estimation.

Similarly, Williams et al. (2019) compared EBIC graphical lasso to nonregularized 

regression methods that selected the neighborhood of each node (i.e., the subset of remaining 

nodes that it is conditionally dependent on) based on forward search algorithms that determine 

which nodes to include by using either Akaike Information Criterion (AIC) or Bayesian 

Information Criterion (BIC). They found that, when data were continuous, the regression-based 

methods typically outperformed EBIC graphical lasso in accurately detecting the edges of the 

network, and their performance only improved with increasing sample size. Furthermore, 

although EBIC graphical lasso produced more accurate edge estimates in larger networks, it had 

similar or worse performance (in terms of both accurate edge estimates and accurate structure 

recovery) in larger sample sizes and smaller networks. 

These findings have drawn attention to the fact the EBIC graphical lasso – although 

widely used – may not always be the most appropriate choice in psychological settings. In light 

of this, nonregularized techniques are becoming increasingly preferred, and have been 

implemented as options in the primary psychological network software package qgraph 

(Epskamp et al., 2012), as well as the default of other network software packages (e.g., 

GGMnonreg, Williams et al., 2019). As more psychological researchers begin to adopt these 

approaches, it is worth examining how nonregularized techniques – as well as EBIC graphical 

lasso – perform with ordinal data, due to its ubiquity in psychological research. This paper 

focuses on how well EBIC graphical lasso and two nonregularized techniques – one based on the
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BIC, and the other based on multiple regression – can accurately recover the network structure 

and edge weights when data are ordinal.

Little work has previously explored how EBIC graphical lasso or nonregularized methods

perform when dealing with ordinal data. In particular, little is known about how these methods 

perform when the polychoric correlation matrix is used in the estimation process, as is the 

current recommendation for ordinal data, as opposed to the Pearson correlation matrix, which 

treats the ordinal data as though they were continuous. Although Williams et al. (2019) did 

include 5-point ordinal data in their comparisons, only one of their methods (the graphical lasso) 

used polychoric correlations, because their alternative methods were based on linear regression 

which assumed linear relations in the raw data. Their comparisons mainly focused on the 

performance of the estimation methods when the data were continuous or when the data were on 

a 5-point ordinal scale, and not on how performance was affected by the use of polychoric or 

Pearson correlation matrices. Epskamp (2017) compared the performance of EBIC graphical 

lasso when using the polychoric correlation matrix versus the Pearson correlation matrix, applied

to 5-point scale data, and found that using the polychoric correlation matrix often resulted in 

worse structure recovery at smaller sample sizes, due to estimating very dense or fully connected

networks. Once sample size increased to at least 250, the performance of the two types of 

correlations was comparable for both structure recovery and the accuracy of the edge estimates. 

However, even the comparisons in Epskamp (2017) were limited by focusing on ordinal 

data that were created by thresholding a normal distribution into 5 categories. Research 

examining ordinal estimation methods in structural equation modeling (SEM) has consistently 

found little difference between categorical and continuous estimation methods when there are at 

least 5 categories, especially when the underlying distribution is multivariate normal (Finney & 
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DiStefano, 2013; Rhemtulla et al., 2012). Using a categorical versus continuous estimation 

method tends to make the most difference when either the number of categories is less than 5, or 

the underlying distribution is nonnormal and/or the thresholds producing the observed ordinal 

distribution are highly asymmetric (Rhemtulla et al., 2012). The current study aims to evaluate 

and compare the performance of EBIC graphical lasso, a BIC nonregularized technique, and a 

multiple regression nonregularized technique when estimated on ordinal data with varying 

number of categories, underlying distributions, and thresholds, and using the polychoric versus 

the Pearson correlation matrix.

Network Estimation Methods

The goal of our simulation study was to examine the performance of the EBIC graphical 

lasso approach (EBIC) and two nonregularized approaches – one based on the Bayesian 

Information Criterion (BIC), and the other based on multiple regression (MR). A quick overview

of these methods is presented in Table 1.

EBIC graphical lasso (EBIC) 

This variant of the l1-regularization method is a common network estimation technique in

psychology. In contrast to the l1-regularization approach described in Meinshausen and 

Bühlmann (2006), which penalizes the coefficients of nodewise regressions, the graphical lasso 

directly penalizes estimates of the elements of the precision matrix, by estimating the precision 

matrix, K̂ , that maximizes the penalized likelihood function:

L ( K̂ )=log (det ( K̂ ))− tr(S K̂ )−λ∑|k ij|,

where S is the sample covariance matrix and λ is a penalty parameter (Friedman et al., 2008). 

Penalizing the sum of absolute values of elements in the precision matrix shrinks these elements 
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towards zero, and shrinks some to exactly zero. The edges that are estimated to be nonzero are 

biased estimates of the population partial correlations. Researchers commonly use the presence 

or absence of edges in the estimated network to make informal inferences about the presence or 

absence of edges in the corresponding population network (Williams et al., 2020). 

The value of λ in the penalized likelihood affects the balance of false positives (i.e., 

spurious edges) and false negatives (i.e., absent true edges): higher values of λ will result in 

greater penalization, and thus more edge weights are estimated to have a value of zero. To 

balance the two, networks are estimated for a sequence of 100 λvalues, and the value of λ is 

chosen to minimize the extended Bayesian Information Criterion (EBIC) of the network, whose 

formula is given by: 

EBIC=−2 (L (K̂ ))+E log(n)+4 γE log ( p),

where n represents the sample size, E the number of nonzero edges in the estimated network, and

p the number of variables in the network. γ  is a prespecified hyperparameter that controls the 

preference for simpler models, and is typically set to 0.5 for a more conservative approach  

(Epskamp & Fried, 2018; Foygel & Drton, 2010). 

The continuous version of this method, which we refer to as cont-EBIC, uses the sample 

Pearson correlation matrix of the data as input. The categorical version, referred to as cat-EBIC, 

uses the sample polychoric correlation matrix. 

Nonregularized Bayesian Information Criterion (BIC) 

The nonregularized BIC approach, proposed by Epskamp (2018), is an iterative network 

structure estimation method, similar to the approach of Williams et al. (2019). It begins with the 

graphical lasso approach described in the previous section, but sets the EBIC hyperparameter γ  
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to 0, so that the EBIC formula reduces to the BIC. This was done in an effort to improve the 

ability of the graphical lasso to accurately detect edges that are present in the network, while 

retaining its ability to avoid false positives (Epskamp, 2018). The BIC-optimal network structure

is then refit without regularization, meaning that the nonzero edge values are re-estimated 

without shrinkage, producing unbiased estimates of nonzero paths while maintaining the 

conditional independence pattern of the graphical lasso-derived optimal network. That is, each 

nonzero edge weight is computed as a partial correlation between a pair of variables, 

conditioning on all other variables in the network. Edges are then iteratively added or removed 

from this refit network, and the network re-estimated, until the BIC can no longer be improved. 

A diagrammatic representation of this method is shown in Figure 1. 

Like the EBIC graphical lasso approach, the continuous version of this method, which we

call cont-BIC, uses the sample Pearson correlation matrix as input. The categorical version, 

which we call cat-BIC, uses the polychoric correlation matrix.

