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Abstract

In case-based reasoning, a given problem is solved by
adapting the solutions to similar problems encountered
in the past. A major task in case-based problem solving
is to generate modifications that are useful for adapt-
ing a previous solution to solve the present problem.
We describe a model-based method that uses qualita-
tive models of cases for generating useful modifications.
The qualitative model of a case expresses a problem-
solver’s comprehension of how the solution satisfies the
constraints of the problem. We illustrate the model-
based method in the context of case-based design of
physical devices. A designer’s understanding of how the
structure of a previously encountered design produces
its functions is expressed in the form of a function-
structure model. The functional differences between
a given problem and a specific case are mapped into
structural modifications by a family of modification-
generation plans. Each plan is applicable to a specific
type of functional difference, and uses the function-
structure model to identify the specific components that
need to be modified. We discuss the evaluation of this
model-based method in an experimental case-based sys-
tem called KRITIK.

Case Adaptation in Case-Based Reasoning

Much of real-world problem solving appears to be case-
based. Cognitive agents often seem to solve new prob-
lems by retrieving and adapting solutions to similar
problems that they have encountered in the past. These
observations have recently led to the development of sev-
eral computational models of case-based reasoning [Ash-
ley and Rissland 1988] [Hammond 1989] [Kolodner and
Simpson 1990] [Riesbeck and Schank 1989]. These com-
putational models posit different methods for adapting
previous cases for solving new problems. For example,
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heuristic search [Stallman and Sussman 1977, heuristic
association [Hammond 1989), and derivational analogy
[Carbonell 1986]. The case-based method itself has been
recursively used to adapt cases [Kolodner and Simpson
1990].

Methods for case adaptation differ in the types of
knowledge, inference, and control they use. The method
of heuristic-association, for example, uses knowledge of
situation-specific associations that directly map differ-
ences between the specifications of the new and the
known problems into modifications to the solution of
the known problem. In addition, case-adaptation meth-
ods differ in the types of knowledge stored in the cases.
In the method of derivational analogy, for example, a
case contains a specification of a problem, a specifica-
tion of a solution to the problem, and a specification
of the problem-solving process by which the cognitive
agent arrived at the solution.

In this paper, we describe another computational
model for case-based reasoning in which qualitative mod-
els of cases are used to generate case modifications.

A Model-Based Method for
Case Adaptation

The core idea in the model-based approach to case adap-
tation is that in addition to their knowledge of solutions
to problems encountered previously, cognitive agents of-
ten also comprehend how a solution actually satisfies the
constraints of the problem. This comprehension can be
expressed in the form of a qualitative model for the case
and used for adapting the case in solving a new prob-
lem. A designer, for example, may not only know the
functions and the structure of a previously encountered
artifact, but may also comprehend how the structure
of the artifact produces its functions. If and when this
type of knowledge is available in memory, it can be ac-
cessed and used in adapting the structure of the known
artifact to design new ones.

The main issues in this model-based approach to case
adaptation, then, are (i) how to represent the qualitative
models of cases, (ii) how to index the models in mem-
ory, (iii) how to access them when needed, and (iv) how
to use them in case adaptation. The KRITIK project
investigates these issues in the context of solving design



problems in the domain of physical devices [Goel 1989].
KRITIK is a fully operational system that uses the case-
based method for designing physical devices, and the
model-based method for adapting design cases. It thus
integrates model-based reasoning with case-based rea-
soning.

In KRITIK, the case-adaptation task is to map the
differences between the function desired of a device and
the function delivered by the retrieved design case into
candidate modifications to the structure of the known
design (functional differences — structural modifica-
tions). KRITIK uses knowledge of how the structure
of the known device achieves its functions (structure —
function) for generating useful candidate modifications.
This knowledge is expressed as a qualitative function-
structure model that specifies how the internal causal
mechanisms of the known device compose the functional
abstractions of its structural components into the func-
tions of the device as a whole.

A design case in KRITIK contains three types of
knowledge: (i) a specification of the functions delivered
by a previously encountered design, (ii) a specification
of the structure of the stored design, and (ii1) a pointer
to the qualitative function-structure model of the de-
sign. The cases are indexed by the functions delivered
by the stored designs, and themselves act as indices
to the function-structure-models of the designs. The
knowledge content of a given function-structure model
is specific to a particular design case but the represen-
tation language is useful for specifying the models of a
large class of physical devices.