Nonregularized multiple regression (MR) 

The nonregularized multiple regression approach begins by estimating p multiple 

regressions, each of which predicts one variable in the network from the set of all others. A 

weighted adjacency matrix is constructed based on the results of these regressions: if the ith 

variable is a significant predictor of the jth variable at α=.05 and vice versa, then element ŵij of 

the weighted adjacency matrix is set to be the nonzero partial correlation between those two 

variables, and is set to 0 otherwise. The AND-rule used here (as opposed to the OR-rule, where 

an edge is nonzero if at least one of the two regression coefficients is significant) has been used 

in other regression-based approaches to network estimation (e.g., van Borkulo et al., 2014). Note 

that while many nodewise regression methods, such as those used in Meinshausen and Bühlmann
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(2006) and Williams et al. (2019), estimate the edge weights conditional only on the variables 

that were significant predictors, the edge weights in the weighted adjacency matrixare 

conditioned on all other variables in the network, as done in Williams and Rast (2019).  

The continuous version of this approach, which we call cont-MR, uses linear nodewise 

regressions to estimate the structure, and the nonzero edge weights are Pearson partial 

correlations. The categorical version of this approach, cat-MR, estimates nodewise regression 

coefficients using the categorical least squares estimator that is commonly employed for 

estimating structural equation models with categorical data. This method estimates regression 

coefficients by applying unweighted least squares estimation to the polychoric correlation matrix,

and applies a robust correction to the standard errors based on the asymptotic covariance matrix 

of the polychoric correlations (Muthén et al., 1997). The nonzero values in the weighted 

adjacency matrix are polychoric partial correlations. 

Method

Conditions

To compare the performance of the three methods under multiple conditions – 

particularly conditions that represent some assumption violation – we varied characteristics 

relating to properties of the network and of the ordinal data.  

Network Size 

Previous research looking at published network analyses on psychological variables 

found that most of these networks contained between 10 and 30 variables (Wysocki & 

Rhemtulla, 2019). Therefore, to ensure that the network models examined here were similar to 

those used in psychological research, we simulated networks with either p = 10 or p = 20 nodes. 
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It is important to consider different network sizes in this simulation because including more or 

fewer variables can lead to vastly different results; for example, Williams et al. (2019) found that

EBIC graphical lasso estimated edge weights more accurately than nonregularized methods for 

20-node networks, but this pattern reversed for 10-node networks.

Network Connectivity 

In order to produce consistent neighborhood selection, the graphical lasso assumes that 

the true network is sparse, with few connections between nodes (Meinshausen & Bühlmann, 

2006). When the generating network meets this assumption of sparsity (e.g., when between 20 

and 40 percent of possible edges are present), EBIC graphical lasso has been shown to 

adequately recover the network structure (Epskamp & Fried, 2018; van Borkulo et al., 2014). 

However, as the proportion of present edges (the connectivity) increases above 40%, the 

performance of EBIC graphical lasso decreases, such that the false positive rate increases with 

increasing n (Williams et al., 2019; Williams & Rast, 2019). Because most networks estimated in

psychological settings are expected to be dense, with connectivity greater than 50% (Wysocki & 

Rhemtulla, 2019), it is important to consider the performance of these estimation methods under 

different (and increasing) levels of connectivity. To this end, we varied the level of connectivity 

in networks, such that connectivity was either high (70% of possible edges were present), 

medium (50% of possible edges were present), or low (30% of possible edges were present). The

values of high and medium connectivity (70% and 50%) were within the range of larger 

connectivity values assessed in previous simulation studies, and represent a violation of the 

sparsity assumption (Williams & Rast, 2019; Williams et al., 2019; Wysocki & Rhemtulla, 

2019). The value for low connectivity (30%) was chosen to represent a sparse network that is in 
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line with the assumptions of lasso, and falls within the range of connectivity values where EBIC 

graphical lasso has shown adequate performance.  

Sample Size 

The performance of each estimation technique is also expected to vary as sample size 

increases. For example, if the underlying network is dense, EBIC graphical lasso tends to 

produce more false positives as the sample size increases, whereas the nonregularized methods 

assessed in both Williams and Rast (2019) and Williams et al. (2019) were either unaffected or 

improved with larger samples. Furthermore, when dealing with ordinal data, lower sample sizes 

can lead to densely connected networks that are hard to interpret (Epskamp, 2017). 

To evaluate the performance of the three estimation techniques, we compared across 

sample sizes of 100, 250, 500, 1,000, and 3,000. This comparison allows us to evaluate the 

consistency of each method as sample size increases. These sample sizes were chosen to be 

representative of sample sizes in psychological research, and to allow us to replicate low-

dimensional settings where sample sizes tend to be (much) larger than the number of variables. 

Underlying Distribution

 In order to simulate ordinal data, continuous data were simulated from either a 

multivariate normal or multivariate non-normal distribution, then discretized into the appropriate 

number of categories. We varied the underlying distribution because both EBIC graphical lasso 

and polychoric correlations assume underlying normality (Meinshausen & Bühlmann, 2006; 

Olsson, 1979) – an assumption that is unlikely to hold in psychology, where the majority of 

variables are non-normally distributed (Cain et al., 2016; Micceri, 1989). The violation of the 

normality assumption introduces possible bias into the estimates of the polychoric correlations. 
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In the SEM literature, multivariate non-normal data are oftentimes generated using the 

Vale-Maurelli method (Vale & Maurelli, 1983; e.g., Curran et al., 1996; Flora & Curran, 2004; 

Rhemtulla et al., 2012). The Vale-Maurelli method uses Fleishman polynomials to transform 

data generated from a multivariate normal distribution so that the underlying population 

distribution becomes multivariate non-normal with the desired covariance matrix, skewness, and 

kurtosis (Fleishman, 1978; Vale & Maurelli, 1983). These continuous data are then discretized to

produce ordinal data. Using this method, previous literature has shown the relatively modest 

impact of underlying non-normality on SEM estimates based on polychoric correlations (Flora &

Curran, 2004; Li, 2016; Rhemtulla et al., 2012). Thus, in line with previous work examining the 

impact of underlying non-normality on ordinal data, we used the Vale-Maurelli method to 

simulate non-normal data with a univariate skewness of 2 and univariate kurtosis of 7 to 

represent “moderate” non-normality (Curran et al., 1996; Olvera Astivia, 2020). 

Recent work has criticized the approach of discretizing data generated from the Vale-

Maurelli method to achieve ordinal data, as well as the Vale-Maurelli method in general. In order

for a multivariate distribution to be non-normal, either the marginal distributions must be non-

normal or the copula of the multivariate distribution must be non-normal (Foldnes & Olsson, 

2016). The copula of data generated using the Vale-Maurelli method is similar to the 

multivariate normal copula, and thus the data may not be as non-normally distributed as intended

(Olvera Astivia, 2020). Furthermore, work by Grønneberg and Foldnes (2019) and Foldnes and 

Grønneberg (2020) has demonstrated that discretizing data produced by the Vale-Maurelli 

method is numerically equivalent to discretizing the intermediate data generated by the 

multivariate normal distribution, only with different thresholds. In other words, the observed 

ordinal data produced by discretizing data with a multivariate non-normal distribution could also 
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have been produced by discretizing data with a multivariate normal distribution. This calls into 

question whether the estimation results are actually based on data with an underlying non-normal

distribution.

To address this limitation, alternative simulation methods have been proposed, based on 

either vines and copulas, or on independent generator variables (Foldnes & Olsson, 2016; 

Grønneberg & Foldnes, 2017). To compare the effect that different types of underlying non-

normality have on estimation performance, we also simulated non-normal data with univariate 

skewness of 2 and univariate kurtosis of 7, but based on the independent generator method. The 

independent generator method finds a matrix of coefficients whose product with its transpose 

equals the desired covariance matrix, as well as the skewness and kurtosis of the independent 

generator variables that, when transformed, will result in the desired skewness and kurtosis. Data

are simulated from the independent generator variables, and then transformed using the matrix of

coefficients to obtain a random non-normal sample (Foldnes & Olsson, 2016). 

Number of Categories 

The simulated continuous data were discretized into 3, 4, 5, and 7 categories. Although 

previous work has examined the performance of the EBIC graphical lasso method with 5 

categories, we expanded the number of categories under consideration to determine when ordinal

data can be treated as continuous (i.e., supplying the Pearson correlation matrix as input) and 

produce similar results. Comparisons of continuous and ordinal estimation methods for structural

equation models have typically found that, when there are five or more categories, continuous 

estimation methods perform as well as or better than ordinal methods (Beauducel & Herzberg, 

2006; Flora & Curran, 2004; Rhemtulla et al., 2012). Thus, since anywhere from 3 to 7 

categories are common in Likert-type items, we considered that range here. We did not consider 
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binary variables, as such networks are typically estimated as Ising networks using the regularized

logistic regression approach proposed by van Borkulo et al. (2014). 

Threshold Symmetry 

Previous research in SEM investigated the impact of category thresholds being 

symmetrically or asymmetrically distributed around the mean, and found that asymmetric 

thresholds can impact, for example, the accuracy of parameter estimates, test statistics, and 

power (Lei, 2009; Rhemtulla et al., 2012). In the case of network estimation, asymmetric 

thresholds can lead to biased estimates of the polychoric correlations, which can then compound 

to even greater bias in the partial correlation estimates (Epskamp & Fried, 2018). 

We considered three types of threshold symmetry: symmetric thresholds that evenly 

divided the space between -2.5 and 2.5 standard deviations around a mean of 0, moderately 

asymmetric thresholds where the majority of responses fell to the left of center, and extremely 

asymmetric thresholds where the first category had the greatest proportion of cases (and then the 

proportion continued to decrease for each of the remaining categories). The exact threshold 

values are the same as those used in Rhemtulla et al. (2012), and are presented in Table 2.

Simulation Procedure

In summary, the factors we varied in this study were: 

 Network size  : 10 nodes, 20 nodes

 Level of network connectivity  : High (70%), medium (50%), low (30%)

 Sample size  : 100, 250, 500, 1,000, 3,000

 Underlying normality  : Normal, non-normal (Vale-Maurelli), non-normal 

(independent generators)
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 Number of categories  : 3, 4, 5, 7

 Threshold symmetry  : Symmetric, moderately asymmetric, extremely asymmetric

These factors were fully crossed, resulting in a total of 1,080 conditions. For each 

condition, we simulated 1,000 datasets as follows:

1. A bank of polychoric partial correlations was created using the bfi dataset available in

the R package psych, which assessed participants’ personality traits using a 6-point 

response scale (Revelle, 2019). Following the procedure of Epskamp (2017), all 

partial correlations with absolute value less than .05 were removed from this bank. 

2. The appropriate number of partial correlations were sampled from this bank to be the 

nonzero edges of the network, where the appropriate number was the integer closest 

to

p ( p−1 )

2 ∗connectivity.

If the resulting partial correlation matrix was not positive definite, then the 

sampling procedure was repeated until a positive definite matrix was obtained. 

3. For each population network, an ordinal dataset was simulated that met the 

prespecified conditions formed by crossing the factors described above. We then 

calculated the polychoric and Pearson correlation matrices to use as input for the 

network estimation techniques – if this correlation matrix was not positive definite, 

the nearest positive definite matrix was found using the algorithm of Higham (2002).

4. Networks were estimated using the 6 network estimation techniques: cont-EBIC, cat-

EBIC, cont-BIC, cat-BIC, cont-MR, and cat-MR. 
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Network Estimation Software

Continuous data were simulated using the mvrnorm function of the MASS package 

(Venables & Ripley, 2002), mvrnonnorm function of the semTools package (Jorgensen et al., 

2020), and rIG function of the covsim package (Grønnenberg & Foldnes, 2017) for underlying 

normal, non-normal (Vale-Maurelli), and non-normal (independent generators) distributions, 

respectively. Polychoric partial correlation matrices were estimated using the cor_auto function 

in the qgraph package, and if necessary, the nearest positive-definite matrix was found using the 

nearPD function of the Matrix package (Bates & Maechler, 2019; Epskamp et al., 2012). 

Network estimation with the EBIC and BIC methods were implemented using the EBICglasso 

and ggmModSelect functions, respectively, in the qgraph package. Finally, the regressions of the 

MR approach were run in lavaan, and if the data were being treated as ordinal, the outcome 

variable was declared to be ordered and the estimator was specified as “ULSMV” (Rosseel, 

2012)

The code for the entire simulation, and figures demonstrating full results, can be found at 

https://osf.io/t4gb9  .   

Performance Measures

In order to evaluate the performance of the methods, we compared how well each method

was able to accurately recover the network structure – that is, the pattern of present and absent 

edges – and to accurately estimate edge strength. We also compared the model convergence rates

of each estimator to assess the ability of each method to find a solution in difficult conditions. 

Convergence 

https://osf.io/t4gb9
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We assessed the convergence rates for each method across all conditions. Each 

estimation method could fail to converge for different reasons – for the MR method, a replication

could fail to converge if at least one of the p regressions did not produce a solution, whereas the 

BIC method could fail to converge if a solution was not found within a given time limit (due to 

convergence issues within the glasso function that is used within ggmModSelect, Friedman et al.,

2019; e.g., Mazumder & Hastie, 2012). 

In addition to convergence rates, we noted whether the correlation matrices were non-

positive definite. One noted issue with polychoric correlation matrices is that their pairwise 

construction means the final matrix may not be positive definite, an issue which Pearson 

correlation matrices avoid except in instances when variables are highly redundant or invariant 

(Lorenzo-Seva & Ferrando, 2020). If the correlation matrix is not positive definite, then it cannot

be inverted to find the precision matrix. To avoid this problem, the nearest positive definite 

matrix was found instead, but the partial correlation matrix that results from this procedure may 

not be stable, and could lead to a densely connected network with edge weights near -1 and 1 

(Epskamp & Fried, 2018). This instability in the partial correlation matrix can impact the 

estimates of our chosen performance measures – in particular, densely connected networks can 

affect estimates of sensitivity and false positive rate, while large edge weights can affect the 

estimates of bias. Therefore, the results reported below exclude replications where the original 

correlation matrix was not positive definite, and we note where this exclusion noticeably affected

the outcomes. 

Sensitivity 

Sensitivity, also known as the true positive rate, quantifies how well a method correctly 

detects edges present in the network. It is calculated as 
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Sensitivity=
TruePositives

True Positives+False Negatives ,

where a true positive is an edge that is present in the population and estimated to be present by 

the network estimation technique, and a false negative is an edge that is present in the population

but estimated to be absent. Sensitivity ranges between 0 and 1, with a score of 1 indicating that 

all edges that were present in the population network were estimated as such in the sample 

network. Thus, an estimated network can achieve perfect sensitivity if it is fully connected.

False Positive Rate 

The false positive rate quantifies how often each method mistakenly identifies an edge 

that is absent in the population as present in the estimated network. It is calculated as

False Positive Rate=1−
True Negatives

True Negatives+False Positives ,

where a true negative is an edge that is absent in the population network and estimated to 

be absent, and a false positive is an edge that is absent in the population but estimated to be 

present. The false positive rate ranges between 0 and 1, where a score of 0 indicates that all 

edges that were absent in the true network were absent in the sample network (i.e., no false 

positives were made). Just as a fully connected estimated network will have perfect sensitivity, 

an estimated empty network will have a false positive rate of 0.