KRITIK uses a family of modification-generation
plans for mapping the differences between the function
desired of and delivered by the retrived design case into
candidate modifications to the structure of the known
design. These plans are indexed by the types of func-
tional differences to which they are applicable. Each
plan knows of the types of structure modifications that
can help to reduce a specific functional difference but
does not know what components in the specific de-
sign case need to modified. The modification-generation
plans access the case-specific qualitative model, and use

it to identify the specific components that need to be
modified.

An Illustrative Example from KRITIK

Let us consider, as a simple illustrative example from
KRITIK, the task of designing a device to cool high-
acidity Sulfuric Acid by the case-based method. Let us
assume that a number of previously encountered designs
are available in memory, and that the case-retrieval task
results in retrieving the design of a Nitric Acid Cooler
(NAC) that cools low-acidity Nitric Acid. The design
of NAC is shown in Figure 1.

The desired function and the delivered function in this
example differ in (i) the substance to be cooled (Sulfu-
ric Acid instead of Nitric Acid), and (ii) a property of
the substance (high-acidity instead of low-acidity). The
task of case adaptation is to map these functional differ-
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Figure 1: The Nitric Acid Cooler

ences into modifications to the structure of NAC such
that the modified design can deliver the desired func-
tion of cooling high-acidity Sulfuric Acid. The task of
modification generation is to propose candidate modifi-
cations that can help to deliver the desired function.

Model-Based Case Adaptation:
Knowledge, Inference, and Control

The generation of useful candidate structural modifica-
tions is in general computationally complex because (i)
the differences between the function desired of and de-
livered by the retrieved design case can be large and
many, (ii) the needed structural modifications can be
non-local and many, (iii) there may be no simple cor-
respondence between the functional differences and the
structural modifications, and (iv) the structural modifi-
cations can interact with one another and with the com-
ponents in the structure of the known design. Therefore,
solving the modification-generation task computation-
ally efficiently and effectively in general requires knowl-
edge that can help to constrain and focus the process of
generating useful modifications.

KRITIK uses three types of knowledge for adapting

design cases:

1. Typologies of Functional Differences and Structural
Modifications: The typology of functional differences
classifies differences between the functions desired of
and delivered by a design case; the typology of struc-
tural modifications similarly classifies modifications
to the structure of a design.

2. Case-Specific Function-Structure Models: These
models describe how the solution in a design case (the
design structure) satisfies the constraints of the design
(the functions of the design).

3. A Family of Modification-Generation Plans: These
plans specify compiled sequences of abstract opera-



tions for mapping functional differences into candi-
date structure modifications.

Given a specific difference between the function de-
sired of (e.g., to cool high-acidity Sulfuric Acid) and de-
livered by (e.g., to cool low-acidity Nitric Acid) a design
case, KRITIK sets up four subtasks of the modification-
generation task:

(i) Plan Selection: First, the functional difference is
used as a probe into the functionally-indexed memory
of modification-generation plans to select the applica-
ble plan.

(1) Plan Instantiation: Next, the retrieved plan is in-
stantiated in the context of the specific design case to
be adapted.

(i1i) Model Retrieval: Then, the instantiated plan uses
the case as a pointer to retrieve the function-structure
model for the design case.

(iv) Plan Ezecution: Finally, the plan uses the case-
specific function-structure model to generate candi-
date structure modifications that can help to achieve
the desired function.

A Function-Structure Model

A case-specific function-structure model in KRITIK is
an instantiation of a more general component-substance
model of the functioning of a large class of physical de-
vices. The component-substance model extends and
generalizes the component and substance ontology used
earlier in the consolidation method for deriving the be-
haviors of a device from the behavioral interactions be-
tween its structural components [Bylander and Chan-
drasekaran 1985]). Knowledge of a case-specific function-
structure model in KRITIK is represented and orga-
nized in a behavioral representation language. The be-
havioral representation language extends and general-
izes the functional representation scheme for represent-
ing knowledge of the functioning of a device [Sembug-
amoorthy and Chandrasekaran 1986].