Bias 

In order to assess how well each method estimated the edge weights, we calculated the 

relative bias within each condition as:

RB ŵ=
1

nREP ∑
j=1

nREP 1
nTPE j

∑
i=1

nTPE ŵ ij−wij

wij
,
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where nREP is the number of converged replications, nTPE is the number of true positive edges 

within a replication, ŵ is an estimated edge weight, and w is the true edge weight value. In order 

to avoid conflating edge detection with edge accuracy, we only calculated relative bias for edges 

that were correctly estimated to be present.

Results

Due to the overwhelming number of conditions, we describe here a selection of the most 

informative results. First, we only present the results for 10-node networks – typically, having 20

nodes instead of 10 led to the selection of denser networks, particularly for the EBIC methods. 

This resulted in higher sensitivity, but also a higher false positive rate. Next, we exclude some 

levels of connectivity. Connectivity mainly affected the EBIC methods – the higher the 

connectivity of the network, the greater the sensitivity and the false positive rate of these 

methods. The effect of connectivity was especially pronounced in the 20-node networks – not 

only was the discrepancy between the levels of connectivity greater, but now all six estimation 

methods were impacted (again, such that higher connectivity led to greater sensitivity and more 

false positives). Therefore, we chose to only present results for those networks where 50% of 

possible edges were nonzero, as this maintained the relations between the different estimation 

approaches without either overstating or understating the performance of the EBIC methods.

We also omitted the Vale-Maurelli and moderately asymmetric thresholds conditions 

from the results. Because the independent generators approach to nonnormality produced more 

dramatically different results, we present only those here. Similarly, the moderately asymmetric 

thresholds showed very similar performance to the conditions with symmetric thresholds, 

whereas the extremely asymmetric thresholds produced notably different results.
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Finally, the results only include conditions with 3 or 7 levels, as the focus on the number 

of levels was mostly on how differences between treating the data as ordinal or continuous 

changed as the number of levels increased. Since these comparisons can be made by looking at 

the two extremes of the number of levels, we omitted 4 and 5 level conditions (although we 

make reference to them in the text as relevant). 

Convergence Failures and Non-Positive-Definite Matrices

Convergence failures are reported in Table 3. Convergence failures were limited to the 

two nonregularized approaches, whereas the EBIC method converged in all replications. The 

overall number of convergence failures was much higher for the BIC method than the MR 

method; in fact, for the BIC method, 3 conditions failed to converge in any of the 1,000 iterations

(these 3 conditions were all 20-node networks with 3-category data and n = 100, generated using

the independent generator method). 

For both the BIC method and the MR method, convergence failures were more common 

in 20-node networks than 10-node networks, as well as when the sample size was smaller, when 

thresholds were extremely asymmetric, or when the data were generated by the independent 

generator method. For the BIC method, convergence failures were more common when the data 

were treated as ordinal rather than continuous, and with fewer levels. The reverse was true for 

the MR method – convergence failures were more likely when data were treated as continuous, 

and with more levels. 

With regards to the correlation matrix not being positive definite, this issue was (as 

expected) more common when treating the data as ordinal than as continuous. At most 10 out of 

1,000 Pearson correlation matrices were non-positive definite, whereas in some conditions all 
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1,000 polychoric correlation matrices were non-positive definite. The proportion of iterations 

with non-positive definite matrices increased as the number of nodes in the network increased, 

the connectivity increased, the thresholds were extremely asymmetric, or the data were generated

using the independent generator method. Conversely, the proportion of iterations with this issue 

decreased with increasing sample size and increasing number of levels.

Sensitivity

The sensitivity results are displayed in Figures 2 and 3, with Figure 2 containing 

conditions with an underlying normal distribution, and Figure 3 an underlying non-normal 

distribution. Sensitivity for all methods tended to be low at small sample sizes (e.g., at n = 100 or

n = 250, sensitivity generally ranged from below 5% to around 40%); however, the EBIC 

methods tended to perform the worst due to selecting empty or near-empty networks. Similarly, 

cat-MR selected empty or near-empty networks when the underlying distribution was non-

normal and thresholds extremely asymmetric, resulting in the poor performance shown in the 

second column of Figure 3. Although sensitivity did increase as sample size increased, most 

methods barely achieved 70% sensitivity until n = 1,000, and it was not until n = 3,000 that all 

methods achieved above 70% sensitivity. Once sample size reached at least 3,000, all methods 

performed similarly well. One exception was cont-BIC and cont-EBIC in conditions that 

combined non-normal underlying distributions with extremely asymmetric thresholds – in such 

conditions, these methods tended to perform worse than other methods and did not reach 70% 

sensitivity even at n = 3,000. We also ran a single iteration of n = 1,000,000 to assess the 

asymptotic behavior of these methods, and found that all methods asymptotically achieved 

perfect sensitivity. The one exception was cat-MR in a condition that combined 3 levels, 
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extremely asymmetric thresholds, and a non-normal underlying distribution, which selected an 

empty network and therefore had zero sensitivity.

It appears that the BIC and EBIC methods were most affected by treating the data as 

ordinal instead of continuous, with treating the data as ordinal resulting in higher sensitivity. This

discrepancy is especially pronounced when the thresholds are extremely asymmetric and/or the 

underlying distribution is non-normal. As the number of levels increases, the discrepancy 

decreases, such that at 7 levels, treating the data as continuous gives similar results to treating the

data as ordinal as long as the underlying distribution is normal. If the underlying distribution is 

non-normal, then even with 7 levels, treating the data as ordinal still results in higher sensitivity. 

The effect of the number of levels on reducing the gap between ordinal and continuous methods 

is made clearer in Figure 4, where sensitivity is plotted as a function of the number of levels for 

the condition with an underlying normal distribution, symmetric thresholds, and a sample size of 

1,000 (although the pattern shown generally holds in other conditions as well). From Figure 4, it 

becomes clear that the performance of cat-BIC and cat-EBIC tends to be unaffected by the 

number of levels, and the increasing similarity in performance is due to the improved 

performance of cont-BIC and cont-EBIC as the number of levels increases. 

Although the MR method is affected by treating the data as ordinal instead of continuous,

this difference is not as extreme as that observed for the BIC or EBIC methods, and the 

difference goes in the opposite direction (i.e., cat-MR tends to show lower sensitivity than cont-

MR). Furthermore, the difference does not change with the increasing number of levels – as can 

be seen in Figure 4, the lines representing cat-MR and cont-MR remain roughly parallel as the 

number of levels increases. Instead, the difference between cat-MR and cont-MR relies most on 

sample size – as the sample size increases (i.e., going down each column in Figures 2 and 3), the 
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discrepancy decreases, and the two often give similar performance once the sample size is at 

least 500. 

For all methods, there is also a general effect of threshold symmetry, such that 

performance worsens when the thresholds are extremely asymmetric. This effect is more 

pronounced when the underlying distribution is non-normal, but does not seem to affect any 

estimation method or data type more often than the rest. Similarly, performance tends to worsen 

when the underlying distribution is non-normal versus normal. These comparisons also reveal a 

potential problem with cat-BIC and cat-EBIC – these two methods have an unusually high 

sensitivity when the underlying distribution is non-normal or the thresholds are extremely 

asymmetric (or both), which is particularly obvious when the number of levels is low (e.g., the 

left two columns of Figure 3). This is likely due to selecting dense networks in these conditions, 

and indicates that these methods may potentially be unstable.

Overall, researchers interested in recovering as many present edges as possible 

(maximizing sensitivity) should be aware that if their data have few response options and the 

underlying distribution is non-normal with extremely asymmetric thresholds, then a sample size 

greater than 3,000 would be needed to produce reliable results. In general, researchers who wish 

to maximize sensitivity would be recommended to use either cat-MR or cont-MR (with cont-MR

being preferred for sample sizes below 500), as these methods tended to result in similar or better

sensitivity than other methods, but were stable across distribution type and threshold symmetry 

(unlike cat-BIC and cat-EBIC, which had high sensitivity but also a tendency to select dense 

networks). 
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False Positive Rate

The results for false positive rate are shown in Figures 5 and 6, with Figure 5 pertaining 

to conditions with an underlying normal distribution and Figure 6 pertaining to conditions from 

an underlying non-normal distribution. Overall, the false positive rates for all methods tended to 

be acceptable, with the average false positive rate being less than 30% in most conditions. 

Although the false positive rate is not as strongly affected by sample size as sensitivity is, some 

general trends emerged. The false positive rate of the BIC methods declined with increasing 

sample size, often nearing 0 by n = 3,000 (particularly cont-BIC). Conversely, the false positive 

rate of the EBIC methods increased with increasing sample size (often from almost 0 at n = 100 

to around 20% or 30% at n = 3,000), which points to a problem with this method that has been 

noted before (Williams et al., 2019) – it is desirable that an estimation method produces fewer 

false positives as information increases, and the EBIC method fails to do so. The MR method 

also showed a very slight increase with increasing sample size, but this increase was, on average,

only 5% for cat-MR and 2% for cont-MR across all conditions (compared to an average increase 

of 28% and 19% for cat-EBIC and cont-EBIC, respectively). 

The effect of treating the data as ordinal instead of continuous generally mirrored the 

effects on sensitivity – just as treating the data as ordinal resulted in higher sensitivity for the 

BIC and EBIC methods, it also resulted in a higher false positive rate. Once again, this 

discrepancy was more obvious in the conditions with underlying non-normal distributions and/or

extremely asymmetric thresholds, and decreased with an increasing number of categories. The 

discrepancy still remained even at 7 levels if the underlying distribution was non-normal or the 

thresholds were extremely asymmetric. However, Figure 7 (which displays the effect of the 

number of levels on the false positive rate) shows that the reduced gap between the ordinal and 
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continuous methods is due to the improved performance (decreasing false positive rate) of cat-

BIC, and some combination of improved performance of cat-EBIC and worsening performance 

of cont-EBIC. This trend differs from the sensitivity results, where the decrease in the 

discrepancy was almost solely due to the improved performance of cont-BIC and cont-EBIC. For

the MR method, cat-MR tended to have a lower false positive rate (especially at sample sizes 

below 500, where it often selected near-empty networks) or a similar false positive rate as cont-

MR. Once again, the discrepancy between cat-MR and cont-MR was unaffected by the number 

of levels, as the two lines for these methods are parallel in Figure 7, but the discrepancy did 

decrease with increasing sample size, and the two performed similarly once sample size was 

around 500.  

Surprisingly, there was very little effect of threshold symmetry and underlying 

distribution type on false positive rate. The main difference between the underlying distribution 

being non-normal instead of normal, or the thresholds being extremely asymmetric instead of 

symmetric, was that cat-BIC and cat-EBIC tended to have much poorer performance in these 

conditions (due to selecting dense networks), particularly when the number of levels was low, as 

can be seen in column 2 of Figure 5, or columns 1 and 2 in Figure 6. Once again, this points to 

instability in these two methods.  

Overall, many of the false positive results mirrored those of sensitivity, but the 

recommendations are slightly different. Although the MR methods were previously 

recommended due to their high sensitivity and stability across sample sizes, the results here 

suggest that the cont-BIC method does best at minimizing the false positive rate, even achieving 

close to no false positives in some conditions. 
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Relative Bias

Finally, when examining the relative bias for true positives, we considered an edge 

weight to be substantially biased if the absolute value of the relative bias was greater than 0.1, in 

line with previous literature (e.g., Flora & Curran, 2004). These results are shown in Figures 8 

and 9. All methods tended to produce substantially biased results (with relative bias ranging from

-0.8 to 3) at sample sizes less than 1,000. However, going down the columns of Figures 8 and 9 

demonstrate that the relative bias of the nonregularized methods decreases as the sample size 

increases (from around 1 at n = 100 to close to or below 0.1 at n = 3,000), whereas the relative 

bias of the EBIC method remains relatively constant, or has slight decreases (e.g., the average 

change in bias from n = 100 to n = 3,000 was only around 0.01) Furthermore, the MR and BIC 

methods tended to produce edge estimates that overestimated the true edge weight, while the 

EBIC methods tended to produce edge estimates that underestimated the true edge weight. 

Using the polychoric correlation matrix as input resulted in more bias for both 

nonregularized methods than using the Pearson correlation matrix, while the reverse was true for 

the EBIC method. Like the sensitivity and false positive results, this discrepancy was more 

prominent in conditions that had non-normal underlying distributions or extremely asymmetric 

thresholds, and decreased as the number of levels increased due to the decreasing bias of cat-

MR, cat-BIC, and cont-EBIC. 

The relative bias tended to be higher when the underlying distribution was non-normal, 

especially when the thresholds were symmetric, and methods that treated the data as ordinal were

more affected than those that treated the data as continuous. However, if the thresholds were 

extremely asymmetric, there tended to be much less discrepancy between the relative bias of the 

two different underlying distributions. On the other hand, the effect of threshold symmetry was 
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only present when the underlying distribution was non-normal; in this case, methods that treated 

the data as ordinal were once again more affected by threshold symmetry, but there was no 

consistency in whether conditions with extremely asymmetric thresholds resulted in worse bias. 

Otherwise, if the underlying distribution was normal, the relative bias in conditions with 

symmetric thresholds was similar to that in conditions with extremely asymmetric thresholds.  

Comparing the three methods, the top two rows of Figures 8 and 9 show that at sample 

sizes less than 500, the EBIC methods produced less biased estimates than either nonregularized 

method. However, due to the decrease in bias with increasing sample size, the nonregularized 

methods produced essentially unbiased estimates by n = 3,000, while the EBIC methods were 

still substantially biased. 

The asymptotic results shown in Figure 10 highlight that under the “ideal” scenario 

(underlying normal distribution, symmetric thresholds, and at least 5 levels), all methods produce

essentially unbiased edge weight estimates. When the underlying distribution was normal but the

thresholds were extremely asymmetric, as in the 2nd column, estimates from all methods that 

treated the data as continuous were biased while those from methods that treated the data as 

ordinal remained unbiased. If the underlying distribution was non-normal, then estimates from 

all methods were biased, but methods that treated the data as ordinal produced less bias than their

continuous counterparts. Interestingly, all methods that used the polychoric correlation matrix 

produced the same amount of bias as each other, and this bias was less than the bias produced by 

the methods based on Pearson correlations. Therefore, asymptotically, treating the data as ordinal

versus continuous mattered more than the particular estimation method used. This is not 

unexpected – the polychoric correlation is an estimate of the population correlation between the 

continuous variables that underlie the ordinal responses, whereas the Pearson correlation is an 
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estimate of the correlation between the observed ordinal responses, and these two population 

quantities are not the same. Pearson correlations underestimate the correlations among the 

underlying continuous variables.

In sum, researchers should be aware that all methods will produce substantially biased 

estimates when the number of categories is small and the underlying distribution is non-normal, 

especially if the thresholds are extremely asymmetric. These results suggest that, to maximize 

the accuracy of the estimates, cat-EBIC should be used when estimating networks in samples 

smaller than 500, as this method produced less biased results than either of the nonregularized 

methods or cont-EBIC. If the sample size is at least 500, either of the nonregularized methods 

produce nearly unbiased results, although cat-MR and cat-BIC are preferred in case the 

underlying thresholds are asymmetric. 