The function-structure model of a given design case
in KRITIK explicitly represents the structure, the func-
tions, and the internal causal behaviors of the design.
The behaviors compose the structural and behavioral
interactions between the structural components into the
functions of the device as a whole.

Structure: The structure of a device is viewed as con-
stituted of components (e.g., battery, pipe), substances
(e.g., water, electrical charge), and structural relations
between them (e.g., connection, containment). The sub-
stances can be abstract, e.g., heat. The components
and substances can have behavioral interactions. For
example, substances can flow from one component to
another if there is a certain type of structural relation
between the two components, viz., the connection re-
lation. The model borrows a typology of behavioral
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Figure 2: Behavior CoolNitricAcid-2
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interactions from the consolidation method. For exam-
ple, a battery pumps electrical charge and a pipe al-
lows substances with certain properties, Knowledge of
the structure of the device is organized in a structure-
substructure hierarchy. A substructure is represented
as a schema that specifies its functional abstractions,
structural relations, modalities, parameters, etc.

Functions: Knowledge of the functions of a device is
also represented in the form of schemas. The schema
for function specifies the behavioral state it takes as in-
put and the behavioral state it gives as output. It also
specifies the internal causal behaviors responsible for
transforming the input behavioral state into the output
behavioral state. Thus, like in the functional represen-
tation scheme, the functions act as indices to the behav-
iors. In addition, the function schema specifies the de-
vice conditions under which the behavior accomplishes
the function, and the stimulus from the environment
which triggers the behavior.

Internal Causal Behaviors: Knowledge of the in-
ternal causal behaviors of a device is represented as di-
rected acyclic graphs (DAGS) of behavioral states and
state transitions. A fragment of one behavior of NAC
is shown in Figure 2. A behavioral state in an inter-
nal behavior is represented in the form of schemas. The
state schema specifies the location, property, and pa-
rameters and parameter values of a substance. For ex-
ample, the schema labeled state2 in Figure 2 specifies
that (some quantity of) Nitric Acid is at point p2 in
the device space, and has the properties of temperature
and flow rate with values T'1 and R respectively. The
state schema may also specify the substances contained
within a substance, e.g., in state2 in Figure 2, Nitric
Acid contains heat with magnitude Q1.

A behavioral-state transition in an internal behavior
is annotated by the behavioral interactions that cause
the transition to occur, e.g., the transition state2 =>
stated in Figure 2 is caused (among other causes) by
the function allow of pipe2, where pipe2 allows the flow
of low-acidity liquids. A state transition may also be
annotated by the enabling conditions under which the
behavioral interactions result in the transition. Some
of the enabling conditions may pertain to structural re-
lations between components, e.g., the structural rela-
tion that the heat-exchange-chamber includes pipe2 in
transition state2 = state3 (see Figure 1). Also, the
enabling conditions in one behavior may act as indices
to another other behavior, e.g., the enabling condition
under — state —iransition in transition state2 => state3
refers to another behavior of NAC (BehaviorHeat Water,
not shown here). In addition, a transition may be an-
notated by knowledge of deeper domain principles and
qualitative equations as indicated in Figure 2.

Functional Differences and
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Structure Modifications

The component-substance model provides a vocabulary
for expressing (i) certain types functional differences
between design cases, and (ii) certain types of mod-
ifications to the structure of a design. The typology
of functional differences includes the categories of sub-
stance diflerence, substance property difference, sub-
stance location difference, component difference, com-
ponent modality difference, and component parameter
difference. The typology of structure modifications in-
cludes the categories of substance substitution (includ-
ing substance generalization and specialization), com-
ponent modification (including component replacement,
component modality change, and component parame-
ter adjustment), relation modification (such as series-to-
parallel and parallel-to-series conversion), substructure
deletion (such as component deletion), and substructure
insertion (such as substructure replication).