Follow-Up Simulation: Random Partial Correlation Matrices

We chose to generate our population networks from empirically-derived partial 

correlations, as we believed this would be a better representation of psychological networks, and 

thus our results and recommendations would be more applicable to researchers. Yet to ensure 

that none of our results were specific to only the population networks we could generate with our

empirical dataset, we ran a smaller follow-up simulation for conditions that combined 10 nodes 

and 50% connectivity with either normal or non-normal (independent generators) underlying 

distributions, symmetric or extremely asymmetric thresholds, and 3 or 7 levels. Instead of 

building the population network from the partial correlations of an empirical dataset, the 

population network was created by transforming a randomly-generated precision matrix into a 

partial correlation matrix. To generate random precision matrices, we used the bdgraph.sim 

function available in the BDgraph package, setting the degrees of freedom for the G-Wishart 
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distribution to the default value of 3 (Mohammadi & Wit, 2019). The degrees of freedom of the 

G-Wishart distribution control the size of the partial correlation values, with higher degrees of 

freedom corresponding to smaller partial correlation values (Hsu et al., 2012). A degrees of 

freedom value of 3 corresponds to a non-informative prior for the precision matrix; therefore, the

partial correlation values in the generated population networks could range from -1 to 1 with no 

restriction, and 90% of the values fell between ±.4. (see Figure 11).   

Figures displaying the results for sensitivity, false positive rate, and relative bias are 

available online. One immediately noticeable difference from the main results presented earlier is

that denser networks are being estimated, resulting in both a higher sensitivity and a higher false 

positive rate. For example, at n = 100, the sensitivity of the methods in the main results were, on 

average, below 30% while the false positive rate was, on average, below 20%. However, in this 

follow-up simulation, the average sensitivity at n = 100 was above 60%, while the average false 

positive rate was above 40%. The higher sensitivity might be partially explained by the wider 

range of partial correlation values in the population networks - as illustrated in Figure 11, the 

possible partial correlation values for the empirical dataset ranged only from -0.3 to 0.6, whereas 

the range for partial correlations generated via BDgraph was -1 to 1. In fact, when we 

recalculated the ability of the estimation methods to accurately detect edges that were within and 

outside the range of -0.3 to 0.6, that is, the range of edges generated in the main, empirical data 

simulation, all methods were able to near-perfectly detect edges that were outside this range 

(unless the thresholds were extremely asymmetric, in which case performance was slightly 

reduced). The ability of the methods to detect edges within this range was slightly reduced 

(although still better than that of the main results).
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Apart from increased densities leading to a higher sensitivity and false positive rate, the 

general pattern of results for these two performance measures remained the same. For sensitivity,

the improved overall performance meant that almost all methods achieved at least 70% 

sensitivity by n = 500, instead of n = 3,000, and the false positive rate of the EBIC and cat-BIC 

methods were much higher than previously reported. However, the effect of treating the data as 

ordinal versus continuous, the overall effects of the different data characteristics studied, and the 

recommended methods remained the same.

To compute relative bias, we not only restricted our calculations to edges that were 

present in both the true and estimated network, but also to edges where the true partial 

correlation had an absolute value greater than .05. We did this because there were a number of 

very small, nonzero partial correlations present in the population networks that caused the 

relative bias to explode (i.e., because calculating relative bias requires dividing by the population

value), making the averaged results uninterpretable. When we calculated relative bias with these 

restrictions, we found that although the relative bias was, in general, smaller than in the initial 

results, the general patterns tended to hold. The biggest differences were that almost all methods 

were essentially unbiased by n = 250 or n = 500, instead of n = 1,000, and the recommended 

method changed slightly. Now, for sample sizes below 1,000, either cont-MR or cont-BIC are 

recommended, instead of cat-EBIC, while for sample sizes of 1,000 or more, cat-MR and cat-

BIC remain the recommendation.

Discussion

The aim of the current paper was to evaluate how, when estimating networks on ordinal 

data, the performance of three estimation methods was affected by various data characteristics 

and the use of either the polychoric or Pearson correlation in the estimation process. Our results 
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showed that, for structure recovery, the choice of polychoric versus Pearson correlations 

mattered most for the two methods that were based on the graphical lasso (the BIC and EBIC 

methods), such that when there were only 3 or 4 categories, polychoric correlations resulted in 

higher sensitivity, but also a higher false positive rate. In contrast, the MR method produced 

comparable results regardless of correlation type, except when n was less than 500, where 

polychoric correlations resulted in both lower sensitivity and a lower false positive rate. In terms 

of the accuracy of the edge estimates, treating the data as ordinal resulted in greater bias for the 

MR and BIC methods, and less bias for the EBIC methods. For all three performance measures, 

the discrepancy between treating the data as ordinal and treating the data as continuous decreased

as the number of levels increased, such that the performance tended to be similar at 5 or 7 levels, 

echoing similar results in the SEM literature (Finney & DiStefano, 2013; Rhemtulla et al., 2012).

Having an underlying non-normal distribution and/or extremely asymmetric thresholds generally

resulted in worse performance for all three methods, and increased the discrepancy between 

categorical and continuous estimation methods. 

Our results confirm a number of previous notes in the literature about estimating 

networks with ordinal data. First, Epskamp (2017) found that cat-EBIC would often estimate 

dense networks when sample size was small in data with five categories, and Epskamp and Fried 

(2018) pointed out that dense networks were more likely to be estimated when polychoric 

correlation matrices were used, due to the higher likelihood of not being positive definite. Even 

after excluding results where the correlation matrix was not positive definite, we saw a similar 

result, although density of the estimated networks was more influenced by other features of the 

data (the number of categories, the underlying distribution, and the threshold symmetry) than the 

sample size. In particular, when the number of categories was low, cat-BIC and cat-EBIC 
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selected dense networks, resulting in sensitivity above 70% but also a false positive rate near or 

above 30%. The tendency to select dense networks was even greater when the underlying 

distribution was non-normal and/or the thresholds extremely asymmetric. Second, Epskamp and 

Fried (2018) pointed out that, with ordinal data, low frequencies in some categories or skewed 

data might lead to greater bias in the polychoric partial correlations. We confirmed this result 

here – when thresholds were extremely asymmetric (leading to some response categories having 

far fewer endorsements than others), and especially when combined with an underlying non-

normal distribution (which resulted in some response categories having almost no 

endorsements), the relative bias tended be higher.

Our paper is unique in that it included two different types of non-normal distributions in 

the comparisons – one non-normal distribution generated by the Vale-Maurelli method, and the 

other via the independent generator method. When considering only the non-normal data 

generated by the Vale-Maurelli method, our results showed that network performance was only 

modestly impacted by the violation of the normality assumption, even though the skewness and 

kurtosis values were chosen to represent a moderately non-normal underlying distribution. 

However, in light of the concerns raised by Grønneberg and Foldnes (2019) and Foldnes and 

Grønneberg (2020) on the equivalence between discretized data produced by the Vale-Maurelli 

method and discretized data produced by a multivariate normal distribution, we also included a 

more “extreme” version of non-normality that avoids this issue. When non-normal data were 

produced by the independent generator method, we found that network performance significantly

worsened, and the unstable performance of some of the estimation methods was made evident. 

Therefore, our paper showed that the impact of an underlying non-normal distribution depends 

on the type of underlying non-normality, and is not always modest or ignorable. 
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Finally, our paper highlighted the importance of simulating data that resembles data in 

the field. Our main results generated population networks from the set of partial correlations 

calculated on a psychological dataset, so that the simulated data would more closely mirror 

characteristics of real psychological data (e.g., most partial correlations have a value below 0.5; 

Wysocki & Rhemtulla, 2019) than if data had been simulated from a distribution of partial 

correlation values. Our follow-up simulation showed that if partial correlation values were 

instead drawn from a G-Wishart distribution with 3 degrees of freedom, then the performance of 

all methods were improved, which may cause the impression that the methods studied perform 

better than they would when actually applied to psychological data.

Recommendations

Our paper not only focused on the impact of various data characteristics on network 

estimation performance, but also on how each of the three methods considered here compared to 

each other when dealing with ordinal data. Although these three methods are by no means a 

comprehensive list of the estimation methods available to researchers, we can make some 

general recommendations based on our results. These recommendations, as always, come with 

the caveats of being dependent on specific features of the simulated data.

First, researchers should be aware that in certain scenarios, no method can be relied on to 

produce good results. If the sample size is less than 1,000, then the sensitivity of all methods will

be below 70%. Even with a sample size of 3,000, the sensitivity will still be below 70% if the 

number of categories is low, the underlying distribution non-normal, and the thresholds are 

extremely asymmetric. Similarly, if the number of categories is low or the thresholds are 

extremely asymmetric (i.e., some response options are used very infrequently), or either of these 
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two conditions are combined with an underlying non-normal distribution, then all methods will 

produce substantially biased estimates. Finally, if researchers wanted to use either the cat-BIC or 

cat-EBIC method (since the latter is the current recommendation), then a non-normal underlying 

distribution or extremely asymmetric thresholds will result in unexpectedly dense networks that 

can be hard to interpret.

 Second, out of the three network estimation methods considered here, no method 

performed consistently well across conditions or performance measures. Therefore, researchers 

will have to prioritize a particular performance metric – whether the focus is on obtaining an 

accurate network structure (and in that case, whether they are more interested in maximizing the 

number of true positives or minimizing false positives), or on obtaining accurate edge estimates. 

The strengths and weaknesses of each method are summarized in Table 4. If the focus is on 

maximizing the sensitivity (i.e., true positive rate), then the MR method (cont-MR for sample 

sizes below 500, but either cont-MR or cat-MR for larger sample sizes) performs well whilst 

remaining stable across distribution and symmetry type. Conversely, if the focus is on 

minimizing the false positive rate (i.e., ensuring that most of the estimated edges are truly present

in the population), then cont-BIC tends to have the lowest false positive rate across almost all 

conditions, and in fact makes almost no false positives when the sample size is large. Finally, if 

the focus is only on obtaining accurate edge estimates, regardless of the structure of the network, 

then cat-EBIC is preferred for sample sizes below 500, and cat-MR or cat-BIC for larger 

samples. 

The above recommendations are based on results where population networks were 

derived from partial correlation values found in a psychological dataset. Although we believe 

these recommendations are more pertinent to applied researchers, there may be concerns about 
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the generalizability of these recommendations. However, our follow-up simulations 

demonstrated that most recommendations would carry over to scenarios where the distribution of

partial correlations resemble that of a G-Wishart distribution with 3 degrees of freedom, i.e., 

most partial correlation values fall in the mid-range of [-1, 1], but larger values are possible. The 

only change is that if researchers believe their data looks more like that of the G-Wishart 

distribution, and their goal is to obtain accurate edge estimates, then cont-MR or cont-BIC may 

be preferred over cat-EBIC at smaller sample sizes, as these methods produced less bias in the 

follow-up simulations (despite being only second-best in the initial simulation). 

Limitations 

There are a number of limitations to the present study. The first is that our paper only 

examined three different network estimation techniques. There is a vast array of possible network

estimation techniques that could be used when estimating networks on ordinal data. For example,

the mgm package can estimate networks from data where each variable is either continuous or 

nominal (thus accounting for the categorical nature of ordinal variables but not the ordering), and

the psychonetrics package uses the weighted least squares estimator to estimate networks on 

ordinal data (Epskamp, 2021; Haslbeck & Waldorp, 2020). The three techniques evaluated here 

were chosen because they are either widely used (e.g., the EBIC and BIC methods) or are 

theoretically based on common network estimation techniques (e.g., the MR method was based 

on nodewise regressions). 

Second, while we were careful to use network edge values, sample sizes, network sizes, 

and connectivity estimates derived from empirical work in the field, the simulated data are 

nonetheless not a perfect representation of real data. For example, all variables in each condition 
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were of the same type with the same underlying distribution and same thresholds. When 

estimating structural equation models, even if all variables have the same number of levels and 

underlying distribution, estimation results can change when each variable is allowed to be 

defined by its own set of threshold values (Foldnes & Grønneberg, 2020). Therefore, having 

variables in the same network with different numbers of levels or underlying thresholds may 

similarly affect network estimation performance. 

Conclusion

The ubiquity of ordinal data in psychological research and the popularity of the network 

modeling approach for exploring associations among variables means that, at some point, 

psychological researchers may need to estimate a network on ordinal data. The present study 

showed that treating the data as ordinal in the network estimation process does not always result 

in better estimation performance, and characteristics of the ordinal data – the number of 

categories, underlying distribution, and symmetry of thresholds – all affect performance, and 

should be carefully considered when choosing an estimation approach and inspecting the results. 
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Tables and Figures

Table 1

Summary of Network Estimation Approaches Used

Method Input Abbreviation What is 
being 
estimated?

Zeroes 
determined 
by:

Non-zero 
elements 
represent:

EBIC graphical 
lasso

Pearson 
correlation

cont-EBIC Precision 
matrix (K)

l1-
regularization 
(setting
γ=0.5¿

Shrunken 
partial 
correlations

Polychoric 
correlation

cat-EBIC

Nonregularized 
Bayesian 
Information 
Criterion

Pearson 
correlation

cont-BIC Precision 
matrix (K)

l1-
regularization 
(setting γ=0 ¿

+ iterative 
changes

Nonregularized
partial 
correlations

Polychoric 
correlation

cat-BIC

Nonregularized 
multiple 
regression

Pearson 
correlation

cont-MR Regression 
coefficients 
(β) 

p-value < .05, 
using AND 
rule

Nonregularized
partial 
correlations

Polychoric 
correlation

cat-MR
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Table 2

Threshold Values

Category Thresholds
Threshold 

Condition

No. of 

Levels

h1 h2 h3 h4 h5 h6

Symmetric 3 -0.83 0.83
4 -1.25 0.00 1.25
5 -1.50 -0.50 0.50 1.50
7 -1.79 -1.07 -0.36 0.36 1.07 1.79

Moderately 

Asymmetric

3 -0.50 0.76
4 -0.31 0.79 1.66
5 -0.70 0.39 1.16 2.05
7 -1.43 -0.43 0.38 0.94 1.44 2.54

Extremely 

Asymmetric

3 0.58 1.13
4 0.28 0.71 1.23
5 0.05 0.44 0.84 1.34
7 -0.25 0.13 0.47 0.81 1.18 1.64

Note: hi represents the category threshold value, which relates the underlying continuous value,

Y j
¿, to the observed ordinal response, Y j, such that Y j={

1Y j
¿ ≤ h1

2 h1<Y j
¿≤ h2
⋮ ⋮

7Y j
¿ ≥ h6
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Table 3

Convergence Failures for the BIC and MR Methods

 BIC Method
Total Failures: 27,948 (2.6%)