Given a function desired of a design, (e.g., to cool
high-acidity Sulfuric Acid) and the function delivered
by a specific design case (e.g., to cool low-acidity Ni-
tric Acid), KRITIK classifies the differences between
the two functions according to its typology of func-
tional differences. If the desired and the delivered fune-
tions differ in more than feature, then it heuristically
ranks the differences in order of the difficulty of re-
ducing them. In the NAC example, for instance, the
desired function and the delivered function differ in
two features: substancel — substance2 (Nitric Acid
— Sulfuric Acid), and propertyl — property2 (low-
acidity — high-acidity). Since, in the domain of phys-
ical devices that can be modeled in terms of flow of
substances between components, reducing the difference
substancel — substance2 is in general less difficult than
reducing propertyl — property2, KRITIK reduces the
latter before the former.

A Family of Modification-Generation Plans

The types of knowledge, inference, and control, needed
for reducing different types of functional differences are
in general different. This implies a family of plans for
generating structural modifications, where each plan
in this family is applicable to a specific type of func-
tional difference. For example, the substance-property-
difference plan is useful for reducing the difference in the
property of a substance, e.g., low-acidity — high-acidity.
KRITIK uses modification-generation plans for several
different types of functional differences. These plans
are indexed by the type of functional differences they
can help to reduce. The substance-property-difference
plan, for example, is indexed by the functional differ-
ence propertyl — property2. Each plan knows of the
types of structure modifications that can help to reduce
a specific functional difference. The substance-property-
difference plan, for example, knows that a difference in
the property of a substance can potentially be reduced
by the structural modifications of (i) component param-
eter adjustment, (ii) component modality change, and
(1i1)) component replacement.



The modification-generation plans, however, do not
know what components in the given design need to
modified. The substance-property-difference plan, for
example, does not know which components in NAC’s
design need to be modified. This is determined by
the component-substance model for NAC. First, the
substance-property-difference plan uses the NAC case as
a pointer to retrieve the component-substance model for
NAC (recall that a case contains a pointer to its qualita-
tive model). Next, since the substance property differ-
ence low-acidity — high-acidity occurs in the function of
cooling low-acidity Nitric Acid, the substance-property-
difference plan uses this function to access the internal
causal behavior responsible for it, a fragment of which
is shown in Figure 2 (recall that in the component-
substance model, functions act as indices to the be-
haviors responsible for them). Then, the substance-
property-difference plan traces through the retrieved
behavior, checking each state transition in it to deter-
mine whether reducing the substance property differ-
ence low-acidity — high-acidily requires any component
in the transition to be modified (or replaced). If so,
it generates the corresponding structure modification.
For example, when the plan arrives at the transition
state2 => state3 shown in Figure 2, it finds that pipe2 al-
lows the flow of only low-acidity substances. It therefore
generates the structure modifications of (i) component
parameter adjustment (in case pipe2 can allow the flow
of high-acidity substances in a different parameter set-
ting), (i) component modality change (in case pipe2 can
allow the flow of high-acidity substances in a different
mode of operation), and (iii) component replacement
(in case the first two modifications are not possible and
pipe2 has to be replaced with some new — pipe2 which
can allow the flow of high-acidity substances). The gen-
erated modifications can now be evaluated but that is
different task altogether (see Goel [1989] for how KRI-
TIK uses the model-based approach to solve it).

In this way, the substance-property-difference plan
uses the component-substance model for NAC to gener-
ate structural modifications that can help to reduce the
functional difference low-acidity — high-acidily. The
substance-difference plan corresponding to the func-
tional difference of substancel — substance2 (Nitric
Acid — Sulfuric Acid) similarly results in the generation
of the structure modification of substance substitution
NitricAcid — Sul furicAcid.

Evaluation of the Model-Based Method

The KRITIK system evaluates model-based method for
case adaptation in two different domains: heat exchang-
ers such as NAC, and electrical circuits such as the
electrical circuit in a flashlight. This insures that the
method is not specific to any narrow domain. The de-
sign tasks KRITIK solves range from simple “naive”
design tasks in the domain of electrical circuits to com-
plex “expert” tasks in the domain of heat exchangers.
We are currently extending the KRITIK system to two
new domains: electromagnetic devices such as buzzers
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on house doors, and rotational devices such as reaction
wheels.