MR Method
Total Failures: 18,971 (1.8%)

cat-BIC cont-BIC cat-MR cont-MR
Number of 
Nodes

10 0.13% < .01% < .01% < .01%

20 2.46% < .001% 0.04% 1.71%
Connectivit
y

0.3 0.54% < .01% < .01% 0.39%

0.5 0.78% < .01% < .01% 0.54%

0.7 1.26% < .01% < .01% 0.79%

Sample Size

100 2.25% < .01% 0.03% 0.50%

250 0.19% < .01% <  .01% 0.34%

500 0.06% < .01% <  .01% 0.31%

1,000 0.05% < .01% < .01% 0.28%

3,000 0.04% < .01% < .01% 0.29%
Distribution 
Type

Normal 0.46% < .01% 0.02% 0.61%
Non-
Normal 
(VM)

0.59% 0% < .01% 0.66%

Non-
Normal 

1.63% < .01% 0.01% 0.44%
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(IG)
Threshold 
Symmetry

Symmetric 0.71% < .01% 0.02% 0.41%
Moderately 
Asymmetric 0.32% 0% 0.01% 0.42%

Extremely 
Asymmetric 1.56% < .01% 0.01% 0.89%

Levels

3 1.47% 0% 0.02% 0.14%

4 0.70% < .01% 0.01% 0.17%

5 0.34% 0% 0.01% 0.36%

7 0.09% < .01% <  .01% 1.05%

Note. Total value in the second row represents the total number of convergence failures out of 

1,080,000 iterations. Cell values represent the percentage of failures (out of 1,080,000 iterations) 

for that factor, collapsed across all other factors.  
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Table 4

Strengths and Weaknesses of Estimation Methods

Estimatio

n Method

Strengths Weaknesses

EBIC  No 
convergence failures

 High 
sensitivity when n > 1,000

 Less bias than
other methods when n < 500

 Low 
sensitivity when n < 1,000 
(selects empty networks)

 Unstable 
structure recovery 
performance when treating 
data as ordinal

 False positive
rate increases with sample 
size

 Bias does not 
decrease with increasing 
sample size, and greater bias
than other methods at n
≥ 500

BIC  When 
treating data as continuous, 
minimizes false positives 
more than other methods

 Bias 
decreases with increasing 
sample size until essentially 

 Highest 
number of convergence 
failures, especially with 
polychoric correlations

 Unstable 
structure recovery 
performance when treating 
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unbiased when n = 3,000 data as ordinal
 Substantially 

biased estimates when n < 
500

MR  Not as 
affected by treating the data 
as ordinal versus continuous

 Stable 
sensitivity performance 
across all conditions

 Bias 
decreases with increasing 
sample size until essentially 
unbiased by n = 3,000

 Slight 
increase in false positive rate
with sample size

 Substantially 
biased estimates when n < 
500

Figure 1

Diagrammatic Representation of the Nonregularized Bayesian Information Criterion Method
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Figure 2

Sensitivity for Networks Estimated from Underlying Normal Distribution
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Note. Different sample sizes are shown in the rows (increasing from top to bottom), while results 

for conditions with 3 levels are in the left 2 columns, and 7 levels are in the right 2 columns. 

Within each pair of columns, conditions with symmetric thresholds are on the left and those with

extremely asymmetric thresholds are on the right. The dashed horizontal line represents 70% 

sensitivity, and the error bars represent 1 standard deviation.

Figure 3
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Sensitivity for Networks Estimated from Underlying Non-Normal Distribution 

Note. Different sample sizes are shown in the rows (increasing from top to bottom), while results 

for conditions with 3 levels are in the left 2 columns, and 7 levels are in the right 2 columns. 

Within each pair of columns, conditions with symmetric thresholds are on the left and those with

extremely asymmetric thresholds are on the right. The dashed line represents 70% sensitivity, 

and the error bars represent 1 standard deviation. 
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Figure 4

Sensitivity as a Function of the Number of Levels

Note. Sensitivity is plotted as a function of the number of levels for n = 1,000, with an 

underlying normal distribution and symmetric thresholds. However, this pattern tends to hold 

across different sample sizes, underlying distributions, and threshold symmetries. Dotted lines 

represent data that were treated as continuous, while solid lines represent data that were treated 

as ordinal. 
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Figure 5

False Positive Rate for Networks Estimated from Underlying Normal Distribution 

Note. Different sample sizes are shown in the rows (increasing from top to bottom), while results 

for conditions with 3 levels are in the left 2 columns, and 7 levels are in the right 2 columns. 

Within each pair of columns, conditions with symmetric thresholds are on the left and those with

extremely asymmetric thresholds are on the right. The dashed line represents a 30% false 

positive rate, and the error bars represent 1 standard deviation.
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Figure 6

False Positive Rate for Networks Estimated from Underlying Non-Normal Distribution 

Note. Different sample sizes are shown in the rows (increasing from top to bottom), while results 

for conditions with 3 levels are in the left 2 columns, and 7 levels are in the right 2 columns. 

Within each pair of columns, conditions with symmetric thresholds are on the left and those with
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extremely asymmetric thresholds are on the right. The dashed line represents a 30% false 

positive rate, and the error bars represent 1 standard deviation.

Figure 7

False Positive Rate as a Function of the Number of Levels
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Note. False positive rate is plotted as a function of the number of levels for n = 1,000, with an 

underlying normal distribution and symmetric thresholds. Dotted lines represent data that were 

treated as continuous, while solid lines represent data that were treated as ordinal. 

Figure 8

Relative Bias for True Positive Edges in Networks Estimated from Underlying Normal 

Distribution
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Note. Different sample sizes are shown in the rows (increasing from top to bottom), while results 

for conditions with 3 levels are in the left 2 columns, and 7 levels are in the right 2 columns. 

Within each pair of columns, conditions with symmetric thresholds are on the left and those with

extremely asymmetric thresholds are on the right. The dashed lines correspond to a relative bias 
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of -0.1 or 0.1 to aid in detecting estimates that are substantially biased, and the error bars 

represent 1 standard deviation. To facilitate comparisons across graphs, the plotted values 

represent log (|Relative Bias|+1)although the y-axis is in the scale of the original relative bias. 

Figure 9

Relative Bias for True Positive Edges in Networks Estimated from Underlying Non-Normal 
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Distribution 

Note. Different sample sizes are shown in the rows (increasing from top to bottom), while results 

for conditions with 3 levels are in the left 2 columns, and 7 levels are in the right 2 columns. 

Within each pair of columns, conditions with symmetric thresholds are on the left and those with
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extremely asymmetric thresholds are on the right. The dashed lines correspond to a relative bias 

of -0.1 or 0.1 to aid in detecting estimates that are substantially biased, and the error bars 

represent 1 standard deviation. To facilitate comparisons across graphs, the plotted values 

represent log (|Relative Bias|+1)although the y-axis is in the scale of the original relative bias. 

Figure 10

Relative Bias for True Positive Edges in Networks Estimated with a Sample Size of 1,000,000
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Note. The top row shows relative bias for networks estimated under an underlying normal 

distribution, while the bottom row shows relative bias for networks estimated under an 

underlying non-normal distribution. Within each row, results for conditions with 3 levels are in 

the leftmost columns, and conditions with 7 levels in the rightmost. Finally, within each pair of 

columns, the left column represents conditions with symmetric threshold, and the right extremely

asymmetric thresholds. There are no results for cat-MR when the data have an underlying non-

normal distribution and thresholds are extremely asymmetric due to a convergence failure. 

Figure 11

Histograms Displaying Ranges of Population Partial Correlations

(b)(a)
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Note. Histograms illustrating the range of population partial correlation values for (a) the 

empirical dataset used in the main simulation and (b) the randomly-generated values used in the 

follow-up simulation. 
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