KRITIK shows that the model-based method is
quite effective for adapting design cases because the
case-specific component-substance model explicitly rep-
resents the behavioral states of the known device,
the functional role played by each structural com-
ponent in the state transitions, the enabling condi-
tions for the transitions, and so on. It also shows
that the model-based method is quite efficient be-
cause each modification-generation plan needs to search
only a small portion of the design. For example, the
substance-property-difference plan searches only the in-
ternal causal behavior responsible for the function of
cooling low-acidity Nitric Acid (ignoring all structural
components that do not play any functional role in
this behavior). The organization of the component-
substance model thus constrains and focuses the search
for generating structure modifications that can help to
reduce a given functional difference.

Of course, the model-based method, like any other
method, is applicable only when the types of knowl-
edge it uses are available in the domain of interest.
Our experience with KRITIK suggests that case-specific
component-substance models are readily available in the
domain of physical devices. Whether the model-based
method is useful outside physical domains is an empir-
ical issue that KRITIK does not answer. In any event,
the domain of physical devices is very large and impor-
tant; it includes, for example, all engineering devices.

Related Research

Goel and Chandrasekaran [1989] have earlier proposed
the use of function-structure models for generating mod-
ifications to the designs of physical devices for achiev-
ing new device functionalities. The KRITIK system
transforms their proposal into a computational model
for case-based problem solving.

Simmons and Davis [1987] have used causal domain
models for debugging plans but only for testing mod-
ifications to a plan, not for generating the modifica-
tions. Koton [1988] has used causal domain models for
comprehending diagnostic problems in internal medicine
and retrieving appropriate diagnostic cases from mem-
ory. Sycara and Navinchandra [1989] similarly have pro-
posed the use of causal domain models for elaborating
engineering design problems and retrieving appropri-
ate cases from memory. The KRITIK system uses the
model-based approach for three subtasks in case-based
reasoning: retrieval of relevant cases from memory, gen-
eration of modifications to the retrieved case, and eval-
uation of the generated modifications. In this paper, we
have described only its use of the model-based method
for generation of case modifications.

In addition to the differences in tasks and domains,
our model-based approach to case-based reasoning dif-
fers from that of Simmons and Davis, Koton, and Sycara
and Navinchandra, in the representation and organiza-
tion of the qualitative model it uses. Below, we describe



these differences by comparing our model-based method
to Sycara and Navinchandra’s. First, while their meth-
ods use causal models, our method uses deeper function-
structure models. The states and the state transitions
in their models are grounded neither in the function
nor in the structure of the system. In contrast, the
component-substance model explicitly relates the inter-
nal causal behaviors to both the function and the struc-
ture of a device, and thus constrains them both from the
top and the bottom. Second, the states and the state
transitions in their models are represented as charac-
ter strings. In contrast, the behavioral representation
language provides a specific vocabulary for expressing
the semantics of behavioral states and state transitions.
Third, their methods do not provide any scheme for
organizing knowledge of the internal causal behaviors
of a system. In contrast, the behavioral representation
language provides a specific vocabulary for organizing
knowledge of the behaviors around the functions they
achieve. Fourth, their models do not provide any ty-
pology of structural or behavioral interactions between
the components of a system, or of the functional dif-
ferences and structural differences between cases. In
contrast, the component-substance model explicitly pro-
vides these typologies. Fifth, as a consequence of above,
their model-based methods can handle only very sim-
ple forms of causal reasoning. In contrast, our model-
based method involves teleological reasoning about the
functions of physical devices and topographic reasoning
about their structures, in addition to causal reasoning.

As mentioned earlier, the component-substance
model and the behavioral representation language inte-
grate and generalize two earlier device representations:
the functional representation scheme and the consolida-
tion method. The model and the language are comple-
mentary to the commonsense algorithms of Rieger and
Grinberg [1978]. The representation of behavioral states
and state transitions in our scheme is similar to their
representations. The typology of structural, causal, and
behavioral relations in our scheme and the types of in-
ferences this scheme enables, complement those used in
the commonsense algorithms.

Finally, the model-based method for case adapta-
tion is complementary to Carbonell’s [1986] method of
derivational analogy. The method of derivational anal-
ogy uses knowledge of the problem-solving process by
which the agent arrived at the solution to a previous
problem. The model-based based, in contrast, uses
knowledge of how the solution of the previous problem
satisfies its constraints. The interaction between the
two approaches is an open research issue.
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